summaryrefslogtreecommitdiffstats
path: root/bsps/powerpc/beatnik/net/if_em
diff options
context:
space:
mode:
Diffstat (limited to 'bsps/powerpc/beatnik/net/if_em')
-rw-r--r--bsps/powerpc/beatnik/net/if_em/LICENSE31
-rw-r--r--bsps/powerpc/beatnik/net/if_em/README332
-rw-r--r--bsps/powerpc/beatnik/net/if_em/if_em.c3847
-rw-r--r--bsps/powerpc/beatnik/net/if_em/if_em.h493
-rw-r--r--bsps/powerpc/beatnik/net/if_em/if_em_hw.c6620
-rw-r--r--bsps/powerpc/beatnik/net/if_em/if_em_hw.h2678
-rw-r--r--bsps/powerpc/beatnik/net/if_em/if_em_osdep.h146
-rw-r--r--bsps/powerpc/beatnik/net/if_em/if_em_rtems.c106
-rw-r--r--bsps/powerpc/beatnik/net/if_em/rtemscompat_defs.h198
9 files changed, 0 insertions, 14451 deletions
diff --git a/bsps/powerpc/beatnik/net/if_em/LICENSE b/bsps/powerpc/beatnik/net/if_em/LICENSE
deleted file mode 100644
index ba90c4a817..0000000000
--- a/bsps/powerpc/beatnik/net/if_em/LICENSE
+++ /dev/null
@@ -1,31 +0,0 @@
-$FreeBSD: /repoman/r/ncvs/src/sys/dev/em/LICENSE,v 1.3 2005/01/06 01:42:38 imp Exp $
-/*-
-Copyright (c) 2001-2003, Intel Corporation
-All rights reserved.
-
-Redistribution and use in source and binary forms, with or without
-modification, are permitted provided that the following conditions are met:
-
- 1. Redistributions of source code must retain the above copyright notice,
- this list of conditions and the following disclaimer.
-
- 2. Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in the
- documentation and/or other materials provided with the distribution.
-
- 3. Neither the name of the Intel Corporation nor the names of its
- contributors may be used to endorse or promote products derived from
- this software without specific prior written permission.
-
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
-AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
-LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
-CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
-SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
-INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
-CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
-ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-POSSIBILITY OF SUCH DAMAGE.
-*/
diff --git a/bsps/powerpc/beatnik/net/if_em/README b/bsps/powerpc/beatnik/net/if_em/README
deleted file mode 100644
index b4eef8dbb7..0000000000
--- a/bsps/powerpc/beatnik/net/if_em/README
+++ /dev/null
@@ -1,332 +0,0 @@
-$FreeBSD: /repoman/r/ncvs/src/sys/dev/em/README,v 1.10 2005/07/11 02:33:25 delphij Exp $
-FreeBSD* Driver for the Intel(R) PRO/1000 Family of Adapters
-============================================================
-
-March 18, 2005
-
-
-Contents
-========
-
-- Overview
-- Identifying Your Adapter
-- Building and Installation
-- Speed and Duplex Configuration
-- Additional Configurations
-- Known Limitations
-- Support
-- License
-
-
-Overview
-========
-
-This file describes the FreeBSD* driver, version 2.1.x, for the Intel(R)
-PRO/1000 Family of Adapters. This driver has been developed for use with
-FreeBSD, version 5.x.
-
-For questions related to hardware requirements, refer to the documentation
-supplied with your Intel PRO/1000 adapter. All hardware requirements listed
-apply to use with FreeBSD.
-
-
-Identifying Your Adapter
-========================
-
-For information on how to identify your adapter, go to the Adapter &
-Driver ID Guide at:
-
-http://support.intel.com/support/network/adapter/pro100/21397.htm
-
-
-For the latest Intel network drivers for FreeBSD, see:
-
-http://appsr.intel.com/scripts-df/support_intel.asp
-
-
-NOTE: Mobile adapters are not fully supported.
-
-
-Building and Installation
-=========================
-
-NOTE: The driver can be installed as a dynamic loadable kernel module or
- compiled into the kernel. You must have kernel sources installed in
- order to compile the driver module.
-
-In the instructions below, x.x.x is the driver version as indicated in the
-name of the driver tar file.
-
-1. Move the base driver tar file to the directory of your choice. For
- example, use /home/username/em or /usr/local/src/em.
-
-2. Untar/unzip the archive:
-
- tar xvfz em-x.x.x.tar.gz
-
- This will create an em-x.x.x directory.
-
-3. To create a loadable module, perform the following steps.
- NOTE: To compile the driver into the kernel, go directly to step 4.
-
- a. To compile the module
-
- cd em-x.x.x
- make
-
- b. To install the compiled module in system directory:
-
- make install
-
- c. If you want the driver to load automatically when the system is booted:
-
- 1. Edit /boot/loader.conf, and add the following line:
-
- if_em_load="YES"
-
-4. To compile the driver into the kernel:
-
- cd em-x.x.x/src
-
- cp if_em* /usr/src/sys/dev/em
-
- cp Makefile.kernel /usr/src/sys/modules/em/Makefile
-
- Edit the /usr/src/sys/conf/files.i386 file, and add the following lines only if
- they don't already exist:
-
- dev/em/if_em.c optional em
-
- dev/em/if_em_hw.c optional em
-
- Remove the following lines from the /usr/src/sys/conf/files.i386 file,
- if they exist:
-
- dev/em/if_em_fxhw.c optional em
- dev/em/if_em_phy.c optional em
-
- Edit the kernel configuration file (i.e., GENERIC or MYKERNEL) in
- /usr/src/sys/i386/conf, and ensure the following line is present:
-
- device em
-
- Compile and install the kernel. The system must be rebooted for the kernel
- updates to take effect. For additional information on compiling the
- kernel, consult the FreeBSD operating system documentation.
-
-5. To assign an IP address to the interface, enter the following:
-
- ifconfig em<interface_num> <IP_address>
-
-6. Verify that the interface works. Enter the following, where <IP_address>
- is the IP address for another machine on the same subnet as the interface
- that is being tested:
-
- ping <IP_address>
-
-7. To configure the IP address to remain after reboot, edit /etc/rc.conf,
- and create the appropriate ifconfig_em<interface_num>entry:
-
- ifconfig_em<interface_num>="<ifconfig_settings>"
-
- Example usage:
-
- ifconfig_em0="inet 192.168.10.1 netmask 255.255.255.0"
-
- NOTE: For assistance, see the ifconfig man page.
-
-
-Speed and Duplex Configuration
-==============================
-
-By default, the adapter auto-negotiates the speed and duplex of the
-connection. If there is a specific need, the ifconfig utility can be used to
-configure the speed and duplex settings on the adapter. Example usage:
-
- ifconfig em<interface_num> <IP_address> media 100baseTX mediaopt
- full-duplex
-
- NOTE: Only use mediaopt to set the driver to full-duplex. If mediaopt is
- not specified and you are not running at gigabit speed, the driver
- defaults to half-duplex.
-
-
-This driver supports the following media type options:
-
- autoselect - Enables auto-negotiation for speed and duplex.
-
- 10baseT/UTP - Sets speed to 10 Mbps. Use the ifconfig mediaopt
- option to select full-duplex mode.
-
- 100baseTX - Sets speed to 100 Mbps. Use the ifconfig mediaopt
- option to select full-duplex mode.
-
- 1000baseTX - Sets speed to 1000 Mbps. In this case, the driver
- supports only full-duplex mode.
-
- 1000baseSX - Sets speed to 1000 Mbps. In this case, the driver
- supports only full-duplex mode.
-
-For more information on the ifconfig utility, see the ifconfig man page.
-
-
-Additional Configurations
-=========================
-
-The driver supports Transmit/Receive Checksum Offload and Jumbo Frames on
-all but the 82542-based adapters. For specific adapters, refer to the
-Identifying Your Adapter section.
-
- Jumbo Frames
- ------------
- To enable Jumbo Frames, use the ifconfig utility to increase the MTU
- beyond 1500 bytes.
-
- NOTES: Only enable Jumbo Frames if your network infrastructure supports
- them.
-
- The Jumbo Frames setting on the switch must be set to at least
- 22 bytes larger than that of the MTU.
-
- The Intel PRO/1000 PM Network Connection does not support jumbo
- frames.
-
-
- The Jumbo Frames MTU range for Intel Adapters is 1500 to 16114. The default
- MTU range is 1500. To modify the setting, enter the following:
-
- ifconfig em<interface_num> <hostname or IP address> mtu 9000
-
- To confirm the MTU used between two specific devices, use:
-
- route get <destination_IP_address>
-
- VLANs
- -----
- To create a new VLAN interface:
-
- ifconfig <vlan_name> create
-
- To associate the VLAN interface with a physical interface and
- assign a VLAN ID, IP address, and netmask:
-
- ifconfig <vlan_name> <ip_address> netmask <subnet_mask> vlan
- <vlan_id> vlandev <physical_interface>
-
- Example:
-
- ifconfig vlan10 10.0.0.1 netmask 255.255.255.0 vlan10 vlandev em0
-
- In this example, all packets will be marked on egress with 802.1Q VLAN
- tags, specifying a VLAN ID of 10.
-
- To remove a VLAN interface:
-
- ifconfig <vlan_name> destroy
-
- Polling
- -------
- NOTES: DEVICE POLLING is only valid for non-SMP kernels.
-
- The driver has to be compiled into the kernel for DEVICE POLLING to be
- enabled in the driver.
-
- To enable polling in the driver, add the following options to the kernel
- configuration, and then recompile the kernel:
-
- options DEVICE_POLLING
- options HZ=1000
-
- At runtime use:
- sysctl kern.polling.enable=1 to turn polling on
- Use:
- sysctl kern.polling.enable=0 to turn polling off
-
- Checksum Offload
- ----------------
- Checksum offloading is not supported on 82542 Gigabit adapters.
-
- Checksum offloading supports both TCP and UDP packets and is
- supported for both transmit and receive.
-
- Checksum offloading can be enabled or disabled using ifconfig.
- Both transmit and receive offloading will be either enabled or
- disabled together. You cannot enable/disable one without the other.
-
- To enable checksum offloading:
-
- ifconfig <interface_num> rxcsum
-
- To disable checksum offloading:
-
- ifconfig <interface_num> -rxcsum
-
- To confirm the current setting:
-
- ifconfig <interface_num>
-
- Look for the presence or absence of the following line:
-
- options=3 <RXCSUM,TXCSUM>
-
- See the ifconfig man page for further information.
-
-Known Limitations
-=================
-
- There are known performance issues with this driver when running UDP traffic
- with Jumbo Frames.
-
- There is a known compatibility issue where time to link is slow or link is not
- established between 82541/82547 controllers and some switches. Known switches
- include:
- Planex FXG-08TE
- I-O Data ETG-SH8
-
- The driver can be compiled with the following changes:
-
- Edit ./em.x.x.x/src/if_em.h to uncomment the #define EM_MASTER_SLAVE
- from within the comments. For example, change from:
-
- /* #define EM_MASTER_SLAVE 2 */
- to:
- #define EM_MASTER_SLAVE 2
-
- Use one of the following options:
- 1 = Master mode
- 2 = Slave mode
- 3 = Auto master/slave
- Setting 2 is recommended.
-
- Recompile the module:
- a. To compile the module
- cd em-x.x.x
- make clean
- make
-
- b. To install the compiled module in system directory:
- make install
-
-
-Support
-=======
-
-For general information and support, go to the Intel support website at:
-
- http://support.intel.com
-
-If an issue is identified, support is through email only at:
-freebsdnic@mailbox.intel.com
-
-License
-=======
-
-This software program is released under the terms of a license agreement
-between you ('Licensee') and Intel. Do not use or load this software or any
-associated materials (collectively, the 'Software') until you have carefully
-read the full terms and conditions of the LICENSE located in this software
-package. By loading or using the Software, you agree to the terms of this
-Agreement. If you do not agree with the terms of this Agreement, do not
-install or use the Software.
-
-* Other names and brands may be claimed as the property of others.
diff --git a/bsps/powerpc/beatnik/net/if_em/if_em.c b/bsps/powerpc/beatnik/net/if_em/if_em.c
deleted file mode 100644
index db3607a20d..0000000000
--- a/bsps/powerpc/beatnik/net/if_em/if_em.c
+++ /dev/null
@@ -1,3847 +0,0 @@
-/**************************************************************************
-
-Copyright (c) 2001-2005, Intel Corporation
-All rights reserved.
-
-Redistribution and use in source and binary forms, with or without
-modification, are permitted provided that the following conditions are met:
-
- 1. Redistributions of source code must retain the above copyright notice,
- this list of conditions and the following disclaimer.
-
- 2. Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in the
- documentation and/or other materials provided with the distribution.
-
- 3. Neither the name of the Intel Corporation nor the names of its
- contributors may be used to endorse or promote products derived from
- this software without specific prior written permission.
-
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
-AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
-LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
-CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
-SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
-INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
-CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
-ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-POSSIBILITY OF SUCH DAMAGE.
-
-***************************************************************************/
-
-/*$FreeBSD: /repoman/r/ncvs/src/sys/dev/em/if_em.c,v 1.67 2005/08/03 00:18:29 rwatson Exp $*/
-#ifndef __rtems__
-#include <dev/em/if_em.h>
-#else
-#include <rtems.h>
-#include "rtemscompat_defs.h"
-#include "../porting/rtemscompat.h"
-#include "if_em.h"
-#include "../porting/rtemscompat1.h"
-#include <inttypes.h>
-#endif
-
-/*********************************************************************
- * Set this to one to display debug statistics
- *********************************************************************/
-int em_display_debug_stats = 0;
-
-/*********************************************************************
- * Linked list of board private structures for all NICs found
- *********************************************************************/
-
-struct adapter *em_adapter_list = NULL;
-
-
-/*********************************************************************
- * Driver version
- *********************************************************************/
-
-char em_driver_version[] = "2.1.7";
-
-
-/*********************************************************************
- * PCI Device ID Table
- *
- * Used by probe to select devices to load on
- * Last field stores an index into em_strings
- * Last entry must be all 0s
- *
- * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, String Index }
- *********************************************************************/
-
-static em_vendor_info_t em_vendor_info_array[] =
-{
- /* Intel(R) PRO/1000 Network Connection */
- { 0x8086, E1000_DEV_ID_82540EM, PCI_ANY_ID, PCI_ANY_ID, 0},
- { 0x8086, E1000_DEV_ID_82540EM_LOM, PCI_ANY_ID, PCI_ANY_ID, 0},
- { 0x8086, E1000_DEV_ID_82540EP, PCI_ANY_ID, PCI_ANY_ID, 0},
- { 0x8086, E1000_DEV_ID_82540EP_LOM, PCI_ANY_ID, PCI_ANY_ID, 0},
- { 0x8086, E1000_DEV_ID_82540EP_LP, PCI_ANY_ID, PCI_ANY_ID, 0},
-
- { 0x8086, E1000_DEV_ID_82541EI, PCI_ANY_ID, PCI_ANY_ID, 0},
- { 0x8086, E1000_DEV_ID_82541ER, PCI_ANY_ID, PCI_ANY_ID, 0},
- { 0x8086, E1000_DEV_ID_82541ER_LOM, PCI_ANY_ID, PCI_ANY_ID, 0},
- { 0x8086, E1000_DEV_ID_82541EI_MOBILE, PCI_ANY_ID, PCI_ANY_ID, 0},
- { 0x8086, E1000_DEV_ID_82541GI, PCI_ANY_ID, PCI_ANY_ID, 0},
- { 0x8086, E1000_DEV_ID_82541GI_LF, PCI_ANY_ID, PCI_ANY_ID, 0},
- { 0x8086, E1000_DEV_ID_82541GI_MOBILE, PCI_ANY_ID, PCI_ANY_ID, 0},
-
- { 0x8086, E1000_DEV_ID_82542, PCI_ANY_ID, PCI_ANY_ID, 0},
-
- { 0x8086, E1000_DEV_ID_82543GC_FIBER, PCI_ANY_ID, PCI_ANY_ID, 0},
- { 0x8086, E1000_DEV_ID_82543GC_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0},
-
- { 0x8086, E1000_DEV_ID_82544EI_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0},
- { 0x8086, E1000_DEV_ID_82544EI_FIBER, PCI_ANY_ID, PCI_ANY_ID, 0},
- { 0x8086, E1000_DEV_ID_82544GC_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0},
- { 0x8086, E1000_DEV_ID_82544GC_LOM, PCI_ANY_ID, PCI_ANY_ID, 0},
-
- { 0x8086, E1000_DEV_ID_82545EM_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0},
- { 0x8086, E1000_DEV_ID_82545EM_FIBER, PCI_ANY_ID, PCI_ANY_ID, 0},
- { 0x8086, E1000_DEV_ID_82545GM_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0},
- { 0x8086, E1000_DEV_ID_82545GM_FIBER, PCI_ANY_ID, PCI_ANY_ID, 0},
- { 0x8086, E1000_DEV_ID_82545GM_SERDES, PCI_ANY_ID, PCI_ANY_ID, 0},
-
- { 0x8086, E1000_DEV_ID_82546EB_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0},
- { 0x8086, E1000_DEV_ID_82546EB_FIBER, PCI_ANY_ID, PCI_ANY_ID, 0},
- { 0x8086, E1000_DEV_ID_82546EB_QUAD_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0},
- { 0x8086, E1000_DEV_ID_82546GB_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0},
- { 0x8086, E1000_DEV_ID_82546GB_FIBER, PCI_ANY_ID, PCI_ANY_ID, 0},
- { 0x8086, E1000_DEV_ID_82546GB_SERDES, PCI_ANY_ID, PCI_ANY_ID, 0},
- { 0x8086, E1000_DEV_ID_82546GB_PCIE, PCI_ANY_ID, PCI_ANY_ID, 0},
- { 0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0},
-
- { 0x8086, E1000_DEV_ID_82547EI, PCI_ANY_ID, PCI_ANY_ID, 0},
- { 0x8086, E1000_DEV_ID_82547EI_MOBILE, PCI_ANY_ID, PCI_ANY_ID, 0},
- { 0x8086, E1000_DEV_ID_82547GI, PCI_ANY_ID, PCI_ANY_ID, 0},
-
- { 0x8086, E1000_DEV_ID_82573E, PCI_ANY_ID, PCI_ANY_ID, 0},
- { 0x8086, E1000_DEV_ID_82573E_IAMT, PCI_ANY_ID, PCI_ANY_ID, 0},
-
- /* required last entry */
- { 0, 0, 0, 0, 0}
-};
-
-/*********************************************************************
- * Table of branding strings for all supported NICs.
- *********************************************************************/
-
-static char *em_strings[] = {
- "Intel(R) PRO/1000 Network Connection"
-};
-
-/*********************************************************************
- * Function prototypes
- *********************************************************************/
-static int em_probe(device_t);
-static int em_attach(device_t);
-#if !defined(__rtems__) || defined(DEBUG_MODULAR)
-static int em_detach(device_t);
-#endif
-#ifndef __rtems__
-static int em_shutdown(device_t);
-#endif
-static void em_intr(void *);
-static void em_start(struct ifnet *);
-#ifndef __rtems__
-static int em_ioctl(struct ifnet *, u_long, caddr_t);
-#else
-static int em_ioctl(struct ifnet *, ioctl_command_t, caddr_t);
-#endif
-static void em_watchdog(struct ifnet *);
-static void em_init(void *);
-static void em_init_locked(struct adapter *);
-static void em_stop(void *);
-static void em_media_status(struct ifnet *, struct ifmediareq *);
-#ifndef __rtems__
-static int em_media_change(struct ifnet *);
-#else
-static int em_media_change(struct ifnet *ifp, struct rtems_ifmedia *ifm);
-#endif
-static void em_identify_hardware(struct adapter *);
-static int em_allocate_pci_resources(struct adapter *);
-#ifndef __rtems__
-static void em_free_pci_resources(struct adapter *);
-static void em_local_timer(void *);
-#endif
-static int em_hardware_init(struct adapter *);
-static void em_setup_interface(device_t, struct adapter *);
-static int em_setup_transmit_structures(struct adapter *);
-static void em_initialize_transmit_unit(struct adapter *);
-static int em_setup_receive_structures(struct adapter *);
-static void em_initialize_receive_unit(struct adapter *);
-static void em_enable_intr(struct adapter *);
-static void em_disable_intr(struct adapter *);
-static void em_free_transmit_structures(struct adapter *);
-static void em_free_receive_structures(struct adapter *);
-static void em_update_stats_counters(struct adapter *);
-static void em_clean_transmit_interrupts(struct adapter *);
-static int em_allocate_receive_structures(struct adapter *);
-static int em_allocate_transmit_structures(struct adapter *);
-static void em_process_receive_interrupts(struct adapter *, int);
-#ifndef __rtems__
-static void em_receive_checksum(struct adapter *,
- struct em_rx_desc *,
- struct mbuf *);
-static void em_transmit_checksum_setup(struct adapter *,
- struct mbuf *,
- u_int32_t *,
- u_int32_t *);
-#endif
-static void em_set_promisc(struct adapter *);
-static void em_disable_promisc(struct adapter *);
-static void em_set_multi(struct adapter *);
-static void em_print_hw_stats(struct adapter *);
-static void em_print_link_status(struct adapter *);
-static int em_get_buf(int i, struct adapter *,
- struct mbuf *);
-#ifndef __rtems__
-static void em_enable_vlans(struct adapter *);
-static void em_disable_vlans(struct adapter *);
-#endif
-static int em_encap(struct adapter *, struct mbuf **);
-#ifndef __rtems__
-static void em_smartspeed(struct adapter *);
-#endif
-static int em_82547_fifo_workaround(struct adapter *, int);
-static void em_82547_update_fifo_head(struct adapter *, int);
-static int em_82547_tx_fifo_reset(struct adapter *);
-#ifndef __rtems__
-static void em_82547_move_tail(void *arg);
-#endif
-static void em_82547_move_tail_locked(struct adapter *);
-static int em_dma_malloc(struct adapter *, bus_size_t,
- struct em_dma_alloc *, int);
-static void em_dma_free(struct adapter *, struct em_dma_alloc *);
-#ifndef __rtems__
-static void em_print_debug_info(struct adapter *);
-#endif
-static int em_is_valid_ether_addr(u_int8_t *);
-#ifndef __rtems__
-static int em_sysctl_stats(SYSCTL_HANDLER_ARGS);
-static int em_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
-#endif
-static u_int32_t em_fill_descriptors (u_int64_t address,
- u_int32_t length,
- PDESC_ARRAY desc_array);
-#ifndef __rtems__
-static int em_sysctl_int_delay(SYSCTL_HANDLER_ARGS);
-static void em_add_int_delay_sysctl(struct adapter *, const char *,
- const char *, struct em_int_delay_info *,
- int, int);
-#endif
-
-/*********************************************************************
- * FreeBSD Device Interface Entry Points
- *********************************************************************/
-
-#ifndef __rtems__
-static device_method_t em_methods[] = {
- /* Device interface */
- DEVMETHOD(device_probe, em_probe),
- DEVMETHOD(device_attach, em_attach),
- DEVMETHOD(device_detach, em_detach),
- DEVMETHOD(device_shutdown, em_shutdown),
- {0, 0}
-};
-
-static driver_t em_driver = {
- "em", em_methods, sizeof(struct adapter ),
-};
-
-static devclass_t em_devclass;
-DRIVER_MODULE(em, pci, em_driver, em_devclass, 0, 0);
-MODULE_DEPEND(em, pci, 1, 1, 1);
-MODULE_DEPEND(em, ether, 1, 1, 1);
-#else
-net_drv_tbl_t METHODS = {
- n_probe : em_probe,
- n_attach : em_attach,
-#ifdef DEBUG_MODULAR
- n_detach : em_detach,
-#else
- n_detach: 0,
-#endif
- n_intr : em_intr,
-};
-#endif
-
-/*********************************************************************
- * Tunable default values.
- *********************************************************************/
-
-#define E1000_TICKS_TO_USECS(ticks) ((1024 * (ticks) + 500) / 1000)
-#define E1000_USECS_TO_TICKS(usecs) ((1000 * (usecs) + 512) / 1024)
-
-#ifndef __rtems__
-static int em_tx_int_delay_dflt = E1000_TICKS_TO_USECS(EM_TIDV);
-static int em_rx_int_delay_dflt = E1000_TICKS_TO_USECS(EM_RDTR);
-static int em_tx_abs_int_delay_dflt = E1000_TICKS_TO_USECS(EM_TADV);
-static int em_rx_abs_int_delay_dflt = E1000_TICKS_TO_USECS(EM_RADV);
-
-TUNABLE_INT("hw.em.tx_int_delay", &em_tx_int_delay_dflt);
-TUNABLE_INT("hw.em.rx_int_delay", &em_rx_int_delay_dflt);
-TUNABLE_INT("hw.em.tx_abs_int_delay", &em_tx_abs_int_delay_dflt);
-TUNABLE_INT("hw.em.rx_abs_int_delay", &em_rx_abs_int_delay_dflt);
-#endif
-
-/*********************************************************************
- * Device identification routine
- *
- * em_probe determines if the driver should be loaded on
- * adapter based on PCI vendor/device id of the adapter.
- *
- * return BUS_PROBE_DEFAULT on success, positive on failure
- *********************************************************************/
-
-static int
-em_probe(device_t dev)
-{
- em_vendor_info_t *ent;
-
- u_int16_t pci_vendor_id = 0;
- u_int16_t pci_device_id = 0;
- u_int16_t pci_subvendor_id = 0;
- u_int16_t pci_subdevice_id = 0;
- char adapter_name[60];
-
- INIT_DEBUGOUT("em_probe: begin");
-
- pci_vendor_id = pci_get_vendor(dev);
- if (pci_vendor_id != EM_VENDOR_ID)
- return(ENXIO);
-
- pci_device_id = pci_get_device(dev);
- pci_subvendor_id = pci_get_subvendor(dev);
- pci_subdevice_id = pci_get_subdevice(dev);
-
- ent = em_vendor_info_array;
- while (ent->vendor_id != 0) {
- if ((pci_vendor_id == ent->vendor_id) &&
- (pci_device_id == ent->device_id) &&
-
- ((pci_subvendor_id == ent->subvendor_id) ||
- (ent->subvendor_id == PCI_ANY_ID)) &&
-
- ((pci_subdevice_id == ent->subdevice_id) ||
- (ent->subdevice_id == PCI_ANY_ID))) {
- sprintf(adapter_name, "%s, Version - %s",
- em_strings[ent->index],
- em_driver_version);
- device_set_desc_copy(dev, adapter_name);
- return(BUS_PROBE_DEFAULT);
- }
- ent++;
- }
-
- return(ENXIO);
-}
-
-/*********************************************************************
- * Device initialization routine
- *
- * The attach entry point is called when the driver is being loaded.
- * This routine identifies the type of hardware, allocates all resources
- * and initializes the hardware.
- *
- * return 0 on success, positive on failure
- *********************************************************************/
-
-static int
-em_attach(device_t dev)
-{
- struct adapter * adapter;
- int tsize, rsize;
- int error = 0;
-
- INIT_DEBUGOUT("em_attach: begin");
-
- /* Allocate, clear, and link in our adapter structure */
- if (!(adapter = device_get_softc(dev))) {
- printf("em: adapter structure allocation failed\n");
- return(ENOMEM);
- }
-#ifndef __rtems__
- bzero(adapter, sizeof(struct adapter ));
-#else
- /* softc structure is maintained outside of this
- * and the osdep already contains vital fields (memory address)
- */
-#endif
- adapter->dev = dev;
- adapter->osdep.dev = dev;
- adapter->unit = device_get_unit(dev);
- EM_LOCK_INIT(adapter, device_get_nameunit(dev));
-
- if (em_adapter_list != NULL)
- em_adapter_list->prev = adapter;
- adapter->next = em_adapter_list;
- em_adapter_list = adapter;
-
-#ifndef __rtems__
- /* SYSCTL stuff */
- SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
- SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
- OID_AUTO, "debug_info", CTLTYPE_INT|CTLFLAG_RW,
- (void *)adapter, 0,
- em_sysctl_debug_info, "I", "Debug Information");
-
- SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
- SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
- OID_AUTO, "stats", CTLTYPE_INT|CTLFLAG_RW,
- (void *)adapter, 0,
- em_sysctl_stats, "I", "Statistics");
-#endif
-
- callout_init(&adapter->timer, CALLOUT_MPSAFE);
- callout_init(&adapter->tx_fifo_timer, CALLOUT_MPSAFE);
-
- /* Determine hardware revision */
- em_identify_hardware(adapter);
-
-#ifndef __rtems__
- /* Set up some sysctls for the tunable interrupt delays */
- em_add_int_delay_sysctl(adapter, "rx_int_delay",
- "receive interrupt delay in usecs", &adapter->rx_int_delay,
- E1000_REG_OFFSET(&adapter->hw, RDTR), em_rx_int_delay_dflt);
- em_add_int_delay_sysctl(adapter, "tx_int_delay",
- "transmit interrupt delay in usecs", &adapter->tx_int_delay,
- E1000_REG_OFFSET(&adapter->hw, TIDV), em_tx_int_delay_dflt);
- if (adapter->hw.mac_type >= em_82540) {
- em_add_int_delay_sysctl(adapter, "rx_abs_int_delay",
- "receive interrupt delay limit in usecs",
- &adapter->rx_abs_int_delay,
- E1000_REG_OFFSET(&adapter->hw, RADV),
- em_rx_abs_int_delay_dflt);
- em_add_int_delay_sysctl(adapter, "tx_abs_int_delay",
- "transmit interrupt delay limit in usecs",
- &adapter->tx_abs_int_delay,
- E1000_REG_OFFSET(&adapter->hw, TADV),
- em_tx_abs_int_delay_dflt);
- }
-#endif
-
- /* Parameters (to be read from user) */
- adapter->num_tx_desc = EM_MAX_TXD;
- adapter->num_rx_desc = EM_MAX_RXD;
-#ifdef __rtems__
- if ( dev->d_ifconfig->rbuf_count > 0 ) {
- adapter->num_rx_desc = dev->d_ifconfig->rbuf_count;
- }
- if ( adapter->num_rx_desc < 80 )
- adapter->num_rx_desc = 80;
- if ( adapter->num_rx_desc > 256 )
- adapter->num_rx_desc = 256;
- if ( dev->d_ifconfig->xbuf_count > 0 ) {
- adapter->num_tx_desc = dev->d_ifconfig->xbuf_count;
- }
- if ( adapter->num_tx_desc < 80 )
- adapter->num_tx_desc = 80;
- if ( adapter->num_tx_desc > 256 )
- adapter->num_tx_desc = 256;
- adapter->tx_cleanup_threshold = adapter->num_tx_desc/8;
-#endif
- adapter->hw.autoneg = DO_AUTO_NEG;
- adapter->hw.wait_autoneg_complete = WAIT_FOR_AUTO_NEG_DEFAULT;
- adapter->hw.autoneg_advertised = AUTONEG_ADV_DEFAULT;
- adapter->hw.tbi_compatibility_en = TRUE;
- adapter->rx_buffer_len = EM_RXBUFFER_2048;
-
- /*
- * These parameters control the automatic generation(Tx) and
- * response(Rx) to Ethernet PAUSE frames.
- */
- adapter->hw.fc_high_water = FC_DEFAULT_HI_THRESH;
- adapter->hw.fc_low_water = FC_DEFAULT_LO_THRESH;
- adapter->hw.fc_pause_time = FC_DEFAULT_TX_TIMER;
- adapter->hw.fc_send_xon = TRUE;
- adapter->hw.fc = em_fc_full;
-
- adapter->hw.phy_init_script = 1;
- adapter->hw.phy_reset_disable = FALSE;
-
-#ifndef EM_MASTER_SLAVE
- adapter->hw.master_slave = em_ms_hw_default;
-#else
- adapter->hw.master_slave = EM_MASTER_SLAVE;
-#endif
- /*
- * Set the max frame size assuming standard ethernet
- * sized frames
- */
- adapter->hw.max_frame_size =
- ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN;
-
- adapter->hw.min_frame_size =
- MINIMUM_ETHERNET_PACKET_SIZE + ETHER_CRC_LEN;
-
- /*
- * This controls when hardware reports transmit completion
- * status.
- */
- adapter->hw.report_tx_early = 1;
-
-
- if (em_allocate_pci_resources(adapter)) {
- printf("em%d: Allocation of PCI resources failed\n",
- adapter->unit);
- error = ENXIO;
- goto err_pci;
- }
-
-
- /* Initialize eeprom parameters */
- em_init_eeprom_params(&adapter->hw);
-
- tsize = EM_ROUNDUP(adapter->num_tx_desc *
- sizeof(struct em_tx_desc), 4096);
-
- /* Allocate Transmit Descriptor ring */
- if (em_dma_malloc(adapter, tsize, &adapter->txdma, BUS_DMA_NOWAIT)) {
- printf("em%d: Unable to allocate tx_desc memory\n",
- adapter->unit);
- error = ENOMEM;
- goto err_tx_desc;
- }
- adapter->tx_desc_base = (struct em_tx_desc *) adapter->txdma.dma_vaddr;
-
- rsize = EM_ROUNDUP(adapter->num_rx_desc *
- sizeof(struct em_rx_desc), 4096);
-
- /* Allocate Receive Descriptor ring */
- if (em_dma_malloc(adapter, rsize, &adapter->rxdma, BUS_DMA_NOWAIT)) {
- printf("em%d: Unable to allocate rx_desc memory\n",
- adapter->unit);
- error = ENOMEM;
- goto err_rx_desc;
- }
- adapter->rx_desc_base = (struct em_rx_desc *) adapter->rxdma.dma_vaddr;
-
- /* Initialize the hardware */
- if (em_hardware_init(adapter)) {
- printf("em%d: Unable to initialize the hardware\n",
- adapter->unit);
- error = EIO;
- goto err_hw_init;
- }
-
- /* Copy the permanent MAC address out of the EEPROM */
- if (em_read_mac_addr(&adapter->hw) < 0) {
- printf("em%d: EEPROM read error while reading mac address\n",
- adapter->unit);
- error = EIO;
- goto err_mac_addr;
- }
-
-#ifdef __rtems__
- /* if the configuration has not set a mac address, copy the permanent
- * address from the device to the arpcom struct.
- */
- {
- int i;
- for ( i=0; i<ETHER_ADDR_LEN; i++ ) {
- if ( adapter->arpcom.ac_enaddr[i] )
- break;
- }
- if ( i >= ETHER_ADDR_LEN ) {
- /* all nulls */
- bcopy(adapter->hw.mac_addr, adapter->arpcom.ac_enaddr,
- ETHER_ADDR_LEN);
- }
- }
-#endif
-
- if (!em_is_valid_ether_addr(adapter->hw.mac_addr)) {
- printf("em%d: Invalid mac address\n", adapter->unit);
- error = EIO;
- goto err_mac_addr;
- }
-
- /* Setup OS specific network interface */
- em_setup_interface(dev, adapter);
-
- /* Initialize statistics */
- em_clear_hw_cntrs(&adapter->hw);
- em_update_stats_counters(adapter);
- adapter->hw.get_link_status = 1;
-#ifndef __rtems__
- em_check_for_link(&adapter->hw);
-#else
- /* first check during hw init usually fails - probably we need to wait longer;
- * could take a while till the link is up, depends on the partner?
- * in any case, rather than waiting here we just proceed...
- */
- em_check_for_link(&adapter->hw);
- /* em_check_for_link doesn't update 'link_active'
- * -- they usually call em_print_link_status() right
- * after check_for_link, so let's repeat this
- * algorithm here.
- */
- em_print_link_status(adapter);
-#endif
-
- /* Print the link status */
- if (adapter->link_active == 1) {
- em_get_speed_and_duplex(&adapter->hw, &adapter->link_speed,
- &adapter->link_duplex);
- printf("em%d: Speed:%d Mbps Duplex:%s\n",
- adapter->unit,
- adapter->link_speed,
- adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half");
- } else
- printf("em%d: Speed:N/A Duplex:N/A\n", adapter->unit);
-
- /* Identify 82544 on PCIX */
- em_get_bus_info(&adapter->hw);
- if(adapter->hw.bus_type == em_bus_type_pcix &&
- adapter->hw.mac_type == em_82544) {
- adapter->pcix_82544 = TRUE;
- }
- else {
- adapter->pcix_82544 = FALSE;
- }
- INIT_DEBUGOUT("em_attach: end");
- return(0);
-
-err_mac_addr:
-err_hw_init:
- em_dma_free(adapter, &adapter->rxdma);
-err_rx_desc:
- em_dma_free(adapter, &adapter->txdma);
-err_tx_desc:
-err_pci:
-#ifndef __rtems__
- em_free_pci_resources(adapter);
-#endif
- return(error);
-
-}
-
-/*********************************************************************
- * Device removal routine
- *
- * The detach entry point is called when the driver is being removed.
- * This routine stops the adapter and deallocates all the resources
- * that were allocated for driver operation.
- *
- * return 0 on success, positive on failure
- *********************************************************************/
-
-#if !defined(__rtems__) || defined(DEBUG_MODULAR)
-
-static int
-em_detach(device_t dev)
-{
- struct adapter * adapter = device_get_softc(dev);
- struct ifnet *ifp = &adapter->arpcom.ac_if;
-
- INIT_DEBUGOUT("em_detach: begin");
-
- EM_LOCK(adapter);
- adapter->in_detach = 1;
- em_stop(adapter);
- em_phy_hw_reset(&adapter->hw);
- EM_UNLOCK(adapter);
-#ifndef __rtems__
-#if __FreeBSD_version < 500000
- ether_ifdetach(adapter->ifp, ETHER_BPF_SUPPORTED);
-#else
- ether_ifdetach(adapter->ifp);
- if_free(ifp);
-#endif
- em_free_pci_resources(adapter);
- bus_generic_detach(dev);
-#else
- ether_ifdetach(ifp);
-#endif
-
- /* Free Transmit Descriptor ring */
- if (adapter->tx_desc_base) {
- em_dma_free(adapter, &adapter->txdma);
- adapter->tx_desc_base = NULL;
- }
-
- /* Free Receive Descriptor ring */
- if (adapter->rx_desc_base) {
- em_dma_free(adapter, &adapter->rxdma);
- adapter->rx_desc_base = NULL;
- }
-
- /* Remove from the adapter list */
- if (em_adapter_list == adapter)
- em_adapter_list = adapter->next;
- if (adapter->next != NULL)
- adapter->next->prev = adapter->prev;
- if (adapter->prev != NULL)
- adapter->prev->next = adapter->next;
-
- EM_LOCK_DESTROY(adapter);
-
- ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
- ifp->if_timer = 0;
-
- return(0);
-}
-
-#endif
-
-#ifndef __rtems__
-/*********************************************************************
- *
- * Shutdown entry point
- *
- **********************************************************************/
-
-static int
-em_shutdown(device_t dev)
-{
- struct adapter *adapter = device_get_softc(dev);
- EM_LOCK(adapter);
- em_stop(adapter);
- EM_UNLOCK(adapter);
- return(0);
-}
-#endif
-
-/*********************************************************************
- * Transmit entry point
- *
- * em_start is called by the stack to initiate a transmit.
- * The driver will remain in this routine as long as there are
- * packets to transmit and transmit resources are available.
- * In case resources are not available stack is notified and
- * the packet is requeued.
- **********************************************************************/
-
-static void
-em_start_locked(struct ifnet *ifp)
-{
- struct mbuf *m_head;
- struct adapter *adapter = ifp->if_softc;
-
- mtx_assert(&adapter->mtx, MA_OWNED);
-
- if (!adapter->link_active)
- return;
-
- while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
-
- IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
-
- if (m_head == NULL) break;
-
- /*
- * em_encap() can modify our pointer, and or make it NULL on
- * failure. In that event, we can't requeue.
- */
- if (em_encap(adapter, &m_head)) {
- if (m_head == NULL)
- break;
- ifp->if_flags |= IFF_OACTIVE;
- IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
- break;
- }
-
- /* Send a copy of the frame to the BPF listener */
-#if __FreeBSD_version < 500000 && !defined(__rtems__)
- if (ifp->if_bpf)
- bpf_mtap(ifp, m_head);
-#else
- BPF_MTAP(ifp, m_head);
-#endif
-
- /* Set timeout in case hardware has problems transmitting */
- ifp->if_timer = EM_TX_TIMEOUT;
-
- }
- return;
-}
-
-static void
-em_start(struct ifnet *ifp)
-{
- struct adapter *adapter RTEMS_UNUSED = ifp->if_softc;
-
- EM_LOCK(adapter);
- em_start_locked(ifp);
- EM_UNLOCK(adapter);
- return;
-}
-
-/*********************************************************************
- * Ioctl entry point
- *
- * em_ioctl is called when the user wants to configure the
- * interface.
- *
- * return 0 on success, positive on failure
- **********************************************************************/
-
-#ifndef __rtems__
-static int
-em_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
-#else
-static int
-em_ioctl(struct ifnet *ifp, ioctl_command_t command, caddr_t data)
-#endif
-{
-#ifndef __rtems__
- int mask, reinit, error = 0;
-#else
- int error = 0;
-#endif
- struct ifreq *ifr = (struct ifreq *) data;
- struct adapter * adapter = ifp->if_softc;
-
- if (adapter->in_detach) return(error);
-
- switch (command) {
- case SIOCSIFADDR:
- case SIOCGIFADDR:
- IOCTL_DEBUGOUT("ioctl rcv'd: SIOCxIFADDR (Get/Set Interface Addr)");
- ether_ioctl(ifp, command, data);
- break;
- case SIOCSIFMTU:
- IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFMTU (Set Interface MTU)");
- if (ifr->ifr_mtu > MAX_JUMBO_FRAME_SIZE - ETHER_HDR_LEN || \
- /* 82573 does not support jumbo frames */
- (adapter->hw.mac_type == em_82573 && ifr->ifr_mtu > ETHERMTU) ) {
- error = EINVAL;
- } else {
- EM_LOCK(adapter);
- ifp->if_mtu = ifr->ifr_mtu;
- adapter->hw.max_frame_size =
- ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
- em_init_locked(adapter);
- EM_UNLOCK(adapter);
- }
- break;
- case SIOCSIFFLAGS:
- IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFFLAGS (Set Interface Flags)");
- EM_LOCK(adapter);
- if (ifp->if_flags & IFF_UP) {
- if (!(ifp->if_flags & IFF_RUNNING)) {
- em_init_locked(adapter);
- }
-
- em_disable_promisc(adapter);
- em_set_promisc(adapter);
- } else {
- if (ifp->if_flags & IFF_RUNNING) {
- em_stop(adapter);
- }
- }
- EM_UNLOCK(adapter);
- break;
- case SIOCADDMULTI:
- case SIOCDELMULTI:
-#ifdef __rtems__
- if ( (error = ( SIOCADDMULTI == command ?
- ether_addmulti( ifr, (struct arpcom*)ifp ) :
- ether_delmulti( ifr, (struct arpcom*)ifp ) ) ) ) {
- if ( ENETRESET == error )
- error = 0;
- else
- break;
- }
-#endif
- IOCTL_DEBUGOUT("ioctl rcv'd: SIOC(ADD|DEL)MULTI");
- if (ifp->if_flags & IFF_RUNNING) {
- EM_LOCK(adapter);
- em_disable_intr(adapter);
- em_set_multi(adapter);
- if (adapter->hw.mac_type == em_82542_rev2_0) {
- em_initialize_receive_unit(adapter);
- }
-#ifdef DEVICE_POLLING
- if (!(ifp->if_flags & IFF_POLLING))
-#endif
- em_enable_intr(adapter);
- EM_UNLOCK(adapter);
- }
- break;
-#ifndef __rtems__
- case SIOCSIFMEDIA:
- case SIOCGIFMEDIA:
- IOCTL_DEBUGOUT("ioctl rcv'd: SIOCxIFMEDIA (Get/Set Interface Media)");
- error = ifmedia_ioctl(ifp, ifr, &adapter->media, command);
- break;
-#else
- case SIOCSIFMEDIA:
- {
- struct rtems_ifmedia mhack;
- mhack.ifm_media = ifr->ifr_media;
- error = em_media_change(ifp, &mhack);
- }
- break;
- case SIOCGIFMEDIA:
- {
- struct ifmediareq ifmr;
- em_media_status(ifp, &ifmr);
- ifr->ifr_media = ifmr.ifm_active;
- /* add-in rtems flags */
- if ( adapter->link_active )
- ifr->ifr_media |= IFM_LINK_OK;
- if ( !adapter->hw.autoneg )
- ifr->ifr_media |= IFM_ANEG_DIS;
- error = 0;
- }
- break;
-#endif
-#ifndef __rtems__
- case SIOCSIFCAP:
- IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFCAP (Set Capabilities)");
- reinit = 0;
- mask = ifr->ifr_reqcap ^ ifp->if_capenable;
- if (mask & IFCAP_POLLING)
- ifp->if_capenable ^= IFCAP_POLLING;
- if (mask & IFCAP_HWCSUM) {
- ifp->if_capenable ^= IFCAP_HWCSUM;
- reinit = 1;
- }
- if (mask & IFCAP_VLAN_HWTAGGING) {
- ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
- reinit = 1;
- }
- if (reinit && (ifp->if_flags & IFF_RUNNING))
- em_init(adapter);
- break;
-#endif
-
-#ifdef __rtems__
- case SIO_RTEMS_SHOW_STATS:
- em_print_hw_stats(adapter);
- error = 0;
- break;
-#endif
-
- default:
- IOCTL_DEBUGOUT1("ioctl received: UNKNOWN (0x%x)", (int)command);
- error = EINVAL;
- }
-
- return(error);
-}
-
-/*********************************************************************
- * Watchdog entry point
- *
- * This routine is called whenever hardware quits transmitting.
- *
- **********************************************************************/
-
-static void
-em_watchdog(struct ifnet *ifp)
-{
- struct adapter * adapter;
- adapter = ifp->if_softc;
-
- /* If we are in this routine because of pause frames, then
- * don't reset the hardware.
- */
- if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_TXOFF) {
- ifp->if_timer = EM_TX_TIMEOUT;
- return;
- }
-
- if (em_check_for_link(&adapter->hw))
- printf("em%d: watchdog timeout -- resetting\n", adapter->unit);
-
- ifp->if_flags &= ~IFF_RUNNING;
-
- em_init(adapter);
-
- ifp->if_oerrors++;
- return;
-}
-
-/*********************************************************************
- * Init entry point
- *
- * This routine is used in two ways. It is used by the stack as
- * init entry point in network interface structure. It is also used
- * by the driver as a hw/sw initialization routine to get to a
- * consistent state.
- *
- * return 0 on success, positive on failure
- **********************************************************************/
-
-static void
-em_init_locked(struct adapter * adapter)
-{
- struct ifnet *ifp;
-
- uint32_t pba;
- ifp = &adapter->arpcom.ac_if;
-
- INIT_DEBUGOUT("em_init: begin");
-
- mtx_assert(&adapter->mtx, MA_OWNED);
-
- em_stop(adapter);
-
- /* Packet Buffer Allocation (PBA)
- * Writing PBA sets the receive portion of the buffer
- * the remainder is used for the transmit buffer.
- *
- * Devices before the 82547 had a Packet Buffer of 64K.
- * Default allocation: PBA=48K for Rx, leaving 16K for Tx.
- * After the 82547 the buffer was reduced to 40K.
- * Default allocation: PBA=30K for Rx, leaving 10K for Tx.
- * Note: default does not leave enough room for Jumbo Frame >10k.
- */
- if(adapter->hw.mac_type < em_82547) {
- /* Total FIFO is 64K */
- if(adapter->rx_buffer_len > EM_RXBUFFER_8192)
- pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
- else
- pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
- } else {
- /* Total FIFO is 40K */
- if(adapter->hw.max_frame_size > EM_RXBUFFER_8192) {
- pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
- } else {
- pba = E1000_PBA_30K; /* 30K for Rx, 10K for Tx */
- }
- adapter->tx_fifo_head = 0;
- adapter->tx_head_addr = pba << EM_TX_HEAD_ADDR_SHIFT;
- adapter->tx_fifo_size = (E1000_PBA_40K - pba) << EM_PBA_BYTES_SHIFT;
- }
- INIT_DEBUGOUT1("em_init: pba=%" PRId32 "K",pba);
- E1000_WRITE_REG(&adapter->hw, PBA, pba);
-
- /* Get the latest mac address, User can use a LAA */
- bcopy(adapter->arpcom.ac_enaddr, adapter->hw.mac_addr,
- ETHER_ADDR_LEN);
-
- /* Initialize the hardware */
- if (em_hardware_init(adapter)) {
- printf("em%d: Unable to initialize the hardware\n",
- adapter->unit);
- return;
- }
-
-#ifndef __rtems__
- if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
- em_enable_vlans(adapter);
-#endif
-
- /* Prepare transmit descriptors and buffers */
- if (em_setup_transmit_structures(adapter)) {
- printf("em%d: Could not setup transmit structures\n",
- adapter->unit);
- em_stop(adapter);
- return;
- }
- em_initialize_transmit_unit(adapter);
-
- /* Setup Multicast table */
- em_set_multi(adapter);
-
- /* Prepare receive descriptors and buffers */
- if (em_setup_receive_structures(adapter)) {
- printf("em%d: Could not setup receive structures\n",
- adapter->unit);
- em_stop(adapter);
- return;
- }
- em_initialize_receive_unit(adapter);
-
- /* Don't loose promiscuous settings */
- em_set_promisc(adapter);
-
- ifp->if_flags |= IFF_RUNNING;
- ifp->if_flags &= ~IFF_OACTIVE;
-
-#ifndef __rtems__
- if (adapter->hw.mac_type >= em_82543) {
- if (ifp->if_capenable & IFCAP_TXCSUM)
- ifp->if_hwassist = EM_CHECKSUM_FEATURES;
- else
- ifp->if_hwassist = 0;
- }
-#endif
-
- callout_reset(&adapter->timer, hz, em_local_timer, adapter);
- em_clear_hw_cntrs(&adapter->hw);
-#ifdef DEVICE_POLLING
- /*
- * Only enable interrupts if we are not polling, make sure
- * they are off otherwise.
- */
- if (ifp->if_flags & IFF_POLLING)
- em_disable_intr(adapter);
- else
-#endif /* DEVICE_POLLING */
- em_enable_intr(adapter);
-
- /* Don't reset the phy next time init gets called */
- adapter->hw.phy_reset_disable = TRUE;
-
- return;
-}
-
-static void
-em_init(void *arg)
-{
- struct adapter * adapter = arg;
-
- EM_LOCK(adapter);
- em_init_locked(adapter);
- EM_UNLOCK(adapter);
- return;
-}
-
-
-#ifdef DEVICE_POLLING
-static poll_handler_t em_poll;
-
-static void
-em_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count)
-{
- struct adapter *adapter = ifp->if_softc;
- u_int32_t reg_icr;
-
- mtx_assert(&adapter->mtx, MA_OWNED);
-
- if (!(ifp->if_capenable & IFCAP_POLLING)) {
- ether_poll_deregister(ifp);
- cmd = POLL_DEREGISTER;
- }
- if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
- em_enable_intr(adapter);
- return;
- }
- if (cmd == POLL_AND_CHECK_STATUS) {
- reg_icr = E1000_READ_REG(&adapter->hw, ICR);
- if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
- callout_stop(&adapter->timer);
- adapter->hw.get_link_status = 1;
- em_check_for_link(&adapter->hw);
- em_print_link_status(adapter);
- callout_reset(&adapter->timer, hz, em_local_timer, adapter);
- }
- }
- if (ifp->if_flags & IFF_RUNNING) {
- em_process_receive_interrupts(adapter, count);
- em_clean_transmit_interrupts(adapter);
- }
-
- if (ifp->if_flags & IFF_RUNNING && !IFQ_DRV_IS_EMPTY(&ifp->if_snd))
- em_start_locked(ifp);
-}
-
-static void
-em_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
-{
- struct adapter *adapter = ifp->if_softc;
-
- EM_LOCK(adapter);
- em_poll_locked(ifp, cmd, count);
- EM_UNLOCK(adapter);
-}
-#endif /* DEVICE_POLLING */
-
-/*********************************************************************
- *
- * Interrupt Service routine
- *
- **********************************************************************/
-static void
-em_intr(void *arg)
-{
- u_int32_t loop_cnt = EM_MAX_INTR;
- u_int32_t reg_icr;
- struct ifnet *ifp;
- struct adapter *adapter = arg;
-
- EM_LOCK(adapter);
-
- ifp = &adapter->arpcom.ac_if;
-
-#ifdef DEVICE_POLLING
- if (ifp->if_flags & IFF_POLLING) {
- EM_UNLOCK(adapter);
- return;
- }
-
- if ((ifp->if_capenable & IFCAP_POLLING) &&
- ether_poll_register(em_poll, ifp)) {
- em_disable_intr(adapter);
- em_poll_locked(ifp, 0, 1);
- EM_UNLOCK(adapter);
- return;
- }
-#endif /* DEVICE_POLLING */
-
- reg_icr = E1000_READ_REG(&adapter->hw, ICR);
- if (!reg_icr) {
- EM_UNLOCK(adapter);
- return;
- }
-
- /* Link status change */
- if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
- callout_stop(&adapter->timer);
- adapter->hw.get_link_status = 1;
- em_check_for_link(&adapter->hw);
- em_print_link_status(adapter);
- callout_reset(&adapter->timer, hz, em_local_timer, adapter);
- }
-
- while (loop_cnt > 0) {
- if (ifp->if_flags & IFF_RUNNING) {
- em_process_receive_interrupts(adapter, -1);
- em_clean_transmit_interrupts(adapter);
- }
- loop_cnt--;
- }
-
- if (ifp->if_flags & IFF_RUNNING && !IFQ_DRV_IS_EMPTY(&ifp->if_snd))
- em_start_locked(ifp);
-
- EM_UNLOCK(adapter);
- return;
-}
-
-
-
-/*********************************************************************
- *
- * Media Ioctl callback
- *
- * This routine is called whenever the user queries the status of
- * the interface using ifconfig.
- *
- **********************************************************************/
-static void
-em_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
-{
- struct adapter * adapter = ifp->if_softc;
-
- INIT_DEBUGOUT("em_media_status: begin");
-
- em_check_for_link(&adapter->hw);
- if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU) {
- if (adapter->link_active == 0) {
- em_get_speed_and_duplex(&adapter->hw,
- &adapter->link_speed,
- &adapter->link_duplex);
- adapter->link_active = 1;
- }
- } else {
- if (adapter->link_active == 1) {
- adapter->link_speed = 0;
- adapter->link_duplex = 0;
- adapter->link_active = 0;
- }
- }
-
- ifmr->ifm_status = IFM_AVALID;
- ifmr->ifm_active = IFM_ETHER;
-
- if (!adapter->link_active)
- return;
-
- ifmr->ifm_status |= IFM_ACTIVE;
-
- if (adapter->hw.media_type == em_media_type_fiber) {
- ifmr->ifm_active |= IFM_1000_SX | IFM_FDX;
- } else {
- switch (adapter->link_speed) {
- case 10:
- ifmr->ifm_active |= IFM_10_T;
- break;
- case 100:
- ifmr->ifm_active |= IFM_100_TX;
- break;
- case 1000:
-#if __FreeBSD_version < 500000 && !defined(__rtems__)
- ifmr->ifm_active |= IFM_1000_TX;
-#else
- ifmr->ifm_active |= IFM_1000_T;
-#endif
- break;
- }
- if (adapter->link_duplex == FULL_DUPLEX)
- ifmr->ifm_active |= IFM_FDX;
- else
- ifmr->ifm_active |= IFM_HDX;
- }
- return;
-}
-
-/*********************************************************************
- *
- * Media Ioctl callback
- *
- * This routine is called when the user changes speed/duplex using
- * media/mediopt option with ifconfig.
- *
- **********************************************************************/
-static int
-#ifndef __rtems__
-em_media_change(struct ifnet *ifp)
-#else
-em_media_change(struct ifnet *ifp, struct rtems_ifmedia *ifm)
-#endif
-{
- struct adapter * adapter = ifp->if_softc;
-#ifndef __rtems__
- struct ifmedia *ifm = &adapter->media;
-#endif
-
- INIT_DEBUGOUT("em_media_change: begin");
-
- if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
- return(EINVAL);
-
- switch (IFM_SUBTYPE(ifm->ifm_media)) {
- case IFM_AUTO:
- adapter->hw.autoneg = DO_AUTO_NEG;
- adapter->hw.autoneg_advertised = AUTONEG_ADV_DEFAULT;
- break;
- case IFM_1000_SX:
-#if __FreeBSD_version < 500000 && !defined(__rtems__)
- case IFM_1000_TX:
-#else
- case IFM_1000_T:
-#endif
- adapter->hw.autoneg = DO_AUTO_NEG;
- adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
- break;
- case IFM_100_TX:
- adapter->hw.autoneg = FALSE;
- adapter->hw.autoneg_advertised = 0;
- if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
- adapter->hw.forced_speed_duplex = em_100_full;
- else
- adapter->hw.forced_speed_duplex = em_100_half;
- break;
- case IFM_10_T:
- adapter->hw.autoneg = FALSE;
- adapter->hw.autoneg_advertised = 0;
- if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
- adapter->hw.forced_speed_duplex = em_10_full;
- else
- adapter->hw.forced_speed_duplex = em_10_half;
- break;
- default:
- printf("em%d: Unsupported media type\n", adapter->unit);
- }
-
- /* As the speed/duplex settings my have changed we need to
- * reset the PHY.
- */
- adapter->hw.phy_reset_disable = FALSE;
-
- em_init(adapter);
-
- return(0);
-}
-
-/*********************************************************************
- *
- * This routine maps the mbufs to tx descriptors.
- *
- * return 0 on success, positive on failure
- **********************************************************************/
-static int
-em_encap(struct adapter *adapter, struct mbuf **m_headp)
-{
- u_int32_t txd_upper;
- u_int32_t txd_lower, txd_used = 0, txd_saved = 0;
- int i, j, error;
- u_int64_t address;
-
- struct mbuf *m_head;
-
- /* For 82544 Workaround */
- DESC_ARRAY desc_array;
- u_int32_t array_elements;
- u_int32_t counter;
-
-#ifndef __rtems__
-#if __FreeBSD_version < 500000
- struct ifvlan *ifv = NULL;
-#else
- struct m_tag *mtag;
-#endif
-#endif
- bus_dma_segment_t segs[EM_MAX_SCATTER];
-#ifndef __rtems__
- bus_dmamap_t map;
-#endif
- int nsegs;
- struct em_buffer *tx_buffer = NULL;
- struct em_tx_desc *current_tx_desc = NULL;
-#ifndef __rtems__
- struct ifnet *ifp = &adapter->arpcom.ac_if;
-#endif
-
- m_head = *m_headp;
-
- /*
- * Force a cleanup if number of TX descriptors
- * available hits the threshold
- */
- if (adapter->num_tx_desc_avail <= EM_TX_CLEANUP_THRESHOLD) {
- em_clean_transmit_interrupts(adapter);
- if (adapter->num_tx_desc_avail <= EM_TX_CLEANUP_THRESHOLD) {
- adapter->no_tx_desc_avail1++;
- return(ENOBUFS);
- }
- }
-
-#ifndef __rtems__
- /*
- * Map the packet for DMA.
- */
- if (bus_dmamap_create(adapter->txtag, BUS_DMA_NOWAIT, &map)) {
- adapter->no_tx_map_avail++;
- return (ENOMEM);
- }
- error = bus_dmamap_load_mbuf_sg(adapter->txtag, map, m_head, segs,
- &nsegs, BUS_DMA_NOWAIT);
- if (error != 0) {
- adapter->no_tx_dma_setup++;
- bus_dmamap_destroy(adapter->txtag, map);
- return (error);
- }
-#else
- (void)error;
- {
- struct mbuf *m;
- for ( m=m_head, nsegs=0; m; m=m->m_next, nsegs++ ) {
- if ( nsegs >= sizeof(segs)/sizeof(segs[0]) ) {
- break;
- }
- segs[nsegs].ds_addr = mtod(m, unsigned);
- segs[nsegs].ds_len = m->m_len;
- }
- }
-#endif
- KASSERT(nsegs != 0, ("em_encap: empty packet"));
-
- if (nsegs > adapter->num_tx_desc_avail) {
- adapter->no_tx_desc_avail2++;
- bus_dmamap_destroy(adapter->txtag, map);
- return (ENOBUFS);
- }
-
-
-#ifndef __rtems__
- if (ifp->if_hwassist > 0) {
- em_transmit_checksum_setup(adapter, m_head,
- &txd_upper, &txd_lower);
- } else
-#endif
- txd_upper = txd_lower = 0;
-
-
-#ifndef __rtems__
- /* Find out if we are in vlan mode */
-#if __FreeBSD_version < 500000
- if ((m_head->m_flags & (M_PROTO1|M_PKTHDR)) == (M_PROTO1|M_PKTHDR) &&
- m_head->m_pkthdr.rcvif != NULL &&
- m_head->m_pkthdr.rcvif->if_type == IFT_L2VLAN)
- ifv = m_head->m_pkthdr.rcvif->if_softc;
-#else
- mtag = VLAN_OUTPUT_TAG(ifp, m_head);
-#endif
-
- /*
- * When operating in promiscuous mode, hardware encapsulation for
- * packets is disabled. This means we have to add the vlan
- * encapsulation in the driver, since it will have come down from the
- * VLAN layer with a tag instead of a VLAN header.
- */
- if (mtag != NULL && adapter->em_insert_vlan_header) {
- struct ether_vlan_header *evl;
- struct ether_header eh;
-
- m_head = m_pullup(m_head, sizeof(eh));
- if (m_head == NULL) {
- *m_headp = NULL;
- bus_dmamap_destroy(adapter->txtag, map);
- return (ENOBUFS);
- }
- eh = *mtod(m_head, struct ether_header *);
- M_PREPEND(m_head, sizeof(*evl), M_DONTWAIT);
- if (m_head == NULL) {
- *m_headp = NULL;
- bus_dmamap_destroy(adapter->txtag, map);
- return (ENOBUFS);
- }
- m_head = m_pullup(m_head, sizeof(*evl));
- if (m_head == NULL) {
- *m_headp = NULL;
- bus_dmamap_destroy(adapter->txtag, map);
- return (ENOBUFS);
- }
- evl = mtod(m_head, struct ether_vlan_header *);
- bcopy(&eh, evl, sizeof(*evl));
- evl->evl_proto = evl->evl_encap_proto;
- evl->evl_encap_proto = htons(ETHERTYPE_VLAN);
- evl->evl_tag = htons(VLAN_TAG_VALUE(mtag));
- m_tag_delete(m_head, mtag);
- mtag = NULL;
- *m_headp = m_head;
- }
-#endif
-
- i = adapter->next_avail_tx_desc;
- if (adapter->pcix_82544) {
- txd_saved = i;
- txd_used = 0;
- }
- for (j = 0; j < nsegs; j++) {
- /* If adapter is 82544 and on PCIX bus */
- if(adapter->pcix_82544) {
- array_elements = 0;
- address = htole64(segs[j].ds_addr);
- /*
- * Check the Address and Length combination and
- * split the data accordingly
- */
- array_elements = em_fill_descriptors(address,
- htole32(segs[j].ds_len),
- &desc_array);
- for (counter = 0; counter < array_elements; counter++) {
- if (txd_used == adapter->num_tx_desc_avail) {
- adapter->next_avail_tx_desc = txd_saved;
- adapter->no_tx_desc_avail2++;
- bus_dmamap_destroy(adapter->txtag, map);
- return (ENOBUFS);
- }
- tx_buffer = &adapter->tx_buffer_area[i];
- current_tx_desc = &adapter->tx_desc_base[i];
- current_tx_desc->buffer_addr = htole64(
- desc_array.descriptor[counter].address);
- current_tx_desc->lower.data = htole32(
- (adapter->txd_cmd | txd_lower |
- (u_int16_t)desc_array.descriptor[counter].length));
- current_tx_desc->upper.data = htole32((txd_upper));
- if (++i == adapter->num_tx_desc)
- i = 0;
-
- tx_buffer->m_head = NULL;
- txd_used++;
- }
- } else {
- tx_buffer = &adapter->tx_buffer_area[i];
- current_tx_desc = &adapter->tx_desc_base[i];
-
- current_tx_desc->buffer_addr = htole64(segs[j].ds_addr);
- current_tx_desc->lower.data = htole32(
- adapter->txd_cmd | txd_lower | segs[j].ds_len);
- current_tx_desc->upper.data = htole32(txd_upper);
-
- if (++i == adapter->num_tx_desc)
- i = 0;
-
- tx_buffer->m_head = NULL;
- }
- }
-
- adapter->next_avail_tx_desc = i;
- if (adapter->pcix_82544) {
- adapter->num_tx_desc_avail -= txd_used;
- }
- else {
- adapter->num_tx_desc_avail -= nsegs;
- }
-
-#ifndef __rtems__
-#if __FreeBSD_version < 500000
- if (ifv != NULL) {
- /* Set the vlan id */
- current_tx_desc->upper.fields.special = htole16(ifv->ifv_tag);
-#else
- if (mtag != NULL) {
- /* Set the vlan id */
- current_tx_desc->upper.fields.special = htole16(VLAN_TAG_VALUE(mtag));
-#endif
-
- /* Tell hardware to add tag */
- current_tx_desc->lower.data |= htole32(E1000_TXD_CMD_VLE);
- }
-#endif
-
- tx_buffer->m_head = m_head;
-#ifndef __rtems__
- tx_buffer->map = map;
-#endif
- bus_dmamap_sync(adapter->txtag, map, BUS_DMASYNC_PREWRITE);
-
- /*
- * Last Descriptor of Packet needs End Of Packet (EOP)
- */
- current_tx_desc->lower.data |= htole32(E1000_TXD_CMD_EOP);
-
- /*
- * Advance the Transmit Descriptor Tail (Tdt), this tells the E1000
- * that this frame is available to transmit.
- */
- bus_dmamap_sync(adapter->txdma.dma_tag, adapter->txdma.dma_map,
- BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
- if (adapter->hw.mac_type == em_82547 &&
- adapter->link_duplex == HALF_DUPLEX) {
- em_82547_move_tail_locked(adapter);
- } else {
- E1000_WRITE_REG(&adapter->hw, TDT, i);
- if (adapter->hw.mac_type == em_82547) {
- em_82547_update_fifo_head(adapter, m_head->m_pkthdr.len);
- }
- }
-
- return(0);
-}
-
-/*********************************************************************
- *
- * 82547 workaround to avoid controller hang in half-duplex environment.
- * The workaround is to avoid queuing a large packet that would span
- * the internal Tx FIFO ring boundary. We need to reset the FIFO pointers
- * in this case. We do that only when FIFO is quiescent.
- *
- **********************************************************************/
-static void
-em_82547_move_tail_locked(struct adapter *adapter)
-{
- uint16_t hw_tdt;
- uint16_t sw_tdt;
- struct em_tx_desc *tx_desc;
- uint16_t length = 0;
- boolean_t eop = 0;
-
- EM_LOCK_ASSERT(adapter);
-
- hw_tdt = E1000_READ_REG(&adapter->hw, TDT);
- sw_tdt = adapter->next_avail_tx_desc;
-
- while (hw_tdt != sw_tdt) {
- tx_desc = &adapter->tx_desc_base[hw_tdt];
- length += tx_desc->lower.flags.length;
- eop = tx_desc->lower.data & E1000_TXD_CMD_EOP;
- if(++hw_tdt == adapter->num_tx_desc)
- hw_tdt = 0;
-
- if(eop) {
- if (em_82547_fifo_workaround(adapter, length)) {
- adapter->tx_fifo_wrk_cnt++;
- callout_reset(&adapter->tx_fifo_timer, 1,
- em_82547_move_tail, adapter);
- break;
- }
- E1000_WRITE_REG(&adapter->hw, TDT, hw_tdt);
- em_82547_update_fifo_head(adapter, length);
- length = 0;
- }
- }
- return;
-}
-
-#ifndef __rtems__
-static void
-em_82547_move_tail(void *arg)
-{
- struct adapter *adapter = arg;
-
- EM_LOCK(adapter);
- em_82547_move_tail_locked(adapter);
- EM_UNLOCK(adapter);
-}
-#endif
-
-static int
-em_82547_fifo_workaround(struct adapter *adapter, int len)
-{
- int fifo_space, fifo_pkt_len;
-
- fifo_pkt_len = EM_ROUNDUP(len + EM_FIFO_HDR, EM_FIFO_HDR);
-
- if (adapter->link_duplex == HALF_DUPLEX) {
- fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
-
- if (fifo_pkt_len >= (EM_82547_PKT_THRESH + fifo_space)) {
- if (em_82547_tx_fifo_reset(adapter)) {
- return(0);
- }
- else {
- return(1);
- }
- }
- }
-
- return(0);
-}
-
-static void
-em_82547_update_fifo_head(struct adapter *adapter, int len)
-{
- int fifo_pkt_len = EM_ROUNDUP(len + EM_FIFO_HDR, EM_FIFO_HDR);
-
- /* tx_fifo_head is always 16 byte aligned */
- adapter->tx_fifo_head += fifo_pkt_len;
- if (adapter->tx_fifo_head >= adapter->tx_fifo_size) {
- adapter->tx_fifo_head -= adapter->tx_fifo_size;
- }
-
- return;
-}
-
-
-static int
-em_82547_tx_fifo_reset(struct adapter *adapter)
-{
- uint32_t tctl;
-
- if ( (E1000_READ_REG(&adapter->hw, TDT) ==
- E1000_READ_REG(&adapter->hw, TDH)) &&
- (E1000_READ_REG(&adapter->hw, TDFT) ==
- E1000_READ_REG(&adapter->hw, TDFH)) &&
- (E1000_READ_REG(&adapter->hw, TDFTS) ==
- E1000_READ_REG(&adapter->hw, TDFHS)) &&
- (E1000_READ_REG(&adapter->hw, TDFPC) == 0)) {
-
- /* Disable TX unit */
- tctl = E1000_READ_REG(&adapter->hw, TCTL);
- E1000_WRITE_REG(&adapter->hw, TCTL, tctl & ~E1000_TCTL_EN);
-
- /* Reset FIFO pointers */
- E1000_WRITE_REG(&adapter->hw, TDFT, adapter->tx_head_addr);
- E1000_WRITE_REG(&adapter->hw, TDFH, adapter->tx_head_addr);
- E1000_WRITE_REG(&adapter->hw, TDFTS, adapter->tx_head_addr);
- E1000_WRITE_REG(&adapter->hw, TDFHS, adapter->tx_head_addr);
-
- /* Re-enable TX unit */
- E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
- E1000_WRITE_FLUSH(&adapter->hw);
-
- adapter->tx_fifo_head = 0;
- adapter->tx_fifo_reset_cnt++;
-
- return(TRUE);
- }
- else {
- return(FALSE);
- }
-}
-
-static void
-em_set_promisc(struct adapter * adapter)
-{
-
- u_int32_t reg_rctl;
- struct ifnet *ifp = &adapter->arpcom.ac_if;
-
- reg_rctl = E1000_READ_REG(&adapter->hw, RCTL);
-
- if (ifp->if_flags & IFF_PROMISC) {
- reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
- E1000_WRITE_REG(&adapter->hw, RCTL, reg_rctl);
-#ifndef __rtems__
- /* Disable VLAN stripping in promiscous mode
- * This enables bridging of vlan tagged frames to occur
- * and also allows vlan tags to be seen in tcpdump
- */
- if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
- em_disable_vlans(adapter);
- adapter->em_insert_vlan_header = 1;
-#endif
- } else if (ifp->if_flags & IFF_ALLMULTI) {
- reg_rctl |= E1000_RCTL_MPE;
- reg_rctl &= ~E1000_RCTL_UPE;
- E1000_WRITE_REG(&adapter->hw, RCTL, reg_rctl);
-#ifndef __rtems__
- adapter->em_insert_vlan_header = 0;
- } else
- adapter->em_insert_vlan_header = 0;
-#else
- }
-#endif
-
- return;
-}
-
-static void
-em_disable_promisc(struct adapter * adapter)
-{
- u_int32_t reg_rctl;
-#ifndef __rtems__
- struct ifnet *ifp = adapter->ifp;
-#endif
-
- reg_rctl = E1000_READ_REG(&adapter->hw, RCTL);
-
- reg_rctl &= (~E1000_RCTL_UPE);
- reg_rctl &= (~E1000_RCTL_MPE);
- E1000_WRITE_REG(&adapter->hw, RCTL, reg_rctl);
-
-#ifndef __rtems__
- if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
- em_enable_vlans(adapter);
- adapter->em_insert_vlan_header = 0;
-#endif
-
- return;
-}
-
-
-/*********************************************************************
- * Multicast Update
- *
- * This routine is called whenever multicast address list is updated.
- *
- **********************************************************************/
-
-static void
-em_set_multi(struct adapter * adapter)
-{
- u_int32_t reg_rctl = 0;
- u_int8_t mta[MAX_NUM_MULTICAST_ADDRESSES * ETH_LENGTH_OF_ADDRESS];
-#ifndef __rtems__
- struct ifmultiaddr *ifma;
-#endif
- int mcnt = 0;
- struct ifnet *ifp = &adapter->arpcom.ac_if;
-
- IOCTL_DEBUGOUT("em_set_multi: begin");
-
- if (adapter->hw.mac_type == em_82542_rev2_0) {
- reg_rctl = E1000_READ_REG(&adapter->hw, RCTL);
- if (adapter->hw.pci_cmd_word & CMD_MEM_WRT_INVALIDATE) {
- em_pci_clear_mwi(&adapter->hw);
- }
- reg_rctl |= E1000_RCTL_RST;
- E1000_WRITE_REG(&adapter->hw, RCTL, reg_rctl);
- msec_delay(5);
- }
-
-#ifndef __rtems__
- IF_ADDR_LOCK(ifp);
-#if __FreeBSD_version < 500000
- LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
-#else
- TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
-#endif
- if (ifma->ifma_addr->sa_family != AF_LINK)
- continue;
-
- if (mcnt == MAX_NUM_MULTICAST_ADDRESSES) break;
-
- bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
- &mta[mcnt*ETH_LENGTH_OF_ADDRESS], ETH_LENGTH_OF_ADDRESS);
- mcnt++;
- }
- IF_ADDR_UNLOCK(ifp);
-#else
- {
- /* Don't know how to handle address ranges - we warn and ignore
- * for now...
- */
- struct ether_multi *enm;
- struct ether_multistep step;
-
- ETHER_FIRST_MULTI(step, (struct arpcom*)ifp, enm);
- while ( enm != NULL ) {
- if ( mcnt == MAX_NUM_MULTICAST_ADDRESSES )
- break;
- if ( memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN) ) {
- printk("if_em: Unable to handle multicast wildcard (not ported yet); skipping/ignoring\n");
- goto skiptonext;
- } else {
- bcopy(enm->enm_addrlo, &mta[mcnt * ETHER_ADDR_LEN], ETHER_ADDR_LEN);
- }
- mcnt++;
-skiptonext:
- ETHER_NEXT_MULTI( step, enm );
- }
- }
-#endif
-
- if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) {
- reg_rctl = E1000_READ_REG(&adapter->hw, RCTL);
- reg_rctl |= E1000_RCTL_MPE;
- E1000_WRITE_REG(&adapter->hw, RCTL, reg_rctl);
- } else
- em_mc_addr_list_update(&adapter->hw, mta, mcnt, 0, 1);
-
- if (adapter->hw.mac_type == em_82542_rev2_0) {
- reg_rctl = E1000_READ_REG(&adapter->hw, RCTL);
- reg_rctl &= ~E1000_RCTL_RST;
- E1000_WRITE_REG(&adapter->hw, RCTL, reg_rctl);
- msec_delay(5);
- if (adapter->hw.pci_cmd_word & CMD_MEM_WRT_INVALIDATE) {
- em_pci_set_mwi(&adapter->hw);
- }
- }
-
- return;
-}
-
-#ifndef __rtems__
-/*********************************************************************
- * Timer routine
- *
- * This routine checks for link status and updates statistics.
- *
- **********************************************************************/
-
-static void
-em_local_timer(void *arg)
-{
- struct ifnet *ifp;
- struct adapter * adapter = arg;
- ifp = &adapter->arpcom.ac_if;
-
- EM_LOCK(adapter);
-
- em_check_for_link(&adapter->hw);
- em_print_link_status(adapter);
- em_update_stats_counters(adapter);
- if (em_display_debug_stats && ifp->if_flags & IFF_RUNNING) {
- em_print_hw_stats(adapter);
- }
- em_smartspeed(adapter);
-
- callout_reset(&adapter->timer, hz, em_local_timer, adapter);
-
- EM_UNLOCK(adapter);
- return;
-}
-#endif
-
-static void
-em_print_link_status(struct adapter * adapter)
-{
-#ifndef __rtems__
- struct ifnet *ifp = &adapter->arpcom.ac_if;
-#endif
-
- if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU) {
- if (adapter->link_active == 0) {
- em_get_speed_and_duplex(&adapter->hw,
- &adapter->link_speed,
- &adapter->link_duplex);
- if (bootverbose)
- printf("em%d: Link is up %d Mbps %s\n",
- adapter->unit,
- adapter->link_speed,
- ((adapter->link_duplex == FULL_DUPLEX) ?
- "Full Duplex" : "Half Duplex"));
- adapter->link_active = 1;
- adapter->smartspeed = 0;
-#ifndef __rtems__
- if_link_state_change(ifp, LINK_STATE_UP);
-#endif
- }
- } else {
- if (adapter->link_active == 1) {
- adapter->link_speed = 0;
- adapter->link_duplex = 0;
- if (bootverbose)
- printf("em%d: Link is Down\n", adapter->unit);
- adapter->link_active = 0;
-#ifndef __rtems__
- if_link_state_change(ifp, LINK_STATE_UP);
- if_link_state_change(ifp, LINK_STATE_DOWN);
-#endif
- }
- }
-
- return;
-}
-
-/*********************************************************************
- *
- * This routine disables all traffic on the adapter by issuing a
- * global reset on the MAC and deallocates TX/RX buffers.
- *
- **********************************************************************/
-
-static void
-em_stop(void *arg)
-{
- struct ifnet *ifp;
- struct adapter * adapter = arg;
- ifp = &adapter->arpcom.ac_if;
-
- mtx_assert(&adapter->mtx, MA_OWNED);
-
- INIT_DEBUGOUT("em_stop: begin");
-#ifdef DEVICE_POLLING
- ether_poll_deregister(ifp);
-#endif
- em_disable_intr(adapter);
- em_reset_hw(&adapter->hw);
- callout_stop(&adapter->timer);
- callout_stop(&adapter->tx_fifo_timer);
- em_free_transmit_structures(adapter);
- em_free_receive_structures(adapter);
-
-
- /* Tell the stack that the interface is no longer active */
- ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
-
- return;
-}
-
-
-/*********************************************************************
- *
- * Determine hardware revision.
- *
- **********************************************************************/
-static void
-em_identify_hardware(struct adapter * adapter)
-{
- device_t dev = adapter->dev;
-
- /* Make sure our PCI config space has the necessary stuff set */
- adapter->hw.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
- if (!((adapter->hw.pci_cmd_word & PCIM_CMD_BUSMASTEREN) &&
- (adapter->hw.pci_cmd_word & PCIM_CMD_MEMEN))) {
- printf("em%d: Memory Access and/or Bus Master bits were not set!\n",
- adapter->unit);
- adapter->hw.pci_cmd_word |=
- (PCIM_CMD_BUSMASTEREN | PCIM_CMD_MEMEN);
- pci_write_config(dev, PCIR_COMMAND, adapter->hw.pci_cmd_word, 2);
- }
-
- /* Save off the information about this board */
- adapter->hw.vendor_id = pci_get_vendor(dev);
- adapter->hw.device_id = pci_get_device(dev);
- adapter->hw.revision_id = pci_read_config(dev, PCIR_REVID, 1);
- adapter->hw.subsystem_vendor_id = pci_read_config(dev, PCIR_SUBVEND_0, 2);
- adapter->hw.subsystem_id = pci_read_config(dev, PCIR_SUBDEV_0, 2);
-
- /* Identify the MAC */
- if (em_set_mac_type(&adapter->hw))
- printf("em%d: Unknown MAC Type\n", adapter->unit);
-
- if(adapter->hw.mac_type == em_82541 ||
- adapter->hw.mac_type == em_82541_rev_2 ||
- adapter->hw.mac_type == em_82547 ||
- adapter->hw.mac_type == em_82547_rev_2)
- adapter->hw.phy_init_script = TRUE;
-
- return;
-}
-
-static int
-em_allocate_pci_resources(struct adapter * adapter)
-{
- int i, val, rid;
- device_t dev = adapter->dev;
-
- rid = EM_MMBA;
-
-#ifndef __rtems__
- adapter->res_memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
- &rid, RF_ACTIVE);
- if (!(adapter->res_memory)) {
- printf("em%d: Unable to allocate bus resource: memory\n",
- adapter->unit);
- return(ENXIO);
- }
- adapter->osdep.mem_bus_space_tag =
- rman_get_bustag(adapter->res_memory);
- adapter->osdep.mem_bus_space_handle =
- rman_get_bushandle(adapter->res_memory);
-#endif
-
- adapter->hw.hw_addr = (uint8_t *)&adapter->osdep.mem_bus_space_handle;
-
-
- if (adapter->hw.mac_type > em_82543) {
- /* Figure our where our IO BAR is ? */
- rid = EM_MMBA;
- for (i = 0; i < 5; i++) {
- val = pci_read_config(dev, rid, 4);
- if (val & 0x00000001) {
-#ifndef __rtems__
- adapter->io_rid = rid;
-#endif
- break;
- }
- rid += 4;
- }
-
-#ifndef __rtems__
- adapter->res_ioport = bus_alloc_resource_any(dev,
- SYS_RES_IOPORT,
- &adapter->io_rid,
- RF_ACTIVE);
- if (!(adapter->res_ioport)) {
- printf("em%d: Unable to allocate bus resource: ioport\n",
- adapter->unit);
- return(ENXIO);
- }
-
- adapter->hw.io_base =
- rman_get_start(adapter->res_ioport);
-#else
- adapter->hw.io_base = val & PCI_BASE_ADDRESS_IO_MASK;
-#endif
- }
-
-#ifndef __rtems__
- rid = 0x0;
- adapter->res_interrupt = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
- RF_SHAREABLE |
- RF_ACTIVE);
- if (!(adapter->res_interrupt)) {
- printf("em%d: Unable to allocate bus resource: interrupt\n",
- adapter->unit);
- return(ENXIO);
- }
- if (bus_setup_intr(dev, adapter->res_interrupt,
- INTR_TYPE_NET | INTR_MPSAFE,
- (void (*)(void *)) em_intr, adapter,
- &adapter->int_handler_tag)) {
- printf("em%d: Error registering interrupt handler!\n",
- adapter->unit);
- return(ENXIO);
- }
-#endif
-
- adapter->hw.back = &adapter->osdep;
-
- return(0);
-}
-
-#ifndef __rtems__
-static void
-em_free_pci_resources(struct adapter * adapter)
-{
- device_t dev = adapter->dev;
-
- if (adapter->res_interrupt != NULL) {
- bus_teardown_intr(dev, adapter->res_interrupt,
- adapter->int_handler_tag);
- bus_release_resource(dev, SYS_RES_IRQ, 0,
- adapter->res_interrupt);
- }
- if (adapter->res_memory != NULL) {
- bus_release_resource(dev, SYS_RES_MEMORY, EM_MMBA,
- adapter->res_memory);
- }
-
- if (adapter->res_ioport != NULL) {
- bus_release_resource(dev, SYS_RES_IOPORT, adapter->io_rid,
- adapter->res_ioport);
- }
- return;
-}
-#endif
-
-/*********************************************************************
- *
- * Initialize the hardware to a configuration as specified by the
- * adapter structure. The controller is reset, the EEPROM is
- * verified, the MAC address is set, then the shared initialization
- * routines are called.
- *
- **********************************************************************/
-static int
-em_hardware_init(struct adapter * adapter)
-{
- INIT_DEBUGOUT("em_hardware_init: begin");
- /* Issue a global reset */
- em_reset_hw(&adapter->hw);
-
- /* When hardware is reset, fifo_head is also reset */
- adapter->tx_fifo_head = 0;
-
- /* Make sure we have a good EEPROM before we read from it */
- if (em_validate_eeprom_checksum(&adapter->hw) < 0) {
- printf("em%d: The EEPROM Checksum Is Not Valid\n",
- adapter->unit);
- return(EIO);
- }
-
- if (em_read_part_num(&adapter->hw, &(adapter->part_num)) < 0) {
- printf("em%d: EEPROM read error while reading part number\n",
- adapter->unit);
- return(EIO);
- }
-
- if (em_init_hw(&adapter->hw) < 0) {
- printf("em%d: Hardware Initialization Failed",
- adapter->unit);
- return(EIO);
- }
-
- em_check_for_link(&adapter->hw);
- if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU)
- adapter->link_active = 1;
- else
- adapter->link_active = 0;
-
- if (adapter->link_active) {
- em_get_speed_and_duplex(&adapter->hw,
- &adapter->link_speed,
- &adapter->link_duplex);
- } else {
- adapter->link_speed = 0;
- adapter->link_duplex = 0;
- }
-
- return(0);
-}
-
-/*********************************************************************
- *
- * Setup networking device structure and register an interface.
- *
- **********************************************************************/
-static void
-em_setup_interface(device_t dev, struct adapter * adapter)
-{
- struct ifnet *ifp = &device_get_softc(dev)->arpcom.ac_if;
- INIT_DEBUGOUT("em_setup_interface: begin");
-
- if_initname(ifp, device_get_name(dev), device_get_unit(dev));
- ifp->if_mtu = ETHERMTU;
- ifp->if_baudrate = 1000000000;
- ifp->if_init = em_init;
- ifp->if_softc = adapter;
- ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
-#ifdef __rtems__
- ifp->if_output = ether_output;
-#endif
- ifp->if_ioctl = em_ioctl;
- ifp->if_start = em_start;
- ifp->if_watchdog = em_watchdog;
-#ifndef __rtems__
- IFQ_SET_MAXLEN(&ifp->if_snd, adapter->num_tx_desc - 1);
- ifp->if_snd.ifq_drv_maxlen = adapter->num_tx_desc - 1;
- IFQ_SET_READY(&ifp->if_snd);
-#else
- ifp->if_snd.ifq_maxlen = adapter->num_tx_desc - 1;
-#endif
-
-#ifndef __rtems__
-#if __FreeBSD_version < 500000
- ether_ifattach(ifp, ETHER_BPF_SUPPORTED);
-#else
- ether_ifattach(ifp, adapter->hw.mac_addr);
-#endif
-#else
- if ( !ifp->if_addrlist ) /* reattach hack */
- {
- if_attach(ifp);
- ether_ifattach(ifp);
- }
-#endif
-
-#ifndef __rtems__
- ifp->if_capabilities = ifp->if_capenable = 0;
-
- if (adapter->hw.mac_type >= em_82543) {
- ifp->if_capabilities |= IFCAP_HWCSUM;
- ifp->if_capenable |= IFCAP_HWCSUM;
- }
-
- /*
- * Tell the upper layer(s) we support long frames.
- */
- ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
-#if __FreeBSD_version >= 500000
- ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
- ifp->if_capenable |= IFCAP_VLAN_MTU;
-#endif
-
-#ifdef DEVICE_POLLING
- ifp->if_capabilities |= IFCAP_POLLING;
- ifp->if_capenable |= IFCAP_POLLING;
-#endif
-
- /*
- * Specify the media types supported by this adapter and register
- * callbacks to update media and link information
- */
- ifmedia_init(&adapter->media, IFM_IMASK, em_media_change,
- em_media_status);
- if (adapter->hw.media_type == em_media_type_fiber) {
- ifmedia_add(&adapter->media, IFM_ETHER | IFM_1000_SX | IFM_FDX,
- 0, NULL);
- ifmedia_add(&adapter->media, IFM_ETHER | IFM_1000_SX,
- 0, NULL);
- } else {
- ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T, 0, NULL);
- ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T | IFM_FDX,
- 0, NULL);
- ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX,
- 0, NULL);
- ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
- 0, NULL);
-#if __FreeBSD_version < 500000
- ifmedia_add(&adapter->media, IFM_ETHER | IFM_1000_TX | IFM_FDX,
- 0, NULL);
- ifmedia_add(&adapter->media, IFM_ETHER | IFM_1000_TX, 0, NULL);
-#else
- ifmedia_add(&adapter->media, IFM_ETHER | IFM_1000_T | IFM_FDX,
- 0, NULL);
- ifmedia_add(&adapter->media, IFM_ETHER | IFM_1000_T, 0, NULL);
-#endif
- }
- ifmedia_add(&adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
- ifmedia_set(&adapter->media, IFM_ETHER | IFM_AUTO);
-#endif
-
- return;
-}
-
-#ifndef __rtems__
-/*********************************************************************
- *
- * Workaround for SmartSpeed on 82541 and 82547 controllers
- *
- **********************************************************************/
-static void
-em_smartspeed(struct adapter *adapter)
-{
- uint16_t phy_tmp;
-
- if(adapter->link_active || (adapter->hw.phy_type != em_phy_igp) ||
- !adapter->hw.autoneg || !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
- return;
-
- if(adapter->smartspeed == 0) {
- /* If Master/Slave config fault is asserted twice,
- * we assume back-to-back */
- em_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
- if(!(phy_tmp & SR_1000T_MS_CONFIG_FAULT)) return;
- em_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
- if(phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
- em_read_phy_reg(&adapter->hw, PHY_1000T_CTRL,
- &phy_tmp);
- if(phy_tmp & CR_1000T_MS_ENABLE) {
- phy_tmp &= ~CR_1000T_MS_ENABLE;
- em_write_phy_reg(&adapter->hw,
- PHY_1000T_CTRL, phy_tmp);
- adapter->smartspeed++;
- if(adapter->hw.autoneg &&
- !em_phy_setup_autoneg(&adapter->hw) &&
- !em_read_phy_reg(&adapter->hw, PHY_CTRL,
- &phy_tmp)) {
- phy_tmp |= (MII_CR_AUTO_NEG_EN |
- MII_CR_RESTART_AUTO_NEG);
- em_write_phy_reg(&adapter->hw,
- PHY_CTRL, phy_tmp);
- }
- }
- }
- return;
- } else if(adapter->smartspeed == EM_SMARTSPEED_DOWNSHIFT) {
- /* If still no link, perhaps using 2/3 pair cable */
- em_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_tmp);
- phy_tmp |= CR_1000T_MS_ENABLE;
- em_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_tmp);
- if(adapter->hw.autoneg &&
- !em_phy_setup_autoneg(&adapter->hw) &&
- !em_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_tmp)) {
- phy_tmp |= (MII_CR_AUTO_NEG_EN |
- MII_CR_RESTART_AUTO_NEG);
- em_write_phy_reg(&adapter->hw, PHY_CTRL, phy_tmp);
- }
- }
- /* Restart process after EM_SMARTSPEED_MAX iterations */
- if(adapter->smartspeed++ == EM_SMARTSPEED_MAX)
- adapter->smartspeed = 0;
-
- return;
-}
-
-
-/*
- * Manage DMA'able memory.
- */
-static void
-em_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
-{
- if (error)
- return;
- *(bus_addr_t*) arg = segs->ds_addr;
- return;
-}
-#endif
-
-static int
-em_dma_malloc(struct adapter *adapter, bus_size_t size,
- struct em_dma_alloc *dma, int mapflags)
-{
- int r;
-
-#ifndef __rtems__
- r = bus_dma_tag_create(NULL, /* parent */
- PAGE_SIZE, 0, /* alignment, bounds */
- BUS_SPACE_MAXADDR, /* lowaddr */
- BUS_SPACE_MAXADDR, /* highaddr */
- NULL, NULL, /* filter, filterarg */
- size, /* maxsize */
- 1, /* nsegments */
- size, /* maxsegsize */
- BUS_DMA_ALLOCNOW, /* flags */
- NULL, /* lockfunc */
- NULL, /* lockarg */
- &dma->dma_tag);
- if (r != 0) {
- printf("em%d: em_dma_malloc: bus_dma_tag_create failed; "
- "error %u\n", adapter->unit, r);
- goto fail_0;
- }
-
- r = bus_dmamem_alloc(dma->dma_tag, (void**) &dma->dma_vaddr,
- BUS_DMA_NOWAIT, &dma->dma_map);
-#else
- if ( (dma->malloc_base = malloc( size + PAGE_SIZE, M_DEVBUF, M_NOWAIT )) ) {
- r = 0;
- dma->dma_vaddr = (caddr_t)_DO_ALIGN(dma->malloc_base, PAGE_SIZE);
- } else {
- r = -1;
- }
-#endif
- if (r != 0) {
-#ifndef __rtems__
- printf("em%d: em_dma_malloc: bus_dmammem_alloc failed; "
- "size %ju, error %d\n", adapter->unit,
- (uintmax_t)size, r);
-#else
- printf("em%d: em_dma_malloc: bus_dmammem_alloc failed; "
- "size %u, error %d\n", adapter->unit,
- size, r);
-#endif
- goto fail_2;
- }
-
-#ifndef __rtems__
- r = bus_dmamap_load(dma->dma_tag, dma->dma_map, dma->dma_vaddr,
- size,
- em_dmamap_cb,
- &dma->dma_paddr,
- mapflags | BUS_DMA_NOWAIT);
-#else
- dma->dma_paddr = kvtop(dma->dma_vaddr);
-#endif
- if (r != 0) {
- printf("em%d: em_dma_malloc: bus_dmamap_load failed; "
- "error %u\n", adapter->unit, r);
- goto fail_3;
- }
-
-#ifndef __rtems__
- dma->dma_size = size;
-#endif
- return (0);
-
-fail_3:
- bus_dmamap_unload(dma->dma_tag, dma->dma_map);
-fail_2:
-#ifndef __rtems__
- bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
-#else
- free(dma->malloc_base, M_DEVBUF);
- dma->dma_vaddr = dma->malloc_base = 0;
- dma->dma_paddr = 0;
-#endif
- bus_dma_tag_destroy(dma->dma_tag);
-#ifndef __rtems__
-fail_0:
- dma->dma_map = NULL;
- dma->dma_tag = NULL;
-#endif
- return (r);
-}
-
-static void
-em_dma_free(struct adapter *adapter, struct em_dma_alloc *dma)
-{
- bus_dmamap_unload(dma->dma_tag, dma->dma_map);
-#ifndef __rtems__
- bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
-#else
- free(dma->malloc_base, M_DEVBUF);
- dma->dma_vaddr = dma->malloc_base = 0;
- dma->dma_paddr = 0;
-#endif
- bus_dma_tag_destroy(dma->dma_tag);
-}
-
-
-/*********************************************************************
- *
- * Allocate memory for tx_buffer structures. The tx_buffer stores all
- * the information needed to transmit a packet on the wire.
- *
- **********************************************************************/
-static int
-em_allocate_transmit_structures(struct adapter * adapter)
-{
- if (!(adapter->tx_buffer_area =
- (struct em_buffer *) malloc(sizeof(struct em_buffer) *
- adapter->num_tx_desc, M_DEVBUF,
- M_NOWAIT))) {
- printf("em%d: Unable to allocate tx_buffer memory\n",
- adapter->unit);
- return ENOMEM;
- }
-
- bzero(adapter->tx_buffer_area,
- sizeof(struct em_buffer) * adapter->num_tx_desc);
-
- return 0;
-}
-
-/*********************************************************************
- *
- * Allocate and initialize transmit structures.
- *
- **********************************************************************/
-static int
-em_setup_transmit_structures(struct adapter * adapter)
-{
-#ifndef __rtems__
- /*
- * Setup DMA descriptor areas.
- */
- if (bus_dma_tag_create(NULL, /* parent */
- 1, 0, /* alignment, bounds */
- BUS_SPACE_MAXADDR, /* lowaddr */
- BUS_SPACE_MAXADDR, /* highaddr */
- NULL, NULL, /* filter, filterarg */
- MCLBYTES * 8, /* maxsize */
- EM_MAX_SCATTER, /* nsegments */
- MCLBYTES * 8, /* maxsegsize */
- BUS_DMA_ALLOCNOW, /* flags */
- NULL, /* lockfunc */
- NULL, /* lockarg */
- &adapter->txtag)) {
- printf("em%d: Unable to allocate TX DMA tag\n", adapter->unit);
- return (ENOMEM);
- }
-#endif
-
- if (em_allocate_transmit_structures(adapter))
- return (ENOMEM);
-
- bzero((void *) adapter->tx_desc_base,
- (sizeof(struct em_tx_desc)) * adapter->num_tx_desc);
-
- adapter->next_avail_tx_desc = 0;
- adapter->oldest_used_tx_desc = 0;
-
- /* Set number of descriptors available */
- adapter->num_tx_desc_avail = adapter->num_tx_desc;
-
- /* Set checksum context */
- adapter->active_checksum_context = OFFLOAD_NONE;
-
- return (0);
-}
-
-/*********************************************************************
- *
- * Enable transmit unit.
- *
- **********************************************************************/
-static void
-em_initialize_transmit_unit(struct adapter * adapter)
-{
- u_int32_t reg_tctl;
- u_int32_t reg_tipg = 0;
- u_int64_t bus_addr;
-
- INIT_DEBUGOUT("em_initialize_transmit_unit: begin");
- /* Setup the Base and Length of the Tx Descriptor Ring */
- bus_addr = adapter->txdma.dma_paddr;
- E1000_WRITE_REG(&adapter->hw, TDBAL, (u_int32_t)bus_addr);
- E1000_WRITE_REG(&adapter->hw, TDBAH, (u_int32_t)(bus_addr >> 32));
- E1000_WRITE_REG(&adapter->hw, TDLEN,
- adapter->num_tx_desc *
- sizeof(struct em_tx_desc));
-
- /* Setup the HW Tx Head and Tail descriptor pointers */
- E1000_WRITE_REG(&adapter->hw, TDH, 0);
- E1000_WRITE_REG(&adapter->hw, TDT, 0);
-
-
- HW_DEBUGOUT2("Base = %" PRIx32 ", Length = %" PRIx32 "\n",
- E1000_READ_REG(&adapter->hw, TDBAL),
- E1000_READ_REG(&adapter->hw, TDLEN));
-
- /* Set the default values for the Tx Inter Packet Gap timer */
- switch (adapter->hw.mac_type) {
- case em_82542_rev2_0:
- case em_82542_rev2_1:
- reg_tipg = DEFAULT_82542_TIPG_IPGT;
- reg_tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
- reg_tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
- break;
- default:
- if (adapter->hw.media_type == em_media_type_fiber)
- reg_tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
- else
- reg_tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
- reg_tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
- reg_tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
- }
-
- E1000_WRITE_REG(&adapter->hw, TIPG, reg_tipg);
- E1000_WRITE_REG(&adapter->hw, TIDV, adapter->tx_int_delay.value);
- if(adapter->hw.mac_type >= em_82540)
- E1000_WRITE_REG(&adapter->hw, TADV,
- adapter->tx_abs_int_delay.value);
-
- /* Program the Transmit Control Register */
- reg_tctl = E1000_TCTL_PSP | E1000_TCTL_EN |
- (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
- if (adapter->hw.mac_type >= em_82573)
- reg_tctl |= E1000_TCTL_MULR;
- if (adapter->link_duplex == 1) {
- reg_tctl |= E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT;
- } else {
- reg_tctl |= E1000_HDX_COLLISION_DISTANCE << E1000_COLD_SHIFT;
- }
- E1000_WRITE_REG(&adapter->hw, TCTL, reg_tctl);
-
- /* Setup Transmit Descriptor Settings for this adapter */
- adapter->txd_cmd = E1000_TXD_CMD_IFCS | E1000_TXD_CMD_RS;
-
- if (adapter->tx_int_delay.value > 0)
- adapter->txd_cmd |= E1000_TXD_CMD_IDE;
-
- return;
-}
-
-/*********************************************************************
- *
- * Free all transmit related data structures.
- *
- **********************************************************************/
-static void
-em_free_transmit_structures(struct adapter * adapter)
-{
- struct em_buffer *tx_buffer;
- int i;
-
- INIT_DEBUGOUT("free_transmit_structures: begin");
-
- if (adapter->tx_buffer_area != NULL) {
- tx_buffer = adapter->tx_buffer_area;
- for (i = 0; i < adapter->num_tx_desc; i++, tx_buffer++) {
- if (tx_buffer->m_head != NULL) {
- bus_dmamap_unload(adapter->txtag, tx_buffer->map);
- bus_dmamap_destroy(adapter->txtag, tx_buffer->map);
- m_freem(tx_buffer->m_head);
- }
- tx_buffer->m_head = NULL;
- }
- }
- if (adapter->tx_buffer_area != NULL) {
- free(adapter->tx_buffer_area, M_DEVBUF);
- adapter->tx_buffer_area = NULL;
- }
-#ifndef __rtems__
- if (adapter->txtag != NULL) {
- bus_dma_tag_destroy(adapter->txtag);
- adapter->txtag = NULL;
- }
-#endif
- return;
-}
-
-#ifndef __rtems__
-/*********************************************************************
- *
- * The offload context needs to be set when we transfer the first
- * packet of a particular protocol (TCP/UDP). We change the
- * context only if the protocol type changes.
- *
- **********************************************************************/
-static void
-em_transmit_checksum_setup(struct adapter * adapter,
- struct mbuf *mp,
- u_int32_t *txd_upper,
- u_int32_t *txd_lower)
-{
- struct em_context_desc *TXD;
- struct em_buffer *tx_buffer;
- int curr_txd;
-
- if (mp->m_pkthdr.csum_flags) {
-
- if (mp->m_pkthdr.csum_flags & CSUM_TCP) {
- *txd_upper = E1000_TXD_POPTS_TXSM << 8;
- *txd_lower = E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
- if (adapter->active_checksum_context == OFFLOAD_TCP_IP)
- return;
- else
- adapter->active_checksum_context = OFFLOAD_TCP_IP;
-
- } else if (mp->m_pkthdr.csum_flags & CSUM_UDP) {
- *txd_upper = E1000_TXD_POPTS_TXSM << 8;
- *txd_lower = E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
- if (adapter->active_checksum_context == OFFLOAD_UDP_IP)
- return;
- else
- adapter->active_checksum_context = OFFLOAD_UDP_IP;
- } else {
- *txd_upper = 0;
- *txd_lower = 0;
- return;
- }
- } else {
- *txd_upper = 0;
- *txd_lower = 0;
- return;
- }
-
- /* If we reach this point, the checksum offload context
- * needs to be reset.
- */
- curr_txd = adapter->next_avail_tx_desc;
- tx_buffer = &adapter->tx_buffer_area[curr_txd];
- TXD = (struct em_context_desc *) &adapter->tx_desc_base[curr_txd];
-
- TXD->lower_setup.ip_fields.ipcss = ETHER_HDR_LEN;
- TXD->lower_setup.ip_fields.ipcso =
- ETHER_HDR_LEN + offsetof(struct ip, ip_sum);
- TXD->lower_setup.ip_fields.ipcse =
- htole16(ETHER_HDR_LEN + sizeof(struct ip) - 1);
-
- TXD->upper_setup.tcp_fields.tucss =
- ETHER_HDR_LEN + sizeof(struct ip);
- TXD->upper_setup.tcp_fields.tucse = htole16(0);
-
- if (adapter->active_checksum_context == OFFLOAD_TCP_IP) {
- TXD->upper_setup.tcp_fields.tucso =
- ETHER_HDR_LEN + sizeof(struct ip) +
- offsetof(struct tcphdr, th_sum);
- } else if (adapter->active_checksum_context == OFFLOAD_UDP_IP) {
- TXD->upper_setup.tcp_fields.tucso =
- ETHER_HDR_LEN + sizeof(struct ip) +
- offsetof(struct udphdr, uh_sum);
- }
-
- TXD->tcp_seg_setup.data = htole32(0);
- TXD->cmd_and_length = htole32(adapter->txd_cmd | E1000_TXD_CMD_DEXT);
-
- tx_buffer->m_head = NULL;
-
- if (++curr_txd == adapter->num_tx_desc)
- curr_txd = 0;
-
- adapter->num_tx_desc_avail--;
- adapter->next_avail_tx_desc = curr_txd;
-
- return;
-}
-#endif
-
-/**********************************************************************
- *
- * Examine each tx_buffer in the used queue. If the hardware is done
- * processing the packet then free associated resources. The
- * tx_buffer is put back on the free queue.
- *
- **********************************************************************/
-static void
-em_clean_transmit_interrupts(struct adapter * adapter)
-{
- int i, num_avail;
- struct em_buffer *tx_buffer;
- struct em_tx_desc *tx_desc;
- struct ifnet *ifp = &adapter->arpcom.ac_if;
-
- mtx_assert(&adapter->mtx, MA_OWNED);
-
- if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
- return;
-
- num_avail = adapter->num_tx_desc_avail;
- i = adapter->oldest_used_tx_desc;
-
- tx_buffer = &adapter->tx_buffer_area[i];
- tx_desc = &adapter->tx_desc_base[i];
-
- bus_dmamap_sync(adapter->txdma.dma_tag, adapter->txdma.dma_map,
- BUS_DMASYNC_POSTREAD);
- while (tx_desc->upper.fields.status & E1000_TXD_STAT_DD) {
-
- tx_desc->upper.data = 0;
- num_avail++;
-
- if (tx_buffer->m_head) {
- ifp->if_opackets++;
- bus_dmamap_unload(adapter->txtag, tx_buffer->map);
- bus_dmamap_destroy(adapter->txtag, tx_buffer->map);
-
- m_freem(tx_buffer->m_head);
- tx_buffer->m_head = NULL;
- }
-
- if (++i == adapter->num_tx_desc)
- i = 0;
-
- tx_buffer = &adapter->tx_buffer_area[i];
- tx_desc = &adapter->tx_desc_base[i];
- }
- bus_dmamap_sync(adapter->txdma.dma_tag, adapter->txdma.dma_map,
- BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
-
- adapter->oldest_used_tx_desc = i;
-
- /*
- * If we have enough room, clear IFF_OACTIVE to tell the stack
- * that it is OK to send packets.
- * If there are no pending descriptors, clear the timeout. Otherwise,
- * if some descriptors have been freed, restart the timeout.
- */
- if (num_avail > EM_TX_CLEANUP_THRESHOLD) {
- ifp->if_flags &= ~IFF_OACTIVE;
- if (num_avail == adapter->num_tx_desc)
- ifp->if_timer = 0;
- else if (num_avail == adapter->num_tx_desc_avail)
- ifp->if_timer = EM_TX_TIMEOUT;
- }
- adapter->num_tx_desc_avail = num_avail;
- return;
-}
-
-/*********************************************************************
- *
- * Get a buffer from system mbuf buffer pool.
- *
- **********************************************************************/
-static int
-em_get_buf(int i, struct adapter *adapter,
- struct mbuf *nmp)
-{
- register struct mbuf *mp = nmp;
- struct em_buffer *rx_buffer;
- struct ifnet *ifp;
- bus_addr_t paddr;
-#ifndef __rtems__
- int error;
-#endif
-
- ifp = &adapter->arpcom.ac_if;
-
- if (mp == NULL) {
-#ifndef __rtems__
- mp = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
-#else
- MGETHDR(mp, M_DONTWAIT, MT_DATA);
- if ( mp ) {
- MCLGET( mp, M_DONTWAIT );
- if ( !(mp->m_flags & M_EXT) ) {
- m_freem(mp);
- mp = 0;
- }
- }
-#endif
- if (mp == NULL) {
- adapter->mbuf_cluster_failed++;
- return(ENOBUFS);
- }
- mp->m_len = mp->m_pkthdr.len = MCLBYTES;
- } else {
- mp->m_len = mp->m_pkthdr.len = MCLBYTES;
- mp->m_data = mp->m_ext.ext_buf;
- mp->m_next = NULL;
- }
-
- if (ifp->if_mtu <= ETHERMTU) {
- m_adj(mp, ETHER_ALIGN);
- }
-
- rx_buffer = &adapter->rx_buffer_area[i];
-
-#ifndef __rtems__
- /*
- * Using memory from the mbuf cluster pool, invoke the
- * bus_dma machinery to arrange the memory mapping.
- */
- error = bus_dmamap_load(adapter->rxtag, rx_buffer->map,
- mtod(mp, void *), mp->m_len,
- em_dmamap_cb, &paddr, 0);
- if (error) {
- m_free(mp);
- return(error);
- }
-#else
- paddr = kvtop(mtod(mp, void*));
-#endif
-
- rx_buffer->m_head = mp;
- adapter->rx_desc_base[i].buffer_addr = htole64(paddr);
- bus_dmamap_sync(adapter->rxtag, rx_buffer->map, BUS_DMASYNC_PREREAD);
-
- return(0);
-}
-
-/*********************************************************************
- *
- * Allocate memory for rx_buffer structures. Since we use one
- * rx_buffer per received packet, the maximum number of rx_buffer's
- * that we'll need is equal to the number of receive descriptors
- * that we've allocated.
- *
- **********************************************************************/
-static int
-em_allocate_receive_structures(struct adapter * adapter)
-{
- int i, error;
-#ifndef __rtems__
- struct em_buffer *rx_buffer;
-#endif
-
- if (!(adapter->rx_buffer_area =
- (struct em_buffer *) malloc(sizeof(struct em_buffer) *
- adapter->num_rx_desc, M_DEVBUF,
- M_NOWAIT))) {
- printf("em%d: Unable to allocate rx_buffer memory\n",
- adapter->unit);
- return(ENOMEM);
- }
-
- bzero(adapter->rx_buffer_area,
- sizeof(struct em_buffer) * adapter->num_rx_desc);
-
-#ifndef __rtems__
- error = bus_dma_tag_create(NULL, /* parent */
- 1, 0, /* alignment, bounds */
- BUS_SPACE_MAXADDR, /* lowaddr */
- BUS_SPACE_MAXADDR, /* highaddr */
- NULL, NULL, /* filter, filterarg */
- MCLBYTES, /* maxsize */
- 1, /* nsegments */
- MCLBYTES, /* maxsegsize */
- BUS_DMA_ALLOCNOW, /* flags */
- NULL, /* lockfunc */
- NULL, /* lockarg */
- &adapter->rxtag);
- if (error != 0) {
- printf("em%d: em_allocate_receive_structures: "
- "bus_dma_tag_create failed; error %u\n",
- adapter->unit, error);
- goto fail_0;
- }
- rx_buffer = adapter->rx_buffer_area;
- for (i = 0; i < adapter->num_rx_desc; i++, rx_buffer++) {
- error = bus_dmamap_create(adapter->rxtag, BUS_DMA_NOWAIT,
- &rx_buffer->map);
- if (error != 0) {
- printf("em%d: em_allocate_receive_structures: "
- "bus_dmamap_create failed; error %u\n",
- adapter->unit, error);
- goto fail_1;
- }
- }
-
-#else
- error = 0;
-#endif
-
- for (i = 0; i < adapter->num_rx_desc; i++) {
- error = em_get_buf(i, adapter, NULL);
- if (error != 0) {
- adapter->rx_buffer_area[i].m_head = NULL;
- adapter->rx_desc_base[i].buffer_addr = 0;
- return(error);
- }
- }
- bus_dmamap_sync(adapter->rxdma.dma_tag, adapter->rxdma.dma_map,
- BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
-
- return(0);
-
-#ifndef __rtems__
-fail_1:
- bus_dma_tag_destroy(adapter->rxtag);
-fail_0:
- adapter->rxtag = NULL;
-#endif
- free(adapter->rx_buffer_area, M_DEVBUF);
- adapter->rx_buffer_area = NULL;
- return (error);
-}
-
-/*********************************************************************
- *
- * Allocate and initialize receive structures.
- *
- **********************************************************************/
-static int
-em_setup_receive_structures(struct adapter * adapter)
-{
- bzero((void *) adapter->rx_desc_base,
- (sizeof(struct em_rx_desc)) * adapter->num_rx_desc);
-
- if (em_allocate_receive_structures(adapter))
- return ENOMEM;
-
- /* Setup our descriptor pointers */
- adapter->next_rx_desc_to_check = 0;
- return(0);
-}
-
-/*********************************************************************
- *
- * Enable receive unit.
- *
- **********************************************************************/
-static void
-em_initialize_receive_unit(struct adapter * adapter)
-{
- u_int32_t reg_rctl;
-#ifndef __rtems__
- u_int32_t reg_rxcsum;
-#endif
- struct ifnet *ifp;
- u_int64_t bus_addr;
-
- INIT_DEBUGOUT("em_initialize_receive_unit: begin");
- ifp = &adapter->arpcom.ac_if;
-
- /* Make sure receives are disabled while setting up the descriptor ring */
- E1000_WRITE_REG(&adapter->hw, RCTL, 0);
-
- /* Set the Receive Delay Timer Register */
- E1000_WRITE_REG(&adapter->hw, RDTR,
- adapter->rx_int_delay.value | E1000_RDT_FPDB);
-
- if(adapter->hw.mac_type >= em_82540) {
- E1000_WRITE_REG(&adapter->hw, RADV,
- adapter->rx_abs_int_delay.value);
-
- /* Set the interrupt throttling rate. Value is calculated
- * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns) */
-#define MAX_INTS_PER_SEC 8000
-#define DEFAULT_ITR 1000000000/(MAX_INTS_PER_SEC * 256)
- E1000_WRITE_REG(&adapter->hw, ITR, DEFAULT_ITR);
- }
-
- /* Setup the Base and Length of the Rx Descriptor Ring */
- bus_addr = adapter->rxdma.dma_paddr;
- E1000_WRITE_REG(&adapter->hw, RDBAL, (u_int32_t)bus_addr);
- E1000_WRITE_REG(&adapter->hw, RDBAH, (u_int32_t)(bus_addr >> 32));
- E1000_WRITE_REG(&adapter->hw, RDLEN, adapter->num_rx_desc *
- sizeof(struct em_rx_desc));
-
- /* Setup the HW Rx Head and Tail Descriptor Pointers */
- E1000_WRITE_REG(&adapter->hw, RDH, 0);
- E1000_WRITE_REG(&adapter->hw, RDT, adapter->num_rx_desc - 1);
-
- /* Setup the Receive Control Register */
- reg_rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
- E1000_RCTL_RDMTS_HALF |
- (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
-
- if (adapter->hw.tbi_compatibility_on == TRUE)
- reg_rctl |= E1000_RCTL_SBP;
-
-
- switch (adapter->rx_buffer_len) {
- default:
- case EM_RXBUFFER_2048:
- reg_rctl |= E1000_RCTL_SZ_2048;
- break;
- case EM_RXBUFFER_4096:
- reg_rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX | E1000_RCTL_LPE;
- break;
- case EM_RXBUFFER_8192:
- reg_rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX | E1000_RCTL_LPE;
- break;
- case EM_RXBUFFER_16384:
- reg_rctl |= E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX | E1000_RCTL_LPE;
- break;
- }
-
- if (ifp->if_mtu > ETHERMTU)
- reg_rctl |= E1000_RCTL_LPE;
-
-#ifndef __rtems__
- /* Enable 82543 Receive Checksum Offload for TCP and UDP */
- if ((adapter->hw.mac_type >= em_82543) &&
- (ifp->if_capenable & IFCAP_RXCSUM)) {
- reg_rxcsum = E1000_READ_REG(&adapter->hw, RXCSUM);
- reg_rxcsum |= (E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL);
- E1000_WRITE_REG(&adapter->hw, RXCSUM, reg_rxcsum);
- }
-#endif
-
- /* Enable Receives */
- E1000_WRITE_REG(&adapter->hw, RCTL, reg_rctl);
-
- return;
-}
-
-/*********************************************************************
- *
- * Free receive related data structures.
- *
- **********************************************************************/
-static void
-em_free_receive_structures(struct adapter *adapter)
-{
- struct em_buffer *rx_buffer;
- int i;
-
- INIT_DEBUGOUT("free_receive_structures: begin");
-
- if (adapter->rx_buffer_area != NULL) {
- rx_buffer = adapter->rx_buffer_area;
- for (i = 0; i < adapter->num_rx_desc; i++, rx_buffer++) {
-#ifndef __rtems__
- if (rx_buffer->map != NULL) {
- bus_dmamap_unload(adapter->rxtag, rx_buffer->map);
- bus_dmamap_destroy(adapter->rxtag, rx_buffer->map);
- }
-#endif
- if (rx_buffer->m_head != NULL)
- m_freem(rx_buffer->m_head);
- rx_buffer->m_head = NULL;
- }
- }
- if (adapter->rx_buffer_area != NULL) {
- free(adapter->rx_buffer_area, M_DEVBUF);
- adapter->rx_buffer_area = NULL;
- }
-#ifndef __rtems__
- if (adapter->rxtag != NULL) {
- bus_dma_tag_destroy(adapter->rxtag);
- adapter->rxtag = NULL;
- }
-#endif
- return;
-}
-
-/*********************************************************************
- *
- * This routine executes in interrupt context. It replenishes
- * the mbufs in the descriptor and sends data which has been
- * dma'ed into host memory to upper layer.
- *
- * We loop at most count times if count is > 0, or until done if
- * count < 0.
- *
- *********************************************************************/
-static void
-em_process_receive_interrupts(struct adapter * adapter, int count)
-{
- struct ifnet *ifp;
- struct mbuf *mp;
-#if __FreeBSD_version < 500000
- struct ether_header *eh;
-#endif
- u_int8_t accept_frame = 0;
- u_int8_t eop = 0;
- u_int16_t len, desc_len, prev_len_adj;
- int i;
-
- /* Pointer to the receive descriptor being examined. */
- struct em_rx_desc *current_desc;
-
- mtx_assert(&adapter->mtx, MA_OWNED);
-
- ifp = &adapter->arpcom.ac_if;
- i = adapter->next_rx_desc_to_check;
- current_desc = &adapter->rx_desc_base[i];
- bus_dmamap_sync(adapter->rxdma.dma_tag, adapter->rxdma.dma_map,
- BUS_DMASYNC_POSTREAD);
-
- if (!((current_desc->status) & E1000_RXD_STAT_DD)) {
- return;
- }
-
- while ((current_desc->status & E1000_RXD_STAT_DD) && (count != 0)) {
-
- mp = adapter->rx_buffer_area[i].m_head;
- bus_dmamap_sync(adapter->rxtag, adapter->rx_buffer_area[i].map,
- BUS_DMASYNC_POSTREAD);
-
- accept_frame = 1;
- prev_len_adj = 0;
- desc_len = le16toh(current_desc->length);
- if (current_desc->status & E1000_RXD_STAT_EOP) {
- count--;
- eop = 1;
- if (desc_len < ETHER_CRC_LEN) {
- len = 0;
- prev_len_adj = ETHER_CRC_LEN - desc_len;
- }
- else {
- len = desc_len - ETHER_CRC_LEN;
- }
- } else {
- eop = 0;
- len = desc_len;
- }
-
- if (current_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
- u_int8_t last_byte;
- u_int32_t pkt_len = desc_len;
-
- if (adapter->fmp != NULL)
- pkt_len += adapter->fmp->m_pkthdr.len;
-
- last_byte = *(mtod(mp, caddr_t) + desc_len - 1);
-
- if (TBI_ACCEPT(&adapter->hw, current_desc->status,
- current_desc->errors,
- pkt_len, last_byte)) {
- em_tbi_adjust_stats(&adapter->hw,
- &adapter->stats,
- pkt_len,
- adapter->hw.mac_addr);
- if (len > 0) len--;
- }
- else {
- accept_frame = 0;
- }
- }
-
- if (accept_frame) {
-
- if (em_get_buf(i, adapter, NULL) == ENOBUFS) {
- adapter->dropped_pkts++;
- em_get_buf(i, adapter, mp);
- if (adapter->fmp != NULL)
- m_freem(adapter->fmp);
- adapter->fmp = NULL;
- adapter->lmp = NULL;
- break;
- }
-
- /* Assign correct length to the current fragment */
- mp->m_len = len;
-
- if (adapter->fmp == NULL) {
- mp->m_pkthdr.len = len;
- adapter->fmp = mp; /* Store the first mbuf */
- adapter->lmp = mp;
- } else {
- /* Chain mbuf's together */
- mp->m_flags &= ~M_PKTHDR;
- /*
- * Adjust length of previous mbuf in chain if we
- * received less than 4 bytes in the last descriptor.
- */
- if (prev_len_adj > 0) {
- adapter->lmp->m_len -= prev_len_adj;
- adapter->fmp->m_pkthdr.len -= prev_len_adj;
- }
- adapter->lmp->m_next = mp;
- adapter->lmp = adapter->lmp->m_next;
- adapter->fmp->m_pkthdr.len += len;
- }
-
- if (eop) {
- adapter->fmp->m_pkthdr.rcvif = ifp;
- ifp->if_ipackets++;
-
-#if __FreeBSD_version < 500000
- eh = mtod(adapter->fmp, struct ether_header *);
- /* Remove ethernet header from mbuf */
- m_adj(adapter->fmp, sizeof(struct ether_header));
-#ifndef __rtems__
- em_receive_checksum(adapter, current_desc,
- adapter->fmp);
- if (current_desc->status & E1000_RXD_STAT_VP)
- VLAN_INPUT_TAG(eh, adapter->fmp,
- (current_desc->special &
- E1000_RXD_SPC_VLAN_MASK));
- else
-#endif
- ether_input(ifp, eh, adapter->fmp);
-#else
-
- em_receive_checksum(adapter, current_desc,
- adapter->fmp);
- if (current_desc->status & E1000_RXD_STAT_VP)
- VLAN_INPUT_TAG(ifp, adapter->fmp,
- (current_desc->special &
- E1000_RXD_SPC_VLAN_MASK),
- adapter->fmp = NULL);
-
- if (adapter->fmp != NULL) {
- EM_UNLOCK(adapter);
- (*ifp->if_input)(ifp, adapter->fmp);
- EM_LOCK(adapter);
- }
-#endif
- adapter->fmp = NULL;
- adapter->lmp = NULL;
- }
- } else {
- adapter->dropped_pkts++;
- em_get_buf(i, adapter, mp);
- if (adapter->fmp != NULL)
- m_freem(adapter->fmp);
- adapter->fmp = NULL;
- adapter->lmp = NULL;
- }
-
- /* Zero out the receive descriptors status */
- current_desc->status = 0;
-
- /* Advance the E1000's Receive Queue #0 "Tail Pointer". */
- E1000_WRITE_REG(&adapter->hw, RDT, i);
-
- /* Advance our pointers to the next descriptor */
- if (++i == adapter->num_rx_desc) {
- i = 0;
- current_desc = adapter->rx_desc_base;
- } else
- current_desc++;
- }
- bus_dmamap_sync(adapter->rxdma.dma_tag, adapter->rxdma.dma_map,
- BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
- adapter->next_rx_desc_to_check = i;
- return;
-}
-
-#ifndef __rtems__
-/*********************************************************************
- *
- * Verify that the hardware indicated that the checksum is valid.
- * Inform the stack about the status of checksum so that stack
- * doesn't spend time verifying the checksum.
- *
- *********************************************************************/
-static void
-em_receive_checksum(struct adapter *adapter,
- struct em_rx_desc *rx_desc,
- struct mbuf *mp)
-{
- /* 82543 or newer only */
- if ((adapter->hw.mac_type < em_82543) ||
- /* Ignore Checksum bit is set */
- (rx_desc->status & E1000_RXD_STAT_IXSM)) {
- mp->m_pkthdr.csum_flags = 0;
- return;
- }
-
- if (rx_desc->status & E1000_RXD_STAT_IPCS) {
- /* Did it pass? */
- if (!(rx_desc->errors & E1000_RXD_ERR_IPE)) {
- /* IP Checksum Good */
- mp->m_pkthdr.csum_flags = CSUM_IP_CHECKED;
- mp->m_pkthdr.csum_flags |= CSUM_IP_VALID;
-
- } else {
- mp->m_pkthdr.csum_flags = 0;
- }
- }
-
- if (rx_desc->status & E1000_RXD_STAT_TCPCS) {
- /* Did it pass? */
- if (!(rx_desc->errors & E1000_RXD_ERR_TCPE)) {
- mp->m_pkthdr.csum_flags |=
- (CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
- mp->m_pkthdr.csum_data = htons(0xffff);
- }
- }
-
- return;
-}
-
-
-static void
-em_enable_vlans(struct adapter *adapter)
-{
- uint32_t ctrl;
-
- E1000_WRITE_REG(&adapter->hw, VET, ETHERTYPE_VLAN);
-
- ctrl = E1000_READ_REG(&adapter->hw, CTRL);
- ctrl |= E1000_CTRL_VME;
- E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
-
- return;
-}
-
-static void
-em_disable_vlans(struct adapter *adapter)
-{
- uint32_t ctrl;
-
- ctrl = E1000_READ_REG(&adapter->hw, CTRL);
- ctrl &= ~E1000_CTRL_VME;
- E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
-
- return;
-}
-#endif
-
-static void
-em_enable_intr(struct adapter * adapter)
-{
- E1000_WRITE_REG(&adapter->hw, IMS, (IMS_ENABLE_MASK));
- return;
-}
-
-static void
-em_disable_intr(struct adapter *adapter)
-{
- /*
- * The first version of 82542 had an errata where when link was forced it
- * would stay up even up even if the cable was disconnected. Sequence errors
- * were used to detect the disconnect and then the driver would unforce the link.
- * This code in the in the ISR. For this to work correctly the Sequence error
- * interrupt had to be enabled all the time.
- */
-
- if (adapter->hw.mac_type == em_82542_rev2_0)
- E1000_WRITE_REG(&adapter->hw, IMC,
- (0xffffffff & ~E1000_IMC_RXSEQ));
- else
- E1000_WRITE_REG(&adapter->hw, IMC,
- 0xffffffff);
- return;
-}
-
-static int
-em_is_valid_ether_addr(u_int8_t *addr)
-{
- char zero_addr[6] = { 0, 0, 0, 0, 0, 0 };
-
- if ((addr[0] & 1) || (!bcmp(addr, zero_addr, ETHER_ADDR_LEN))) {
- return (FALSE);
- }
-
- return(TRUE);
-}
-
-void
-em_write_pci_cfg(struct em_hw *hw,
- uint32_t reg,
- uint16_t *value)
-{
- pci_write_config(((struct em_osdep *)hw->back)->dev, reg,
- *value, 2);
-}
-
-void
-em_read_pci_cfg(struct em_hw *hw, uint32_t reg,
- uint16_t *value)
-{
- *value = pci_read_config(((struct em_osdep *)hw->back)->dev,
- reg, 2);
- return;
-}
-
-void
-em_pci_set_mwi(struct em_hw *hw)
-{
- pci_write_config(((struct em_osdep *)hw->back)->dev,
- PCIR_COMMAND,
- (hw->pci_cmd_word | CMD_MEM_WRT_INVALIDATE), 2);
- return;
-}
-
-void
-em_pci_clear_mwi(struct em_hw *hw)
-{
- pci_write_config(((struct em_osdep *)hw->back)->dev,
- PCIR_COMMAND,
- (hw->pci_cmd_word & ~CMD_MEM_WRT_INVALIDATE), 2);
- return;
-}
-
-uint32_t
-em_io_read(struct em_hw *hw, unsigned long port)
-{
- return(inl(port));
-}
-
-void
-em_io_write(struct em_hw *hw, unsigned long port, uint32_t value)
-{
-#ifndef __rtems__
- outl(port, value);
-#else
- /* everybody else has this the other way round! */
- outl(value, port);
-#endif
- return;
-}
-
-/*********************************************************************
-* 82544 Coexistence issue workaround.
-* There are 2 issues.
-* 1. Transmit Hang issue.
-* To detect this issue, following equation can be used...
-* SIZE[3:0] + ADDR[2:0] = SUM[3:0].
-* If SUM[3:0] is in between 1 to 4, we will have this issue.
-*
-* 2. DAC issue.
-* To detect this issue, following equation can be used...
-* SIZE[3:0] + ADDR[2:0] = SUM[3:0].
-* If SUM[3:0] is in between 9 to c, we will have this issue.
-*
-*
-* WORKAROUND:
-* Make sure we do not have ending address as 1,2,3,4(Hang) or 9,a,b,c (DAC)
-*
-*** *********************************************************************/
-static u_int32_t
-em_fill_descriptors (u_int64_t address,
- u_int32_t length,
- PDESC_ARRAY desc_array)
-{
- /* Since issue is sensitive to length and address.*/
- /* Let us first check the address...*/
- u_int32_t safe_terminator;
- if (length <= 4) {
- desc_array->descriptor[0].address = address;
- desc_array->descriptor[0].length = length;
- desc_array->elements = 1;
- return desc_array->elements;
- }
- safe_terminator = (u_int32_t)((((u_int32_t)address & 0x7) + (length & 0xF)) & 0xF);
- /* if it does not fall between 0x1 to 0x4 and 0x9 to 0xC then return */
- if (safe_terminator == 0 ||
- (safe_terminator > 4 &&
- safe_terminator < 9) ||
- (safe_terminator > 0xC &&
- safe_terminator <= 0xF)) {
- desc_array->descriptor[0].address = address;
- desc_array->descriptor[0].length = length;
- desc_array->elements = 1;
- return desc_array->elements;
- }
-
- desc_array->descriptor[0].address = address;
- desc_array->descriptor[0].length = length - 4;
- desc_array->descriptor[1].address = address + (length - 4);
- desc_array->descriptor[1].length = 4;
- desc_array->elements = 2;
- return desc_array->elements;
-}
-
-/**********************************************************************
- *
- * Update the board statistics counters.
- *
- **********************************************************************/
-static void
-em_update_stats_counters(struct adapter *adapter)
-{
- struct ifnet *ifp;
-
- if(adapter->hw.media_type == em_media_type_copper ||
- (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU)) {
- adapter->stats.symerrs += E1000_READ_REG(&adapter->hw, SYMERRS);
- adapter->stats.sec += E1000_READ_REG(&adapter->hw, SEC);
- }
- adapter->stats.crcerrs += E1000_READ_REG(&adapter->hw, CRCERRS);
- adapter->stats.mpc += E1000_READ_REG(&adapter->hw, MPC);
- adapter->stats.scc += E1000_READ_REG(&adapter->hw, SCC);
- adapter->stats.ecol += E1000_READ_REG(&adapter->hw, ECOL);
-
- adapter->stats.mcc += E1000_READ_REG(&adapter->hw, MCC);
- adapter->stats.latecol += E1000_READ_REG(&adapter->hw, LATECOL);
- adapter->stats.colc += E1000_READ_REG(&adapter->hw, COLC);
- adapter->stats.dc += E1000_READ_REG(&adapter->hw, DC);
- adapter->stats.rlec += E1000_READ_REG(&adapter->hw, RLEC);
- adapter->stats.xonrxc += E1000_READ_REG(&adapter->hw, XONRXC);
- adapter->stats.xontxc += E1000_READ_REG(&adapter->hw, XONTXC);
- adapter->stats.xoffrxc += E1000_READ_REG(&adapter->hw, XOFFRXC);
- adapter->stats.xofftxc += E1000_READ_REG(&adapter->hw, XOFFTXC);
- adapter->stats.fcruc += E1000_READ_REG(&adapter->hw, FCRUC);
- adapter->stats.prc64 += E1000_READ_REG(&adapter->hw, PRC64);
- adapter->stats.prc127 += E1000_READ_REG(&adapter->hw, PRC127);
- adapter->stats.prc255 += E1000_READ_REG(&adapter->hw, PRC255);
- adapter->stats.prc511 += E1000_READ_REG(&adapter->hw, PRC511);
- adapter->stats.prc1023 += E1000_READ_REG(&adapter->hw, PRC1023);
- adapter->stats.prc1522 += E1000_READ_REG(&adapter->hw, PRC1522);
- adapter->stats.gprc += E1000_READ_REG(&adapter->hw, GPRC);
- adapter->stats.bprc += E1000_READ_REG(&adapter->hw, BPRC);
- adapter->stats.mprc += E1000_READ_REG(&adapter->hw, MPRC);
- adapter->stats.gptc += E1000_READ_REG(&adapter->hw, GPTC);
-
- /* For the 64-bit byte counters the low dword must be read first. */
- /* Both registers clear on the read of the high dword */
-
- adapter->stats.gorcl += E1000_READ_REG(&adapter->hw, GORCL);
- adapter->stats.gorch += E1000_READ_REG(&adapter->hw, GORCH);
- adapter->stats.gotcl += E1000_READ_REG(&adapter->hw, GOTCL);
- adapter->stats.gotch += E1000_READ_REG(&adapter->hw, GOTCH);
-
- adapter->stats.rnbc += E1000_READ_REG(&adapter->hw, RNBC);
- adapter->stats.ruc += E1000_READ_REG(&adapter->hw, RUC);
- adapter->stats.rfc += E1000_READ_REG(&adapter->hw, RFC);
- adapter->stats.roc += E1000_READ_REG(&adapter->hw, ROC);
- adapter->stats.rjc += E1000_READ_REG(&adapter->hw, RJC);
-
- adapter->stats.torl += E1000_READ_REG(&adapter->hw, TORL);
- adapter->stats.torh += E1000_READ_REG(&adapter->hw, TORH);
- adapter->stats.totl += E1000_READ_REG(&adapter->hw, TOTL);
- adapter->stats.toth += E1000_READ_REG(&adapter->hw, TOTH);
-
- adapter->stats.tpr += E1000_READ_REG(&adapter->hw, TPR);
- adapter->stats.tpt += E1000_READ_REG(&adapter->hw, TPT);
- adapter->stats.ptc64 += E1000_READ_REG(&adapter->hw, PTC64);
- adapter->stats.ptc127 += E1000_READ_REG(&adapter->hw, PTC127);
- adapter->stats.ptc255 += E1000_READ_REG(&adapter->hw, PTC255);
- adapter->stats.ptc511 += E1000_READ_REG(&adapter->hw, PTC511);
- adapter->stats.ptc1023 += E1000_READ_REG(&adapter->hw, PTC1023);
- adapter->stats.ptc1522 += E1000_READ_REG(&adapter->hw, PTC1522);
- adapter->stats.mptc += E1000_READ_REG(&adapter->hw, MPTC);
- adapter->stats.bptc += E1000_READ_REG(&adapter->hw, BPTC);
-
- if (adapter->hw.mac_type >= em_82543) {
- adapter->stats.algnerrc +=
- E1000_READ_REG(&adapter->hw, ALGNERRC);
- adapter->stats.rxerrc +=
- E1000_READ_REG(&adapter->hw, RXERRC);
- adapter->stats.tncrs +=
- E1000_READ_REG(&adapter->hw, TNCRS);
- adapter->stats.cexterr +=
- E1000_READ_REG(&adapter->hw, CEXTERR);
- adapter->stats.tsctc +=
- E1000_READ_REG(&adapter->hw, TSCTC);
- adapter->stats.tsctfc +=
- E1000_READ_REG(&adapter->hw, TSCTFC);
- }
- ifp = &adapter->arpcom.ac_if;
-
- /* Fill out the OS statistics structure */
- ifp->if_ibytes = adapter->stats.gorcl;
- ifp->if_obytes = adapter->stats.gotcl;
- ifp->if_imcasts = adapter->stats.mprc;
- ifp->if_collisions = adapter->stats.colc;
-
- /* Rx Errors */
- ifp->if_ierrors =
- adapter->dropped_pkts +
- adapter->stats.rxerrc +
- adapter->stats.crcerrs +
- adapter->stats.algnerrc +
- adapter->stats.rlec +
- adapter->stats.mpc + adapter->stats.cexterr;
-
- /* Tx Errors */
- ifp->if_oerrors = adapter->stats.ecol + adapter->stats.latecol;
-
-}
-
-#ifndef __rtems__
-/**********************************************************************
- *
- * This routine is called only when em_display_debug_stats is enabled.
- * This routine provides a way to take a look at important statistics
- * maintained by the driver and hardware.
- *
- **********************************************************************/
-static void
-em_print_debug_info(struct adapter *adapter)
-{
- int unit = adapter->unit;
- uint8_t *hw_addr = adapter->hw.hw_addr;
-
- printf("em%d: Adapter hardware address = %p \n", unit, hw_addr);
- printf("em%d:CTRL = 0x%x\n", unit,
- E1000_READ_REG(&adapter->hw, CTRL));
- printf("em%d:RCTL = 0x%x PS=(0x8402)\n", unit,
- E1000_READ_REG(&adapter->hw, RCTL));
- printf("em%d:tx_int_delay = %d, tx_abs_int_delay = %d\n", unit,
- E1000_READ_REG(&adapter->hw, TIDV),
- E1000_READ_REG(&adapter->hw, TADV));
- printf("em%d:rx_int_delay = %d, rx_abs_int_delay = %d\n", unit,
- E1000_READ_REG(&adapter->hw, RDTR),
- E1000_READ_REG(&adapter->hw, RADV));
- printf("em%d: fifo workaround = %lld, fifo_reset = %lld\n", unit,
- (long long)adapter->tx_fifo_wrk_cnt,
- (long long)adapter->tx_fifo_reset_cnt);
- printf("em%d: hw tdh = %d, hw tdt = %d\n", unit,
- E1000_READ_REG(&adapter->hw, TDH),
- E1000_READ_REG(&adapter->hw, TDT));
- printf("em%d: Num Tx descriptors avail = %d\n", unit,
- adapter->num_tx_desc_avail);
- printf("em%d: Tx Descriptors not avail1 = %ld\n", unit,
- adapter->no_tx_desc_avail1);
- printf("em%d: Tx Descriptors not avail2 = %ld\n", unit,
- adapter->no_tx_desc_avail2);
- printf("em%d: Std mbuf failed = %ld\n", unit,
- adapter->mbuf_alloc_failed);
- printf("em%d: Std mbuf cluster failed = %ld\n", unit,
- adapter->mbuf_cluster_failed);
- printf("em%d: Driver dropped packets = %ld\n", unit,
- adapter->dropped_pkts);
-
- return;
-}
-#endif
-
-static void
-em_print_hw_stats(struct adapter *adapter)
-{
- int unit = adapter->unit;
-
- printf("em%d: Excessive collisions = %lld\n", unit,
- (long long)adapter->stats.ecol);
- printf("em%d: Symbol errors = %lld\n", unit,
- (long long)adapter->stats.symerrs);
- printf("em%d: Sequence errors = %lld\n", unit,
- (long long)adapter->stats.sec);
- printf("em%d: Defer count = %lld\n", unit,
- (long long)adapter->stats.dc);
-
- printf("em%d: Missed Packets = %lld\n", unit,
- (long long)adapter->stats.mpc);
- printf("em%d: Receive No Buffers = %lld\n", unit,
- (long long)adapter->stats.rnbc);
- printf("em%d: Receive length errors = %lld\n", unit,
- (long long)adapter->stats.rlec);
- printf("em%d: Receive errors = %lld\n", unit,
- (long long)adapter->stats.rxerrc);
- printf("em%d: Crc errors = %lld\n", unit,
- (long long)adapter->stats.crcerrs);
- printf("em%d: Alignment errors = %lld\n", unit,
- (long long)adapter->stats.algnerrc);
- printf("em%d: Carrier extension errors = %lld\n", unit,
- (long long)adapter->stats.cexterr);
-
- printf("em%d: XON Rcvd = %lld\n", unit,
- (long long)adapter->stats.xonrxc);
- printf("em%d: XON Xmtd = %lld\n", unit,
- (long long)adapter->stats.xontxc);
- printf("em%d: XOFF Rcvd = %lld\n", unit,
- (long long)adapter->stats.xoffrxc);
- printf("em%d: XOFF Xmtd = %lld\n", unit,
- (long long)adapter->stats.xofftxc);
-
- printf("em%d: Good Packets Rcvd = %lld\n", unit,
- (long long)adapter->stats.gprc);
- printf("em%d: Good Packets Xmtd = %lld\n", unit,
- (long long)adapter->stats.gptc);
-
- return;
-}
-
-#ifndef __rtems__
-static int
-em_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
-{
- int error;
- int result;
- struct adapter *adapter;
-
- result = -1;
- error = sysctl_handle_int(oidp, &result, 0, req);
-
- if (error || !req->newptr)
- return (error);
-
- if (result == 1) {
- adapter = (struct adapter *)arg1;
- em_print_debug_info(adapter);
- }
-
- return error;
-}
-
-static int
-em_sysctl_stats(SYSCTL_HANDLER_ARGS)
-{
- int error;
- int result;
- struct adapter *adapter;
-
- result = -1;
- error = sysctl_handle_int(oidp, &result, 0, req);
-
- if (error || !req->newptr)
- return (error);
-
- if (result == 1) {
- adapter = (struct adapter *)arg1;
- em_print_hw_stats(adapter);
- }
-
- return error;
-}
-
-static int
-em_sysctl_int_delay(SYSCTL_HANDLER_ARGS)
-{
- struct em_int_delay_info *info;
- struct adapter *adapter;
- u_int32_t regval;
- int error;
- int usecs;
- int ticks;
- int s;
-
- info = (struct em_int_delay_info *)arg1;
- adapter = info->adapter;
- usecs = info->value;
- error = sysctl_handle_int(oidp, &usecs, 0, req);
- if (error != 0 || req->newptr == NULL)
- return error;
- if (usecs < 0 || usecs > E1000_TICKS_TO_USECS(65535))
- return EINVAL;
- info->value = usecs;
- ticks = E1000_USECS_TO_TICKS(usecs);
-
- s = splimp();
- regval = E1000_READ_OFFSET(&adapter->hw, info->offset);
- regval = (regval & ~0xffff) | (ticks & 0xffff);
- /* Handle a few special cases. */
- switch (info->offset) {
- case E1000_RDTR:
- case E1000_82542_RDTR:
- regval |= E1000_RDT_FPDB;
- break;
- case E1000_TIDV:
- case E1000_82542_TIDV:
- if (ticks == 0) {
- adapter->txd_cmd &= ~E1000_TXD_CMD_IDE;
- /* Don't write 0 into the TIDV register. */
- regval++;
- } else
- adapter->txd_cmd |= E1000_TXD_CMD_IDE;
- break;
- }
- E1000_WRITE_OFFSET(&adapter->hw, info->offset, regval);
- splx(s);
- return 0;
-}
-
-static void
-em_add_int_delay_sysctl(struct adapter *adapter, const char *name,
- const char *description, struct em_int_delay_info *info,
- int offset, int value)
-{
- info->adapter = adapter;
- info->offset = offset;
- info->value = value;
- SYSCTL_ADD_PROC(device_get_sysctl_ctx(adapter->dev),
- SYSCTL_CHILDREN(device_get_sysctl_tree(adapter->dev)),
- OID_AUTO, name, CTLTYPE_INT|CTLFLAG_RW,
- info, 0, em_sysctl_int_delay, "I", description);
-}
-#endif
-
-#ifdef __rtems__
-/* Initialize bare minimals so we can check the phy link status */
-int
-em_hw_early_init(device_t dev)
-{
-struct adapter *adapter = device_get_softc(dev);
- adapter->dev = dev;
- adapter->osdep.dev = dev;
- em_identify_hardware(adapter);
- return em_allocate_pci_resources(adapter);
-}
-#endif
diff --git a/bsps/powerpc/beatnik/net/if_em/if_em.h b/bsps/powerpc/beatnik/net/if_em/if_em.h
deleted file mode 100644
index 1dc09ce05f..0000000000
--- a/bsps/powerpc/beatnik/net/if_em/if_em.h
+++ /dev/null
@@ -1,493 +0,0 @@
-/**************************************************************************
-
-Copyright (c) 2001-2005, Intel Corporation
-All rights reserved.
-
-Redistribution and use in source and binary forms, with or without
-modification, are permitted provided that the following conditions are met:
-
- 1. Redistributions of source code must retain the above copyright notice,
- this list of conditions and the following disclaimer.
-
- 2. Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in the
- documentation and/or other materials provided with the distribution.
-
- 3. Neither the name of the Intel Corporation nor the names of its
- contributors may be used to endorse or promote products derived from
- this software without specific prior written permission.
-
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
-AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
-LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
-CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
-SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
-INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
-CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
-ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-POSSIBILITY OF SUCH DAMAGE.
-
-***************************************************************************/
-
-/*$FreeBSD: /repoman/r/ncvs/src/sys/dev/em/if_em.h,v 1.31 2005/05/26 23:32:02 tackerman Exp $*/
-
-#ifndef _EM_H_DEFINED_
-#define _EM_H_DEFINED_
-
-
-#include <sys/param.h>
-#include <sys/systm.h>
-#include <sys/mbuf.h>
-#include <sys/protosw.h>
-#include <sys/socket.h>
-#include <sys/malloc.h>
-#include <sys/kernel.h>
-#ifndef __rtems__
-#include <sys/module.h>
-#endif
-#include <sys/sockio.h>
-#include <sys/sysctl.h>
-
-#include <net/if.h>
-#include <net/if_arp.h>
-#include <net/ethernet.h>
-#include <net/if_dl.h>
-#include <net/if_media.h>
-#ifndef __rtems__
-
-#include <net/bpf.h>
-#include <net/if_types.h>
-#include <net/if_vlan_var.h>
-#else
-#include <net/if_types.h>
-#endif
-
-#include <netinet/in_systm.h>
-#include <netinet/in.h>
-#include <netinet/ip.h>
-#include <netinet/tcp.h>
-#include <netinet/udp.h>
-
-#ifndef __rtems__
-#include <sys/bus.h>
-#include <machine/bus.h>
-#include <sys/rman.h>
-#include <machine/resource.h>
-#include <vm/vm.h>
-#include <vm/pmap.h>
-#include <machine/clock.h>
-#include <dev/pci/pcivar.h>
-#include <dev/pci/pcireg.h>
-#else
-#include <netinet/if_ether.h>
-#include <bsp/pci.h>
-#endif
-
-#ifndef __rtems__
-#include <sys/endian.h>
-#include <sys/proc.h>
-#include "opt_bdg.h"
-
-
-#include <dev/em/if_em_hw.h>
-#else
-#include "if_em_hw.h"
-#endif
-
-/* Tunables */
-
-/*
- * EM_MAX_TXD: Maximum number of Transmit Descriptors
- * Valid Range: 80-256 for 82542 and 82543-based adapters
- * 80-4096 for others
- * Default Value: 256
- * This value is the number of transmit descriptors allocated by the driver.
- * Increasing this value allows the driver to queue more transmits. Each
- * descriptor is 16 bytes.
- */
-#define EM_MAX_TXD 256
-
-/*
- * EM_MAX_RXD - Maximum number of receive Descriptors
- * Valid Range: 80-256 for 82542 and 82543-based adapters
- * 80-4096 for others
- * Default Value: 256
- * This value is the number of receive descriptors allocated by the driver.
- * Increasing this value allows the driver to buffer more incoming packets.
- * Each descriptor is 16 bytes. A receive buffer is also allocated for each
- * descriptor. The maximum MTU size is 16110.
- *
- */
-#define EM_MAX_RXD 80
-
-/*
- * EM_TIDV - Transmit Interrupt Delay Value
- * Valid Range: 0-65535 (0=off)
- * Default Value: 64
- * This value delays the generation of transmit interrupts in units of
- * 1.024 microseconds. Transmit interrupt reduction can improve CPU
- * efficiency if properly tuned for specific network traffic. If the
- * system is reporting dropped transmits, this value may be set too high
- * causing the driver to run out of available transmit descriptors.
- */
-#define EM_TIDV 64
-
-/*
- * EM_TADV - Transmit Absolute Interrupt Delay Value (Not valid for 82542/82543/82544)
- * Valid Range: 0-65535 (0=off)
- * Default Value: 64
- * This value, in units of 1.024 microseconds, limits the delay in which a
- * transmit interrupt is generated. Useful only if EM_TIDV is non-zero,
- * this value ensures that an interrupt is generated after the initial
- * packet is sent on the wire within the set amount of time. Proper tuning,
- * along with EM_TIDV, may improve traffic throughput in specific
- * network conditions.
- */
-#define EM_TADV 64
-
-/*
- * EM_RDTR - Receive Interrupt Delay Timer (Packet Timer)
- * Valid Range: 0-65535 (0=off)
- * Default Value: 0
- * This value delays the generation of receive interrupts in units of 1.024
- * microseconds. Receive interrupt reduction can improve CPU efficiency if
- * properly tuned for specific network traffic. Increasing this value adds
- * extra latency to frame reception and can end up decreasing the throughput
- * of TCP traffic. If the system is reporting dropped receives, this value
- * may be set too high, causing the driver to run out of available receive
- * descriptors.
- *
- * CAUTION: When setting EM_RDTR to a value other than 0, adapters
- * may hang (stop transmitting) under certain network conditions.
- * If this occurs a WATCHDOG message is logged in the system event log.
- * In addition, the controller is automatically reset, restoring the
- * network connection. To eliminate the potential for the hang
- * ensure that EM_RDTR is set to 0.
- */
-#define EM_RDTR 0
-
-/*
- * Receive Interrupt Absolute Delay Timer (Not valid for 82542/82543/82544)
- * Valid Range: 0-65535 (0=off)
- * Default Value: 64
- * This value, in units of 1.024 microseconds, limits the delay in which a
- * receive interrupt is generated. Useful only if EM_RDTR is non-zero,
- * this value ensures that an interrupt is generated after the initial
- * packet is received within the set amount of time. Proper tuning,
- * along with EM_RDTR, may improve traffic throughput in specific network
- * conditions.
- */
-#define EM_RADV 64
-
-
-/*
- * This parameter controls the maximum no of times the driver will loop
- * in the isr.
- * Minimum Value = 1
- */
-#define EM_MAX_INTR 3
-
-/*
- * Inform the stack about transmit checksum offload capabilities.
- */
-#define EM_CHECKSUM_FEATURES (CSUM_TCP | CSUM_UDP)
-
-/*
- * This parameter controls the duration of transmit watchdog timer.
- */
-#define EM_TX_TIMEOUT 5 /* set to 5 seconds */
-
-/*
- * This parameter controls when the driver calls the routine to reclaim
- * transmit descriptors.
- */
-#ifndef __rtems__
-#define EM_TX_CLEANUP_THRESHOLD EM_MAX_TXD / 8
-#else
-#define EM_TX_CLEANUP_THRESHOLD (adapter->tx_cleanup_threshold)
-#endif
-
-/*
- * This parameter controls whether or not autonegotation is enabled.
- * 0 - Disable autonegotiation
- * 1 - Enable autonegotiation
- */
-#define DO_AUTO_NEG 1
-
-/*
- * This parameter control whether or not the driver will wait for
- * autonegotiation to complete.
- * 1 - Wait for autonegotiation to complete
- * 0 - Don't wait for autonegotiation to complete
- */
-#define WAIT_FOR_AUTO_NEG_DEFAULT 0
-
-/*
- * EM_MASTER_SLAVE is only defined to enable a workaround for a known compatibility issue
- * with 82541/82547 devices and some switches. See the "Known Limitations" section of
- * the README file for a complete description and a list of affected switches.
- *
- * 0 = Hardware default
- * 1 = Master mode
- * 2 = Slave mode
- * 3 = Auto master/slave
- */
-/* #define EM_MASTER_SLAVE 2 */
-
-/* Tunables -- End */
-
-#define AUTONEG_ADV_DEFAULT (ADVERTISE_10_HALF | ADVERTISE_10_FULL | \
- ADVERTISE_100_HALF | ADVERTISE_100_FULL | \
- ADVERTISE_1000_FULL)
-
-#define EM_VENDOR_ID 0x8086
-#define EM_MMBA 0x0010 /* Mem base address */
-#define EM_ROUNDUP(size, unit) (((size) + (unit) - 1) & ~((unit) - 1))
-
-#define EM_JUMBO_PBA 0x00000028
-#define EM_DEFAULT_PBA 0x00000030
-#define EM_SMARTSPEED_DOWNSHIFT 3
-#define EM_SMARTSPEED_MAX 15
-
-
-#define MAX_NUM_MULTICAST_ADDRESSES 128
-#define PCI_ANY_ID (~0U)
-#define ETHER_ALIGN 2
-
-/* Defines for printing debug information */
-#define DEBUG_INIT 0
-#define DEBUG_IOCTL 0
-#define DEBUG_HW 0
-
-#define INIT_DEBUGOUT(S) if (DEBUG_INIT) printf(S "\n")
-#define INIT_DEBUGOUT1(S, A) if (DEBUG_INIT) printf(S "\n", A)
-#define INIT_DEBUGOUT2(S, A, B) if (DEBUG_INIT) printf(S "\n", A, B)
-#define IOCTL_DEBUGOUT(S) if (DEBUG_IOCTL) printf(S "\n")
-#define IOCTL_DEBUGOUT1(S, A) if (DEBUG_IOCTL) printf(S "\n", A)
-#define IOCTL_DEBUGOUT2(S, A, B) if (DEBUG_IOCTL) printf(S "\n", A, B)
-#define HW_DEBUGOUT(S) if (DEBUG_HW) printf(S "\n")
-#define HW_DEBUGOUT1(S, A) if (DEBUG_HW) printf(S "\n", A)
-#define HW_DEBUGOUT2(S, A, B) if (DEBUG_HW) printf(S "\n", A, B)
-
-
-/* Supported RX Buffer Sizes */
-#define EM_RXBUFFER_2048 2048
-#define EM_RXBUFFER_4096 4096
-#define EM_RXBUFFER_8192 8192
-#define EM_RXBUFFER_16384 16384
-
-#define EM_MAX_SCATTER 64
-
-/* ******************************************************************************
- * vendor_info_array
- *
- * This array contains the list of Subvendor/Subdevice IDs on which the driver
- * should load.
- *
- * ******************************************************************************/
-typedef struct _em_vendor_info_t {
- unsigned int vendor_id;
- unsigned int device_id;
- unsigned int subvendor_id;
- unsigned int subdevice_id;
- unsigned int index;
-} em_vendor_info_t;
-
-
-struct em_buffer {
- struct mbuf *m_head;
-#ifndef __rtems__
- bus_dmamap_t map; /* bus_dma map for packet */
-#endif
-};
-
-/*
- * Bus dma allocation structure used by
- * em_dma_malloc and em_dma_free.
- */
-struct em_dma_alloc {
- bus_addr_t dma_paddr; /* 64bit in descriptors */
-#ifndef __rtems__
- caddr_t dma_vaddr;
- bus_dma_tag_t dma_tag;
- bus_dmamap_t dma_map;
- bus_dma_segment_t dma_seg;
- bus_size_t dma_size;
- int dma_nseg;
-#else
- caddr_t dma_vaddr;
- caddr_t malloc_base;
-#endif
-};
-
-typedef enum _XSUM_CONTEXT_T {
- OFFLOAD_NONE,
- OFFLOAD_TCP_IP,
- OFFLOAD_UDP_IP
-} XSUM_CONTEXT_T;
-
-struct adapter;
-struct em_int_delay_info {
- struct adapter *adapter; /* Back-pointer to the adapter struct */
- int offset; /* Register offset to read/write */
- int value; /* Current value in usecs */
-};
-
-/* For 82544 PCIX Workaround */
-typedef struct _ADDRESS_LENGTH_PAIR
-{
- u_int64_t address;
- u_int32_t length;
-} ADDRESS_LENGTH_PAIR, *PADDRESS_LENGTH_PAIR;
-
-typedef struct _DESCRIPTOR_PAIR
-{
- ADDRESS_LENGTH_PAIR descriptor[4];
- u_int32_t elements;
-} DESC_ARRAY, *PDESC_ARRAY;
-
-/* Our adapter structure */
-struct adapter {
- struct arpcom interface_data;
- struct adapter *next;
- struct adapter *prev;
- struct em_hw hw;
-
- /* FreeBSD operating-system-specific structures */
- struct em_osdep osdep;
-#ifndef __rtems__
- struct device *dev;
- struct resource *res_memory;
- struct resource *res_ioport;
- struct resource *res_interrupt;
- void *int_handler_tag;
- struct ifmedia media;
- struct callout timer;
- struct callout tx_fifo_timer;
- int io_rid;
- struct ifmedia media;
-#endif
- u_int8_t unit;
-#ifndef __rtems__
- struct mtx mtx;
- int em_insert_vlan_header;
-#else
- device_t dev;
- unsigned char irq_no;
- unsigned char b,d,f;
- rtems_id tid;
-#endif
-
- /* Info about the board itself */
-#ifndef __rtems__
- u_int32_t part_num;
-#else
- uint32_t part_num;
-#endif
- u_int8_t link_active;
- u_int16_t link_speed;
- u_int16_t link_duplex;
- u_int32_t smartspeed;
- struct em_int_delay_info tx_int_delay;
- struct em_int_delay_info tx_abs_int_delay;
- struct em_int_delay_info rx_int_delay;
- struct em_int_delay_info rx_abs_int_delay;
-
- XSUM_CONTEXT_T active_checksum_context;
-
- /*
- * Transmit definitions
- *
- * We have an array of num_tx_desc descriptors (handled
- * by the controller) paired with an array of tx_buffers
- * (at tx_buffer_area).
- * The index of the next available descriptor is next_avail_tx_desc.
- * The number of remaining tx_desc is num_tx_desc_avail.
- */
- struct em_dma_alloc txdma; /* bus_dma glue for tx desc */
- struct em_tx_desc *tx_desc_base;
- u_int32_t next_avail_tx_desc;
- u_int32_t oldest_used_tx_desc;
- volatile u_int16_t num_tx_desc_avail;
- u_int16_t num_tx_desc;
- u_int32_t txd_cmd;
- struct em_buffer *tx_buffer_area;
-#ifndef __rtems__
- bus_dma_tag_t txtag; /* dma tag for tx */
-#endif
-#ifdef __rtems__
- u_int16_t tx_cleanup_threshold;
-#endif
-
- /*
- * Receive definitions
- *
- * we have an array of num_rx_desc rx_desc (handled by the
- * controller), and paired with an array of rx_buffers
- * (at rx_buffer_area).
- * The next pair to check on receive is at offset next_rx_desc_to_check
- */
- struct em_dma_alloc rxdma; /* bus_dma glue for rx desc */
- struct em_rx_desc *rx_desc_base;
- u_int32_t next_rx_desc_to_check;
- u_int16_t num_rx_desc;
- u_int32_t rx_buffer_len;
- struct em_buffer *rx_buffer_area;
-#ifndef __rtems__
- bus_dma_tag_t rxtag;
-#endif
-
- /* Jumbo frame */
- struct mbuf *fmp;
- struct mbuf *lmp;
-
- /* Misc stats maintained by the driver */
- unsigned long dropped_pkts;
- unsigned long mbuf_alloc_failed;
- unsigned long mbuf_cluster_failed;
- unsigned long no_tx_desc_avail1;
- unsigned long no_tx_desc_avail2;
- unsigned long no_tx_map_avail;
- unsigned long no_tx_dma_setup;
-
- /* Used in for 82547 10Mb Half workaround */
- #define EM_PBA_BYTES_SHIFT 0xA
- #define EM_TX_HEAD_ADDR_SHIFT 7
- #define EM_PBA_TX_MASK 0xFFFF0000
- #define EM_FIFO_HDR 0x10
-
- #define EM_82547_PKT_THRESH 0x3e0
-
- u_int32_t tx_fifo_size;
- u_int32_t tx_fifo_head;
- u_int32_t tx_fifo_head_addr;
- u_int64_t tx_fifo_reset_cnt;
- u_int64_t tx_fifo_wrk_cnt;
- u_int32_t tx_head_addr;
-
- /* For 82544 PCIX Workaround */
- boolean_t pcix_82544;
- boolean_t in_detach;
-
- struct em_hw_stats stats;
-};
-
-#define EM_LOCK_INIT(_sc, _name) \
- mtx_init(&(_sc)->mtx, _name, MTX_NETWORK_LOCK, MTX_DEF)
-#define EM_LOCK_DESTROY(_sc) mtx_destroy(&(_sc)->mtx)
-#define EM_LOCK(_sc) mtx_lock(&(_sc)->mtx)
-#define EM_UNLOCK(_sc) mtx_unlock(&(_sc)->mtx)
-#define EM_LOCK_ASSERT(_sc) mtx_assert(&(_sc)->mtx, MA_OWNED)
-
-#ifdef __rtems__
-/* Initialize bare minimals so we can check the phy link status;
- * 'rtems_em_pci_setup()' must have been run on the device already!
- */
-int
-em_hw_early_init(device_t dev);
-#endif
-
-
-#endif /* _EM_H_DEFINED_ */
diff --git a/bsps/powerpc/beatnik/net/if_em/if_em_hw.c b/bsps/powerpc/beatnik/net/if_em/if_em_hw.c
deleted file mode 100644
index e200a6c7fe..0000000000
--- a/bsps/powerpc/beatnik/net/if_em/if_em_hw.c
+++ /dev/null
@@ -1,6620 +0,0 @@
-/*******************************************************************************
-
- Copyright (c) 2001-2005, Intel Corporation
- All rights reserved.
-
- Redistribution and use in source and binary forms, with or without
- modification, are permitted provided that the following conditions are met:
-
- 1. Redistributions of source code must retain the above copyright notice,
- this list of conditions and the following disclaimer.
-
- 2. Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in the
- documentation and/or other materials provided with the distribution.
-
- 3. Neither the name of the Intel Corporation nor the names of its
- contributors may be used to endorse or promote products derived from
- this software without specific prior written permission.
-
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- POSSIBILITY OF SUCH DAMAGE.
-
-*******************************************************************************/
-
-/* if_em_hw.c
- * Shared functions for accessing and configuring the MAC
- */
-
-#include <sys/cdefs.h>
-#ifdef __rtems__
-#include "rtemscompat_defs.h"
-#include "../porting/rtemscompat.h"
-#include "if_em_hw.h"
-#else
-__FBSDID("$FreeBSD: /repoman/r/ncvs/src/sys/dev/em/if_em_hw.c,v 1.16 2005/05/26 23:32:02 tackerman Exp $");
-
-#include <dev/em/if_em_hw.h>
-#endif
-
-static int32_t em_set_phy_type(struct em_hw *hw);
-static void em_phy_init_script(struct em_hw *hw);
-static int32_t em_setup_copper_link(struct em_hw *hw);
-static int32_t em_setup_fiber_serdes_link(struct em_hw *hw);
-static int32_t em_adjust_serdes_amplitude(struct em_hw *hw);
-static int32_t em_phy_force_speed_duplex(struct em_hw *hw);
-static int32_t em_config_mac_to_phy(struct em_hw *hw);
-static void em_raise_mdi_clk(struct em_hw *hw, uint32_t *ctrl);
-static void em_lower_mdi_clk(struct em_hw *hw, uint32_t *ctrl);
-static void em_shift_out_mdi_bits(struct em_hw *hw, uint32_t data,
- uint16_t count);
-static uint16_t em_shift_in_mdi_bits(struct em_hw *hw);
-static int32_t em_phy_reset_dsp(struct em_hw *hw);
-static int32_t em_write_eeprom_spi(struct em_hw *hw, uint16_t offset,
- uint16_t words, uint16_t *data);
-static int32_t em_write_eeprom_microwire(struct em_hw *hw,
- uint16_t offset, uint16_t words,
- uint16_t *data);
-static int32_t em_spi_eeprom_ready(struct em_hw *hw);
-static void em_raise_ee_clk(struct em_hw *hw, uint32_t *eecd);
-static void em_lower_ee_clk(struct em_hw *hw, uint32_t *eecd);
-static void em_shift_out_ee_bits(struct em_hw *hw, uint16_t data,
- uint16_t count);
-static int32_t em_write_phy_reg_ex(struct em_hw *hw, uint32_t reg_addr,
- uint16_t phy_data);
-static int32_t em_read_phy_reg_ex(struct em_hw *hw,uint32_t reg_addr,
- uint16_t *phy_data);
-static uint16_t em_shift_in_ee_bits(struct em_hw *hw, uint16_t count);
-static int32_t em_acquire_eeprom(struct em_hw *hw);
-static void em_release_eeprom(struct em_hw *hw);
-static void em_standby_eeprom(struct em_hw *hw);
-static int32_t em_set_vco_speed(struct em_hw *hw);
-static int32_t em_polarity_reversal_workaround(struct em_hw *hw);
-static int32_t em_set_phy_mode(struct em_hw *hw);
-static int32_t em_host_if_read_cookie(struct em_hw *hw, uint8_t *buffer);
-static uint8_t em_calculate_mng_checksum(char *buffer, uint32_t length);
-
-/* IGP cable length table */
-static const
-uint16_t em_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] =
- { 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
- 5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25,
- 25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40,
- 40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60,
- 60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90,
- 90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100,
- 100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110,
- 110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120};
-
-/******************************************************************************
- * Set the phy type member in the hw struct.
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-int32_t
-em_set_phy_type(struct em_hw *hw)
-{
- DEBUGFUNC("em_set_phy_type");
-
- if(hw->mac_type == em_undefined)
- return -E1000_ERR_PHY_TYPE;
-
- switch(hw->phy_id) {
- case M88E1000_E_PHY_ID:
- case M88E1000_I_PHY_ID:
- case M88E1011_I_PHY_ID:
- case M88E1111_I_PHY_ID:
- hw->phy_type = em_phy_m88;
- break;
- case IGP01E1000_I_PHY_ID:
- if(hw->mac_type == em_82541 ||
- hw->mac_type == em_82541_rev_2 ||
- hw->mac_type == em_82547 ||
- hw->mac_type == em_82547_rev_2) {
- hw->phy_type = em_phy_igp;
- break;
- }
- /* Fall Through */
- default:
- /* Should never have loaded on this device */
- hw->phy_type = em_phy_undefined;
- return -E1000_ERR_PHY_TYPE;
- }
-
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * IGP phy init script - initializes the GbE PHY
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-static void
-em_phy_init_script(struct em_hw *hw)
-{
- uint16_t phy_saved_data;
-
- DEBUGFUNC("em_phy_init_script");
-
- if(hw->phy_init_script) {
- msec_delay(20);
-
- /* Save off the current value of register 0x2F5B to be restored at
- * the end of this routine. */
- em_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
-
- /* Disabled the PHY transmitter */
- em_write_phy_reg(hw, 0x2F5B, 0x0003);
-
- msec_delay(20);
-
- em_write_phy_reg(hw,0x0000,0x0140);
-
- msec_delay(5);
-
- switch(hw->mac_type) {
- case em_82541:
- case em_82547:
- em_write_phy_reg(hw, 0x1F95, 0x0001);
-
- em_write_phy_reg(hw, 0x1F71, 0xBD21);
-
- em_write_phy_reg(hw, 0x1F79, 0x0018);
-
- em_write_phy_reg(hw, 0x1F30, 0x1600);
-
- em_write_phy_reg(hw, 0x1F31, 0x0014);
-
- em_write_phy_reg(hw, 0x1F32, 0x161C);
-
- em_write_phy_reg(hw, 0x1F94, 0x0003);
-
- em_write_phy_reg(hw, 0x1F96, 0x003F);
-
- em_write_phy_reg(hw, 0x2010, 0x0008);
- break;
-
- case em_82541_rev_2:
- case em_82547_rev_2:
- em_write_phy_reg(hw, 0x1F73, 0x0099);
- break;
- default:
- break;
- }
-
- em_write_phy_reg(hw, 0x0000, 0x3300);
-
- msec_delay(20);
-
- /* Now enable the transmitter */
- em_write_phy_reg(hw, 0x2F5B, phy_saved_data);
-
- if(hw->mac_type == em_82547) {
- uint16_t fused, fine, coarse;
-
- /* Move to analog registers page */
- em_read_phy_reg(hw, IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused);
-
- if(!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
- em_read_phy_reg(hw, IGP01E1000_ANALOG_FUSE_STATUS, &fused);
-
- fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
- coarse = fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
-
- if(coarse > IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
- coarse -= IGP01E1000_ANALOG_FUSE_COARSE_10;
- fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
- } else if(coarse == IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
- fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
-
- fused = (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
- (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
- (coarse & IGP01E1000_ANALOG_FUSE_COARSE_MASK);
-
- em_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_CONTROL, fused);
- em_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_BYPASS,
- IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
- }
- }
- }
-}
-
-/******************************************************************************
- * Set the mac type member in the hw struct.
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-int32_t
-em_set_mac_type(struct em_hw *hw)
-{
- DEBUGFUNC("em_set_mac_type");
-
- switch (hw->device_id) {
- case E1000_DEV_ID_82542:
- switch (hw->revision_id) {
- case E1000_82542_2_0_REV_ID:
- hw->mac_type = em_82542_rev2_0;
- break;
- case E1000_82542_2_1_REV_ID:
- hw->mac_type = em_82542_rev2_1;
- break;
- default:
- /* Invalid 82542 revision ID */
- return -E1000_ERR_MAC_TYPE;
- }
- break;
- case E1000_DEV_ID_82543GC_FIBER:
- case E1000_DEV_ID_82543GC_COPPER:
- hw->mac_type = em_82543;
- break;
- case E1000_DEV_ID_82544EI_COPPER:
- case E1000_DEV_ID_82544EI_FIBER:
- case E1000_DEV_ID_82544GC_COPPER:
- case E1000_DEV_ID_82544GC_LOM:
- hw->mac_type = em_82544;
- break;
- case E1000_DEV_ID_82540EM:
- case E1000_DEV_ID_82540EM_LOM:
- case E1000_DEV_ID_82540EP:
- case E1000_DEV_ID_82540EP_LOM:
- case E1000_DEV_ID_82540EP_LP:
- hw->mac_type = em_82540;
- break;
- case E1000_DEV_ID_82545EM_COPPER:
- case E1000_DEV_ID_82545EM_FIBER:
- hw->mac_type = em_82545;
- break;
- case E1000_DEV_ID_82545GM_COPPER:
- case E1000_DEV_ID_82545GM_FIBER:
- case E1000_DEV_ID_82545GM_SERDES:
- hw->mac_type = em_82545_rev_3;
- break;
- case E1000_DEV_ID_82546EB_COPPER:
- case E1000_DEV_ID_82546EB_FIBER:
- case E1000_DEV_ID_82546EB_QUAD_COPPER:
- hw->mac_type = em_82546;
- break;
- case E1000_DEV_ID_82546GB_COPPER:
- case E1000_DEV_ID_82546GB_FIBER:
- case E1000_DEV_ID_82546GB_SERDES:
- case E1000_DEV_ID_82546GB_PCIE:
- case E1000_DEV_ID_82546GB_QUAD_COPPER:
- hw->mac_type = em_82546_rev_3;
- break;
- case E1000_DEV_ID_82541EI:
- case E1000_DEV_ID_82541ER_LOM:
- case E1000_DEV_ID_82541EI_MOBILE:
- hw->mac_type = em_82541;
- break;
- case E1000_DEV_ID_82541ER:
- case E1000_DEV_ID_82541GI:
- case E1000_DEV_ID_82541GI_LF:
- case E1000_DEV_ID_82541GI_MOBILE:
- hw->mac_type = em_82541_rev_2;
- break;
- case E1000_DEV_ID_82547EI:
- case E1000_DEV_ID_82547EI_MOBILE:
- hw->mac_type = em_82547;
- break;
- case E1000_DEV_ID_82547GI:
- hw->mac_type = em_82547_rev_2;
- break;
- case E1000_DEV_ID_82573E:
- case E1000_DEV_ID_82573E_IAMT:
- hw->mac_type = em_82573;
- break;
- default:
- /* Should never have loaded on this device */
- return -E1000_ERR_MAC_TYPE;
- }
-
- switch(hw->mac_type) {
- case em_82573:
- hw->eeprom_semaphore_present = TRUE;
- /* fall through */
- case em_82541:
- case em_82547:
- case em_82541_rev_2:
- case em_82547_rev_2:
- hw->asf_firmware_present = TRUE;
- break;
- default:
- break;
- }
-
- return E1000_SUCCESS;
-}
-
-/*****************************************************************************
- * Set media type and TBI compatibility.
- *
- * hw - Struct containing variables accessed by shared code
- * **************************************************************************/
-void
-em_set_media_type(struct em_hw *hw)
-{
- uint32_t status;
-
- DEBUGFUNC("em_set_media_type");
-
- if(hw->mac_type != em_82543) {
- /* tbi_compatibility is only valid on 82543 */
- hw->tbi_compatibility_en = FALSE;
- }
-
- switch (hw->device_id) {
- case E1000_DEV_ID_82545GM_SERDES:
- case E1000_DEV_ID_82546GB_SERDES:
- hw->media_type = em_media_type_internal_serdes;
- break;
- default:
- if(hw->mac_type >= em_82543) {
- status = E1000_READ_REG(hw, STATUS);
- if(status & E1000_STATUS_TBIMODE) {
- hw->media_type = em_media_type_fiber;
- /* tbi_compatibility not valid on fiber */
- hw->tbi_compatibility_en = FALSE;
- } else {
- hw->media_type = em_media_type_copper;
- }
- } else {
- /* This is an 82542 (fiber only) */
- hw->media_type = em_media_type_fiber;
- }
- }
-}
-
-/******************************************************************************
- * Reset the transmit and receive units; mask and clear all interrupts.
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-int32_t
-em_reset_hw(struct em_hw *hw)
-{
- uint32_t ctrl;
- uint32_t ctrl_ext;
- uint32_t manc;
- uint32_t led_ctrl;
- uint32_t timeout;
- uint32_t extcnf_ctrl;
- int32_t ret_val;
-
- DEBUGFUNC("em_reset_hw");
-
- /* For 82542 (rev 2.0), disable MWI before issuing a device reset */
- if(hw->mac_type == em_82542_rev2_0) {
- DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
- em_pci_clear_mwi(hw);
- }
-
- if(hw->bus_type == em_bus_type_pci_express) {
- /* Prevent the PCI-E bus from sticking if there is no TLP connection
- * on the last TLP read/write transaction when MAC is reset.
- */
- if(em_disable_pciex_master(hw) != E1000_SUCCESS) {
- DEBUGOUT("PCI-E Master disable polling has failed.\n");
- }
- }
-
- /* Clear interrupt mask to stop board from generating interrupts */
- DEBUGOUT("Masking off all interrupts\n");
- E1000_WRITE_REG(hw, IMC, 0xffffffff);
-
- /* Disable the Transmit and Receive units. Then delay to allow
- * any pending transactions to complete before we hit the MAC with
- * the global reset.
- */
- E1000_WRITE_REG(hw, RCTL, 0);
- E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP);
- E1000_WRITE_FLUSH(hw);
-
- /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
- hw->tbi_compatibility_on = FALSE;
-
- /* Delay to allow any outstanding PCI transactions to complete before
- * resetting the device
- */
- msec_delay(10);
-
- ctrl = E1000_READ_REG(hw, CTRL);
-
- /* Must reset the PHY before resetting the MAC */
- if((hw->mac_type == em_82541) || (hw->mac_type == em_82547)) {
- E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_PHY_RST));
- msec_delay(5);
- }
-
- /* Must acquire the MDIO ownership before MAC reset.
- * Ownership defaults to firmware after a reset. */
- if(hw->mac_type == em_82573) {
- timeout = 10;
-
- extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
- extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
-
- do {
- E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl);
- extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
-
- if(extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
- break;
- else
- extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
-
- msec_delay(2);
- timeout--;
- } while(timeout);
- }
-
- /* Issue a global reset to the MAC. This will reset the chip's
- * transmit, receive, DMA, and link units. It will not effect
- * the current PCI configuration. The global reset bit is self-
- * clearing, and should clear within a microsecond.
- */
- DEBUGOUT("Issuing a global reset to MAC\n");
-
- switch(hw->mac_type) {
- case em_82544:
- case em_82540:
- case em_82545:
-#ifndef __arm__
- case em_82546:
-#endif
- case em_82541:
- case em_82541_rev_2:
- /* These controllers can't ack the 64-bit write when issuing the
- * reset, so use IO-mapping as a workaround to issue the reset */
- E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST));
- break;
- case em_82545_rev_3:
- case em_82546_rev_3:
- /* Reset is performed on a shadow of the control register */
- E1000_WRITE_REG(hw, CTRL_DUP, (ctrl | E1000_CTRL_RST));
- break;
- default:
- E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
- break;
- }
-
- /* After MAC reset, force reload of EEPROM to restore power-on settings to
- * device. Later controllers reload the EEPROM automatically, so just wait
- * for reload to complete.
- */
- switch(hw->mac_type) {
- case em_82542_rev2_0:
- case em_82542_rev2_1:
- case em_82543:
- case em_82544:
- /* Wait for reset to complete */
- usec_delay(10);
- ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
- ctrl_ext |= E1000_CTRL_EXT_EE_RST;
- E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
- E1000_WRITE_FLUSH(hw);
- /* Wait for EEPROM reload */
- msec_delay(2);
- break;
- case em_82541:
- case em_82541_rev_2:
- case em_82547:
- case em_82547_rev_2:
- /* Wait for EEPROM reload */
- msec_delay(20);
- break;
- case em_82573:
- usec_delay(10);
- ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
- ctrl_ext |= E1000_CTRL_EXT_EE_RST;
- E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
- E1000_WRITE_FLUSH(hw);
- /* fall through */
- ret_val = em_get_auto_rd_done(hw);
- if(ret_val)
- /* We don't want to continue accessing MAC registers. */
- return ret_val;
- break;
- default:
- /* Wait for EEPROM reload (it happens automatically) */
- msec_delay(5);
- break;
- }
-
- /* Disable HW ARPs on ASF enabled adapters */
- if(hw->mac_type >= em_82540 && hw->mac_type <= em_82547_rev_2) {
- manc = E1000_READ_REG(hw, MANC);
- manc &= ~(E1000_MANC_ARP_EN);
- E1000_WRITE_REG(hw, MANC, manc);
- }
-
- if((hw->mac_type == em_82541) || (hw->mac_type == em_82547)) {
- em_phy_init_script(hw);
-
- /* Configure activity LED after PHY reset */
- led_ctrl = E1000_READ_REG(hw, LEDCTL);
- led_ctrl &= IGP_ACTIVITY_LED_MASK;
- led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
- E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
- }
-
- /* Clear interrupt mask to stop board from generating interrupts */
- DEBUGOUT("Masking off all interrupts\n");
- E1000_WRITE_REG(hw, IMC, 0xffffffff);
-
- /* Clear any pending interrupt events. */
- E1000_READ_REG(hw, ICR);
-
- /* If MWI was previously enabled, reenable it. */
- if(hw->mac_type == em_82542_rev2_0) {
- if(hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
- em_pci_set_mwi(hw);
- }
-#ifdef __rtems__
- msec_delay(100);
-#endif
-
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Performs basic configuration of the adapter.
- *
- * hw - Struct containing variables accessed by shared code
- *
- * Assumes that the controller has previously been reset and is in a
- * post-reset uninitialized state. Initializes the receive address registers,
- * multicast table, and VLAN filter table. Calls routines to setup link
- * configuration and flow control settings. Clears all on-chip counters. Leaves
- * the transmit and receive units disabled and uninitialized.
- *****************************************************************************/
-int32_t
-em_init_hw(struct em_hw *hw)
-{
- uint32_t ctrl;
- uint32_t i;
- int32_t ret_val;
- uint16_t pcix_cmd_word;
- uint16_t pcix_stat_hi_word;
- uint16_t cmd_mmrbc;
- uint16_t stat_mmrbc;
- uint32_t mta_size;
-
- DEBUGFUNC("em_init_hw");
-
- /* Initialize Identification LED */
- ret_val = em_id_led_init(hw);
- if(ret_val) {
- DEBUGOUT("Error Initializing Identification LED\n");
- return ret_val;
- }
-
- /* Set the media type and TBI compatibility */
- em_set_media_type(hw);
-
- /* Disabling VLAN filtering. */
- DEBUGOUT("Initializing the IEEE VLAN\n");
- if (hw->mac_type < em_82545_rev_3)
- E1000_WRITE_REG(hw, VET, 0);
- em_clear_vfta(hw);
-
- /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
- if(hw->mac_type == em_82542_rev2_0) {
- DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
- em_pci_clear_mwi(hw);
- E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST);
- E1000_WRITE_FLUSH(hw);
- msec_delay(5);
- }
-
- /* Setup the receive address. This involves initializing all of the Receive
- * Address Registers (RARs 0 - 15).
- */
- em_init_rx_addrs(hw);
-
- /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
- if(hw->mac_type == em_82542_rev2_0) {
- E1000_WRITE_REG(hw, RCTL, 0);
- E1000_WRITE_FLUSH(hw);
- msec_delay(1);
- if(hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
- em_pci_set_mwi(hw);
- }
-
- /* Zero out the Multicast HASH table */
- DEBUGOUT("Zeroing the MTA\n");
- mta_size = E1000_MC_TBL_SIZE;
- for(i = 0; i < mta_size; i++)
- E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
-
- /* Set the PCI priority bit correctly in the CTRL register. This
- * determines if the adapter gives priority to receives, or if it
- * gives equal priority to transmits and receives. Valid only on
- * 82542 and 82543 silicon.
- */
- if(hw->dma_fairness && hw->mac_type <= em_82543) {
- ctrl = E1000_READ_REG(hw, CTRL);
- E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR);
- }
-
- switch(hw->mac_type) {
- case em_82545_rev_3:
- case em_82546_rev_3:
- break;
- default:
- /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
- if(hw->bus_type == em_bus_type_pcix) {
- em_read_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd_word);
- em_read_pci_cfg(hw, PCIX_STATUS_REGISTER_HI,
- &pcix_stat_hi_word);
- cmd_mmrbc = (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >>
- PCIX_COMMAND_MMRBC_SHIFT;
- stat_mmrbc = (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
- PCIX_STATUS_HI_MMRBC_SHIFT;
- if(stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
- stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
- if(cmd_mmrbc > stat_mmrbc) {
- pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK;
- pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
- em_write_pci_cfg(hw, PCIX_COMMAND_REGISTER,
- &pcix_cmd_word);
- }
- }
- break;
- }
-
- /* Call a subroutine to configure the link and setup flow control. */
- ret_val = em_setup_link(hw);
-
- /* Set the transmit descriptor write-back policy */
- if(hw->mac_type > em_82544) {
- ctrl = E1000_READ_REG(hw, TXDCTL);
- ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB;
- switch (hw->mac_type) {
- default:
- break;
- case em_82573:
- ctrl |= E1000_TXDCTL_COUNT_DESC;
- break;
- }
- E1000_WRITE_REG(hw, TXDCTL, ctrl);
- }
-
- if (hw->mac_type == em_82573) {
- em_enable_tx_pkt_filtering(hw);
- }
-
-
- /* Clear all of the statistics registers (clear on read). It is
- * important that we do this after we have tried to establish link
- * because the symbol error count will increment wildly if there
- * is no link.
- */
- em_clear_hw_cntrs(hw);
-
- return ret_val;
-}
-
-/******************************************************************************
- * Adjust SERDES output amplitude based on EEPROM setting.
- *
- * hw - Struct containing variables accessed by shared code.
- *****************************************************************************/
-static int32_t
-em_adjust_serdes_amplitude(struct em_hw *hw)
-{
- uint16_t eeprom_data;
- int32_t ret_val;
-
- DEBUGFUNC("em_adjust_serdes_amplitude");
-
- if(hw->media_type != em_media_type_internal_serdes)
- return E1000_SUCCESS;
-
- switch(hw->mac_type) {
- case em_82545_rev_3:
- case em_82546_rev_3:
- break;
- default:
- return E1000_SUCCESS;
- }
-
- ret_val = em_read_eeprom(hw, EEPROM_SERDES_AMPLITUDE, 1, &eeprom_data);
- if (ret_val) {
- return ret_val;
- }
-
- if(eeprom_data != EEPROM_RESERVED_WORD) {
- /* Adjust SERDES output amplitude only. */
- eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK;
- ret_val = em_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, eeprom_data);
- if(ret_val)
- return ret_val;
- }
-
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Configures flow control and link settings.
- *
- * hw - Struct containing variables accessed by shared code
- *
- * Determines which flow control settings to use. Calls the apropriate media-
- * specific link configuration function. Configures the flow control settings.
- * Assuming the adapter has a valid link partner, a valid link should be
- * established. Assumes the hardware has previously been reset and the
- * transmitter and receiver are not enabled.
- *****************************************************************************/
-int32_t
-em_setup_link(struct em_hw *hw)
-{
- uint32_t ctrl_ext;
- int32_t ret_val;
- uint16_t eeprom_data;
-
- DEBUGFUNC("em_setup_link");
-
- /* Read and store word 0x0F of the EEPROM. This word contains bits
- * that determine the hardware's default PAUSE (flow control) mode,
- * a bit that determines whether the HW defaults to enabling or
- * disabling auto-negotiation, and the direction of the
- * SW defined pins. If there is no SW over-ride of the flow
- * control setting, then the variable hw->fc will
- * be initialized based on a value in the EEPROM.
- */
- if(em_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data)) {
- DEBUGOUT("EEPROM Read Error\n");
- return -E1000_ERR_EEPROM;
- }
-
- if(hw->fc == em_fc_default) {
- if((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
- hw->fc = em_fc_none;
- else if((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
- EEPROM_WORD0F_ASM_DIR)
- hw->fc = em_fc_tx_pause;
- else
- hw->fc = em_fc_full;
- }
-
- /* We want to save off the original Flow Control configuration just
- * in case we get disconnected and then reconnected into a different
- * hub or switch with different Flow Control capabilities.
- */
- if(hw->mac_type == em_82542_rev2_0)
- hw->fc &= (~em_fc_tx_pause);
-
- if((hw->mac_type < em_82543) && (hw->report_tx_early == 1))
- hw->fc &= (~em_fc_rx_pause);
-
- hw->original_fc = hw->fc;
-
- DEBUGOUT1("After fix-ups FlowControl is now = %x\n", hw->fc);
-
- /* Take the 4 bits from EEPROM word 0x0F that determine the initial
- * polarity value for the SW controlled pins, and setup the
- * Extended Device Control reg with that info.
- * This is needed because one of the SW controlled pins is used for
- * signal detection. So this should be done before em_setup_pcs_link()
- * or em_phy_setup() is called.
- */
- if(hw->mac_type == em_82543) {
- ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
- SWDPIO__EXT_SHIFT);
- E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
- }
-
- /* Call the necessary subroutine to configure the link. */
- ret_val = (hw->media_type == em_media_type_copper) ?
- em_setup_copper_link(hw) :
- em_setup_fiber_serdes_link(hw);
-
- /* Initialize the flow control address, type, and PAUSE timer
- * registers to their default values. This is done even if flow
- * control is disabled, because it does not hurt anything to
- * initialize these registers.
- */
- DEBUGOUT("Initializing the Flow Control address, type and timer regs\n");
-
- E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
- E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
- E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
-
- E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time);
-
- /* Set the flow control receive threshold registers. Normally,
- * these registers will be set to a default threshold that may be
- * adjusted later by the driver's runtime code. However, if the
- * ability to transmit pause frames in not enabled, then these
- * registers will be set to 0.
- */
- if(!(hw->fc & em_fc_tx_pause)) {
- E1000_WRITE_REG(hw, FCRTL, 0);
- E1000_WRITE_REG(hw, FCRTH, 0);
- } else {
- /* We need to set up the Receive Threshold high and low water marks
- * as well as (optionally) enabling the transmission of XON frames.
- */
- if(hw->fc_send_xon) {
- E1000_WRITE_REG(hw, FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE));
- E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
- } else {
- E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water);
- E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
- }
- }
- return ret_val;
-}
-
-/******************************************************************************
- * Sets up link for a fiber based or serdes based adapter
- *
- * hw - Struct containing variables accessed by shared code
- *
- * Manipulates Physical Coding Sublayer functions in order to configure
- * link. Assumes the hardware has been previously reset and the transmitter
- * and receiver are not enabled.
- *****************************************************************************/
-static int32_t
-em_setup_fiber_serdes_link(struct em_hw *hw)
-{
- uint32_t ctrl;
- uint32_t status;
- uint32_t txcw = 0;
- uint32_t i;
- uint32_t signal = 0;
- int32_t ret_val;
-
- DEBUGFUNC("em_setup_fiber_serdes_link");
-
- /* On adapters with a MAC newer than 82544, SW Defineable pin 1 will be
- * set when the optics detect a signal. On older adapters, it will be
- * cleared when there is a signal. This applies to fiber media only.
- * If we're on serdes media, adjust the output amplitude to value set in
- * the EEPROM.
- */
- ctrl = E1000_READ_REG(hw, CTRL);
- if(hw->media_type == em_media_type_fiber)
- signal = (hw->mac_type > em_82544) ? E1000_CTRL_SWDPIN1 : 0;
-
- ret_val = em_adjust_serdes_amplitude(hw);
- if(ret_val)
- return ret_val;
-
- /* Take the link out of reset */
- ctrl &= ~(E1000_CTRL_LRST);
-
- /* Adjust VCO speed to improve BER performance */
- ret_val = em_set_vco_speed(hw);
- if(ret_val)
- return ret_val;
-
- em_config_collision_dist(hw);
-
- /* Check for a software override of the flow control settings, and setup
- * the device accordingly. If auto-negotiation is enabled, then software
- * will have to set the "PAUSE" bits to the correct value in the Tranmsit
- * Config Word Register (TXCW) and re-start auto-negotiation. However, if
- * auto-negotiation is disabled, then software will have to manually
- * configure the two flow control enable bits in the CTRL register.
- *
- * The possible values of the "fc" parameter are:
- * 0: Flow control is completely disabled
- * 1: Rx flow control is enabled (we can receive pause frames, but
- * not send pause frames).
- * 2: Tx flow control is enabled (we can send pause frames but we do
- * not support receiving pause frames).
- * 3: Both Rx and TX flow control (symmetric) are enabled.
- */
- switch (hw->fc) {
- case em_fc_none:
- /* Flow control is completely disabled by a software over-ride. */
- txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
- break;
- case em_fc_rx_pause:
- /* RX Flow control is enabled and TX Flow control is disabled by a
- * software over-ride. Since there really isn't a way to advertise
- * that we are capable of RX Pause ONLY, we will advertise that we
- * support both symmetric and asymmetric RX PAUSE. Later, we will
- * disable the adapter's ability to send PAUSE frames.
- */
- txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
- break;
- case em_fc_tx_pause:
- /* TX Flow control is enabled, and RX Flow control is disabled, by a
- * software over-ride.
- */
- txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
- break;
- case em_fc_full:
- /* Flow control (both RX and TX) is enabled by a software over-ride. */
- txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
- break;
- default:
- DEBUGOUT("Flow control param set incorrectly\n");
- return -E1000_ERR_CONFIG;
- break;
- }
-
- /* Since auto-negotiation is enabled, take the link out of reset (the link
- * will be in reset, because we previously reset the chip). This will
- * restart auto-negotiation. If auto-neogtiation is successful then the
- * link-up status bit will be set and the flow control enable bits (RFCE
- * and TFCE) will be set according to their negotiated value.
- */
- DEBUGOUT("Auto-negotiation enabled\n");
-
- E1000_WRITE_REG(hw, TXCW, txcw);
- E1000_WRITE_REG(hw, CTRL, ctrl);
- E1000_WRITE_FLUSH(hw);
-
- hw->txcw = txcw;
- msec_delay(1);
-
- /* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
- * indication in the Device Status Register. Time-out if a link isn't
- * seen in 500 milliseconds seconds (Auto-negotiation should complete in
- * less than 500 milliseconds even if the other end is doing it in SW).
- * For internal serdes, we just assume a signal is present, then poll.
- */
- if(hw->media_type == em_media_type_internal_serdes ||
- (E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) {
- DEBUGOUT("Looking for Link\n");
- for(i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
- msec_delay(10);
- status = E1000_READ_REG(hw, STATUS);
- if(status & E1000_STATUS_LU) break;
- }
- if(i == (LINK_UP_TIMEOUT / 10)) {
- DEBUGOUT("Never got a valid link from auto-neg!!!\n");
- hw->autoneg_failed = 1;
- /* AutoNeg failed to achieve a link, so we'll call
- * em_check_for_link. This routine will force the link up if
- * we detect a signal. This will allow us to communicate with
- * non-autonegotiating link partners.
- */
- ret_val = em_check_for_link(hw);
- if(ret_val) {
- DEBUGOUT("Error while checking for link\n");
- return ret_val;
- }
- hw->autoneg_failed = 0;
- } else {
- hw->autoneg_failed = 0;
- DEBUGOUT("Valid Link Found\n");
- }
- } else {
- DEBUGOUT("No Signal Detected\n");
- }
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
-* Make sure we have a valid PHY and change PHY mode before link setup.
-*
-* hw - Struct containing variables accessed by shared code
-******************************************************************************/
-static int32_t
-em_copper_link_preconfig(struct em_hw *hw)
-{
- uint32_t ctrl;
- int32_t ret_val;
- uint16_t phy_data;
-
- DEBUGFUNC("em_copper_link_preconfig");
-
- ctrl = E1000_READ_REG(hw, CTRL);
- /* With 82543, we need to force speed and duplex on the MAC equal to what
- * the PHY speed and duplex configuration is. In addition, we need to
- * perform a hardware reset on the PHY to take it out of reset.
- */
- if(hw->mac_type > em_82543) {
- ctrl |= E1000_CTRL_SLU;
- ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
- E1000_WRITE_REG(hw, CTRL, ctrl);
- } else {
- ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU);
- E1000_WRITE_REG(hw, CTRL, ctrl);
- ret_val = em_phy_hw_reset(hw);
- if(ret_val)
- return ret_val;
- }
-
- /* Make sure we have a valid PHY */
- ret_val = em_detect_gig_phy(hw);
- if(ret_val) {
- DEBUGOUT("Error, did not detect valid phy.\n");
- return ret_val;
- }
- DEBUGOUT1("Phy ID = %x \n", hw->phy_id);
-
- /* Set PHY to class A mode (if necessary) */
- ret_val = em_set_phy_mode(hw);
- if(ret_val)
- return ret_val;
-
- if((hw->mac_type == em_82545_rev_3) ||
- (hw->mac_type == em_82546_rev_3)) {
- ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
- phy_data |= 0x00000008;
- ret_val = em_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
- }
-
- if(hw->mac_type <= em_82543 ||
- hw->mac_type == em_82541 || hw->mac_type == em_82547 ||
- hw->mac_type == em_82541_rev_2 || hw->mac_type == em_82547_rev_2)
- hw->phy_reset_disable = FALSE;
-
- return E1000_SUCCESS;
-}
-
-
-/********************************************************************
-* Copper link setup for em_phy_igp series.
-*
-* hw - Struct containing variables accessed by shared code
-*********************************************************************/
-static int32_t
-em_copper_link_igp_setup(struct em_hw *hw)
-{
- uint32_t led_ctrl;
- int32_t ret_val;
- uint16_t phy_data;
-
- DEBUGFUNC("em_copper_link_igp_setup");
-
- if (hw->phy_reset_disable)
- return E1000_SUCCESS;
-
- ret_val = em_phy_reset(hw);
- if (ret_val) {
- DEBUGOUT("Error Resetting the PHY\n");
- return ret_val;
- }
-
- /* Wait 10ms for MAC to configure PHY from eeprom settings */
- msec_delay(15);
-
- /* Configure activity LED after PHY reset */
- led_ctrl = E1000_READ_REG(hw, LEDCTL);
- led_ctrl &= IGP_ACTIVITY_LED_MASK;
- led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
- E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
-
- /* disable lplu d3 during driver init */
- ret_val = em_set_d3_lplu_state(hw, FALSE);
- if (ret_val) {
- DEBUGOUT("Error Disabling LPLU D3\n");
- return ret_val;
- }
-
- /* disable lplu d0 during driver init */
- ret_val = em_set_d0_lplu_state(hw, FALSE);
- if (ret_val) {
- DEBUGOUT("Error Disabling LPLU D0\n");
- return ret_val;
- }
- /* Configure mdi-mdix settings */
- ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
-
- if ((hw->mac_type == em_82541) || (hw->mac_type == em_82547)) {
- hw->dsp_config_state = em_dsp_config_disabled;
- /* Force MDI for earlier revs of the IGP PHY */
- phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX | IGP01E1000_PSCR_FORCE_MDI_MDIX);
- hw->mdix = 1;
-
- } else {
- hw->dsp_config_state = em_dsp_config_enabled;
- phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
-
- switch (hw->mdix) {
- case 1:
- phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
- break;
- case 2:
- phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
- break;
- case 0:
- default:
- phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
- break;
- }
- }
- ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
- if(ret_val)
- return ret_val;
-
- /* set auto-master slave resolution settings */
- if(hw->autoneg) {
- em_ms_type phy_ms_setting = hw->master_slave;
-
- if(hw->ffe_config_state == em_ffe_config_active)
- hw->ffe_config_state = em_ffe_config_enabled;
-
- if(hw->dsp_config_state == em_dsp_config_activated)
- hw->dsp_config_state = em_dsp_config_enabled;
-
- /* when autonegotiation advertisment is only 1000Mbps then we
- * should disable SmartSpeed and enable Auto MasterSlave
- * resolution as hardware default. */
- if(hw->autoneg_advertised == ADVERTISE_1000_FULL) {
- /* Disable SmartSpeed */
- ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data);
- if(ret_val)
- return ret_val;
- phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
- ret_val = em_write_phy_reg(hw,
- IGP01E1000_PHY_PORT_CONFIG,
- phy_data);
- if(ret_val)
- return ret_val;
- /* Set auto Master/Slave resolution process */
- ret_val = em_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
- if(ret_val)
- return ret_val;
- phy_data &= ~CR_1000T_MS_ENABLE;
- ret_val = em_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
- if(ret_val)
- return ret_val;
- }
-
- ret_val = em_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
- if(ret_val)
- return ret_val;
-
- /* load defaults for future use */
- hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
- ((phy_data & CR_1000T_MS_VALUE) ?
- em_ms_force_master :
- em_ms_force_slave) :
- em_ms_auto;
-
- switch (phy_ms_setting) {
- case em_ms_force_master:
- phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
- break;
- case em_ms_force_slave:
- phy_data |= CR_1000T_MS_ENABLE;
- phy_data &= ~(CR_1000T_MS_VALUE);
- break;
- case em_ms_auto:
- phy_data &= ~CR_1000T_MS_ENABLE;
- default:
- break;
- }
- ret_val = em_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
- if(ret_val)
- return ret_val;
- }
-
- return E1000_SUCCESS;
-}
-
-
-/********************************************************************
-* Copper link setup for em_phy_m88 series.
-*
-* hw - Struct containing variables accessed by shared code
-*********************************************************************/
-static int32_t
-em_copper_link_mgp_setup(struct em_hw *hw)
-{
- int32_t ret_val;
- uint16_t phy_data;
-
- DEBUGFUNC("em_copper_link_mgp_setup");
-
- if(hw->phy_reset_disable)
- return E1000_SUCCESS;
-
- /* Enable CRS on TX. This must be set for half-duplex operation. */
- ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
- if(ret_val)
- return ret_val;
-
- phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
-
- /* Options:
- * MDI/MDI-X = 0 (default)
- * 0 - Auto for all speeds
- * 1 - MDI mode
- * 2 - MDI-X mode
- * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
- */
- phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
-
- switch (hw->mdix) {
- case 1:
- phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
- break;
- case 2:
- phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
- break;
- case 3:
- phy_data |= M88E1000_PSCR_AUTO_X_1000T;
- break;
- case 0:
- default:
- phy_data |= M88E1000_PSCR_AUTO_X_MODE;
- break;
- }
-
- /* Options:
- * disable_polarity_correction = 0 (default)
- * Automatic Correction for Reversed Cable Polarity
- * 0 - Disabled
- * 1 - Enabled
- */
- phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
- if(hw->disable_polarity_correction == 1)
- phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
- ret_val = em_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
- if(ret_val)
- return ret_val;
-
- /* Force TX_CLK in the Extended PHY Specific Control Register
- * to 25MHz clock.
- */
- ret_val = em_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
- if(ret_val)
- return ret_val;
-
- phy_data |= M88E1000_EPSCR_TX_CLK_25;
-
- if (hw->phy_revision < M88E1011_I_REV_4) {
- /* Configure Master and Slave downshift values */
- phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
- M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
- phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
- M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
- ret_val = em_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
- if(ret_val)
- return ret_val;
- }
-
- /* SW Reset the PHY so all changes take effect */
- ret_val = em_phy_reset(hw);
- if(ret_val) {
- DEBUGOUT("Error Resetting the PHY\n");
- return ret_val;
- }
-
- return E1000_SUCCESS;
-}
-
-/********************************************************************
-* Setup auto-negotiation and flow control advertisements,
-* and then perform auto-negotiation.
-*
-* hw - Struct containing variables accessed by shared code
-*********************************************************************/
-static int32_t
-em_copper_link_autoneg(struct em_hw *hw)
-{
- int32_t ret_val;
- uint16_t phy_data;
-
- DEBUGFUNC("em_copper_link_autoneg");
-
- /* Perform some bounds checking on the hw->autoneg_advertised
- * parameter. If this variable is zero, then set it to the default.
- */
- hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
-
- /* If autoneg_advertised is zero, we assume it was not defaulted
- * by the calling code so we set to advertise full capability.
- */
- if(hw->autoneg_advertised == 0)
- hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
-
- DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
- ret_val = em_phy_setup_autoneg(hw);
- if(ret_val) {
- DEBUGOUT("Error Setting up Auto-Negotiation\n");
- return ret_val;
- }
- DEBUGOUT("Restarting Auto-Neg\n");
-
- /* Restart auto-negotiation by setting the Auto Neg Enable bit and
- * the Auto Neg Restart bit in the PHY control register.
- */
- ret_val = em_read_phy_reg(hw, PHY_CTRL, &phy_data);
- if(ret_val)
- return ret_val;
-
- phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
- ret_val = em_write_phy_reg(hw, PHY_CTRL, phy_data);
- if(ret_val)
- return ret_val;
-
- /* Does the user want to wait for Auto-Neg to complete here, or
- * check at a later time (for example, callback routine).
- */
- if(hw->wait_autoneg_complete) {
- ret_val = em_wait_autoneg(hw);
- if(ret_val) {
- DEBUGOUT("Error while waiting for autoneg to complete\n");
- return ret_val;
- }
- }
-
- hw->get_link_status = TRUE;
-
- return E1000_SUCCESS;
-}
-
-
-/******************************************************************************
-* Config the MAC and the PHY after link is up.
-* 1) Set up the MAC to the current PHY speed/duplex
-* if we are on 82543. If we
-* are on newer silicon, we only need to configure
-* collision distance in the Transmit Control Register.
-* 2) Set up flow control on the MAC to that established with
-* the link partner.
-* 3) Config DSP to improve Gigabit link quality for some PHY revisions.
-*
-* hw - Struct containing variables accessed by shared code
-******************************************************************************/
-static int32_t
-em_copper_link_postconfig(struct em_hw *hw)
-{
- int32_t ret_val;
- DEBUGFUNC("em_copper_link_postconfig");
-
- if(hw->mac_type >= em_82544) {
- em_config_collision_dist(hw);
- } else {
- ret_val = em_config_mac_to_phy(hw);
- if(ret_val) {
- DEBUGOUT("Error configuring MAC to PHY settings\n");
- return ret_val;
- }
- }
- ret_val = em_config_fc_after_link_up(hw);
- if(ret_val) {
- DEBUGOUT("Error Configuring Flow Control\n");
- return ret_val;
- }
-
- /* Config DSP to improve Giga link quality */
- if(hw->phy_type == em_phy_igp) {
- ret_val = em_config_dsp_after_link_change(hw, TRUE);
- if(ret_val) {
- DEBUGOUT("Error Configuring DSP after link up\n");
- return ret_val;
- }
- }
-
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
-* Detects which PHY is present and setup the speed and duplex
-*
-* hw - Struct containing variables accessed by shared code
-******************************************************************************/
-static int32_t
-em_setup_copper_link(struct em_hw *hw)
-{
- int32_t ret_val;
- uint16_t i;
- uint16_t phy_data;
-
- DEBUGFUNC("em_setup_copper_link");
-
- /* Check if it is a valid PHY and set PHY mode if necessary. */
- ret_val = em_copper_link_preconfig(hw);
- if(ret_val)
- return ret_val;
-
- if (hw->phy_type == em_phy_igp ||
- hw->phy_type == em_phy_igp_2) {
- ret_val = em_copper_link_igp_setup(hw);
- if(ret_val)
- return ret_val;
- } else if (hw->phy_type == em_phy_m88) {
- ret_val = em_copper_link_mgp_setup(hw);
- if(ret_val)
- return ret_val;
- }
-
- if(hw->autoneg) {
- /* Setup autoneg and flow control advertisement
- * and perform autonegotiation */
- ret_val = em_copper_link_autoneg(hw);
- if(ret_val)
- return ret_val;
- } else {
- /* PHY will be set to 10H, 10F, 100H,or 100F
- * depending on value from forced_speed_duplex. */
- DEBUGOUT("Forcing speed and duplex\n");
- ret_val = em_phy_force_speed_duplex(hw);
- if(ret_val) {
- DEBUGOUT("Error Forcing Speed and Duplex\n");
- return ret_val;
- }
- }
-
- /* Check link status. Wait up to 100 microseconds for link to become
- * valid.
- */
- for(i = 0; i < 10; i++) {
- ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data);
- if(ret_val)
- return ret_val;
- ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data);
- if(ret_val)
- return ret_val;
-
- if(phy_data & MII_SR_LINK_STATUS) {
- /* Config the MAC and PHY after link is up */
- ret_val = em_copper_link_postconfig(hw);
- if(ret_val)
- return ret_val;
-
- DEBUGOUT("Valid link established!!!\n");
- return E1000_SUCCESS;
- }
- usec_delay(10);
- }
-
- DEBUGOUT("Unable to establish link!!!\n");
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
-* Configures PHY autoneg and flow control advertisement settings
-*
-* hw - Struct containing variables accessed by shared code
-******************************************************************************/
-int32_t
-em_phy_setup_autoneg(struct em_hw *hw)
-{
- int32_t ret_val;
- uint16_t mii_autoneg_adv_reg;
- uint16_t mii_1000t_ctrl_reg;
-
- DEBUGFUNC("em_phy_setup_autoneg");
-
- /* Read the MII Auto-Neg Advertisement Register (Address 4). */
- ret_val = em_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
- if(ret_val)
- return ret_val;
-
- /* Read the MII 1000Base-T Control Register (Address 9). */
- ret_val = em_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
- if(ret_val)
- return ret_val;
-
- /* Need to parse both autoneg_advertised and fc and set up
- * the appropriate PHY registers. First we will parse for
- * autoneg_advertised software override. Since we can advertise
- * a plethora of combinations, we need to check each bit
- * individually.
- */
-
- /* First we clear all the 10/100 mb speed bits in the Auto-Neg
- * Advertisement Register (Address 4) and the 1000 mb speed bits in
- * the 1000Base-T Control Register (Address 9).
- */
- mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
- mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
-
- DEBUGOUT1("autoneg_advertised %x\n", hw->autoneg_advertised);
-
- /* Do we want to advertise 10 Mb Half Duplex? */
- if(hw->autoneg_advertised & ADVERTISE_10_HALF) {
- DEBUGOUT("Advertise 10mb Half duplex\n");
- mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
- }
-
- /* Do we want to advertise 10 Mb Full Duplex? */
- if(hw->autoneg_advertised & ADVERTISE_10_FULL) {
- DEBUGOUT("Advertise 10mb Full duplex\n");
- mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
- }
-
- /* Do we want to advertise 100 Mb Half Duplex? */
- if(hw->autoneg_advertised & ADVERTISE_100_HALF) {
- DEBUGOUT("Advertise 100mb Half duplex\n");
- mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
- }
-
- /* Do we want to advertise 100 Mb Full Duplex? */
- if(hw->autoneg_advertised & ADVERTISE_100_FULL) {
- DEBUGOUT("Advertise 100mb Full duplex\n");
- mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
- }
-
- /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
- if(hw->autoneg_advertised & ADVERTISE_1000_HALF) {
- DEBUGOUT("Advertise 1000mb Half duplex requested, request denied!\n");
- }
-
- /* Do we want to advertise 1000 Mb Full Duplex? */
- if(hw->autoneg_advertised & ADVERTISE_1000_FULL) {
- DEBUGOUT("Advertise 1000mb Full duplex\n");
- mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
- }
-
- /* Check for a software override of the flow control settings, and
- * setup the PHY advertisement registers accordingly. If
- * auto-negotiation is enabled, then software will have to set the
- * "PAUSE" bits to the correct value in the Auto-Negotiation
- * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
- *
- * The possible values of the "fc" parameter are:
- * 0: Flow control is completely disabled
- * 1: Rx flow control is enabled (we can receive pause frames
- * but not send pause frames).
- * 2: Tx flow control is enabled (we can send pause frames
- * but we do not support receiving pause frames).
- * 3: Both Rx and TX flow control (symmetric) are enabled.
- * other: No software override. The flow control configuration
- * in the EEPROM is used.
- */
- switch (hw->fc) {
- case em_fc_none: /* 0 */
- /* Flow control (RX & TX) is completely disabled by a
- * software over-ride.
- */
- mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
- break;
- case em_fc_rx_pause: /* 1 */
- /* RX Flow control is enabled, and TX Flow control is
- * disabled, by a software over-ride.
- */
- /* Since there really isn't a way to advertise that we are
- * capable of RX Pause ONLY, we will advertise that we
- * support both symmetric and asymmetric RX PAUSE. Later
- * (in em_config_fc_after_link_up) we will disable the
- *hw's ability to send PAUSE frames.
- */
- mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
- break;
- case em_fc_tx_pause: /* 2 */
- /* TX Flow control is enabled, and RX Flow control is
- * disabled, by a software over-ride.
- */
- mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
- mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
- break;
- case em_fc_full: /* 3 */
- /* Flow control (both RX and TX) is enabled by a software
- * over-ride.
- */
- mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
- break;
- default:
- DEBUGOUT("Flow control param set incorrectly\n");
- return -E1000_ERR_CONFIG;
- }
-
- ret_val = em_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
- if(ret_val)
- return ret_val;
-
- DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
-
- ret_val = em_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg);
- if(ret_val)
- return ret_val;
-
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
-* Force PHY speed and duplex settings to hw->forced_speed_duplex
-*
-* hw - Struct containing variables accessed by shared code
-******************************************************************************/
-static int32_t
-em_phy_force_speed_duplex(struct em_hw *hw)
-{
- uint32_t ctrl;
- int32_t ret_val;
- uint16_t mii_ctrl_reg;
- uint16_t mii_status_reg;
- uint16_t phy_data;
- uint16_t i;
-
- DEBUGFUNC("em_phy_force_speed_duplex");
-
- /* Turn off Flow control if we are forcing speed and duplex. */
- hw->fc = em_fc_none;
-
- DEBUGOUT1("hw->fc = %d\n", hw->fc);
-
- /* Read the Device Control Register. */
- ctrl = E1000_READ_REG(hw, CTRL);
-
- /* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */
- ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
- ctrl &= ~(DEVICE_SPEED_MASK);
-
- /* Clear the Auto Speed Detect Enable bit. */
- ctrl &= ~E1000_CTRL_ASDE;
-
- /* Read the MII Control Register. */
- ret_val = em_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg);
- if(ret_val)
- return ret_val;
-
- /* We need to disable autoneg in order to force link and duplex. */
-
- mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN;
-
- /* Are we forcing Full or Half Duplex? */
- if(hw->forced_speed_duplex == em_100_full ||
- hw->forced_speed_duplex == em_10_full) {
- /* We want to force full duplex so we SET the full duplex bits in the
- * Device and MII Control Registers.
- */
- ctrl |= E1000_CTRL_FD;
- mii_ctrl_reg |= MII_CR_FULL_DUPLEX;
- DEBUGOUT("Full Duplex\n");
- } else {
- /* We want to force half duplex so we CLEAR the full duplex bits in
- * the Device and MII Control Registers.
- */
- ctrl &= ~E1000_CTRL_FD;
- mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX;
- DEBUGOUT("Half Duplex\n");
- }
-
- /* Are we forcing 100Mbps??? */
- if(hw->forced_speed_duplex == em_100_full ||
- hw->forced_speed_duplex == em_100_half) {
- /* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */
- ctrl |= E1000_CTRL_SPD_100;
- mii_ctrl_reg |= MII_CR_SPEED_100;
- mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
- DEBUGOUT("Forcing 100mb ");
- } else {
- /* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */
- ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
- mii_ctrl_reg |= MII_CR_SPEED_10;
- mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
- DEBUGOUT("Forcing 10mb ");
- }
-
- em_config_collision_dist(hw);
-
- /* Write the configured values back to the Device Control Reg. */
- E1000_WRITE_REG(hw, CTRL, ctrl);
-
- if (hw->phy_type == em_phy_m88) {
- ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
- if(ret_val)
- return ret_val;
-
- /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
- * forced whenever speed are duplex are forced.
- */
- phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
- ret_val = em_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
- if(ret_val)
- return ret_val;
-
- DEBUGOUT1("M88E1000 PSCR: %x \n", phy_data);
-
- /* Need to reset the PHY or these changes will be ignored */
- mii_ctrl_reg |= MII_CR_RESET;
- } else {
- /* Clear Auto-Crossover to force MDI manually. IGP requires MDI
- * forced whenever speed or duplex are forced.
- */
- ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
- if(ret_val)
- return ret_val;
-
- phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
- phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
-
- ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
- if(ret_val)
- return ret_val;
- }
-
- /* Write back the modified PHY MII control register. */
- ret_val = em_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg);
- if(ret_val)
- return ret_val;
-
- usec_delay(1);
-
- /* The wait_autoneg_complete flag may be a little misleading here.
- * Since we are forcing speed and duplex, Auto-Neg is not enabled.
- * But we do want to delay for a period while forcing only so we
- * don't generate false No Link messages. So we will wait here
- * only if the user has set wait_autoneg_complete to 1, which is
- * the default.
- */
- if(hw->wait_autoneg_complete) {
- /* We will wait for autoneg to complete. */
- DEBUGOUT("Waiting for forced speed/duplex link.\n");
- mii_status_reg = 0;
-
- /* We will wait for autoneg to complete or 4.5 seconds to expire. */
- for(i = PHY_FORCE_TIME; i > 0; i--) {
- /* Read the MII Status Register and wait for Auto-Neg Complete bit
- * to be set.
- */
- ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
- if(ret_val)
- return ret_val;
-
- ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
- if(ret_val)
- return ret_val;
-
- if(mii_status_reg & MII_SR_LINK_STATUS) break;
- msec_delay(100);
- }
- if((i == 0) &&
- (hw->phy_type == em_phy_m88)) {
- /* We didn't get link. Reset the DSP and wait again for link. */
- ret_val = em_phy_reset_dsp(hw);
- if(ret_val) {
- DEBUGOUT("Error Resetting PHY DSP\n");
- return ret_val;
- }
- }
- /* This loop will early-out if the link condition has been met. */
- for(i = PHY_FORCE_TIME; i > 0; i--) {
- if(mii_status_reg & MII_SR_LINK_STATUS) break;
- msec_delay(100);
- /* Read the MII Status Register and wait for Auto-Neg Complete bit
- * to be set.
- */
- ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
- if(ret_val)
- return ret_val;
-
- ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
- if(ret_val)
- return ret_val;
- }
- }
-
- if (hw->phy_type == em_phy_m88) {
- /* Because we reset the PHY above, we need to re-force TX_CLK in the
- * Extended PHY Specific Control Register to 25MHz clock. This value
- * defaults back to a 2.5MHz clock when the PHY is reset.
- */
- ret_val = em_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
- if(ret_val)
- return ret_val;
-
- phy_data |= M88E1000_EPSCR_TX_CLK_25;
- ret_val = em_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
- if(ret_val)
- return ret_val;
-
- /* In addition, because of the s/w reset above, we need to enable CRS on
- * TX. This must be set for both full and half duplex operation.
- */
- ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
- if(ret_val)
- return ret_val;
-
- phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
- ret_val = em_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
- if(ret_val)
- return ret_val;
-
- if((hw->mac_type == em_82544 || hw->mac_type == em_82543) &&
- (!hw->autoneg) &&
- (hw->forced_speed_duplex == em_10_full ||
- hw->forced_speed_duplex == em_10_half)) {
- ret_val = em_polarity_reversal_workaround(hw);
- if(ret_val)
- return ret_val;
- }
- }
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
-* Sets the collision distance in the Transmit Control register
-*
-* hw - Struct containing variables accessed by shared code
-*
-* Link should have been established previously. Reads the speed and duplex
-* information from the Device Status register.
-******************************************************************************/
-void
-em_config_collision_dist(struct em_hw *hw)
-{
- uint32_t tctl;
-
- DEBUGFUNC("em_config_collision_dist");
-
- tctl = E1000_READ_REG(hw, TCTL);
-
- tctl &= ~E1000_TCTL_COLD;
- tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
-
- E1000_WRITE_REG(hw, TCTL, tctl);
- E1000_WRITE_FLUSH(hw);
-}
-
-/******************************************************************************
-* Sets MAC speed and duplex settings to reflect the those in the PHY
-*
-* hw - Struct containing variables accessed by shared code
-* mii_reg - data to write to the MII control register
-*
-* The contents of the PHY register containing the needed information need to
-* be passed in.
-******************************************************************************/
-static int32_t
-em_config_mac_to_phy(struct em_hw *hw)
-{
- uint32_t ctrl;
- int32_t ret_val;
- uint16_t phy_data;
-
- DEBUGFUNC("em_config_mac_to_phy");
-
- /* 82544 or newer MAC, Auto Speed Detection takes care of
- * MAC speed/duplex configuration.*/
- if (hw->mac_type >= em_82544)
- return E1000_SUCCESS;
-
- /* Read the Device Control Register and set the bits to Force Speed
- * and Duplex.
- */
- ctrl = E1000_READ_REG(hw, CTRL);
- ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
- ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
-
- /* Set up duplex in the Device Control and Transmit Control
- * registers depending on negotiated values.
- */
- ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
- if(ret_val)
- return ret_val;
-
- if(phy_data & M88E1000_PSSR_DPLX)
- ctrl |= E1000_CTRL_FD;
- else
- ctrl &= ~E1000_CTRL_FD;
-
- em_config_collision_dist(hw);
-
- /* Set up speed in the Device Control register depending on
- * negotiated values.
- */
- if((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
- ctrl |= E1000_CTRL_SPD_1000;
- else if((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
- ctrl |= E1000_CTRL_SPD_100;
-
- /* Write the configured values back to the Device Control Reg. */
- E1000_WRITE_REG(hw, CTRL, ctrl);
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Forces the MAC's flow control settings.
- *
- * hw - Struct containing variables accessed by shared code
- *
- * Sets the TFCE and RFCE bits in the device control register to reflect
- * the adapter settings. TFCE and RFCE need to be explicitly set by
- * software when a Copper PHY is used because autonegotiation is managed
- * by the PHY rather than the MAC. Software must also configure these
- * bits when link is forced on a fiber connection.
- *****************************************************************************/
-int32_t
-em_force_mac_fc(struct em_hw *hw)
-{
- uint32_t ctrl;
-
- DEBUGFUNC("em_force_mac_fc");
-
- /* Get the current configuration of the Device Control Register */
- ctrl = E1000_READ_REG(hw, CTRL);
-
- /* Because we didn't get link via the internal auto-negotiation
- * mechanism (we either forced link or we got link via PHY
- * auto-neg), we have to manually enable/disable transmit an
- * receive flow control.
- *
- * The "Case" statement below enables/disable flow control
- * according to the "hw->fc" parameter.
- *
- * The possible values of the "fc" parameter are:
- * 0: Flow control is completely disabled
- * 1: Rx flow control is enabled (we can receive pause
- * frames but not send pause frames).
- * 2: Tx flow control is enabled (we can send pause frames
- * frames but we do not receive pause frames).
- * 3: Both Rx and TX flow control (symmetric) is enabled.
- * other: No other values should be possible at this point.
- */
-
- switch (hw->fc) {
- case em_fc_none:
- ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
- break;
- case em_fc_rx_pause:
- ctrl &= (~E1000_CTRL_TFCE);
- ctrl |= E1000_CTRL_RFCE;
- break;
- case em_fc_tx_pause:
- ctrl &= (~E1000_CTRL_RFCE);
- ctrl |= E1000_CTRL_TFCE;
- break;
- case em_fc_full:
- ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
- break;
- default:
- DEBUGOUT("Flow control param set incorrectly\n");
- return -E1000_ERR_CONFIG;
- }
-
- /* Disable TX Flow Control for 82542 (rev 2.0) */
- if(hw->mac_type == em_82542_rev2_0)
- ctrl &= (~E1000_CTRL_TFCE);
-
- E1000_WRITE_REG(hw, CTRL, ctrl);
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Configures flow control settings after link is established
- *
- * hw - Struct containing variables accessed by shared code
- *
- * Should be called immediately after a valid link has been established.
- * Forces MAC flow control settings if link was forced. When in MII/GMII mode
- * and autonegotiation is enabled, the MAC flow control settings will be set
- * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
- * and RFCE bits will be automaticaly set to the negotiated flow control mode.
- *****************************************************************************/
-int32_t
-em_config_fc_after_link_up(struct em_hw *hw)
-{
- int32_t ret_val;
- uint16_t mii_status_reg;
- uint16_t mii_nway_adv_reg;
- uint16_t mii_nway_lp_ability_reg;
- uint16_t speed;
- uint16_t duplex;
-
- DEBUGFUNC("em_config_fc_after_link_up");
-
- /* Check for the case where we have fiber media and auto-neg failed
- * so we had to force link. In this case, we need to force the
- * configuration of the MAC to match the "fc" parameter.
- */
- if(((hw->media_type == em_media_type_fiber) && (hw->autoneg_failed)) ||
- ((hw->media_type == em_media_type_internal_serdes) && (hw->autoneg_failed)) ||
- ((hw->media_type == em_media_type_copper) && (!hw->autoneg))) {
- ret_val = em_force_mac_fc(hw);
- if(ret_val) {
- DEBUGOUT("Error forcing flow control settings\n");
- return ret_val;
- }
- }
-
- /* Check for the case where we have copper media and auto-neg is
- * enabled. In this case, we need to check and see if Auto-Neg
- * has completed, and if so, how the PHY and link partner has
- * flow control configured.
- */
- if((hw->media_type == em_media_type_copper) && hw->autoneg) {
- /* Read the MII Status Register and check to see if AutoNeg
- * has completed. We read this twice because this reg has
- * some "sticky" (latched) bits.
- */
- ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
- if(ret_val)
- return ret_val;
- ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
- if(ret_val)
- return ret_val;
-
- if(mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
- /* The AutoNeg process has completed, so we now need to
- * read both the Auto Negotiation Advertisement Register
- * (Address 4) and the Auto_Negotiation Base Page Ability
- * Register (Address 5) to determine how flow control was
- * negotiated.
- */
- ret_val = em_read_phy_reg(hw, PHY_AUTONEG_ADV,
- &mii_nway_adv_reg);
- if(ret_val)
- return ret_val;
- ret_val = em_read_phy_reg(hw, PHY_LP_ABILITY,
- &mii_nway_lp_ability_reg);
- if(ret_val)
- return ret_val;
-
- /* Two bits in the Auto Negotiation Advertisement Register
- * (Address 4) and two bits in the Auto Negotiation Base
- * Page Ability Register (Address 5) determine flow control
- * for both the PHY and the link partner. The following
- * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
- * 1999, describes these PAUSE resolution bits and how flow
- * control is determined based upon these settings.
- * NOTE: DC = Don't Care
- *
- * LOCAL DEVICE | LINK PARTNER
- * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
- *-------|---------|-------|---------|--------------------
- * 0 | 0 | DC | DC | em_fc_none
- * 0 | 1 | 0 | DC | em_fc_none
- * 0 | 1 | 1 | 0 | em_fc_none
- * 0 | 1 | 1 | 1 | em_fc_tx_pause
- * 1 | 0 | 0 | DC | em_fc_none
- * 1 | DC | 1 | DC | em_fc_full
- * 1 | 1 | 0 | 0 | em_fc_none
- * 1 | 1 | 0 | 1 | em_fc_rx_pause
- *
- */
- /* Are both PAUSE bits set to 1? If so, this implies
- * Symmetric Flow Control is enabled at both ends. The
- * ASM_DIR bits are irrelevant per the spec.
- *
- * For Symmetric Flow Control:
- *
- * LOCAL DEVICE | LINK PARTNER
- * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
- *-------|---------|-------|---------|--------------------
- * 1 | DC | 1 | DC | em_fc_full
- *
- */
- if((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
- (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
- /* Now we need to check if the user selected RX ONLY
- * of pause frames. In this case, we had to advertise
- * FULL flow control because we could not advertise RX
- * ONLY. Hence, we must now check to see if we need to
- * turn OFF the TRANSMISSION of PAUSE frames.
- */
- if(hw->original_fc == em_fc_full) {
- hw->fc = em_fc_full;
- DEBUGOUT("Flow Control = FULL.\r\n");
- } else {
- hw->fc = em_fc_rx_pause;
- DEBUGOUT("Flow Control = RX PAUSE frames only.\r\n");
- }
- }
- /* For receiving PAUSE frames ONLY.
- *
- * LOCAL DEVICE | LINK PARTNER
- * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
- *-------|---------|-------|---------|--------------------
- * 0 | 1 | 1 | 1 | em_fc_tx_pause
- *
- */
- else if(!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
- (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
- (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
- (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
- hw->fc = em_fc_tx_pause;
- DEBUGOUT("Flow Control = TX PAUSE frames only.\r\n");
- }
- /* For transmitting PAUSE frames ONLY.
- *
- * LOCAL DEVICE | LINK PARTNER
- * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
- *-------|---------|-------|---------|--------------------
- * 1 | 1 | 0 | 1 | em_fc_rx_pause
- *
- */
- else if((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
- (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
- !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
- (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
- hw->fc = em_fc_rx_pause;
- DEBUGOUT("Flow Control = RX PAUSE frames only.\r\n");
- }
- /* Per the IEEE spec, at this point flow control should be
- * disabled. However, we want to consider that we could
- * be connected to a legacy switch that doesn't advertise
- * desired flow control, but can be forced on the link
- * partner. So if we advertised no flow control, that is
- * what we will resolve to. If we advertised some kind of
- * receive capability (Rx Pause Only or Full Flow Control)
- * and the link partner advertised none, we will configure
- * ourselves to enable Rx Flow Control only. We can do
- * this safely for two reasons: If the link partner really
- * didn't want flow control enabled, and we enable Rx, no
- * harm done since we won't be receiving any PAUSE frames
- * anyway. If the intent on the link partner was to have
- * flow control enabled, then by us enabling RX only, we
- * can at least receive pause frames and process them.
- * This is a good idea because in most cases, since we are
- * predominantly a server NIC, more times than not we will
- * be asked to delay transmission of packets than asking
- * our link partner to pause transmission of frames.
- */
- else if((hw->original_fc == em_fc_none ||
- hw->original_fc == em_fc_tx_pause) ||
- hw->fc_strict_ieee) {
- hw->fc = em_fc_none;
- DEBUGOUT("Flow Control = NONE.\r\n");
- } else {
- hw->fc = em_fc_rx_pause;
- DEBUGOUT("Flow Control = RX PAUSE frames only.\r\n");
- }
-
- /* Now we need to do one last check... If we auto-
- * negotiated to HALF DUPLEX, flow control should not be
- * enabled per IEEE 802.3 spec.
- */
- ret_val = em_get_speed_and_duplex(hw, &speed, &duplex);
- if(ret_val) {
- DEBUGOUT("Error getting link speed and duplex\n");
- return ret_val;
- }
-
- if(duplex == HALF_DUPLEX)
- hw->fc = em_fc_none;
-
- /* Now we call a subroutine to actually force the MAC
- * controller to use the correct flow control settings.
- */
- ret_val = em_force_mac_fc(hw);
- if(ret_val) {
- DEBUGOUT("Error forcing flow control settings\n");
- return ret_val;
- }
- } else {
- DEBUGOUT("Copper PHY and Auto Neg has not completed.\r\n");
- }
- }
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Checks to see if the link status of the hardware has changed.
- *
- * hw - Struct containing variables accessed by shared code
- *
- * Called by any function that needs to check the link status of the adapter.
- *****************************************************************************/
-int32_t
-em_check_for_link(struct em_hw *hw)
-{
- uint32_t rxcw = 0;
- uint32_t ctrl;
- uint32_t status;
- uint32_t rctl;
- uint32_t icr;
- uint32_t signal = 0;
- int32_t ret_val;
- uint16_t phy_data;
-
- DEBUGFUNC("em_check_for_link");
-
- ctrl = E1000_READ_REG(hw, CTRL);
- status = E1000_READ_REG(hw, STATUS);
-
- /* On adapters with a MAC newer than 82544, SW Defineable pin 1 will be
- * set when the optics detect a signal. On older adapters, it will be
- * cleared when there is a signal. This applies to fiber media only.
- */
- if((hw->media_type == em_media_type_fiber) ||
- (hw->media_type == em_media_type_internal_serdes)) {
- rxcw = E1000_READ_REG(hw, RXCW);
-
- if(hw->media_type == em_media_type_fiber) {
- signal = (hw->mac_type > em_82544) ? E1000_CTRL_SWDPIN1 : 0;
- if(status & E1000_STATUS_LU)
- hw->get_link_status = FALSE;
- }
- }
-
- /* If we have a copper PHY then we only want to go out to the PHY
- * registers to see if Auto-Neg has completed and/or if our link
- * status has changed. The get_link_status flag will be set if we
- * receive a Link Status Change interrupt or we have Rx Sequence
- * Errors.
- */
- if((hw->media_type == em_media_type_copper) && hw->get_link_status) {
- /* First we want to see if the MII Status Register reports
- * link. If so, then we want to get the current speed/duplex
- * of the PHY.
- * Read the register twice since the link bit is sticky.
- */
- ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data);
- if(ret_val)
- return ret_val;
- ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data);
- if(ret_val)
- return ret_val;
-
- if(phy_data & MII_SR_LINK_STATUS) {
- hw->get_link_status = FALSE;
- /* Check if there was DownShift, must be checked immediately after
- * link-up */
- em_check_downshift(hw);
-
- /* If we are on 82544 or 82543 silicon and speed/duplex
- * are forced to 10H or 10F, then we will implement the polarity
- * reversal workaround. We disable interrupts first, and upon
- * returning, place the devices interrupt state to its previous
- * value except for the link status change interrupt which will
- * happen due to the execution of this workaround.
- */
-
- if((hw->mac_type == em_82544 || hw->mac_type == em_82543) &&
- (!hw->autoneg) &&
- (hw->forced_speed_duplex == em_10_full ||
- hw->forced_speed_duplex == em_10_half)) {
- E1000_WRITE_REG(hw, IMC, 0xffffffff);
- ret_val = em_polarity_reversal_workaround(hw);
- icr = E1000_READ_REG(hw, ICR);
- E1000_WRITE_REG(hw, ICS, (icr & ~E1000_ICS_LSC));
- E1000_WRITE_REG(hw, IMS, IMS_ENABLE_MASK);
- }
-
- } else {
- /* No link detected */
- em_config_dsp_after_link_change(hw, FALSE);
- return 0;
- }
-
- /* If we are forcing speed/duplex, then we simply return since
- * we have already determined whether we have link or not.
- */
- if(!hw->autoneg) return -E1000_ERR_CONFIG;
-
- /* optimize the dsp settings for the igp phy */
- em_config_dsp_after_link_change(hw, TRUE);
-
- /* We have a M88E1000 PHY and Auto-Neg is enabled. If we
- * have Si on board that is 82544 or newer, Auto
- * Speed Detection takes care of MAC speed/duplex
- * configuration. So we only need to configure Collision
- * Distance in the MAC. Otherwise, we need to force
- * speed/duplex on the MAC to the current PHY speed/duplex
- * settings.
- */
- if(hw->mac_type >= em_82544)
- em_config_collision_dist(hw);
- else {
- ret_val = em_config_mac_to_phy(hw);
- if(ret_val) {
- DEBUGOUT("Error configuring MAC to PHY settings\n");
- return ret_val;
- }
- }
-
- /* Configure Flow Control now that Auto-Neg has completed. First, we
- * need to restore the desired flow control settings because we may
- * have had to re-autoneg with a different link partner.
- */
- ret_val = em_config_fc_after_link_up(hw);
- if(ret_val) {
- DEBUGOUT("Error configuring flow control\n");
- return ret_val;
- }
-
- /* At this point we know that we are on copper and we have
- * auto-negotiated link. These are conditions for checking the link
- * partner capability register. We use the link speed to determine if
- * TBI compatibility needs to be turned on or off. If the link is not
- * at gigabit speed, then TBI compatibility is not needed. If we are
- * at gigabit speed, we turn on TBI compatibility.
- */
- if(hw->tbi_compatibility_en) {
- uint16_t speed, duplex;
- em_get_speed_and_duplex(hw, &speed, &duplex);
- if(speed != SPEED_1000) {
- /* If link speed is not set to gigabit speed, we do not need
- * to enable TBI compatibility.
- */
- if(hw->tbi_compatibility_on) {
- /* If we previously were in the mode, turn it off. */
- rctl = E1000_READ_REG(hw, RCTL);
- rctl &= ~E1000_RCTL_SBP;
- E1000_WRITE_REG(hw, RCTL, rctl);
- hw->tbi_compatibility_on = FALSE;
- }
- } else {
- /* If TBI compatibility is was previously off, turn it on. For
- * compatibility with a TBI link partner, we will store bad
- * packets. Some frames have an additional byte on the end and
- * will look like CRC errors to to the hardware.
- */
- if(!hw->tbi_compatibility_on) {
- hw->tbi_compatibility_on = TRUE;
- rctl = E1000_READ_REG(hw, RCTL);
- rctl |= E1000_RCTL_SBP;
- E1000_WRITE_REG(hw, RCTL, rctl);
- }
- }
- }
- }
- /* If we don't have link (auto-negotiation failed or link partner cannot
- * auto-negotiate), the cable is plugged in (we have signal), and our
- * link partner is not trying to auto-negotiate with us (we are receiving
- * idles or data), we need to force link up. We also need to give
- * auto-negotiation time to complete, in case the cable was just plugged
- * in. The autoneg_failed flag does this.
- */
- else if((((hw->media_type == em_media_type_fiber) &&
- ((ctrl & E1000_CTRL_SWDPIN1) == signal)) ||
- (hw->media_type == em_media_type_internal_serdes)) &&
- (!(status & E1000_STATUS_LU)) &&
- (!(rxcw & E1000_RXCW_C))) {
- if(hw->autoneg_failed == 0) {
- hw->autoneg_failed = 1;
- return 0;
- }
- DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\r\n");
-
- /* Disable auto-negotiation in the TXCW register */
- E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE));
-
- /* Force link-up and also force full-duplex. */
- ctrl = E1000_READ_REG(hw, CTRL);
- ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
- E1000_WRITE_REG(hw, CTRL, ctrl);
-
- /* Configure Flow Control after forcing link up. */
- ret_val = em_config_fc_after_link_up(hw);
- if(ret_val) {
- DEBUGOUT("Error configuring flow control\n");
- return ret_val;
- }
- }
- /* If we are forcing link and we are receiving /C/ ordered sets, re-enable
- * auto-negotiation in the TXCW register and disable forced link in the
- * Device Control register in an attempt to auto-negotiate with our link
- * partner.
- */
- else if(((hw->media_type == em_media_type_fiber) ||
- (hw->media_type == em_media_type_internal_serdes)) &&
- (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
- DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\r\n");
- E1000_WRITE_REG(hw, TXCW, hw->txcw);
- E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU));
-
- hw->serdes_link_down = FALSE;
- }
- /* If we force link for non-auto-negotiation switch, check link status
- * based on MAC synchronization for internal serdes media type.
- */
- else if((hw->media_type == em_media_type_internal_serdes) &&
- !(E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) {
- /* SYNCH bit and IV bit are sticky. */
- usec_delay(10);
- if(E1000_RXCW_SYNCH & E1000_READ_REG(hw, RXCW)) {
- if(!(rxcw & E1000_RXCW_IV)) {
- hw->serdes_link_down = FALSE;
- DEBUGOUT("SERDES: Link is up.\n");
- }
- } else {
- hw->serdes_link_down = TRUE;
- DEBUGOUT("SERDES: Link is down.\n");
- }
- }
- if((hw->media_type == em_media_type_internal_serdes) &&
- (E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) {
- hw->serdes_link_down = !(E1000_STATUS_LU & E1000_READ_REG(hw, STATUS));
- }
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Detects the current speed and duplex settings of the hardware.
- *
- * hw - Struct containing variables accessed by shared code
- * speed - Speed of the connection
- * duplex - Duplex setting of the connection
- *****************************************************************************/
-int32_t
-em_get_speed_and_duplex(struct em_hw *hw,
- uint16_t *speed,
- uint16_t *duplex)
-{
- uint32_t status;
- int32_t ret_val;
- uint16_t phy_data;
-
- DEBUGFUNC("em_get_speed_and_duplex");
-
- if(hw->mac_type >= em_82543) {
- status = E1000_READ_REG(hw, STATUS);
- if(status & E1000_STATUS_SPEED_1000) {
- *speed = SPEED_1000;
- DEBUGOUT("1000 Mbs, ");
- } else if(status & E1000_STATUS_SPEED_100) {
- *speed = SPEED_100;
- DEBUGOUT("100 Mbs, ");
- } else {
- *speed = SPEED_10;
- DEBUGOUT("10 Mbs, ");
- }
-
- if(status & E1000_STATUS_FD) {
- *duplex = FULL_DUPLEX;
- DEBUGOUT("Full Duplex\r\n");
- } else {
- *duplex = HALF_DUPLEX;
- DEBUGOUT(" Half Duplex\r\n");
- }
- } else {
- DEBUGOUT("1000 Mbs, Full Duplex\r\n");
- *speed = SPEED_1000;
- *duplex = FULL_DUPLEX;
- }
-
- /* IGP01 PHY may advertise full duplex operation after speed downgrade even
- * if it is operating at half duplex. Here we set the duplex settings to
- * match the duplex in the link partner's capabilities.
- */
- if(hw->phy_type == em_phy_igp && hw->speed_downgraded) {
- ret_val = em_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
- if(ret_val)
- return ret_val;
-
- if(!(phy_data & NWAY_ER_LP_NWAY_CAPS))
- *duplex = HALF_DUPLEX;
- else {
- ret_val = em_read_phy_reg(hw, PHY_LP_ABILITY, &phy_data);
- if(ret_val)
- return ret_val;
- if((*speed == SPEED_100 && !(phy_data & NWAY_LPAR_100TX_FD_CAPS)) ||
- (*speed == SPEED_10 && !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
- *duplex = HALF_DUPLEX;
- }
- }
-
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
-* Blocks until autoneg completes or times out (~4.5 seconds)
-*
-* hw - Struct containing variables accessed by shared code
-******************************************************************************/
-int32_t
-em_wait_autoneg(struct em_hw *hw)
-{
- int32_t ret_val;
- uint16_t i;
- uint16_t phy_data;
-
- DEBUGFUNC("em_wait_autoneg");
- DEBUGOUT("Waiting for Auto-Neg to complete.\n");
-
- /* We will wait for autoneg to complete or 4.5 seconds to expire. */
- for(i = PHY_AUTO_NEG_TIME; i > 0; i--) {
- /* Read the MII Status Register and wait for Auto-Neg
- * Complete bit to be set.
- */
- ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data);
- if(ret_val)
- return ret_val;
- ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data);
- if(ret_val)
- return ret_val;
- if(phy_data & MII_SR_AUTONEG_COMPLETE) {
- return E1000_SUCCESS;
- }
- msec_delay(100);
- }
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
-* Raises the Management Data Clock
-*
-* hw - Struct containing variables accessed by shared code
-* ctrl - Device control register's current value
-******************************************************************************/
-static void
-em_raise_mdi_clk(struct em_hw *hw,
- uint32_t *ctrl)
-{
- /* Raise the clock input to the Management Data Clock (by setting the MDC
- * bit), and then delay 10 microseconds.
- */
- E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC));
- E1000_WRITE_FLUSH(hw);
- usec_delay(10);
-}
-
-/******************************************************************************
-* Lowers the Management Data Clock
-*
-* hw - Struct containing variables accessed by shared code
-* ctrl - Device control register's current value
-******************************************************************************/
-static void
-em_lower_mdi_clk(struct em_hw *hw,
- uint32_t *ctrl)
-{
- /* Lower the clock input to the Management Data Clock (by clearing the MDC
- * bit), and then delay 10 microseconds.
- */
- E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC));
- E1000_WRITE_FLUSH(hw);
- usec_delay(10);
-}
-
-/******************************************************************************
-* Shifts data bits out to the PHY
-*
-* hw - Struct containing variables accessed by shared code
-* data - Data to send out to the PHY
-* count - Number of bits to shift out
-*
-* Bits are shifted out in MSB to LSB order.
-******************************************************************************/
-static void
-em_shift_out_mdi_bits(struct em_hw *hw,
- uint32_t data,
- uint16_t count)
-{
- uint32_t ctrl;
- uint32_t mask;
-
- /* We need to shift "count" number of bits out to the PHY. So, the value
- * in the "data" parameter will be shifted out to the PHY one bit at a
- * time. In order to do this, "data" must be broken down into bits.
- */
- mask = 0x01;
- mask <<= (count - 1);
-
- ctrl = E1000_READ_REG(hw, CTRL);
-
- /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
- ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
-
- while(mask) {
- /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
- * then raising and lowering the Management Data Clock. A "0" is
- * shifted out to the PHY by setting the MDIO bit to "0" and then
- * raising and lowering the clock.
- */
- if(data & mask) ctrl |= E1000_CTRL_MDIO;
- else ctrl &= ~E1000_CTRL_MDIO;
-
- E1000_WRITE_REG(hw, CTRL, ctrl);
- E1000_WRITE_FLUSH(hw);
-
- usec_delay(10);
-
- em_raise_mdi_clk(hw, &ctrl);
- em_lower_mdi_clk(hw, &ctrl);
-
- mask = mask >> 1;
- }
-}
-
-/******************************************************************************
-* Shifts data bits in from the PHY
-*
-* hw - Struct containing variables accessed by shared code
-*
-* Bits are shifted in in MSB to LSB order.
-******************************************************************************/
-static uint16_t
-em_shift_in_mdi_bits(struct em_hw *hw)
-{
- uint32_t ctrl;
- uint16_t data = 0;
- uint8_t i;
-
- /* In order to read a register from the PHY, we need to shift in a total
- * of 18 bits from the PHY. The first two bit (turnaround) times are used
- * to avoid contention on the MDIO pin when a read operation is performed.
- * These two bits are ignored by us and thrown away. Bits are "shifted in"
- * by raising the input to the Management Data Clock (setting the MDC bit),
- * and then reading the value of the MDIO bit.
- */
- ctrl = E1000_READ_REG(hw, CTRL);
-
- /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
- ctrl &= ~E1000_CTRL_MDIO_DIR;
- ctrl &= ~E1000_CTRL_MDIO;
-
- E1000_WRITE_REG(hw, CTRL, ctrl);
- E1000_WRITE_FLUSH(hw);
-
- /* Raise and Lower the clock before reading in the data. This accounts for
- * the turnaround bits. The first clock occurred when we clocked out the
- * last bit of the Register Address.
- */
- em_raise_mdi_clk(hw, &ctrl);
- em_lower_mdi_clk(hw, &ctrl);
-
- for(data = 0, i = 0; i < 16; i++) {
- data = data << 1;
- em_raise_mdi_clk(hw, &ctrl);
- ctrl = E1000_READ_REG(hw, CTRL);
- /* Check to see if we shifted in a "1". */
- if(ctrl & E1000_CTRL_MDIO) data |= 1;
- em_lower_mdi_clk(hw, &ctrl);
- }
-
- em_raise_mdi_clk(hw, &ctrl);
- em_lower_mdi_clk(hw, &ctrl);
-
- return data;
-}
-
-/*****************************************************************************
-* Reads the value from a PHY register, if the value is on a specific non zero
-* page, sets the page first.
-* hw - Struct containing variables accessed by shared code
-* reg_addr - address of the PHY register to read
-******************************************************************************/
-int32_t
-em_read_phy_reg(struct em_hw *hw,
- uint32_t reg_addr,
- uint16_t *phy_data)
-{
- uint32_t ret_val;
-
- DEBUGFUNC("em_read_phy_reg");
-
- if((hw->phy_type == em_phy_igp ||
- hw->phy_type == em_phy_igp_2) &&
- (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
- ret_val = em_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
- (uint16_t)reg_addr);
- if(ret_val) {
- return ret_val;
- }
- }
-
- ret_val = em_read_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
- phy_data);
-
- return ret_val;
-}
-
-int32_t
-em_read_phy_reg_ex(struct em_hw *hw,
- uint32_t reg_addr,
- uint16_t *phy_data)
-{
- uint32_t i;
- uint32_t mdic = 0;
- const uint32_t phy_addr = 1;
-
- DEBUGFUNC("em_read_phy_reg_ex");
-
- if(reg_addr > MAX_PHY_REG_ADDRESS) {
- DEBUGOUT1("PHY Address %d is out of range\n", reg_addr);
- return -E1000_ERR_PARAM;
- }
-
- if(hw->mac_type > em_82543) {
- /* Set up Op-code, Phy Address, and register address in the MDI
- * Control register. The MAC will take care of interfacing with the
- * PHY to retrieve the desired data.
- */
- mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
- (phy_addr << E1000_MDIC_PHY_SHIFT) |
- (E1000_MDIC_OP_READ));
-
- E1000_WRITE_REG(hw, MDIC, mdic);
-
- /* Poll the ready bit to see if the MDI read completed */
- for(i = 0; i < 64; i++) {
- usec_delay(50);
- mdic = E1000_READ_REG(hw, MDIC);
- if(mdic & E1000_MDIC_READY) break;
- }
- if(!(mdic & E1000_MDIC_READY)) {
- DEBUGOUT("MDI Read did not complete\n");
- return -E1000_ERR_PHY;
- }
- if(mdic & E1000_MDIC_ERROR) {
- DEBUGOUT("MDI Error\n");
- return -E1000_ERR_PHY;
- }
- *phy_data = (uint16_t) mdic;
- } else {
- /* We must first send a preamble through the MDIO pin to signal the
- * beginning of an MII instruction. This is done by sending 32
- * consecutive "1" bits.
- */
- em_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
-
- /* Now combine the next few fields that are required for a read
- * operation. We use this method instead of calling the
- * em_shift_out_mdi_bits routine five different times. The format of
- * a MII read instruction consists of a shift out of 14 bits and is
- * defined as follows:
- * <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
- * followed by a shift in of 18 bits. This first two bits shifted in
- * are TurnAround bits used to avoid contention on the MDIO pin when a
- * READ operation is performed. These two bits are thrown away
- * followed by a shift in of 16 bits which contains the desired data.
- */
- mdic = ((reg_addr) | (phy_addr << 5) |
- (PHY_OP_READ << 10) | (PHY_SOF << 12));
-
- em_shift_out_mdi_bits(hw, mdic, 14);
-
- /* Now that we've shifted out the read command to the MII, we need to
- * "shift in" the 16-bit value (18 total bits) of the requested PHY
- * register address.
- */
- *phy_data = em_shift_in_mdi_bits(hw);
- }
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
-* Writes a value to a PHY register
-*
-* hw - Struct containing variables accessed by shared code
-* reg_addr - address of the PHY register to write
-* data - data to write to the PHY
-******************************************************************************/
-int32_t
-em_write_phy_reg(struct em_hw *hw,
- uint32_t reg_addr,
- uint16_t phy_data)
-{
- uint32_t ret_val;
-
- DEBUGFUNC("em_write_phy_reg");
-
- if((hw->phy_type == em_phy_igp ||
- hw->phy_type == em_phy_igp_2) &&
- (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
- ret_val = em_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
- (uint16_t)reg_addr);
- if(ret_val) {
- return ret_val;
- }
- }
-
- ret_val = em_write_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
- phy_data);
-
- return ret_val;
-}
-
-int32_t
-em_write_phy_reg_ex(struct em_hw *hw,
- uint32_t reg_addr,
- uint16_t phy_data)
-{
- uint32_t i;
- uint32_t mdic = 0;
- const uint32_t phy_addr = 1;
-
- DEBUGFUNC("em_write_phy_reg_ex");
-
- if(reg_addr > MAX_PHY_REG_ADDRESS) {
- DEBUGOUT1("PHY Address %d is out of range\n", reg_addr);
- return -E1000_ERR_PARAM;
- }
-
- if(hw->mac_type > em_82543) {
- /* Set up Op-code, Phy Address, register address, and data intended
- * for the PHY register in the MDI Control register. The MAC will take
- * care of interfacing with the PHY to send the desired data.
- */
- mdic = (((uint32_t) phy_data) |
- (reg_addr << E1000_MDIC_REG_SHIFT) |
- (phy_addr << E1000_MDIC_PHY_SHIFT) |
- (E1000_MDIC_OP_WRITE));
-
- E1000_WRITE_REG(hw, MDIC, mdic);
-
- /* Poll the ready bit to see if the MDI read completed */
- for(i = 0; i < 640; i++) {
- usec_delay(5);
- mdic = E1000_READ_REG(hw, MDIC);
- if(mdic & E1000_MDIC_READY) break;
- }
- if(!(mdic & E1000_MDIC_READY)) {
- DEBUGOUT("MDI Write did not complete\n");
- return -E1000_ERR_PHY;
- }
- } else {
- /* We'll need to use the SW defined pins to shift the write command
- * out to the PHY. We first send a preamble to the PHY to signal the
- * beginning of the MII instruction. This is done by sending 32
- * consecutive "1" bits.
- */
- em_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
-
- /* Now combine the remaining required fields that will indicate a
- * write operation. We use this method instead of calling the
- * em_shift_out_mdi_bits routine for each field in the command. The
- * format of a MII write instruction is as follows:
- * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
- */
- mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
- (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
- mdic <<= 16;
- mdic |= (uint32_t) phy_data;
-
- em_shift_out_mdi_bits(hw, mdic, 32);
- }
-
- return E1000_SUCCESS;
-}
-
-
-/******************************************************************************
-* Returns the PHY to the power-on reset state
-*
-* hw - Struct containing variables accessed by shared code
-******************************************************************************/
-int32_t
-em_phy_hw_reset(struct em_hw *hw)
-{
- uint32_t ctrl, ctrl_ext;
- uint32_t led_ctrl;
- int32_t ret_val;
-
- DEBUGFUNC("em_phy_hw_reset");
-
- /* In the case of the phy reset being blocked, it's not an error, we
- * simply return success without performing the reset. */
- ret_val = em_check_phy_reset_block(hw);
- if (ret_val)
- return E1000_SUCCESS;
-
- DEBUGOUT("Resetting Phy...\n");
-
- if(hw->mac_type > em_82543) {
- /* Read the device control register and assert the E1000_CTRL_PHY_RST
- * bit. Then, take it out of reset.
- */
- ctrl = E1000_READ_REG(hw, CTRL);
- E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST);
- E1000_WRITE_FLUSH(hw);
- msec_delay(10);
- E1000_WRITE_REG(hw, CTRL, ctrl);
- E1000_WRITE_FLUSH(hw);
- } else {
- /* Read the Extended Device Control Register, assert the PHY_RESET_DIR
- * bit to put the PHY into reset. Then, take it out of reset.
- */
- ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
- ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
- ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
- E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
- E1000_WRITE_FLUSH(hw);
- msec_delay(10);
- ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
- E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
- E1000_WRITE_FLUSH(hw);
- }
- usec_delay(150);
-
- if((hw->mac_type == em_82541) || (hw->mac_type == em_82547)) {
- /* Configure activity LED after PHY reset */
- led_ctrl = E1000_READ_REG(hw, LEDCTL);
- led_ctrl &= IGP_ACTIVITY_LED_MASK;
- led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
- E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
- }
-
- /* Wait for FW to finish PHY configuration. */
- ret_val = em_get_phy_cfg_done(hw);
-
- return ret_val;
-}
-
-/******************************************************************************
-* Resets the PHY
-*
-* hw - Struct containing variables accessed by shared code
-*
-* Sets bit 15 of the MII Control regiser
-******************************************************************************/
-int32_t
-em_phy_reset(struct em_hw *hw)
-{
- int32_t ret_val;
- uint16_t phy_data;
-
- DEBUGFUNC("em_phy_reset");
-
- /* In the case of the phy reset being blocked, it's not an error, we
- * simply return success without performing the reset. */
- ret_val = em_check_phy_reset_block(hw);
- if (ret_val)
- return E1000_SUCCESS;
-
- switch (hw->mac_type) {
- case em_82541_rev_2:
- ret_val = em_phy_hw_reset(hw);
- if(ret_val)
- return ret_val;
- break;
- default:
- ret_val = em_read_phy_reg(hw, PHY_CTRL, &phy_data);
- if(ret_val)
- return ret_val;
-
- phy_data |= MII_CR_RESET;
- ret_val = em_write_phy_reg(hw, PHY_CTRL, phy_data);
- if(ret_val)
- return ret_val;
-
- usec_delay(1);
- break;
- }
-
- if(hw->phy_type == em_phy_igp || hw->phy_type == em_phy_igp_2)
- em_phy_init_script(hw);
-
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
-* Probes the expected PHY address for known PHY IDs
-*
-* hw - Struct containing variables accessed by shared code
-******************************************************************************/
-int32_t
-em_detect_gig_phy(struct em_hw *hw)
-{
- int32_t phy_init_status, ret_val;
- uint16_t phy_id_high, phy_id_low;
- boolean_t match = FALSE;
-
- DEBUGFUNC("em_detect_gig_phy");
-
- /* Read the PHY ID Registers to identify which PHY is onboard. */
- ret_val = em_read_phy_reg(hw, PHY_ID1, &phy_id_high);
- if(ret_val)
- return ret_val;
-
- hw->phy_id = (uint32_t) (phy_id_high << 16);
- usec_delay(20);
- ret_val = em_read_phy_reg(hw, PHY_ID2, &phy_id_low);
- if(ret_val)
- return ret_val;
-
- hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK);
- hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK;
-
- switch(hw->mac_type) {
- case em_82543:
- if(hw->phy_id == M88E1000_E_PHY_ID) match = TRUE;
- break;
- case em_82544:
- if(hw->phy_id == M88E1000_I_PHY_ID) match = TRUE;
- break;
- case em_82540:
- case em_82545:
- case em_82545_rev_3:
- case em_82546:
- case em_82546_rev_3:
- if(hw->phy_id == M88E1011_I_PHY_ID) match = TRUE;
- break;
- case em_82541:
- case em_82541_rev_2:
- case em_82547:
- case em_82547_rev_2:
- if(hw->phy_id == IGP01E1000_I_PHY_ID) match = TRUE;
- break;
- case em_82573:
- if(hw->phy_id == M88E1111_I_PHY_ID) match = TRUE;
- break;
- default:
- DEBUGOUT1("Invalid MAC type %d\n", hw->mac_type);
- return -E1000_ERR_CONFIG;
- }
- phy_init_status = em_set_phy_type(hw);
-
- if ((match) && (phy_init_status == E1000_SUCCESS)) {
- DEBUGOUT1("PHY ID 0x%X detected\n", hw->phy_id);
- return E1000_SUCCESS;
- }
- DEBUGOUT1("Invalid PHY ID 0x%X\n", hw->phy_id);
- return -E1000_ERR_PHY;
-}
-
-/******************************************************************************
-* Resets the PHY's DSP
-*
-* hw - Struct containing variables accessed by shared code
-******************************************************************************/
-static int32_t
-em_phy_reset_dsp(struct em_hw *hw)
-{
- int32_t ret_val;
- DEBUGFUNC("em_phy_reset_dsp");
-
- do {
- ret_val = em_write_phy_reg(hw, 29, 0x001d);
- if(ret_val) break;
- ret_val = em_write_phy_reg(hw, 30, 0x00c1);
- if(ret_val) break;
- ret_val = em_write_phy_reg(hw, 30, 0x0000);
- if(ret_val) break;
- ret_val = E1000_SUCCESS;
- } while(0);
-
- return ret_val;
-}
-
-/******************************************************************************
-* Get PHY information from various PHY registers for igp PHY only.
-*
-* hw - Struct containing variables accessed by shared code
-* phy_info - PHY information structure
-******************************************************************************/
-int32_t
-em_phy_igp_get_info(struct em_hw *hw,
- struct em_phy_info *phy_info)
-{
- int32_t ret_val;
- uint16_t phy_data, polarity, min_length, max_length, average;
-
- DEBUGFUNC("em_phy_igp_get_info");
-
- /* The downshift status is checked only once, after link is established,
- * and it stored in the hw->speed_downgraded parameter. */
- phy_info->downshift = (em_downshift)hw->speed_downgraded;
-
- /* IGP01E1000 does not need to support it. */
- phy_info->extended_10bt_distance = em_10bt_ext_dist_enable_normal;
-
- /* IGP01E1000 always correct polarity reversal */
- phy_info->polarity_correction = em_polarity_reversal_enabled;
-
- /* Check polarity status */
- ret_val = em_check_polarity(hw, &polarity);
- if(ret_val)
- return ret_val;
-
- phy_info->cable_polarity = polarity;
-
- ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &phy_data);
- if(ret_val)
- return ret_val;
-
- phy_info->mdix_mode = (phy_data & IGP01E1000_PSSR_MDIX) >>
- IGP01E1000_PSSR_MDIX_SHIFT;
-
- if((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
- IGP01E1000_PSSR_SPEED_1000MBPS) {
- /* Local/Remote Receiver Information are only valid at 1000 Mbps */
- ret_val = em_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
- if(ret_val)
- return ret_val;
-
- phy_info->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS) >>
- SR_1000T_LOCAL_RX_STATUS_SHIFT;
- phy_info->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS) >>
- SR_1000T_REMOTE_RX_STATUS_SHIFT;
-
- /* Get cable length */
- ret_val = em_get_cable_length(hw, &min_length, &max_length);
- if(ret_val)
- return ret_val;
-
- /* Translate to old method */
- average = (max_length + min_length) / 2;
-
- if(average <= em_igp_cable_length_50)
- phy_info->cable_length = em_cable_length_50;
- else if(average <= em_igp_cable_length_80)
- phy_info->cable_length = em_cable_length_50_80;
- else if(average <= em_igp_cable_length_110)
- phy_info->cable_length = em_cable_length_80_110;
- else if(average <= em_igp_cable_length_140)
- phy_info->cable_length = em_cable_length_110_140;
- else
- phy_info->cable_length = em_cable_length_140;
- }
-
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
-* Get PHY information from various PHY registers fot m88 PHY only.
-*
-* hw - Struct containing variables accessed by shared code
-* phy_info - PHY information structure
-******************************************************************************/
-int32_t
-em_phy_m88_get_info(struct em_hw *hw,
- struct em_phy_info *phy_info)
-{
- int32_t ret_val;
- uint16_t phy_data, polarity;
-
- DEBUGFUNC("em_phy_m88_get_info");
-
- /* The downshift status is checked only once, after link is established,
- * and it stored in the hw->speed_downgraded parameter. */
- phy_info->downshift = (em_downshift)hw->speed_downgraded;
-
- ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
- if(ret_val)
- return ret_val;
-
- phy_info->extended_10bt_distance =
- (phy_data & M88E1000_PSCR_10BT_EXT_DIST_ENABLE) >>
- M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT;
- phy_info->polarity_correction =
- (phy_data & M88E1000_PSCR_POLARITY_REVERSAL) >>
- M88E1000_PSCR_POLARITY_REVERSAL_SHIFT;
-
- /* Check polarity status */
- ret_val = em_check_polarity(hw, &polarity);
- if(ret_val)
- return ret_val;
- phy_info->cable_polarity = polarity;
-
- ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
- if(ret_val)
- return ret_val;
-
- phy_info->mdix_mode = (phy_data & M88E1000_PSSR_MDIX) >>
- M88E1000_PSSR_MDIX_SHIFT;
-
- if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
- /* Cable Length Estimation and Local/Remote Receiver Information
- * are only valid at 1000 Mbps.
- */
- phy_info->cable_length = ((phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
- M88E1000_PSSR_CABLE_LENGTH_SHIFT);
-
- ret_val = em_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
- if(ret_val)
- return ret_val;
-
- phy_info->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS) >>
- SR_1000T_LOCAL_RX_STATUS_SHIFT;
-
- phy_info->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS) >>
- SR_1000T_REMOTE_RX_STATUS_SHIFT;
- }
-
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
-* Get PHY information from various PHY registers
-*
-* hw - Struct containing variables accessed by shared code
-* phy_info - PHY information structure
-******************************************************************************/
-int32_t
-em_phy_get_info(struct em_hw *hw,
- struct em_phy_info *phy_info)
-{
- int32_t ret_val;
- uint16_t phy_data;
-
- DEBUGFUNC("em_phy_get_info");
-
- phy_info->cable_length = em_cable_length_undefined;
- phy_info->extended_10bt_distance = em_10bt_ext_dist_enable_undefined;
- phy_info->cable_polarity = em_rev_polarity_undefined;
- phy_info->downshift = em_downshift_undefined;
- phy_info->polarity_correction = em_polarity_reversal_undefined;
- phy_info->mdix_mode = em_auto_x_mode_undefined;
- phy_info->local_rx = em_1000t_rx_status_undefined;
- phy_info->remote_rx = em_1000t_rx_status_undefined;
-
- if(hw->media_type != em_media_type_copper) {
- DEBUGOUT("PHY info is only valid for copper media\n");
- return -E1000_ERR_CONFIG;
- }
-
- ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data);
- if(ret_val)
- return ret_val;
-
- ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data);
- if(ret_val)
- return ret_val;
-
- if((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) {
- DEBUGOUT("PHY info is only valid if link is up\n");
- return -E1000_ERR_CONFIG;
- }
-
- if(hw->phy_type == em_phy_igp ||
- hw->phy_type == em_phy_igp_2)
- return em_phy_igp_get_info(hw, phy_info);
- else
- return em_phy_m88_get_info(hw, phy_info);
-}
-
-int32_t
-em_validate_mdi_setting(struct em_hw *hw)
-{
- DEBUGFUNC("em_validate_mdi_settings");
-
- if(!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) {
- DEBUGOUT("Invalid MDI setting detected\n");
- hw->mdix = 1;
- return -E1000_ERR_CONFIG;
- }
- return E1000_SUCCESS;
-}
-
-
-/******************************************************************************
- * Sets up eeprom variables in the hw struct. Must be called after mac_type
- * is configured.
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-int32_t
-em_init_eeprom_params(struct em_hw *hw)
-{
- struct em_eeprom_info *eeprom = &hw->eeprom;
- uint32_t eecd = E1000_READ_REG(hw, EECD);
- int32_t ret_val = E1000_SUCCESS;
- uint16_t eeprom_size;
-
- DEBUGFUNC("em_init_eeprom_params");
-
- switch (hw->mac_type) {
- case em_82542_rev2_0:
- case em_82542_rev2_1:
- case em_82543:
- case em_82544:
- eeprom->type = em_eeprom_microwire;
- eeprom->word_size = 64;
- eeprom->opcode_bits = 3;
- eeprom->address_bits = 6;
- eeprom->delay_usec = 50;
- eeprom->use_eerd = FALSE;
- eeprom->use_eewr = FALSE;
- break;
- case em_82540:
- case em_82545:
- case em_82545_rev_3:
- case em_82546:
- case em_82546_rev_3:
- eeprom->type = em_eeprom_microwire;
- eeprom->opcode_bits = 3;
- eeprom->delay_usec = 50;
- if(eecd & E1000_EECD_SIZE) {
- eeprom->word_size = 256;
- eeprom->address_bits = 8;
- } else {
- eeprom->word_size = 64;
- eeprom->address_bits = 6;
- }
- eeprom->use_eerd = FALSE;
- eeprom->use_eewr = FALSE;
- break;
- case em_82541:
- case em_82541_rev_2:
- case em_82547:
- case em_82547_rev_2:
- if (eecd & E1000_EECD_TYPE) {
- eeprom->type = em_eeprom_spi;
- eeprom->opcode_bits = 8;
- eeprom->delay_usec = 1;
- if (eecd & E1000_EECD_ADDR_BITS) {
- eeprom->page_size = 32;
- eeprom->address_bits = 16;
- } else {
- eeprom->page_size = 8;
- eeprom->address_bits = 8;
- }
- } else {
- eeprom->type = em_eeprom_microwire;
- eeprom->opcode_bits = 3;
- eeprom->delay_usec = 50;
- if (eecd & E1000_EECD_ADDR_BITS) {
- eeprom->word_size = 256;
- eeprom->address_bits = 8;
- } else {
- eeprom->word_size = 64;
- eeprom->address_bits = 6;
- }
- }
- eeprom->use_eerd = FALSE;
- eeprom->use_eewr = FALSE;
- break;
- case em_82573:
- eeprom->type = em_eeprom_spi;
- eeprom->opcode_bits = 8;
- eeprom->delay_usec = 1;
- if (eecd & E1000_EECD_ADDR_BITS) {
- eeprom->page_size = 32;
- eeprom->address_bits = 16;
- } else {
- eeprom->page_size = 8;
- eeprom->address_bits = 8;
- }
- eeprom->use_eerd = TRUE;
- eeprom->use_eewr = TRUE;
- if(em_is_onboard_nvm_eeprom(hw) == FALSE) {
- eeprom->type = em_eeprom_flash;
- eeprom->word_size = 2048;
-
- /* Ensure that the Autonomous FLASH update bit is cleared due to
- * Flash update issue on parts which use a FLASH for NVM. */
- eecd &= ~E1000_EECD_AUPDEN;
- E1000_WRITE_REG(hw, EECD, eecd);
- }
- break;
- default:
- break;
- }
-
- if (eeprom->type == em_eeprom_spi) {
- /* eeprom_size will be an enum [0..8] that maps to eeprom sizes 128B to
- * 32KB (incremented by powers of 2).
- */
- if(hw->mac_type <= em_82547_rev_2) {
- /* Set to default value for initial eeprom read. */
- eeprom->word_size = 64;
- ret_val = em_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size);
- if(ret_val)
- return ret_val;
- eeprom_size = (eeprom_size & EEPROM_SIZE_MASK) >> EEPROM_SIZE_SHIFT;
- /* 256B eeprom size was not supported in earlier hardware, so we
- * bump eeprom_size up one to ensure that "1" (which maps to 256B)
- * is never the result used in the shifting logic below. */
- if(eeprom_size)
- eeprom_size++;
- } else {
- eeprom_size = (uint16_t)((eecd & E1000_EECD_SIZE_EX_MASK) >>
- E1000_EECD_SIZE_EX_SHIFT);
- }
-
- eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
- }
- return ret_val;
-}
-
-/******************************************************************************
- * Raises the EEPROM's clock input.
- *
- * hw - Struct containing variables accessed by shared code
- * eecd - EECD's current value
- *****************************************************************************/
-static void
-em_raise_ee_clk(struct em_hw *hw,
- uint32_t *eecd)
-{
- /* Raise the clock input to the EEPROM (by setting the SK bit), and then
- * wait <delay> microseconds.
- */
- *eecd = *eecd | E1000_EECD_SK;
- E1000_WRITE_REG(hw, EECD, *eecd);
- E1000_WRITE_FLUSH(hw);
- usec_delay(hw->eeprom.delay_usec);
-}
-
-/******************************************************************************
- * Lowers the EEPROM's clock input.
- *
- * hw - Struct containing variables accessed by shared code
- * eecd - EECD's current value
- *****************************************************************************/
-static void
-em_lower_ee_clk(struct em_hw *hw,
- uint32_t *eecd)
-{
- /* Lower the clock input to the EEPROM (by clearing the SK bit), and then
- * wait 50 microseconds.
- */
- *eecd = *eecd & ~E1000_EECD_SK;
- E1000_WRITE_REG(hw, EECD, *eecd);
- E1000_WRITE_FLUSH(hw);
- usec_delay(hw->eeprom.delay_usec);
-}
-
-/******************************************************************************
- * Shift data bits out to the EEPROM.
- *
- * hw - Struct containing variables accessed by shared code
- * data - data to send to the EEPROM
- * count - number of bits to shift out
- *****************************************************************************/
-static void
-em_shift_out_ee_bits(struct em_hw *hw,
- uint16_t data,
- uint16_t count)
-{
- struct em_eeprom_info *eeprom = &hw->eeprom;
- uint32_t eecd;
- uint32_t mask;
-
- /* We need to shift "count" bits out to the EEPROM. So, value in the
- * "data" parameter will be shifted out to the EEPROM one bit at a time.
- * In order to do this, "data" must be broken down into bits.
- */
- mask = 0x01 << (count - 1);
- eecd = E1000_READ_REG(hw, EECD);
- if (eeprom->type == em_eeprom_microwire) {
- eecd &= ~E1000_EECD_DO;
- } else if (eeprom->type == em_eeprom_spi) {
- eecd |= E1000_EECD_DO;
- }
- do {
- /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
- * and then raising and then lowering the clock (the SK bit controls
- * the clock input to the EEPROM). A "0" is shifted out to the EEPROM
- * by setting "DI" to "0" and then raising and then lowering the clock.
- */
- eecd &= ~E1000_EECD_DI;
-
- if(data & mask)
- eecd |= E1000_EECD_DI;
-
- E1000_WRITE_REG(hw, EECD, eecd);
- E1000_WRITE_FLUSH(hw);
-
- usec_delay(eeprom->delay_usec);
-
- em_raise_ee_clk(hw, &eecd);
- em_lower_ee_clk(hw, &eecd);
-
- mask = mask >> 1;
-
- } while(mask);
-
- /* We leave the "DI" bit set to "0" when we leave this routine. */
- eecd &= ~E1000_EECD_DI;
- E1000_WRITE_REG(hw, EECD, eecd);
-}
-
-/******************************************************************************
- * Shift data bits in from the EEPROM
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-static uint16_t
-em_shift_in_ee_bits(struct em_hw *hw,
- uint16_t count)
-{
- uint32_t eecd;
- uint32_t i;
- uint16_t data;
-
- /* In order to read a register from the EEPROM, we need to shift 'count'
- * bits in from the EEPROM. Bits are "shifted in" by raising the clock
- * input to the EEPROM (setting the SK bit), and then reading the value of
- * the "DO" bit. During this "shifting in" process the "DI" bit should
- * always be clear.
- */
-
- eecd = E1000_READ_REG(hw, EECD);
-
- eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
- data = 0;
-
- for(i = 0; i < count; i++) {
- data = data << 1;
- em_raise_ee_clk(hw, &eecd);
-
- eecd = E1000_READ_REG(hw, EECD);
-
- eecd &= ~(E1000_EECD_DI);
- if(eecd & E1000_EECD_DO)
- data |= 1;
-
- em_lower_ee_clk(hw, &eecd);
- }
-
- return data;
-}
-
-/******************************************************************************
- * Prepares EEPROM for access
- *
- * hw - Struct containing variables accessed by shared code
- *
- * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
- * function should be called before issuing a command to the EEPROM.
- *****************************************************************************/
-static int32_t
-em_acquire_eeprom(struct em_hw *hw)
-{
- struct em_eeprom_info *eeprom = &hw->eeprom;
- uint32_t eecd, i=0;
-
- DEBUGFUNC("em_acquire_eeprom");
-
- if(em_get_hw_eeprom_semaphore(hw))
- return -E1000_ERR_EEPROM;
-
- eecd = E1000_READ_REG(hw, EECD);
-
- if (hw->mac_type != em_82573) {
- /* Request EEPROM Access */
- if(hw->mac_type > em_82544) {
- eecd |= E1000_EECD_REQ;
- E1000_WRITE_REG(hw, EECD, eecd);
- eecd = E1000_READ_REG(hw, EECD);
- while((!(eecd & E1000_EECD_GNT)) &&
- (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
- i++;
- usec_delay(5);
- eecd = E1000_READ_REG(hw, EECD);
- }
- if(!(eecd & E1000_EECD_GNT)) {
- eecd &= ~E1000_EECD_REQ;
- E1000_WRITE_REG(hw, EECD, eecd);
- DEBUGOUT("Could not acquire EEPROM grant\n");
- return -E1000_ERR_EEPROM;
- }
- }
- }
-
- /* Setup EEPROM for Read/Write */
-
- if (eeprom->type == em_eeprom_microwire) {
- /* Clear SK and DI */
- eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
- E1000_WRITE_REG(hw, EECD, eecd);
-
- /* Set CS */
- eecd |= E1000_EECD_CS;
- E1000_WRITE_REG(hw, EECD, eecd);
- } else if (eeprom->type == em_eeprom_spi) {
- /* Clear SK and CS */
- eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
- E1000_WRITE_REG(hw, EECD, eecd);
- usec_delay(1);
- }
-
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Returns EEPROM to a "standby" state
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-static void
-em_standby_eeprom(struct em_hw *hw)
-{
- struct em_eeprom_info *eeprom = &hw->eeprom;
- uint32_t eecd;
-
- eecd = E1000_READ_REG(hw, EECD);
-
- if(eeprom->type == em_eeprom_microwire) {
- eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
- E1000_WRITE_REG(hw, EECD, eecd);
- E1000_WRITE_FLUSH(hw);
- usec_delay(eeprom->delay_usec);
-
- /* Clock high */
- eecd |= E1000_EECD_SK;
- E1000_WRITE_REG(hw, EECD, eecd);
- E1000_WRITE_FLUSH(hw);
- usec_delay(eeprom->delay_usec);
-
- /* Select EEPROM */
- eecd |= E1000_EECD_CS;
- E1000_WRITE_REG(hw, EECD, eecd);
- E1000_WRITE_FLUSH(hw);
- usec_delay(eeprom->delay_usec);
-
- /* Clock low */
- eecd &= ~E1000_EECD_SK;
- E1000_WRITE_REG(hw, EECD, eecd);
- E1000_WRITE_FLUSH(hw);
- usec_delay(eeprom->delay_usec);
- } else if(eeprom->type == em_eeprom_spi) {
- /* Toggle CS to flush commands */
- eecd |= E1000_EECD_CS;
- E1000_WRITE_REG(hw, EECD, eecd);
- E1000_WRITE_FLUSH(hw);
- usec_delay(eeprom->delay_usec);
- eecd &= ~E1000_EECD_CS;
- E1000_WRITE_REG(hw, EECD, eecd);
- E1000_WRITE_FLUSH(hw);
- usec_delay(eeprom->delay_usec);
- }
-}
-
-/******************************************************************************
- * Terminates a command by inverting the EEPROM's chip select pin
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-static void
-em_release_eeprom(struct em_hw *hw)
-{
- uint32_t eecd;
-
- DEBUGFUNC("em_release_eeprom");
-
- eecd = E1000_READ_REG(hw, EECD);
-
- if (hw->eeprom.type == em_eeprom_spi) {
- eecd |= E1000_EECD_CS; /* Pull CS high */
- eecd &= ~E1000_EECD_SK; /* Lower SCK */
-
- E1000_WRITE_REG(hw, EECD, eecd);
-
- usec_delay(hw->eeprom.delay_usec);
- } else if(hw->eeprom.type == em_eeprom_microwire) {
- /* cleanup eeprom */
-
- /* CS on Microwire is active-high */
- eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
-
- E1000_WRITE_REG(hw, EECD, eecd);
-
- /* Rising edge of clock */
- eecd |= E1000_EECD_SK;
- E1000_WRITE_REG(hw, EECD, eecd);
- E1000_WRITE_FLUSH(hw);
- usec_delay(hw->eeprom.delay_usec);
-
- /* Falling edge of clock */
- eecd &= ~E1000_EECD_SK;
- E1000_WRITE_REG(hw, EECD, eecd);
- E1000_WRITE_FLUSH(hw);
- usec_delay(hw->eeprom.delay_usec);
- }
-
- /* Stop requesting EEPROM access */
- if(hw->mac_type > em_82544) {
- eecd &= ~E1000_EECD_REQ;
- E1000_WRITE_REG(hw, EECD, eecd);
- }
-
- em_put_hw_eeprom_semaphore(hw);
-}
-
-/******************************************************************************
- * Reads a 16 bit word from the EEPROM.
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-int32_t
-em_spi_eeprom_ready(struct em_hw *hw)
-{
- uint16_t retry_count = 0;
- uint8_t spi_stat_reg;
-
- DEBUGFUNC("em_spi_eeprom_ready");
-
- /* Read "Status Register" repeatedly until the LSB is cleared. The
- * EEPROM will signal that the command has been completed by clearing
- * bit 0 of the internal status register. If it's not cleared within
- * 5 milliseconds, then error out.
- */
- retry_count = 0;
- do {
- em_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
- hw->eeprom.opcode_bits);
- spi_stat_reg = (uint8_t)em_shift_in_ee_bits(hw, 8);
- if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
- break;
-
- usec_delay(5);
- retry_count += 5;
-
- em_standby_eeprom(hw);
- } while(retry_count < EEPROM_MAX_RETRY_SPI);
-
- /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
- * only 0-5mSec on 5V devices)
- */
- if(retry_count >= EEPROM_MAX_RETRY_SPI) {
- DEBUGOUT("SPI EEPROM Status error\n");
- return -E1000_ERR_EEPROM;
- }
-
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Reads a 16 bit word from the EEPROM.
- *
- * hw - Struct containing variables accessed by shared code
- * offset - offset of word in the EEPROM to read
- * data - word read from the EEPROM
- * words - number of words to read
- *****************************************************************************/
-int32_t
-em_read_eeprom(struct em_hw *hw,
- uint16_t offset,
- uint16_t words,
- uint16_t *data)
-{
- struct em_eeprom_info *eeprom = &hw->eeprom;
- uint32_t i = 0;
- int32_t ret_val;
-
- DEBUGFUNC("em_read_eeprom");
-
- /* A check for invalid values: offset too large, too many words, and not
- * enough words.
- */
- if((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) ||
- (words == 0)) {
- DEBUGOUT("\"words\" parameter out of bounds\n");
- return -E1000_ERR_EEPROM;
- }
-
- /* FLASH reads without acquiring the semaphore are safe in 82573-based
- * controllers.
- */
- if ((em_is_onboard_nvm_eeprom(hw) == TRUE) ||
- (hw->mac_type != em_82573)) {
- /* Prepare the EEPROM for reading */
- if(em_acquire_eeprom(hw) != E1000_SUCCESS)
- return -E1000_ERR_EEPROM;
- }
-
- if(eeprom->use_eerd == TRUE) {
- ret_val = em_read_eeprom_eerd(hw, offset, words, data);
- if ((em_is_onboard_nvm_eeprom(hw) == TRUE) ||
- (hw->mac_type != em_82573))
- em_release_eeprom(hw);
- return ret_val;
- }
-
- if(eeprom->type == em_eeprom_spi) {
- uint16_t word_in;
- uint8_t read_opcode = EEPROM_READ_OPCODE_SPI;
-
- if(em_spi_eeprom_ready(hw)) {
- em_release_eeprom(hw);
- return -E1000_ERR_EEPROM;
- }
-
- em_standby_eeprom(hw);
-
- /* Some SPI eeproms use the 8th address bit embedded in the opcode */
- if((eeprom->address_bits == 8) && (offset >= 128))
- read_opcode |= EEPROM_A8_OPCODE_SPI;
-
- /* Send the READ command (opcode + addr) */
- em_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
- em_shift_out_ee_bits(hw, (uint16_t)(offset*2), eeprom->address_bits);
-
- /* Read the data. The address of the eeprom internally increments with
- * each byte (spi) being read, saving on the overhead of eeprom setup
- * and tear-down. The address counter will roll over if reading beyond
- * the size of the eeprom, thus allowing the entire memory to be read
- * starting from any offset. */
- for (i = 0; i < words; i++) {
- word_in = em_shift_in_ee_bits(hw, 16);
- data[i] = (word_in >> 8) | (word_in << 8);
- }
- } else if(eeprom->type == em_eeprom_microwire) {
- for (i = 0; i < words; i++) {
- /* Send the READ command (opcode + addr) */
- em_shift_out_ee_bits(hw, EEPROM_READ_OPCODE_MICROWIRE,
- eeprom->opcode_bits);
- em_shift_out_ee_bits(hw, (uint16_t)(offset + i),
- eeprom->address_bits);
-
- /* Read the data. For microwire, each word requires the overhead
- * of eeprom setup and tear-down. */
- data[i] = em_shift_in_ee_bits(hw, 16);
- em_standby_eeprom(hw);
- }
- }
-
- /* End this read operation */
- em_release_eeprom(hw);
-
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Reads a 16 bit word from the EEPROM using the EERD register.
- *
- * hw - Struct containing variables accessed by shared code
- * offset - offset of word in the EEPROM to read
- * data - word read from the EEPROM
- * words - number of words to read
- *****************************************************************************/
-int32_t
-em_read_eeprom_eerd(struct em_hw *hw,
- uint16_t offset,
- uint16_t words,
- uint16_t *data)
-{
- uint32_t i, eerd = 0;
- int32_t error = 0;
-
- for (i = 0; i < words; i++) {
- eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) +
- E1000_EEPROM_RW_REG_START;
-
- E1000_WRITE_REG(hw, EERD, eerd);
- error = em_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ);
-
- if(error) {
- break;
- }
- data[i] = (E1000_READ_REG(hw, EERD) >> E1000_EEPROM_RW_REG_DATA);
-
- }
-
- return error;
-}
-
-/******************************************************************************
- * Writes a 16 bit word from the EEPROM using the EEWR register.
- *
- * hw - Struct containing variables accessed by shared code
- * offset - offset of word in the EEPROM to read
- * data - word read from the EEPROM
- * words - number of words to read
- *****************************************************************************/
-int32_t
-em_write_eeprom_eewr(struct em_hw *hw,
- uint16_t offset,
- uint16_t words,
- uint16_t *data)
-{
- uint32_t register_value = 0;
- uint32_t i = 0;
- int32_t error = 0;
-
- for (i = 0; i < words; i++) {
- register_value = (data[i] << E1000_EEPROM_RW_REG_DATA) |
- ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) |
- E1000_EEPROM_RW_REG_START;
-
- error = em_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE);
- if(error) {
- break;
- }
-
- E1000_WRITE_REG(hw, EEWR, register_value);
-
- error = em_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE);
-
- if(error) {
- break;
- }
- }
-
- return error;
-}
-
-/******************************************************************************
- * Polls the status bit (bit 1) of the EERD to determine when the read is done.
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-int32_t
-em_poll_eerd_eewr_done(struct em_hw *hw, int eerd)
-{
- uint32_t attempts = 100000;
- uint32_t i, reg = 0;
- int32_t done = E1000_ERR_EEPROM;
-
- for(i = 0; i < attempts; i++) {
- if(eerd == E1000_EEPROM_POLL_READ)
- reg = E1000_READ_REG(hw, EERD);
- else
- reg = E1000_READ_REG(hw, EEWR);
-
- if(reg & E1000_EEPROM_RW_REG_DONE) {
- done = E1000_SUCCESS;
- break;
- }
- usec_delay(5);
- }
-
- return done;
-}
-
-/***************************************************************************
-* Description: Determines if the onboard NVM is FLASH or EEPROM.
-*
-* hw - Struct containing variables accessed by shared code
-****************************************************************************/
-boolean_t
-em_is_onboard_nvm_eeprom(struct em_hw *hw)
-{
- uint32_t eecd = 0;
-
- if(hw->mac_type == em_82573) {
- eecd = E1000_READ_REG(hw, EECD);
-
- /* Isolate bits 15 & 16 */
- eecd = ((eecd >> 15) & 0x03);
-
- /* If both bits are set, device is Flash type */
- if(eecd == 0x03) {
- return FALSE;
- }
- }
- return TRUE;
-}
-
-/******************************************************************************
- * Verifies that the EEPROM has a valid checksum
- *
- * hw - Struct containing variables accessed by shared code
- *
- * Reads the first 64 16 bit words of the EEPROM and sums the values read.
- * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
- * valid.
- *****************************************************************************/
-int32_t
-em_validate_eeprom_checksum(struct em_hw *hw)
-{
- uint16_t checksum = 0;
- uint16_t i, eeprom_data;
-
- DEBUGFUNC("em_validate_eeprom_checksum");
-
- if ((hw->mac_type == em_82573) &&
- (em_is_onboard_nvm_eeprom(hw) == FALSE)) {
- /* Check bit 4 of word 10h. If it is 0, firmware is done updating
- * 10h-12h. Checksum may need to be fixed. */
- em_read_eeprom(hw, 0x10, 1, &eeprom_data);
- if ((eeprom_data & 0x10) == 0) {
- /* Read 0x23 and check bit 15. This bit is a 1 when the checksum
- * has already been fixed. If the checksum is still wrong and this
- * bit is a 1, we need to return bad checksum. Otherwise, we need
- * to set this bit to a 1 and update the checksum. */
- em_read_eeprom(hw, 0x23, 1, &eeprom_data);
- if ((eeprom_data & 0x8000) == 0) {
- eeprom_data |= 0x8000;
- em_write_eeprom(hw, 0x23, 1, &eeprom_data);
- em_update_eeprom_checksum(hw);
- }
- }
- }
-
- for(i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
- if(em_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
- DEBUGOUT("EEPROM Read Error\n");
- return -E1000_ERR_EEPROM;
- }
- checksum += eeprom_data;
- }
-
- if(checksum == (uint16_t) EEPROM_SUM)
- return E1000_SUCCESS;
- else {
- DEBUGOUT("EEPROM Checksum Invalid\n");
- return -E1000_ERR_EEPROM;
- }
-}
-
-/******************************************************************************
- * Calculates the EEPROM checksum and writes it to the EEPROM
- *
- * hw - Struct containing variables accessed by shared code
- *
- * Sums the first 63 16 bit words of the EEPROM. Subtracts the sum from 0xBABA.
- * Writes the difference to word offset 63 of the EEPROM.
- *****************************************************************************/
-int32_t
-em_update_eeprom_checksum(struct em_hw *hw)
-{
- uint16_t checksum = 0;
- uint16_t i, eeprom_data;
-
- DEBUGFUNC("em_update_eeprom_checksum");
-
- for(i = 0; i < EEPROM_CHECKSUM_REG; i++) {
- if(em_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
- DEBUGOUT("EEPROM Read Error\n");
- return -E1000_ERR_EEPROM;
- }
- checksum += eeprom_data;
- }
- checksum = (uint16_t) EEPROM_SUM - checksum;
- if(em_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) {
- DEBUGOUT("EEPROM Write Error\n");
- return -E1000_ERR_EEPROM;
- } else if (hw->eeprom.type == em_eeprom_flash) {
- em_commit_shadow_ram(hw);
- }
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Parent function for writing words to the different EEPROM types.
- *
- * hw - Struct containing variables accessed by shared code
- * offset - offset within the EEPROM to be written to
- * words - number of words to write
- * data - 16 bit word to be written to the EEPROM
- *
- * If em_update_eeprom_checksum is not called after this function, the
- * EEPROM will most likely contain an invalid checksum.
- *****************************************************************************/
-int32_t
-em_write_eeprom(struct em_hw *hw,
- uint16_t offset,
- uint16_t words,
- uint16_t *data)
-{
- struct em_eeprom_info *eeprom = &hw->eeprom;
- int32_t status = 0;
-
- DEBUGFUNC("em_write_eeprom");
-
- /* A check for invalid values: offset too large, too many words, and not
- * enough words.
- */
- if((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) ||
- (words == 0)) {
- DEBUGOUT("\"words\" parameter out of bounds\n");
- return -E1000_ERR_EEPROM;
- }
-
- /* 82573 reads only through eerd */
- if(eeprom->use_eewr == TRUE)
- return em_write_eeprom_eewr(hw, offset, words, data);
-
- /* Prepare the EEPROM for writing */
- if (em_acquire_eeprom(hw) != E1000_SUCCESS)
- return -E1000_ERR_EEPROM;
-
- if(eeprom->type == em_eeprom_microwire) {
- status = em_write_eeprom_microwire(hw, offset, words, data);
- } else {
- status = em_write_eeprom_spi(hw, offset, words, data);
- msec_delay(10);
- }
-
- /* Done with writing */
- em_release_eeprom(hw);
-
- return status;
-}
-
-/******************************************************************************
- * Writes a 16 bit word to a given offset in an SPI EEPROM.
- *
- * hw - Struct containing variables accessed by shared code
- * offset - offset within the EEPROM to be written to
- * words - number of words to write
- * data - pointer to array of 8 bit words to be written to the EEPROM
- *
- *****************************************************************************/
-int32_t
-em_write_eeprom_spi(struct em_hw *hw,
- uint16_t offset,
- uint16_t words,
- uint16_t *data)
-{
- struct em_eeprom_info *eeprom = &hw->eeprom;
- uint16_t widx = 0;
-
- DEBUGFUNC("em_write_eeprom_spi");
-
- while (widx < words) {
- uint8_t write_opcode = EEPROM_WRITE_OPCODE_SPI;
-
- if(em_spi_eeprom_ready(hw)) return -E1000_ERR_EEPROM;
-
- em_standby_eeprom(hw);
-
- /* Send the WRITE ENABLE command (8 bit opcode ) */
- em_shift_out_ee_bits(hw, EEPROM_WREN_OPCODE_SPI,
- eeprom->opcode_bits);
-
- em_standby_eeprom(hw);
-
- /* Some SPI eeproms use the 8th address bit embedded in the opcode */
- if((eeprom->address_bits == 8) && (offset >= 128))
- write_opcode |= EEPROM_A8_OPCODE_SPI;
-
- /* Send the Write command (8-bit opcode + addr) */
- em_shift_out_ee_bits(hw, write_opcode, eeprom->opcode_bits);
-
- em_shift_out_ee_bits(hw, (uint16_t)((offset + widx)*2),
- eeprom->address_bits);
-
- /* Send the data */
-
- /* Loop to allow for up to whole page write (32 bytes) of eeprom */
- while (widx < words) {
- uint16_t word_out = data[widx];
- word_out = (word_out >> 8) | (word_out << 8);
- em_shift_out_ee_bits(hw, word_out, 16);
- widx++;
-
- /* Some larger eeprom sizes are capable of a 32-byte PAGE WRITE
- * operation, while the smaller eeproms are capable of an 8-byte
- * PAGE WRITE operation. Break the inner loop to pass new address
- */
- if((((offset + widx)*2) % eeprom->page_size) == 0) {
- em_standby_eeprom(hw);
- break;
- }
- }
- }
-
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Writes a 16 bit word to a given offset in a Microwire EEPROM.
- *
- * hw - Struct containing variables accessed by shared code
- * offset - offset within the EEPROM to be written to
- * words - number of words to write
- * data - pointer to array of 16 bit words to be written to the EEPROM
- *
- *****************************************************************************/
-int32_t
-em_write_eeprom_microwire(struct em_hw *hw,
- uint16_t offset,
- uint16_t words,
- uint16_t *data)
-{
- struct em_eeprom_info *eeprom = &hw->eeprom;
- uint32_t eecd;
- uint16_t words_written = 0;
- uint16_t i = 0;
-
- DEBUGFUNC("em_write_eeprom_microwire");
-
- /* Send the write enable command to the EEPROM (3-bit opcode plus
- * 6/8-bit dummy address beginning with 11). It's less work to include
- * the 11 of the dummy address as part of the opcode than it is to shift
- * it over the correct number of bits for the address. This puts the
- * EEPROM into write/erase mode.
- */
- em_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE_MICROWIRE,
- (uint16_t)(eeprom->opcode_bits + 2));
-
- em_shift_out_ee_bits(hw, 0, (uint16_t)(eeprom->address_bits - 2));
-
- /* Prepare the EEPROM */
- em_standby_eeprom(hw);
-
- while (words_written < words) {
- /* Send the Write command (3-bit opcode + addr) */
- em_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE_MICROWIRE,
- eeprom->opcode_bits);
-
- em_shift_out_ee_bits(hw, (uint16_t)(offset + words_written),
- eeprom->address_bits);
-
- /* Send the data */
- em_shift_out_ee_bits(hw, data[words_written], 16);
-
- /* Toggle the CS line. This in effect tells the EEPROM to execute
- * the previous command.
- */
- em_standby_eeprom(hw);
-
- /* Read DO repeatedly until it is high (equal to '1'). The EEPROM will
- * signal that the command has been completed by raising the DO signal.
- * If DO does not go high in 10 milliseconds, then error out.
- */
- for(i = 0; i < 200; i++) {
- eecd = E1000_READ_REG(hw, EECD);
- if(eecd & E1000_EECD_DO) break;
- usec_delay(50);
- }
- if(i == 200) {
- DEBUGOUT("EEPROM Write did not complete\n");
- return -E1000_ERR_EEPROM;
- }
-
- /* Recover from write */
- em_standby_eeprom(hw);
-
- words_written++;
- }
-
- /* Send the write disable command to the EEPROM (3-bit opcode plus
- * 6/8-bit dummy address beginning with 10). It's less work to include
- * the 10 of the dummy address as part of the opcode than it is to shift
- * it over the correct number of bits for the address. This takes the
- * EEPROM out of write/erase mode.
- */
- em_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE_MICROWIRE,
- (uint16_t)(eeprom->opcode_bits + 2));
-
- em_shift_out_ee_bits(hw, 0, (uint16_t)(eeprom->address_bits - 2));
-
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Flushes the cached eeprom to NVM. This is done by saving the modified values
- * in the eeprom cache and the non modified values in the currently active bank
- * to the new bank.
- *
- * hw - Struct containing variables accessed by shared code
- * offset - offset of word in the EEPROM to read
- * data - word read from the EEPROM
- * words - number of words to read
- *****************************************************************************/
-int32_t
-em_commit_shadow_ram(struct em_hw *hw)
-{
- uint32_t attempts = 100000;
- uint32_t eecd = 0;
- uint32_t flop = 0;
- uint32_t i = 0;
- int32_t error = E1000_SUCCESS;
-
- /* The flop register will be used to determine if flash type is STM */
- flop = E1000_READ_REG(hw, FLOP);
-
- if (hw->mac_type == em_82573) {
- for (i=0; i < attempts; i++) {
- eecd = E1000_READ_REG(hw, EECD);
- if ((eecd & E1000_EECD_FLUPD) == 0) {
- break;
- }
- usec_delay(5);
- }
-
- if (i == attempts) {
- return -E1000_ERR_EEPROM;
- }
-
- /* If STM opcode located in bits 15:8 of flop, reset firmware */
- if ((flop & 0xFF00) == E1000_STM_OPCODE) {
- E1000_WRITE_REG(hw, HICR, E1000_HICR_FW_RESET);
- }
-
- /* Perform the flash update */
- E1000_WRITE_REG(hw, EECD, eecd | E1000_EECD_FLUPD);
-
- for (i=0; i < attempts; i++) {
- eecd = E1000_READ_REG(hw, EECD);
- if ((eecd & E1000_EECD_FLUPD) == 0) {
- break;
- }
- usec_delay(5);
- }
-
- if (i == attempts) {
- return -E1000_ERR_EEPROM;
- }
- }
-
- return error;
-}
-
-/******************************************************************************
- * Reads the adapter's part number from the EEPROM
- *
- * hw - Struct containing variables accessed by shared code
- * part_num - Adapter's part number
- *****************************************************************************/
-int32_t
-em_read_part_num(struct em_hw *hw,
- uint32_t *part_num)
-{
- uint16_t offset = EEPROM_PBA_BYTE_1;
- uint16_t eeprom_data;
-
- DEBUGFUNC("em_read_part_num");
-
- /* Get word 0 from EEPROM */
- if(em_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
- DEBUGOUT("EEPROM Read Error\n");
- return -E1000_ERR_EEPROM;
- }
- /* Save word 0 in upper half of part_num */
- *part_num = (uint32_t) (eeprom_data << 16);
-
- /* Get word 1 from EEPROM */
- if(em_read_eeprom(hw, ++offset, 1, &eeprom_data) < 0) {
- DEBUGOUT("EEPROM Read Error\n");
- return -E1000_ERR_EEPROM;
- }
- /* Save word 1 in lower half of part_num */
- *part_num |= eeprom_data;
-
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
- * second function of dual function devices
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-int32_t
-em_read_mac_addr(struct em_hw * hw)
-{
- uint16_t offset;
- uint16_t eeprom_data, i;
-
- DEBUGFUNC("em_read_mac_addr");
-
- for(i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
- offset = i >> 1;
- if(em_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
- DEBUGOUT("EEPROM Read Error\n");
- return -E1000_ERR_EEPROM;
- }
- hw->perm_mac_addr[i] = (uint8_t) (eeprom_data & 0x00FF);
- hw->perm_mac_addr[i+1] = (uint8_t) (eeprom_data >> 8);
- }
- if(((hw->mac_type == em_82546) || (hw->mac_type == em_82546_rev_3)) &&
- (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1))
- hw->perm_mac_addr[5] ^= 0x01;
-
- for(i = 0; i < NODE_ADDRESS_SIZE; i++)
- hw->mac_addr[i] = hw->perm_mac_addr[i];
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Initializes receive address filters.
- *
- * hw - Struct containing variables accessed by shared code
- *
- * Places the MAC address in receive address register 0 and clears the rest
- * of the receive addresss registers. Clears the multicast table. Assumes
- * the receiver is in reset when the routine is called.
- *****************************************************************************/
-void
-em_init_rx_addrs(struct em_hw *hw)
-{
- uint32_t i;
- uint32_t rar_num;
-
- DEBUGFUNC("em_init_rx_addrs");
-
- /* Setup the receive address. */
- DEBUGOUT("Programming MAC Address into RAR[0]\n");
-
- em_rar_set(hw, hw->mac_addr, 0);
-
- rar_num = E1000_RAR_ENTRIES;
- /* Zero out the other 15 receive addresses. */
- DEBUGOUT("Clearing RAR[1-15]\n");
- for(i = 1; i < rar_num; i++) {
- E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
- E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
- }
-}
-
-/******************************************************************************
- * Updates the MAC's list of multicast addresses.
- *
- * hw - Struct containing variables accessed by shared code
- * mc_addr_list - the list of new multicast addresses
- * mc_addr_count - number of addresses
- * pad - number of bytes between addresses in the list
- * rar_used_count - offset where to start adding mc addresses into the RAR's
- *
- * The given list replaces any existing list. Clears the last 15 receive
- * address registers and the multicast table. Uses receive address registers
- * for the first 15 multicast addresses, and hashes the rest into the
- * multicast table.
- *****************************************************************************/
-void
-em_mc_addr_list_update(struct em_hw *hw,
- uint8_t *mc_addr_list,
- uint32_t mc_addr_count,
- uint32_t pad,
- uint32_t rar_used_count)
-{
- uint32_t hash_value;
- uint32_t i;
- uint32_t num_rar_entry;
- uint32_t num_mta_entry;
-
- DEBUGFUNC("em_mc_addr_list_update");
-
- /* Set the new number of MC addresses that we are being requested to use. */
- hw->num_mc_addrs = mc_addr_count;
-
- /* Clear RAR[1-15] */
- DEBUGOUT(" Clearing RAR[1-15]\n");
- num_rar_entry = E1000_RAR_ENTRIES;
- for(i = rar_used_count; i < num_rar_entry; i++) {
- E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
- E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
- }
-
- /* Clear the MTA */
- DEBUGOUT(" Clearing MTA\n");
- num_mta_entry = E1000_NUM_MTA_REGISTERS;
- for(i = 0; i < num_mta_entry; i++) {
- E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
- }
-
- /* Add the new addresses */
- for(i = 0; i < mc_addr_count; i++) {
- DEBUGOUT(" Adding the multicast addresses:\n");
- DEBUGOUT7(" MC Addr #%d =%.2X %.2X %.2X %.2X %.2X %.2X\n", i,
- mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad)],
- mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 1],
- mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 2],
- mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 3],
- mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 4],
- mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 5]);
-
- hash_value = em_hash_mc_addr(hw,
- mc_addr_list +
- (i * (ETH_LENGTH_OF_ADDRESS + pad)));
-
- DEBUGOUT1(" Hash value = 0x%03X\n", hash_value);
-
- /* Place this multicast address in the RAR if there is room, *
- * else put it in the MTA
- */
- if (rar_used_count < num_rar_entry) {
- em_rar_set(hw,
- mc_addr_list + (i * (ETH_LENGTH_OF_ADDRESS + pad)),
- rar_used_count);
- rar_used_count++;
- } else {
- em_mta_set(hw, hash_value);
- }
- }
- DEBUGOUT("MC Update Complete\n");
-}
-
-/******************************************************************************
- * Hashes an address to determine its location in the multicast table
- *
- * hw - Struct containing variables accessed by shared code
- * mc_addr - the multicast address to hash
- *****************************************************************************/
-uint32_t
-em_hash_mc_addr(struct em_hw *hw,
- uint8_t *mc_addr)
-{
- uint32_t hash_value = 0;
-
- /* The portion of the address that is used for the hash table is
- * determined by the mc_filter_type setting.
- */
- switch (hw->mc_filter_type) {
- /* [0] [1] [2] [3] [4] [5]
- * 01 AA 00 12 34 56
- * LSB MSB
- */
- case 0:
- /* [47:36] i.e. 0x563 for above example address */
- hash_value = ((mc_addr[4] >> 4) | (((uint16_t) mc_addr[5]) << 4));
- break;
- case 1:
- /* [46:35] i.e. 0xAC6 for above example address */
- hash_value = ((mc_addr[4] >> 3) | (((uint16_t) mc_addr[5]) << 5));
- break;
- case 2:
- /* [45:34] i.e. 0x5D8 for above example address */
- hash_value = ((mc_addr[4] >> 2) | (((uint16_t) mc_addr[5]) << 6));
- break;
- case 3:
- /* [43:32] i.e. 0x634 for above example address */
- hash_value = ((mc_addr[4]) | (((uint16_t) mc_addr[5]) << 8));
- break;
- }
-
- hash_value &= 0xFFF;
-
- return hash_value;
-}
-
-/******************************************************************************
- * Sets the bit in the multicast table corresponding to the hash value.
- *
- * hw - Struct containing variables accessed by shared code
- * hash_value - Multicast address hash value
- *****************************************************************************/
-void
-em_mta_set(struct em_hw *hw,
- uint32_t hash_value)
-{
- uint32_t hash_bit, hash_reg;
- uint32_t mta;
- uint32_t temp;
-
- /* The MTA is a register array of 128 32-bit registers.
- * It is treated like an array of 4096 bits. We want to set
- * bit BitArray[hash_value]. So we figure out what register
- * the bit is in, read it, OR in the new bit, then write
- * back the new value. The register is determined by the
- * upper 7 bits of the hash value and the bit within that
- * register are determined by the lower 5 bits of the value.
- */
- hash_reg = (hash_value >> 5) & 0x7F;
- hash_bit = hash_value & 0x1F;
-
- mta = E1000_READ_REG_ARRAY(hw, MTA, hash_reg);
-
- mta |= (1 << hash_bit);
-
- /* If we are on an 82544 and we are trying to write an odd offset
- * in the MTA, save off the previous entry before writing and
- * restore the old value after writing.
- */
- if((hw->mac_type == em_82544) && ((hash_reg & 0x1) == 1)) {
- temp = E1000_READ_REG_ARRAY(hw, MTA, (hash_reg - 1));
- E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta);
- E1000_WRITE_REG_ARRAY(hw, MTA, (hash_reg - 1), temp);
- } else {
- E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta);
- }
-}
-
-/******************************************************************************
- * Puts an ethernet address into a receive address register.
- *
- * hw - Struct containing variables accessed by shared code
- * addr - Address to put into receive address register
- * index - Receive address register to write
- *****************************************************************************/
-void
-em_rar_set(struct em_hw *hw,
- uint8_t *addr,
- uint32_t index)
-{
- uint32_t rar_low, rar_high;
-
- /* HW expects these in little endian so we reverse the byte order
- * from network order (big endian) to little endian
- */
- rar_low = ((uint32_t) addr[0] |
- ((uint32_t) addr[1] << 8) |
- ((uint32_t) addr[2] << 16) | ((uint32_t) addr[3] << 24));
-
- rar_high = ((uint32_t) addr[4] | ((uint32_t) addr[5] << 8) | E1000_RAH_AV);
-
- E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low);
- E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high);
-}
-
-/******************************************************************************
- * Writes a value to the specified offset in the VLAN filter table.
- *
- * hw - Struct containing variables accessed by shared code
- * offset - Offset in VLAN filer table to write
- * value - Value to write into VLAN filter table
- *****************************************************************************/
-void
-em_write_vfta(struct em_hw *hw,
- uint32_t offset,
- uint32_t value)
-{
- uint32_t temp;
-
- if((hw->mac_type == em_82544) && ((offset & 0x1) == 1)) {
- temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1));
- E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
- E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp);
- } else {
- E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
- }
-}
-
-/******************************************************************************
- * Clears the VLAN filer table
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-void
-em_clear_vfta(struct em_hw *hw)
-{
- uint32_t offset;
- uint32_t vfta_value = 0;
- uint32_t vfta_offset = 0;
- uint32_t vfta_bit_in_reg = 0;
-
- if (hw->mac_type == em_82573) {
- if (hw->mng_cookie.vlan_id != 0) {
- /* The VFTA is a 4096b bit-field, each identifying a single VLAN
- * ID. The following operations determine which 32b entry
- * (i.e. offset) into the array we want to set the VLAN ID
- * (i.e. bit) of the manageability unit. */
- vfta_offset = (hw->mng_cookie.vlan_id >>
- E1000_VFTA_ENTRY_SHIFT) &
- E1000_VFTA_ENTRY_MASK;
- vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id &
- E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
- }
- }
- for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
- /* If the offset we want to clear is the same offset of the
- * manageability VLAN ID, then clear all bits except that of the
- * manageability unit */
- vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
- E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value);
- }
-}
-
-int32_t
-em_id_led_init(struct em_hw * hw)
-{
- uint32_t ledctl;
- const uint32_t ledctl_mask = 0x000000FF;
- const uint32_t ledctl_on = E1000_LEDCTL_MODE_LED_ON;
- const uint32_t ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
- uint16_t eeprom_data, i, temp;
- const uint16_t led_mask = 0x0F;
-
- DEBUGFUNC("em_id_led_init");
-
- if(hw->mac_type < em_82540) {
- /* Nothing to do */
- return E1000_SUCCESS;
- }
-
- ledctl = E1000_READ_REG(hw, LEDCTL);
- hw->ledctl_default = ledctl;
- hw->ledctl_mode1 = hw->ledctl_default;
- hw->ledctl_mode2 = hw->ledctl_default;
-
- if(em_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) {
- DEBUGOUT("EEPROM Read Error\n");
- return -E1000_ERR_EEPROM;
- }
- if((eeprom_data== ID_LED_RESERVED_0000) ||
- (eeprom_data == ID_LED_RESERVED_FFFF)) eeprom_data = ID_LED_DEFAULT;
- for(i = 0; i < 4; i++) {
- temp = (eeprom_data >> (i << 2)) & led_mask;
- switch(temp) {
- case ID_LED_ON1_DEF2:
- case ID_LED_ON1_ON2:
- case ID_LED_ON1_OFF2:
- hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
- hw->ledctl_mode1 |= ledctl_on << (i << 3);
- break;
- case ID_LED_OFF1_DEF2:
- case ID_LED_OFF1_ON2:
- case ID_LED_OFF1_OFF2:
- hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
- hw->ledctl_mode1 |= ledctl_off << (i << 3);
- break;
- default:
- /* Do nothing */
- break;
- }
- switch(temp) {
- case ID_LED_DEF1_ON2:
- case ID_LED_ON1_ON2:
- case ID_LED_OFF1_ON2:
- hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
- hw->ledctl_mode2 |= ledctl_on << (i << 3);
- break;
- case ID_LED_DEF1_OFF2:
- case ID_LED_ON1_OFF2:
- case ID_LED_OFF1_OFF2:
- hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
- hw->ledctl_mode2 |= ledctl_off << (i << 3);
- break;
- default:
- /* Do nothing */
- break;
- }
- }
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Prepares SW controlable LED for use and saves the current state of the LED.
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-int32_t
-em_setup_led(struct em_hw *hw)
-{
- uint32_t ledctl;
- int32_t ret_val = E1000_SUCCESS;
-
- DEBUGFUNC("em_setup_led");
-
- switch(hw->mac_type) {
- case em_82542_rev2_0:
- case em_82542_rev2_1:
- case em_82543:
- case em_82544:
- /* No setup necessary */
- break;
- case em_82541:
- case em_82547:
- case em_82541_rev_2:
- case em_82547_rev_2:
- /* Turn off PHY Smart Power Down (if enabled) */
- ret_val = em_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
- &hw->phy_spd_default);
- if(ret_val)
- return ret_val;
- ret_val = em_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
- (uint16_t)(hw->phy_spd_default &
- ~IGP01E1000_GMII_SPD));
- if(ret_val)
- return ret_val;
- /* Fall Through */
- default:
- if(hw->media_type == em_media_type_fiber) {
- ledctl = E1000_READ_REG(hw, LEDCTL);
- /* Save current LEDCTL settings */
- hw->ledctl_default = ledctl;
- /* Turn off LED0 */
- ledctl &= ~(E1000_LEDCTL_LED0_IVRT |
- E1000_LEDCTL_LED0_BLINK |
- E1000_LEDCTL_LED0_MODE_MASK);
- ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
- E1000_LEDCTL_LED0_MODE_SHIFT);
- E1000_WRITE_REG(hw, LEDCTL, ledctl);
- } else if(hw->media_type == em_media_type_copper)
- E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode1);
- break;
- }
-
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Restores the saved state of the SW controlable LED.
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-int32_t
-em_cleanup_led(struct em_hw *hw)
-{
- int32_t ret_val = E1000_SUCCESS;
-
- DEBUGFUNC("em_cleanup_led");
-
- switch(hw->mac_type) {
- case em_82542_rev2_0:
- case em_82542_rev2_1:
- case em_82543:
- case em_82544:
- /* No cleanup necessary */
- break;
- case em_82541:
- case em_82547:
- case em_82541_rev_2:
- case em_82547_rev_2:
- /* Turn on PHY Smart Power Down (if previously enabled) */
- ret_val = em_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
- hw->phy_spd_default);
- if(ret_val)
- return ret_val;
- /* Fall Through */
- default:
- /* Restore LEDCTL settings */
- E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_default);
- break;
- }
-
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Turns on the software controllable LED
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-int32_t
-em_led_on(struct em_hw *hw)
-{
- uint32_t ctrl = E1000_READ_REG(hw, CTRL);
-
- DEBUGFUNC("em_led_on");
-
- switch(hw->mac_type) {
- case em_82542_rev2_0:
- case em_82542_rev2_1:
- case em_82543:
- /* Set SW Defineable Pin 0 to turn on the LED */
- ctrl |= E1000_CTRL_SWDPIN0;
- ctrl |= E1000_CTRL_SWDPIO0;
- break;
- case em_82544:
- if(hw->media_type == em_media_type_fiber) {
- /* Set SW Defineable Pin 0 to turn on the LED */
- ctrl |= E1000_CTRL_SWDPIN0;
- ctrl |= E1000_CTRL_SWDPIO0;
- } else {
- /* Clear SW Defineable Pin 0 to turn on the LED */
- ctrl &= ~E1000_CTRL_SWDPIN0;
- ctrl |= E1000_CTRL_SWDPIO0;
- }
- break;
- default:
- if(hw->media_type == em_media_type_fiber) {
- /* Clear SW Defineable Pin 0 to turn on the LED */
- ctrl &= ~E1000_CTRL_SWDPIN0;
- ctrl |= E1000_CTRL_SWDPIO0;
- } else if(hw->media_type == em_media_type_copper) {
- E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode2);
- return E1000_SUCCESS;
- }
- break;
- }
-
- E1000_WRITE_REG(hw, CTRL, ctrl);
-
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Turns off the software controllable LED
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-int32_t
-em_led_off(struct em_hw *hw)
-{
- uint32_t ctrl = E1000_READ_REG(hw, CTRL);
-
- DEBUGFUNC("em_led_off");
-
- switch(hw->mac_type) {
- case em_82542_rev2_0:
- case em_82542_rev2_1:
- case em_82543:
- /* Clear SW Defineable Pin 0 to turn off the LED */
- ctrl &= ~E1000_CTRL_SWDPIN0;
- ctrl |= E1000_CTRL_SWDPIO0;
- break;
- case em_82544:
- if(hw->media_type == em_media_type_fiber) {
- /* Clear SW Defineable Pin 0 to turn off the LED */
- ctrl &= ~E1000_CTRL_SWDPIN0;
- ctrl |= E1000_CTRL_SWDPIO0;
- } else {
- /* Set SW Defineable Pin 0 to turn off the LED */
- ctrl |= E1000_CTRL_SWDPIN0;
- ctrl |= E1000_CTRL_SWDPIO0;
- }
- break;
- default:
- if(hw->media_type == em_media_type_fiber) {
- /* Set SW Defineable Pin 0 to turn off the LED */
- ctrl |= E1000_CTRL_SWDPIN0;
- ctrl |= E1000_CTRL_SWDPIO0;
- } else if(hw->media_type == em_media_type_copper) {
- E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode1);
- return E1000_SUCCESS;
- }
- break;
- }
-
- E1000_WRITE_REG(hw, CTRL, ctrl);
-
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Clears all hardware statistics counters.
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-void
-em_clear_hw_cntrs(struct em_hw *hw)
-{
- E1000_READ_REG(hw, CRCERRS);
- E1000_READ_REG(hw, SYMERRS);
- E1000_READ_REG(hw, MPC);
- E1000_READ_REG(hw, SCC);
- E1000_READ_REG(hw, ECOL);
- E1000_READ_REG(hw, MCC);
- E1000_READ_REG(hw, LATECOL);
- E1000_READ_REG(hw, COLC);
- E1000_READ_REG(hw, DC);
- E1000_READ_REG(hw, SEC);
- E1000_READ_REG(hw, RLEC);
- E1000_READ_REG(hw, XONRXC);
- E1000_READ_REG(hw, XONTXC);
- E1000_READ_REG(hw, XOFFRXC);
- E1000_READ_REG(hw, XOFFTXC);
- E1000_READ_REG(hw, FCRUC);
- E1000_READ_REG(hw, PRC64);
- E1000_READ_REG(hw, PRC127);
- E1000_READ_REG(hw, PRC255);
- E1000_READ_REG(hw, PRC511);
- E1000_READ_REG(hw, PRC1023);
- E1000_READ_REG(hw, PRC1522);
- E1000_READ_REG(hw, GPRC);
- E1000_READ_REG(hw, BPRC);
- E1000_READ_REG(hw, MPRC);
- E1000_READ_REG(hw, GPTC);
- E1000_READ_REG(hw, GORCL);
- E1000_READ_REG(hw, GORCH);
- E1000_READ_REG(hw, GOTCL);
- E1000_READ_REG(hw, GOTCH);
- E1000_READ_REG(hw, RNBC);
- E1000_READ_REG(hw, RUC);
- E1000_READ_REG(hw, RFC);
- E1000_READ_REG(hw, ROC);
- E1000_READ_REG(hw, RJC);
- E1000_READ_REG(hw, TORL);
- E1000_READ_REG(hw, TORH);
- E1000_READ_REG(hw, TOTL);
- E1000_READ_REG(hw, TOTH);
- E1000_READ_REG(hw, TPR);
- E1000_READ_REG(hw, TPT);
- E1000_READ_REG(hw, PTC64);
- E1000_READ_REG(hw, PTC127);
- E1000_READ_REG(hw, PTC255);
- E1000_READ_REG(hw, PTC511);
- E1000_READ_REG(hw, PTC1023);
- E1000_READ_REG(hw, PTC1522);
- E1000_READ_REG(hw, MPTC);
- E1000_READ_REG(hw, BPTC);
-
- if(hw->mac_type < em_82543) return;
-
- E1000_READ_REG(hw, ALGNERRC);
- E1000_READ_REG(hw, RXERRC);
- E1000_READ_REG(hw, TNCRS);
- E1000_READ_REG(hw, CEXTERR);
- E1000_READ_REG(hw, TSCTC);
- E1000_READ_REG(hw, TSCTFC);
-
- if(hw->mac_type <= em_82544) return;
-
- E1000_READ_REG(hw, MGTPRC);
- E1000_READ_REG(hw, MGTPDC);
- E1000_READ_REG(hw, MGTPTC);
-
- if(hw->mac_type <= em_82547_rev_2) return;
-
- E1000_READ_REG(hw, IAC);
- E1000_READ_REG(hw, ICRXOC);
- E1000_READ_REG(hw, ICRXPTC);
- E1000_READ_REG(hw, ICRXATC);
- E1000_READ_REG(hw, ICTXPTC);
- E1000_READ_REG(hw, ICTXATC);
- E1000_READ_REG(hw, ICTXQEC);
- E1000_READ_REG(hw, ICTXQMTC);
- E1000_READ_REG(hw, ICRXDMTC);
-
-}
-
-/******************************************************************************
- * Resets Adaptive IFS to its default state.
- *
- * hw - Struct containing variables accessed by shared code
- *
- * Call this after em_init_hw. You may override the IFS defaults by setting
- * hw->ifs_params_forced to TRUE. However, you must initialize hw->
- * current_ifs_val, ifs_min_val, ifs_max_val, ifs_step_size, and ifs_ratio
- * before calling this function.
- *****************************************************************************/
-void
-em_reset_adaptive(struct em_hw *hw)
-{
- DEBUGFUNC("em_reset_adaptive");
-
- if(hw->adaptive_ifs) {
- if(!hw->ifs_params_forced) {
- hw->current_ifs_val = 0;
- hw->ifs_min_val = IFS_MIN;
- hw->ifs_max_val = IFS_MAX;
- hw->ifs_step_size = IFS_STEP;
- hw->ifs_ratio = IFS_RATIO;
- }
- hw->in_ifs_mode = FALSE;
- E1000_WRITE_REG(hw, AIT, 0);
- } else {
- DEBUGOUT("Not in Adaptive IFS mode!\n");
- }
-}
-
-/******************************************************************************
- * Called during the callback/watchdog routine to update IFS value based on
- * the ratio of transmits to collisions.
- *
- * hw - Struct containing variables accessed by shared code
- * tx_packets - Number of transmits since last callback
- * total_collisions - Number of collisions since last callback
- *****************************************************************************/
-void
-em_update_adaptive(struct em_hw *hw)
-{
- DEBUGFUNC("em_update_adaptive");
-
- if(hw->adaptive_ifs) {
- if((hw->collision_delta * hw->ifs_ratio) > hw->tx_packet_delta) {
- if(hw->tx_packet_delta > MIN_NUM_XMITS) {
- hw->in_ifs_mode = TRUE;
- if(hw->current_ifs_val < hw->ifs_max_val) {
- if(hw->current_ifs_val == 0)
- hw->current_ifs_val = hw->ifs_min_val;
- else
- hw->current_ifs_val += hw->ifs_step_size;
- E1000_WRITE_REG(hw, AIT, hw->current_ifs_val);
- }
- }
- } else {
- if(hw->in_ifs_mode && (hw->tx_packet_delta <= MIN_NUM_XMITS)) {
- hw->current_ifs_val = 0;
- hw->in_ifs_mode = FALSE;
- E1000_WRITE_REG(hw, AIT, 0);
- }
- }
- } else {
- DEBUGOUT("Not in Adaptive IFS mode!\n");
- }
-}
-
-/******************************************************************************
- * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
- *
- * hw - Struct containing variables accessed by shared code
- * frame_len - The length of the frame in question
- * mac_addr - The Ethernet destination address of the frame in question
- *****************************************************************************/
-void
-em_tbi_adjust_stats(struct em_hw *hw,
- struct em_hw_stats *stats,
- uint32_t frame_len,
- uint8_t *mac_addr)
-{
- uint64_t carry_bit;
-
- /* First adjust the frame length. */
- frame_len--;
- /* We need to adjust the statistics counters, since the hardware
- * counters overcount this packet as a CRC error and undercount
- * the packet as a good packet
- */
- /* This packet should not be counted as a CRC error. */
- stats->crcerrs--;
- /* This packet does count as a Good Packet Received. */
- stats->gprc++;
-
- /* Adjust the Good Octets received counters */
- carry_bit = 0x80000000 & stats->gorcl;
- stats->gorcl += frame_len;
- /* If the high bit of Gorcl (the low 32 bits of the Good Octets
- * Received Count) was one before the addition,
- * AND it is zero after, then we lost the carry out,
- * need to add one to Gorch (Good Octets Received Count High).
- * This could be simplified if all environments supported
- * 64-bit integers.
- */
- if(carry_bit && ((stats->gorcl & 0x80000000) == 0))
- stats->gorch++;
- /* Is this a broadcast or multicast? Check broadcast first,
- * since the test for a multicast frame will test positive on
- * a broadcast frame.
- */
- if((mac_addr[0] == (uint8_t) 0xff) && (mac_addr[1] == (uint8_t) 0xff))
- /* Broadcast packet */
- stats->bprc++;
- else if(*mac_addr & 0x01)
- /* Multicast packet */
- stats->mprc++;
-
- if(frame_len == hw->max_frame_size) {
- /* In this case, the hardware has overcounted the number of
- * oversize frames.
- */
- if(stats->roc > 0)
- stats->roc--;
- }
-
- /* Adjust the bin counters when the extra byte put the frame in the
- * wrong bin. Remember that the frame_len was adjusted above.
- */
- if(frame_len == 64) {
- stats->prc64++;
- stats->prc127--;
- } else if(frame_len == 127) {
- stats->prc127++;
- stats->prc255--;
- } else if(frame_len == 255) {
- stats->prc255++;
- stats->prc511--;
- } else if(frame_len == 511) {
- stats->prc511++;
- stats->prc1023--;
- } else if(frame_len == 1023) {
- stats->prc1023++;
- stats->prc1522--;
- } else if(frame_len == 1522) {
- stats->prc1522++;
- }
-}
-
-/******************************************************************************
- * Gets the current PCI bus type, speed, and width of the hardware
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-void
-em_get_bus_info(struct em_hw *hw)
-{
- uint32_t status;
-
- switch (hw->mac_type) {
- case em_82542_rev2_0:
- case em_82542_rev2_1:
- hw->bus_type = em_bus_type_unknown;
- hw->bus_speed = em_bus_speed_unknown;
- hw->bus_width = em_bus_width_unknown;
- break;
- case em_82573:
- hw->bus_type = em_bus_type_pci_express;
- hw->bus_speed = em_bus_speed_2500;
- hw->bus_width = em_bus_width_pciex_4;
- break;
- default:
- status = E1000_READ_REG(hw, STATUS);
- hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
- em_bus_type_pcix : em_bus_type_pci;
-
- if(hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) {
- hw->bus_speed = (hw->bus_type == em_bus_type_pci) ?
- em_bus_speed_66 : em_bus_speed_120;
- } else if(hw->bus_type == em_bus_type_pci) {
- hw->bus_speed = (status & E1000_STATUS_PCI66) ?
- em_bus_speed_66 : em_bus_speed_33;
- } else {
- switch (status & E1000_STATUS_PCIX_SPEED) {
- case E1000_STATUS_PCIX_SPEED_66:
- hw->bus_speed = em_bus_speed_66;
- break;
- case E1000_STATUS_PCIX_SPEED_100:
- hw->bus_speed = em_bus_speed_100;
- break;
- case E1000_STATUS_PCIX_SPEED_133:
- hw->bus_speed = em_bus_speed_133;
- break;
- default:
- hw->bus_speed = em_bus_speed_reserved;
- break;
- }
- }
- hw->bus_width = (status & E1000_STATUS_BUS64) ?
- em_bus_width_64 : em_bus_width_32;
- break;
- }
-}
-/******************************************************************************
- * Reads a value from one of the devices registers using port I/O (as opposed
- * memory mapped I/O). Only 82544 and newer devices support port I/O.
- *
- * hw - Struct containing variables accessed by shared code
- * offset - offset to read from
- *****************************************************************************/
-uint32_t
-em_read_reg_io(struct em_hw *hw,
- uint32_t offset)
-{
- unsigned long io_addr = hw->io_base;
- unsigned long io_data = hw->io_base + 4;
-
- em_io_write(hw, io_addr, offset);
- return em_io_read(hw, io_data);
-}
-
-/******************************************************************************
- * Writes a value to one of the devices registers using port I/O (as opposed to
- * memory mapped I/O). Only 82544 and newer devices support port I/O.
- *
- * hw - Struct containing variables accessed by shared code
- * offset - offset to write to
- * value - value to write
- *****************************************************************************/
-void
-em_write_reg_io(struct em_hw *hw,
- uint32_t offset,
- uint32_t value)
-{
- unsigned long io_addr = hw->io_base;
- unsigned long io_data = hw->io_base + 4;
-
- em_io_write(hw, io_addr, offset);
- em_io_write(hw, io_data, value);
-}
-
-
-/******************************************************************************
- * Estimates the cable length.
- *
- * hw - Struct containing variables accessed by shared code
- * min_length - The estimated minimum length
- * max_length - The estimated maximum length
- *
- * returns: - E1000_ERR_XXX
- * E1000_SUCCESS
- *
- * This function always returns a ranged length (minimum & maximum).
- * So for M88 phy's, this function interprets the one value returned from the
- * register to the minimum and maximum range.
- * For IGP phy's, the function calculates the range by the AGC registers.
- *****************************************************************************/
-int32_t
-em_get_cable_length(struct em_hw *hw,
- uint16_t *min_length,
- uint16_t *max_length)
-{
- int32_t ret_val;
- uint16_t agc_value = 0;
- uint16_t cur_agc, min_agc = IGP01E1000_AGC_LENGTH_TABLE_SIZE;
- uint16_t i, phy_data;
- uint16_t cable_length;
-
- DEBUGFUNC("em_get_cable_length");
-
- *min_length = *max_length = 0;
-
- /* Use old method for Phy older than IGP */
- if(hw->phy_type == em_phy_m88) {
-
- ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
- &phy_data);
- if(ret_val)
- return ret_val;
- cable_length = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
- M88E1000_PSSR_CABLE_LENGTH_SHIFT;
-
- /* Convert the enum value to ranged values */
- switch (cable_length) {
- case em_cable_length_50:
- *min_length = 0;
- *max_length = em_igp_cable_length_50;
- break;
- case em_cable_length_50_80:
- *min_length = em_igp_cable_length_50;
- *max_length = em_igp_cable_length_80;
- break;
- case em_cable_length_80_110:
- *min_length = em_igp_cable_length_80;
- *max_length = em_igp_cable_length_110;
- break;
- case em_cable_length_110_140:
- *min_length = em_igp_cable_length_110;
- *max_length = em_igp_cable_length_140;
- break;
- case em_cable_length_140:
- *min_length = em_igp_cable_length_140;
- *max_length = em_igp_cable_length_170;
- break;
- default:
- return -E1000_ERR_PHY;
- break;
- }
- } else if(hw->phy_type == em_phy_igp) { /* For IGP PHY */
- uint16_t agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] =
- {IGP01E1000_PHY_AGC_A,
- IGP01E1000_PHY_AGC_B,
- IGP01E1000_PHY_AGC_C,
- IGP01E1000_PHY_AGC_D};
- /* Read the AGC registers for all channels */
- for(i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
-
- ret_val = em_read_phy_reg(hw, agc_reg_array[i], &phy_data);
- if(ret_val)
- return ret_val;
-
- cur_agc = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT;
-
- /* Array bound check. */
- if((cur_agc >= IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) ||
- (cur_agc == 0))
- return -E1000_ERR_PHY;
-
- agc_value += cur_agc;
-
- /* Update minimal AGC value. */
- if(min_agc > cur_agc)
- min_agc = cur_agc;
- }
-
- /* Remove the minimal AGC result for length < 50m */
- if(agc_value < IGP01E1000_PHY_CHANNEL_NUM * em_igp_cable_length_50) {
- agc_value -= min_agc;
-
- /* Get the average length of the remaining 3 channels */
- agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1);
- } else {
- /* Get the average length of all the 4 channels. */
- agc_value /= IGP01E1000_PHY_CHANNEL_NUM;
- }
-
- /* Set the range of the calculated length. */
- *min_length = ((em_igp_cable_length_table[agc_value] -
- IGP01E1000_AGC_RANGE) > 0) ?
- (em_igp_cable_length_table[agc_value] -
- IGP01E1000_AGC_RANGE) : 0;
- *max_length = em_igp_cable_length_table[agc_value] +
- IGP01E1000_AGC_RANGE;
- }
-
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Check the cable polarity
- *
- * hw - Struct containing variables accessed by shared code
- * polarity - output parameter : 0 - Polarity is not reversed
- * 1 - Polarity is reversed.
- *
- * returns: - E1000_ERR_XXX
- * E1000_SUCCESS
- *
- * For phy's older then IGP, this function simply reads the polarity bit in the
- * Phy Status register. For IGP phy's, this bit is valid only if link speed is
- * 10 Mbps. If the link speed is 100 Mbps there is no polarity so this bit will
- * return 0. If the link speed is 1000 Mbps the polarity status is in the
- * IGP01E1000_PHY_PCS_INIT_REG.
- *****************************************************************************/
-int32_t
-em_check_polarity(struct em_hw *hw,
- uint16_t *polarity)
-{
- int32_t ret_val;
- uint16_t phy_data;
-#ifdef __rtems__
- *polarity = 0; /* keep compiler happy */
-#endif
-
- DEBUGFUNC("em_check_polarity");
-
- if(hw->phy_type == em_phy_m88) {
- /* return the Polarity bit in the Status register. */
- ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
- &phy_data);
- if(ret_val)
- return ret_val;
- *polarity = (phy_data & M88E1000_PSSR_REV_POLARITY) >>
- M88E1000_PSSR_REV_POLARITY_SHIFT;
- } else if(hw->phy_type == em_phy_igp ||
- hw->phy_type == em_phy_igp_2) {
- /* Read the Status register to check the speed */
- ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS,
- &phy_data);
- if(ret_val)
- return ret_val;
-
- /* If speed is 1000 Mbps, must read the IGP01E1000_PHY_PCS_INIT_REG to
- * find the polarity status */
- if((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
- IGP01E1000_PSSR_SPEED_1000MBPS) {
-
- /* Read the GIG initialization PCS register (0x00B4) */
- ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG,
- &phy_data);
- if(ret_val)
- return ret_val;
-
- /* Check the polarity bits */
- *polarity = (phy_data & IGP01E1000_PHY_POLARITY_MASK) ? 1 : 0;
- } else {
- /* For 10 Mbps, read the polarity bit in the status register. (for
- * 100 Mbps this bit is always 0) */
- *polarity = phy_data & IGP01E1000_PSSR_POLARITY_REVERSED;
- }
- }
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Check if Downshift occured
- *
- * hw - Struct containing variables accessed by shared code
- * downshift - output parameter : 0 - No Downshift ocured.
- * 1 - Downshift ocured.
- *
- * returns: - E1000_ERR_XXX
- * E1000_SUCCESS
- *
- * For phy's older then IGP, this function reads the Downshift bit in the Phy
- * Specific Status register. For IGP phy's, it reads the Downgrade bit in the
- * Link Health register. In IGP this bit is latched high, so the driver must
- * read it immediately after link is established.
- *****************************************************************************/
-int32_t
-em_check_downshift(struct em_hw *hw)
-{
- int32_t ret_val;
- uint16_t phy_data;
-
- DEBUGFUNC("em_check_downshift");
-
- if(hw->phy_type == em_phy_igp ||
- hw->phy_type == em_phy_igp_2) {
- ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH,
- &phy_data);
- if(ret_val)
- return ret_val;
-
- hw->speed_downgraded = (phy_data & IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0;
- } else if(hw->phy_type == em_phy_m88) {
- ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
- &phy_data);
- if(ret_val)
- return ret_val;
-
- hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >>
- M88E1000_PSSR_DOWNSHIFT_SHIFT;
- }
-
- return E1000_SUCCESS;
-}
-
-/*****************************************************************************
- *
- * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a
- * gigabit link is achieved to improve link quality.
- *
- * hw: Struct containing variables accessed by shared code
- *
- * returns: - E1000_ERR_PHY if fail to read/write the PHY
- * E1000_SUCCESS at any other case.
- *
- ****************************************************************************/
-
-int32_t
-em_config_dsp_after_link_change(struct em_hw *hw,
- boolean_t link_up)
-{
- int32_t ret_val;
- uint16_t phy_data, phy_saved_data, speed, duplex, i;
- uint16_t dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] =
- {IGP01E1000_PHY_AGC_PARAM_A,
- IGP01E1000_PHY_AGC_PARAM_B,
- IGP01E1000_PHY_AGC_PARAM_C,
- IGP01E1000_PHY_AGC_PARAM_D};
- uint16_t min_length, max_length;
-
- DEBUGFUNC("em_config_dsp_after_link_change");
-
- if(hw->phy_type != em_phy_igp)
- return E1000_SUCCESS;
-
- if(link_up) {
- ret_val = em_get_speed_and_duplex(hw, &speed, &duplex);
- if(ret_val) {
- DEBUGOUT("Error getting link speed and duplex\n");
- return ret_val;
- }
-
- if(speed == SPEED_1000) {
-
- em_get_cable_length(hw, &min_length, &max_length);
-
- if((hw->dsp_config_state == em_dsp_config_enabled) &&
- min_length >= em_igp_cable_length_50) {
-
- for(i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
- ret_val = em_read_phy_reg(hw, dsp_reg_array[i],
- &phy_data);
- if(ret_val)
- return ret_val;
-
- phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
-
- ret_val = em_write_phy_reg(hw, dsp_reg_array[i],
- phy_data);
- if(ret_val)
- return ret_val;
- }
- hw->dsp_config_state = em_dsp_config_activated;
- }
-
- if((hw->ffe_config_state == em_ffe_config_enabled) &&
- (min_length < em_igp_cable_length_50)) {
-
- uint16_t ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_20;
- uint32_t idle_errs = 0;
-
- /* clear previous idle error counts */
- ret_val = em_read_phy_reg(hw, PHY_1000T_STATUS,
- &phy_data);
- if(ret_val)
- return ret_val;
-
- for(i = 0; i < ffe_idle_err_timeout; i++) {
- usec_delay(1000);
- ret_val = em_read_phy_reg(hw, PHY_1000T_STATUS,
- &phy_data);
- if(ret_val)
- return ret_val;
-
- idle_errs += (phy_data & SR_1000T_IDLE_ERROR_CNT);
- if(idle_errs > SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) {
- hw->ffe_config_state = em_ffe_config_active;
-
- ret_val = em_write_phy_reg(hw,
- IGP01E1000_PHY_DSP_FFE,
- IGP01E1000_PHY_DSP_FFE_CM_CP);
- if(ret_val)
- return ret_val;
- break;
- }
-
- if(idle_errs)
- ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_100;
- }
- }
- }
- } else {
- if(hw->dsp_config_state == em_dsp_config_activated) {
- /* Save off the current value of register 0x2F5B to be restored at
- * the end of the routines. */
- ret_val = em_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
-
- if(ret_val)
- return ret_val;
-
- /* Disable the PHY transmitter */
- ret_val = em_write_phy_reg(hw, 0x2F5B, 0x0003);
-
- if(ret_val)
- return ret_val;
-
- msec_delay_irq(20);
-
- ret_val = em_write_phy_reg(hw, 0x0000,
- IGP01E1000_IEEE_FORCE_GIGA);
- if(ret_val)
- return ret_val;
- for(i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
- ret_val = em_read_phy_reg(hw, dsp_reg_array[i], &phy_data);
- if(ret_val)
- return ret_val;
-
- phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
- phy_data |= IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS;
-
- ret_val = em_write_phy_reg(hw,dsp_reg_array[i], phy_data);
- if(ret_val)
- return ret_val;
- }
-
- ret_val = em_write_phy_reg(hw, 0x0000,
- IGP01E1000_IEEE_RESTART_AUTONEG);
- if(ret_val)
- return ret_val;
-
- msec_delay_irq(20);
-
- /* Now enable the transmitter */
- ret_val = em_write_phy_reg(hw, 0x2F5B, phy_saved_data);
-
- if(ret_val)
- return ret_val;
-
- hw->dsp_config_state = em_dsp_config_enabled;
- }
-
- if(hw->ffe_config_state == em_ffe_config_active) {
- /* Save off the current value of register 0x2F5B to be restored at
- * the end of the routines. */
- ret_val = em_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
-
- if(ret_val)
- return ret_val;
-
- /* Disable the PHY transmitter */
- ret_val = em_write_phy_reg(hw, 0x2F5B, 0x0003);
-
- if(ret_val)
- return ret_val;
-
- msec_delay_irq(20);
-
- ret_val = em_write_phy_reg(hw, 0x0000,
- IGP01E1000_IEEE_FORCE_GIGA);
- if(ret_val)
- return ret_val;
- ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE,
- IGP01E1000_PHY_DSP_FFE_DEFAULT);
- if(ret_val)
- return ret_val;
-
- ret_val = em_write_phy_reg(hw, 0x0000,
- IGP01E1000_IEEE_RESTART_AUTONEG);
- if(ret_val)
- return ret_val;
-
- msec_delay_irq(20);
-
- /* Now enable the transmitter */
- ret_val = em_write_phy_reg(hw, 0x2F5B, phy_saved_data);
-
- if(ret_val)
- return ret_val;
-
- hw->ffe_config_state = em_ffe_config_enabled;
- }
- }
- return E1000_SUCCESS;
-}
-
-/*****************************************************************************
- * Set PHY to class A mode
- * Assumes the following operations will follow to enable the new class mode.
- * 1. Do a PHY soft reset
- * 2. Restart auto-negotiation or force link.
- *
- * hw - Struct containing variables accessed by shared code
- ****************************************************************************/
-static int32_t
-em_set_phy_mode(struct em_hw *hw)
-{
- int32_t ret_val;
- uint16_t eeprom_data;
-
- DEBUGFUNC("em_set_phy_mode");
-
- if((hw->mac_type == em_82545_rev_3) &&
- (hw->media_type == em_media_type_copper)) {
- ret_val = em_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, 1, &eeprom_data);
- if(ret_val) {
- return ret_val;
- }
-
- if((eeprom_data != EEPROM_RESERVED_WORD) &&
- (eeprom_data & EEPROM_PHY_CLASS_A)) {
- ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x000B);
- if(ret_val)
- return ret_val;
- ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x8104);
- if(ret_val)
- return ret_val;
-
- hw->phy_reset_disable = FALSE;
- }
- }
-
- return E1000_SUCCESS;
-}
-
-/*****************************************************************************
- *
- * This function sets the lplu state according to the active flag. When
- * activating lplu this function also disables smart speed and vise versa.
- * lplu will not be activated unless the device autonegotiation advertisment
- * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
- * hw: Struct containing variables accessed by shared code
- * active - true to enable lplu false to disable lplu.
- *
- * returns: - E1000_ERR_PHY if fail to read/write the PHY
- * E1000_SUCCESS at any other case.
- *
- ****************************************************************************/
-
-int32_t
-em_set_d3_lplu_state(struct em_hw *hw,
- boolean_t active)
-{
- int32_t ret_val;
- uint16_t phy_data;
- DEBUGFUNC("em_set_d3_lplu_state");
-
- if(hw->phy_type != em_phy_igp && hw->phy_type != em_phy_igp_2)
- return E1000_SUCCESS;
-
- /* During driver activity LPLU should not be used or it will attain link
- * from the lowest speeds starting from 10Mbps. The capability is used for
- * Dx transitions and states */
- if(hw->mac_type == em_82541_rev_2 || hw->mac_type == em_82547_rev_2) {
- ret_val = em_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data);
- if(ret_val)
- return ret_val;
- } else {
- ret_val = em_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
- if(ret_val)
- return ret_val;
- }
-
- if(!active) {
- if(hw->mac_type == em_82541_rev_2 ||
- hw->mac_type == em_82547_rev_2) {
- phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
- ret_val = em_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data);
- if(ret_val)
- return ret_val;
- } else {
- phy_data &= ~IGP02E1000_PM_D3_LPLU;
- ret_val = em_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
- phy_data);
- if (ret_val)
- return ret_val;
- }
-
- /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during
- * Dx states where the power conservation is most important. During
- * driver activity we should enable SmartSpeed, so performance is
- * maintained. */
- if (hw->smart_speed == em_smart_speed_on) {
- ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
- &phy_data);
- if(ret_val)
- return ret_val;
-
- phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
- ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
- phy_data);
- if(ret_val)
- return ret_val;
- } else if (hw->smart_speed == em_smart_speed_off) {
- ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
- &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
- ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
- phy_data);
- if(ret_val)
- return ret_val;
- }
-
- } else if((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT) ||
- (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL ) ||
- (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
-
- if(hw->mac_type == em_82541_rev_2 ||
- hw->mac_type == em_82547_rev_2) {
- phy_data |= IGP01E1000_GMII_FLEX_SPD;
- ret_val = em_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data);
- if(ret_val)
- return ret_val;
- } else {
- phy_data |= IGP02E1000_PM_D3_LPLU;
- ret_val = em_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
- phy_data);
- if (ret_val)
- return ret_val;
- }
-
- /* When LPLU is enabled we should disable SmartSpeed */
- ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data);
- if(ret_val)
- return ret_val;
-
- phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
- ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data);
- if(ret_val)
- return ret_val;
-
- }
- return E1000_SUCCESS;
-}
-
-/*****************************************************************************
- *
- * This function sets the lplu d0 state according to the active flag. When
- * activating lplu this function also disables smart speed and vise versa.
- * lplu will not be activated unless the device autonegotiation advertisment
- * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
- * hw: Struct containing variables accessed by shared code
- * active - true to enable lplu false to disable lplu.
- *
- * returns: - E1000_ERR_PHY if fail to read/write the PHY
- * E1000_SUCCESS at any other case.
- *
- ****************************************************************************/
-
-int32_t
-em_set_d0_lplu_state(struct em_hw *hw,
- boolean_t active)
-{
- int32_t ret_val;
- uint16_t phy_data;
- DEBUGFUNC("em_set_d0_lplu_state");
-
- if(hw->mac_type <= em_82547_rev_2)
- return E1000_SUCCESS;
-
- ret_val = em_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
- if(ret_val)
- return ret_val;
-
- if (!active) {
- phy_data &= ~IGP02E1000_PM_D0_LPLU;
- ret_val = em_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
- if (ret_val)
- return ret_val;
-
- /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during
- * Dx states where the power conservation is most important. During
- * driver activity we should enable SmartSpeed, so performance is
- * maintained. */
- if (hw->smart_speed == em_smart_speed_on) {
- ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
- &phy_data);
- if(ret_val)
- return ret_val;
-
- phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
- ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
- phy_data);
- if(ret_val)
- return ret_val;
- } else if (hw->smart_speed == em_smart_speed_off) {
- ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
- &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
- ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
- phy_data);
- if(ret_val)
- return ret_val;
- }
-
-
- } else {
-
- phy_data |= IGP02E1000_PM_D0_LPLU;
- ret_val = em_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
- if (ret_val)
- return ret_val;
-
- /* When LPLU is enabled we should disable SmartSpeed */
- ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data);
- if(ret_val)
- return ret_val;
-
- phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
- ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data);
- if(ret_val)
- return ret_val;
-
- }
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Change VCO speed register to improve Bit Error Rate performance of SERDES.
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-static int32_t
-em_set_vco_speed(struct em_hw *hw)
-{
- int32_t ret_val;
- uint16_t default_page = 0;
- uint16_t phy_data;
-
- DEBUGFUNC("em_set_vco_speed");
-
- switch(hw->mac_type) {
- case em_82545_rev_3:
- case em_82546_rev_3:
- break;
- default:
- return E1000_SUCCESS;
- }
-
- /* Set PHY register 30, page 5, bit 8 to 0 */
-
- ret_val = em_read_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, &default_page);
- if(ret_val)
- return ret_val;
-
- ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005);
- if(ret_val)
- return ret_val;
-
- ret_val = em_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
- if(ret_val)
- return ret_val;
-
- phy_data &= ~M88E1000_PHY_VCO_REG_BIT8;
- ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
- if(ret_val)
- return ret_val;
-
- /* Set PHY register 30, page 4, bit 11 to 1 */
-
- ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004);
- if(ret_val)
- return ret_val;
-
- ret_val = em_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
- if(ret_val)
- return ret_val;
-
- phy_data |= M88E1000_PHY_VCO_REG_BIT11;
- ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
- if(ret_val)
- return ret_val;
-
- ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, default_page);
- if(ret_val)
- return ret_val;
-
- return E1000_SUCCESS;
-}
-
-
-/*****************************************************************************
- * This function reads the cookie from ARC ram.
- *
- * returns: - E1000_SUCCESS .
- ****************************************************************************/
-int32_t
-em_host_if_read_cookie(struct em_hw * hw, uint8_t *buffer)
-{
- uint8_t i;
- uint32_t offset = E1000_MNG_DHCP_COOKIE_OFFSET;
- uint8_t length = E1000_MNG_DHCP_COOKIE_LENGTH;
-
- length = (length >> 2);
- offset = (offset >> 2);
-
- for (i = 0; i < length; i++) {
- *((uint32_t *) buffer + i) =
- E1000_READ_REG_ARRAY_DWORD(hw, HOST_IF, offset + i);
- }
- return E1000_SUCCESS;
-}
-
-
-/*****************************************************************************
- * This function checks whether the HOST IF is enabled for command operaton
- * and also checks whether the previous command is completed.
- * It busy waits in case of previous command is not completed.
- *
- * returns: - E1000_ERR_HOST_INTERFACE_COMMAND in case if is not ready or
- * timeout
- * - E1000_SUCCESS for success.
- ****************************************************************************/
-int32_t
-em_mng_enable_host_if(struct em_hw * hw)
-{
- uint32_t hicr;
- uint8_t i;
-
- /* Check that the host interface is enabled. */
- hicr = E1000_READ_REG(hw, HICR);
- if ((hicr & E1000_HICR_EN) == 0) {
- DEBUGOUT("E1000_HOST_EN bit disabled.\n");
- return -E1000_ERR_HOST_INTERFACE_COMMAND;
- }
- /* check the previous command is completed */
- for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT; i++) {
- hicr = E1000_READ_REG(hw, HICR);
- if (!(hicr & E1000_HICR_C))
- break;
- msec_delay_irq(1);
- }
-
- if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) {
- DEBUGOUT("Previous command timeout failed .\n");
- return -E1000_ERR_HOST_INTERFACE_COMMAND;
- }
- return E1000_SUCCESS;
-}
-
-/*****************************************************************************
- * This function writes the buffer content at the offset given on the host if.
- * It also does alignment considerations to do the writes in most efficient way.
- * Also fills up the sum of the buffer in *buffer parameter.
- *
- * returns - E1000_SUCCESS for success.
- ****************************************************************************/
-int32_t
-em_mng_host_if_write(struct em_hw * hw, uint8_t *buffer,
- uint16_t length, uint16_t offset, uint8_t *sum)
-{
- uint8_t *tmp;
- uint8_t *bufptr = buffer;
- uint32_t data;
- uint16_t remaining, i, j, prev_bytes;
-
- /* sum = only sum of the data and it is not checksum */
-
- if (length == 0 || offset + length > E1000_HI_MAX_MNG_DATA_LENGTH) {
- return -E1000_ERR_PARAM;
- }
-
- tmp = (uint8_t *)&data;
- prev_bytes = offset & 0x3;
- offset &= 0xFFFC;
- offset >>= 2;
-
- if (prev_bytes) {
- data = E1000_READ_REG_ARRAY_DWORD(hw, HOST_IF, offset);
- for (j = prev_bytes; j < sizeof(uint32_t); j++) {
- *(tmp + j) = *bufptr++;
- *sum += *(tmp + j);
- }
- E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset, data);
- length -= j - prev_bytes;
- offset++;
- }
-
- remaining = length & 0x3;
- length -= remaining;
-
- /* Calculate length in DWORDs */
- length >>= 2;
-
- /* The device driver writes the relevant command block into the
- * ram area. */
- for (i = 0; i < length; i++) {
- for (j = 0; j < sizeof(uint32_t); j++) {
- *(tmp + j) = *bufptr++;
- *sum += *(tmp + j);
- }
-
- E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset + i, data);
- }
- if (remaining) {
- for (j = 0; j < sizeof(uint32_t); j++) {
- if (j < remaining)
- *(tmp + j) = *bufptr++;
- else
- *(tmp + j) = 0;
-
- *sum += *(tmp + j);
- }
- E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset + i, data);
- }
-
- return E1000_SUCCESS;
-}
-
-
-/*****************************************************************************
- * This function writes the command header after does the checksum calculation.
- *
- * returns - E1000_SUCCESS for success.
- ****************************************************************************/
-int32_t
-em_mng_write_cmd_header(struct em_hw * hw,
- struct em_host_mng_command_header * hdr)
-{
- uint16_t i;
- uint8_t sum;
- uint8_t *buffer;
-
- /* Write the whole command header structure which includes sum of
- * the buffer */
-
- uint16_t length = sizeof(struct em_host_mng_command_header);
-
- sum = hdr->checksum;
- hdr->checksum = 0;
-
- buffer = (uint8_t *) hdr;
- i = length;
- while(i--)
- sum += buffer[i];
-
- hdr->checksum = 0 - sum;
-
- length >>= 2;
- /* The device driver writes the relevant command block into the ram area. */
- for (i = 0; i < length; i++)
- E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, i, *((uint32_t *) hdr + i));
-
- return E1000_SUCCESS;
-}
-
-
-/*****************************************************************************
- * This function indicates to ARC that a new command is pending which completes
- * one write operation by the driver.
- *
- * returns - E1000_SUCCESS for success.
- ****************************************************************************/
-int32_t
-em_mng_write_commit(
- struct em_hw * hw)
-{
- uint32_t hicr;
-
- hicr = E1000_READ_REG(hw, HICR);
- /* Setting this bit tells the ARC that a new command is pending. */
- E1000_WRITE_REG(hw, HICR, hicr | E1000_HICR_C);
-
- return E1000_SUCCESS;
-}
-
-
-/*****************************************************************************
- * This function checks the mode of the firmware.
- *
- * returns - TRUE when the mode is IAMT or FALSE.
- ****************************************************************************/
-boolean_t
-em_check_mng_mode(
- struct em_hw *hw)
-{
- uint32_t fwsm;
-
- fwsm = E1000_READ_REG(hw, FWSM);
-
- if((fwsm & E1000_FWSM_MODE_MASK) ==
- (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
- return TRUE;
-
- return FALSE;
-}
-
-
-/*****************************************************************************
- * This function writes the dhcp info .
- ****************************************************************************/
-int32_t
-em_mng_write_dhcp_info(struct em_hw * hw, uint8_t *buffer,
- uint16_t length)
-{
- int32_t ret_val;
- struct em_host_mng_command_header hdr;
-
- hdr.command_id = E1000_MNG_DHCP_TX_PAYLOAD_CMD;
- hdr.command_length = length;
- hdr.reserved1 = 0;
- hdr.reserved2 = 0;
- hdr.checksum = 0;
-
- ret_val = em_mng_enable_host_if(hw);
- if (ret_val == E1000_SUCCESS) {
- ret_val = em_mng_host_if_write(hw, buffer, length, sizeof(hdr),
- &(hdr.checksum));
- if (ret_val == E1000_SUCCESS) {
- ret_val = em_mng_write_cmd_header(hw, &hdr);
- if (ret_val == E1000_SUCCESS)
- ret_val = em_mng_write_commit(hw);
- }
- }
- return ret_val;
-}
-
-
-/*****************************************************************************
- * This function calculates the checksum.
- *
- * returns - checksum of buffer contents.
- ****************************************************************************/
-uint8_t
-em_calculate_mng_checksum(char *buffer, uint32_t length)
-{
- uint8_t sum = 0;
- uint32_t i;
-
- if (!buffer)
- return 0;
-
- for (i=0; i < length; i++)
- sum += buffer[i];
-
- return (uint8_t) (0 - sum);
-}
-
-/*****************************************************************************
- * This function checks whether tx pkt filtering needs to be enabled or not.
- *
- * returns - TRUE for packet filtering or FALSE.
- ****************************************************************************/
-boolean_t
-em_enable_tx_pkt_filtering(struct em_hw *hw)
-{
- /* called in init as well as watchdog timer functions */
-
- int32_t ret_val, checksum;
- boolean_t tx_filter = FALSE;
- struct em_host_mng_dhcp_cookie *hdr = &(hw->mng_cookie);
- uint8_t *buffer = (uint8_t *) &(hw->mng_cookie);
-
- if (em_check_mng_mode(hw)) {
- ret_val = em_mng_enable_host_if(hw);
- if (ret_val == E1000_SUCCESS) {
- ret_val = em_host_if_read_cookie(hw, buffer);
- if (ret_val == E1000_SUCCESS) {
- checksum = hdr->checksum;
- hdr->checksum = 0;
- if ((hdr->signature == E1000_IAMT_SIGNATURE) &&
- checksum == em_calculate_mng_checksum((char *)buffer,
- E1000_MNG_DHCP_COOKIE_LENGTH)) {
- if (hdr->status &
- E1000_MNG_DHCP_COOKIE_STATUS_PARSING_SUPPORT)
- tx_filter = TRUE;
- } else
- tx_filter = TRUE;
- } else
- tx_filter = TRUE;
- }
- }
-
- hw->tx_pkt_filtering = tx_filter;
- return tx_filter;
-}
-
-/******************************************************************************
- * Verifies the hardware needs to allow ARPs to be processed by the host
- *
- * hw - Struct containing variables accessed by shared code
- *
- * returns: - TRUE/FALSE
- *
- *****************************************************************************/
-uint32_t
-em_enable_mng_pass_thru(struct em_hw *hw)
-{
- uint32_t manc;
- uint32_t fwsm, factps;
-
- if (hw->asf_firmware_present) {
- manc = E1000_READ_REG(hw, MANC);
-
- if (!(manc & E1000_MANC_RCV_TCO_EN) ||
- !(manc & E1000_MANC_EN_MAC_ADDR_FILTER))
- return FALSE;
- if (em_arc_subsystem_valid(hw) == TRUE) {
- fwsm = E1000_READ_REG(hw, FWSM);
- factps = E1000_READ_REG(hw, FACTPS);
-
- if (((fwsm & E1000_FWSM_MODE_MASK) ==
- (em_mng_mode_pt << E1000_FWSM_MODE_SHIFT)) &&
- (factps & E1000_FACTPS_MNGCG))
- return TRUE;
- } else
- if ((manc & E1000_MANC_SMBUS_EN) && !(manc & E1000_MANC_ASF_EN))
- return TRUE;
- }
- return FALSE;
-}
-
-static int32_t
-em_polarity_reversal_workaround(struct em_hw *hw)
-{
- int32_t ret_val;
- uint16_t mii_status_reg;
- uint16_t i;
-
- /* Polarity reversal workaround for forced 10F/10H links. */
-
- /* Disable the transmitter on the PHY */
-
- ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
- if(ret_val)
- return ret_val;
- ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF);
- if(ret_val)
- return ret_val;
-
- ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
- if(ret_val)
- return ret_val;
-
- /* This loop will early-out if the NO link condition has been met. */
- for(i = PHY_FORCE_TIME; i > 0; i--) {
- /* Read the MII Status Register and wait for Link Status bit
- * to be clear.
- */
-
- ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
- if(ret_val)
- return ret_val;
-
- ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
- if(ret_val)
- return ret_val;
-
- if((mii_status_reg & ~MII_SR_LINK_STATUS) == 0) break;
- msec_delay_irq(100);
- }
-
- /* Recommended delay time after link has been lost */
- msec_delay_irq(1000);
-
- /* Now we will re-enable th transmitter on the PHY */
-
- ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
- if(ret_val)
- return ret_val;
- msec_delay_irq(50);
- ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0);
- if(ret_val)
- return ret_val;
- msec_delay_irq(50);
- ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00);
- if(ret_val)
- return ret_val;
- msec_delay_irq(50);
- ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000);
- if(ret_val)
- return ret_val;
-
- ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
- if(ret_val)
- return ret_val;
-
- /* This loop will early-out if the link condition has been met. */
- for(i = PHY_FORCE_TIME; i > 0; i--) {
- /* Read the MII Status Register and wait for Link Status bit
- * to be set.
- */
-
- ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
- if(ret_val)
- return ret_val;
-
- ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
- if(ret_val)
- return ret_val;
-
- if(mii_status_reg & MII_SR_LINK_STATUS) break;
- msec_delay_irq(100);
- }
- return E1000_SUCCESS;
-}
-
-/***************************************************************************
- *
- * Disables PCI-Express master access.
- *
- * hw: Struct containing variables accessed by shared code
- *
- * returns: - none.
- *
- ***************************************************************************/
-void
-em_set_pci_express_master_disable(struct em_hw *hw)
-{
- uint32_t ctrl;
-
- DEBUGFUNC("em_set_pci_express_master_disable");
-
- if (hw->bus_type != em_bus_type_pci_express)
- return;
-
- ctrl = E1000_READ_REG(hw, CTRL);
- ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
- E1000_WRITE_REG(hw, CTRL, ctrl);
-}
-
-/***************************************************************************
- *
- * Enables PCI-Express master access.
- *
- * hw: Struct containing variables accessed by shared code
- *
- * returns: - none.
- *
- ***************************************************************************/
-void
-em_enable_pciex_master(struct em_hw *hw)
-{
- uint32_t ctrl;
-
- DEBUGFUNC("em_enable_pciex_master");
-
- if (hw->bus_type != em_bus_type_pci_express)
- return;
-
- ctrl = E1000_READ_REG(hw, CTRL);
- ctrl &= ~E1000_CTRL_GIO_MASTER_DISABLE;
- E1000_WRITE_REG(hw, CTRL, ctrl);
-}
-
-/*******************************************************************************
- *
- * Disables PCI-Express master access and verifies there are no pending requests
- *
- * hw: Struct containing variables accessed by shared code
- *
- * returns: - E1000_ERR_MASTER_REQUESTS_PENDING if master disable bit hasn't
- * caused the master requests to be disabled.
- * E1000_SUCCESS master requests disabled.
- *
- ******************************************************************************/
-int32_t
-em_disable_pciex_master(struct em_hw *hw)
-{
- int32_t timeout = MASTER_DISABLE_TIMEOUT; /* 80ms */
-
- DEBUGFUNC("em_disable_pciex_master");
-
- if (hw->bus_type != em_bus_type_pci_express)
- return E1000_SUCCESS;
-
- em_set_pci_express_master_disable(hw);
-
- while(timeout) {
- if(!(E1000_READ_REG(hw, STATUS) & E1000_STATUS_GIO_MASTER_ENABLE))
- break;
- else
- usec_delay(100);
- timeout--;
- }
-
- if(!timeout) {
- DEBUGOUT("Master requests are pending.\n");
- return -E1000_ERR_MASTER_REQUESTS_PENDING;
- }
-
- return E1000_SUCCESS;
-}
-
-/*******************************************************************************
- *
- * Check for EEPROM Auto Read bit done.
- *
- * hw: Struct containing variables accessed by shared code
- *
- * returns: - E1000_ERR_RESET if fail to reset MAC
- * E1000_SUCCESS at any other case.
- *
- ******************************************************************************/
-int32_t
-em_get_auto_rd_done(struct em_hw *hw)
-{
- int32_t timeout = AUTO_READ_DONE_TIMEOUT;
-
- DEBUGFUNC("em_get_auto_rd_done");
-
- switch (hw->mac_type) {
- default:
- msec_delay(5);
- break;
- case em_82573:
- while(timeout) {
- if (E1000_READ_REG(hw, EECD) & E1000_EECD_AUTO_RD) break;
- else msec_delay(1);
- timeout--;
- }
-
- if(!timeout) {
- DEBUGOUT("Auto read by HW from EEPROM has not completed.\n");
- return -E1000_ERR_RESET;
- }
- break;
- }
-
- return E1000_SUCCESS;
-}
-
-/***************************************************************************
- * Checks if the PHY configuration is done
- *
- * hw: Struct containing variables accessed by shared code
- *
- * returns: - E1000_ERR_RESET if fail to reset MAC
- * E1000_SUCCESS at any other case.
- *
- ***************************************************************************/
-int32_t
-em_get_phy_cfg_done(struct em_hw *hw)
-{
- DEBUGFUNC("em_get_phy_cfg_done");
-
- /* Simply wait for 10ms */
- msec_delay(10);
-
- return E1000_SUCCESS;
-}
-
-/***************************************************************************
- *
- * Using the combination of SMBI and SWESMBI semaphore bits when resetting
- * adapter or Eeprom access.
- *
- * hw: Struct containing variables accessed by shared code
- *
- * returns: - E1000_ERR_EEPROM if fail to access EEPROM.
- * E1000_SUCCESS at any other case.
- *
- ***************************************************************************/
-int32_t
-em_get_hw_eeprom_semaphore(struct em_hw *hw)
-{
- int32_t timeout;
- uint32_t swsm;
-
- DEBUGFUNC("em_get_hw_eeprom_semaphore");
-
- if(!hw->eeprom_semaphore_present)
- return E1000_SUCCESS;
-
-
- /* Get the FW semaphore. */
- timeout = hw->eeprom.word_size + 1;
- while(timeout) {
- swsm = E1000_READ_REG(hw, SWSM);
- swsm |= E1000_SWSM_SWESMBI;
- E1000_WRITE_REG(hw, SWSM, swsm);
- /* if we managed to set the bit we got the semaphore. */
- swsm = E1000_READ_REG(hw, SWSM);
- if(swsm & E1000_SWSM_SWESMBI)
- break;
-
- usec_delay(50);
- timeout--;
- }
-
- if(!timeout) {
- /* Release semaphores */
- em_put_hw_eeprom_semaphore(hw);
- DEBUGOUT("Driver can't access the Eeprom - SWESMBI bit is set.\n");
- return -E1000_ERR_EEPROM;
- }
-
- return E1000_SUCCESS;
-}
-
-/***************************************************************************
- * This function clears HW semaphore bits.
- *
- * hw: Struct containing variables accessed by shared code
- *
- * returns: - None.
- *
- ***************************************************************************/
-void
-em_put_hw_eeprom_semaphore(struct em_hw *hw)
-{
- uint32_t swsm;
-
- DEBUGFUNC("em_put_hw_eeprom_semaphore");
-
- if(!hw->eeprom_semaphore_present)
- return;
-
- swsm = E1000_READ_REG(hw, SWSM);
- /* Release both semaphores. */
- swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
- E1000_WRITE_REG(hw, SWSM, swsm);
-}
-
-/******************************************************************************
- * Checks if PHY reset is blocked due to SOL/IDER session, for example.
- * Returning E1000_BLK_PHY_RESET isn't necessarily an error. But it's up to
- * the caller to figure out how to deal with it.
- *
- * hw - Struct containing variables accessed by shared code
- *
- * returns: - E1000_BLK_PHY_RESET
- * E1000_SUCCESS
- *
- *****************************************************************************/
-int32_t
-em_check_phy_reset_block(struct em_hw *hw)
-{
- uint32_t manc = 0;
- if(hw->mac_type > em_82547_rev_2)
- manc = E1000_READ_REG(hw, MANC);
- return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
- E1000_BLK_PHY_RESET : E1000_SUCCESS;
-}
-
-uint8_t
-em_arc_subsystem_valid(struct em_hw *hw)
-{
- uint32_t fwsm;
-
- /* On 8257x silicon, registers in the range of 0x8800 - 0x8FFC
- * may not be provided a DMA clock when no manageability features are
- * enabled. We do not want to perform any reads/writes to these registers
- * if this is the case. We read FWSM to determine the manageability mode.
- */
- switch (hw->mac_type) {
- case em_82573:
- fwsm = E1000_READ_REG(hw, FWSM);
- if((fwsm & E1000_FWSM_MODE_MASK) != 0)
- return TRUE;
- break;
- default:
- break;
- }
- return FALSE;
-}
-
-
-
diff --git a/bsps/powerpc/beatnik/net/if_em/if_em_hw.h b/bsps/powerpc/beatnik/net/if_em/if_em_hw.h
deleted file mode 100644
index 98f4c5e6ba..0000000000
--- a/bsps/powerpc/beatnik/net/if_em/if_em_hw.h
+++ /dev/null
@@ -1,2678 +0,0 @@
-/*******************************************************************************
-
- Copyright (c) 2001-2005, Intel Corporation
- All rights reserved.
-
- Redistribution and use in source and binary forms, with or without
- modification, are permitted provided that the following conditions are met:
-
- 1. Redistributions of source code must retain the above copyright notice,
- this list of conditions and the following disclaimer.
-
- 2. Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in the
- documentation and/or other materials provided with the distribution.
-
- 3. Neither the name of the Intel Corporation nor the names of its
- contributors may be used to endorse or promote products derived from
- this software without specific prior written permission.
-
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- POSSIBILITY OF SUCH DAMAGE.
-
-*******************************************************************************/
-
-/*$FreeBSD: /repoman/r/ncvs/src/sys/dev/em/if_em_hw.h,v 1.15 2005/05/26 23:32:02 tackerman Exp $*/
-/* if_em_hw.h
- * Structures, enums, and macros for the MAC
- */
-
-#ifndef _EM_HW_H_
-#define _EM_HW_H_
-
-#ifndef __rtems__
-#include <dev/em/if_em_osdep.h>
-#else
-#include "if_em_osdep.h"
-#endif
-
-
-/* Forward declarations of structures used by the shared code */
-struct em_hw;
-struct em_hw_stats;
-
-/* Enumerated types specific to the e1000 hardware */
-/* Media Access Controlers */
-typedef enum {
- em_undefined = 0,
- em_82542_rev2_0,
- em_82542_rev2_1,
- em_82543,
- em_82544,
- em_82540,
- em_82545,
- em_82545_rev_3,
- em_82546,
- em_82546_rev_3,
- em_82541,
- em_82541_rev_2,
- em_82547,
- em_82547_rev_2,
- em_82573,
- em_num_macs
-} em_mac_type;
-
-typedef enum {
- em_eeprom_uninitialized = 0,
- em_eeprom_spi,
- em_eeprom_microwire,
- em_eeprom_flash,
- em_num_eeprom_types
-} em_eeprom_type;
-
-/* Media Types */
-typedef enum {
- em_media_type_copper = 0,
- em_media_type_fiber = 1,
- em_media_type_internal_serdes = 2,
- em_num_media_types
-} em_media_type;
-
-typedef enum {
- em_10_half = 0,
- em_10_full = 1,
- em_100_half = 2,
- em_100_full = 3
-} em_speed_duplex_type;
-
-/* Flow Control Settings */
-typedef enum {
- em_fc_none = 0,
- em_fc_rx_pause = 1,
- em_fc_tx_pause = 2,
- em_fc_full = 3,
- em_fc_default = 0xFF
-} em_fc_type;
-
-/* PCI bus types */
-typedef enum {
- em_bus_type_unknown = 0,
- em_bus_type_pci,
- em_bus_type_pcix,
- em_bus_type_pci_express,
- em_bus_type_reserved
-} em_bus_type;
-
-/* PCI bus speeds */
-typedef enum {
- em_bus_speed_unknown = 0,
- em_bus_speed_33,
- em_bus_speed_66,
- em_bus_speed_100,
- em_bus_speed_120,
- em_bus_speed_133,
- em_bus_speed_2500,
- em_bus_speed_reserved
-} em_bus_speed;
-
-/* PCI bus widths */
-typedef enum {
- em_bus_width_unknown = 0,
- em_bus_width_32,
- em_bus_width_64,
- em_bus_width_pciex_1,
- em_bus_width_pciex_4,
- em_bus_width_reserved
-} em_bus_width;
-
-/* PHY status info structure and supporting enums */
-typedef enum {
- em_cable_length_50 = 0,
- em_cable_length_50_80,
- em_cable_length_80_110,
- em_cable_length_110_140,
- em_cable_length_140,
- em_cable_length_undefined = 0xFF
-} em_cable_length;
-
-typedef enum {
- em_igp_cable_length_10 = 10,
- em_igp_cable_length_20 = 20,
- em_igp_cable_length_30 = 30,
- em_igp_cable_length_40 = 40,
- em_igp_cable_length_50 = 50,
- em_igp_cable_length_60 = 60,
- em_igp_cable_length_70 = 70,
- em_igp_cable_length_80 = 80,
- em_igp_cable_length_90 = 90,
- em_igp_cable_length_100 = 100,
- em_igp_cable_length_110 = 110,
- em_igp_cable_length_120 = 120,
- em_igp_cable_length_130 = 130,
- em_igp_cable_length_140 = 140,
- em_igp_cable_length_150 = 150,
- em_igp_cable_length_160 = 160,
- em_igp_cable_length_170 = 170,
- em_igp_cable_length_180 = 180
-} em_igp_cable_length;
-
-typedef enum {
- em_10bt_ext_dist_enable_normal = 0,
- em_10bt_ext_dist_enable_lower,
- em_10bt_ext_dist_enable_undefined = 0xFF
-} em_10bt_ext_dist_enable;
-
-typedef enum {
- em_rev_polarity_normal = 0,
- em_rev_polarity_reversed,
- em_rev_polarity_undefined = 0xFF
-} em_rev_polarity;
-
-typedef enum {
- em_downshift_normal = 0,
- em_downshift_activated,
- em_downshift_undefined = 0xFF
-} em_downshift;
-
-typedef enum {
- em_smart_speed_default = 0,
- em_smart_speed_on,
- em_smart_speed_off
-} em_smart_speed;
-
-typedef enum {
- em_polarity_reversal_enabled = 0,
- em_polarity_reversal_disabled,
- em_polarity_reversal_undefined = 0xFF
-} em_polarity_reversal;
-
-typedef enum {
- em_auto_x_mode_manual_mdi = 0,
- em_auto_x_mode_manual_mdix,
- em_auto_x_mode_auto1,
- em_auto_x_mode_auto2,
- em_auto_x_mode_undefined = 0xFF
-} em_auto_x_mode;
-
-typedef enum {
- em_1000t_rx_status_not_ok = 0,
- em_1000t_rx_status_ok,
- em_1000t_rx_status_undefined = 0xFF
-} em_1000t_rx_status;
-
-typedef enum {
- em_phy_m88 = 0,
- em_phy_igp,
- em_phy_igp_2,
- em_phy_undefined = 0xFF
-} em_phy_type;
-
-typedef enum {
- em_ms_hw_default = 0,
- em_ms_force_master,
- em_ms_force_slave,
- em_ms_auto
-} em_ms_type;
-
-typedef enum {
- em_ffe_config_enabled = 0,
- em_ffe_config_active,
- em_ffe_config_blocked
-} em_ffe_config;
-
-typedef enum {
- em_dsp_config_disabled = 0,
- em_dsp_config_enabled,
- em_dsp_config_activated,
- em_dsp_config_undefined = 0xFF
-} em_dsp_config;
-
-struct em_phy_info {
- em_cable_length cable_length;
- em_10bt_ext_dist_enable extended_10bt_distance;
- em_rev_polarity cable_polarity;
- em_downshift downshift;
- em_polarity_reversal polarity_correction;
- em_auto_x_mode mdix_mode;
- em_1000t_rx_status local_rx;
- em_1000t_rx_status remote_rx;
-};
-
-struct em_phy_stats {
- uint32_t idle_errors;
- uint32_t receive_errors;
-};
-
-struct em_eeprom_info {
- em_eeprom_type type;
- uint16_t word_size;
- uint16_t opcode_bits;
- uint16_t address_bits;
- uint16_t delay_usec;
- uint16_t page_size;
- boolean_t use_eerd;
- boolean_t use_eewr;
-};
-
-/* Flex ASF Information */
-#define E1000_HOST_IF_MAX_SIZE 2048
-
-typedef enum {
- em_byte_align = 0,
- em_word_align = 1,
- em_dword_align = 2
-} em_align_type;
-
-
-
-/* Error Codes */
-#define E1000_SUCCESS 0
-#define E1000_ERR_EEPROM 1
-#define E1000_ERR_PHY 2
-#define E1000_ERR_CONFIG 3
-#define E1000_ERR_PARAM 4
-#define E1000_ERR_MAC_TYPE 5
-#define E1000_ERR_PHY_TYPE 6
-#define E1000_ERR_RESET 9
-#define E1000_ERR_MASTER_REQUESTS_PENDING 10
-#define E1000_ERR_HOST_INTERFACE_COMMAND 11
-#define E1000_BLK_PHY_RESET 12
-
-/* Function prototypes */
-/* Initialization */
-int32_t em_reset_hw(struct em_hw *hw);
-int32_t em_init_hw(struct em_hw *hw);
-int32_t em_id_led_init(struct em_hw * hw);
-int32_t em_set_mac_type(struct em_hw *hw);
-void em_set_media_type(struct em_hw *hw);
-
-/* Link Configuration */
-int32_t em_setup_link(struct em_hw *hw);
-int32_t em_phy_setup_autoneg(struct em_hw *hw);
-void em_config_collision_dist(struct em_hw *hw);
-int32_t em_config_fc_after_link_up(struct em_hw *hw);
-int32_t em_check_for_link(struct em_hw *hw);
-int32_t em_get_speed_and_duplex(struct em_hw *hw, uint16_t * speed, uint16_t * duplex);
-int32_t em_wait_autoneg(struct em_hw *hw);
-int32_t em_force_mac_fc(struct em_hw *hw);
-
-/* PHY */
-int32_t em_read_phy_reg(struct em_hw *hw, uint32_t reg_addr, uint16_t *phy_data);
-int32_t em_write_phy_reg(struct em_hw *hw, uint32_t reg_addr, uint16_t data);
-int32_t em_phy_hw_reset(struct em_hw *hw);
-int32_t em_phy_reset(struct em_hw *hw);
-int32_t em_detect_gig_phy(struct em_hw *hw);
-int32_t em_phy_get_info(struct em_hw *hw, struct em_phy_info *phy_info);
-int32_t em_phy_m88_get_info(struct em_hw *hw, struct em_phy_info *phy_info);
-int32_t em_phy_igp_get_info(struct em_hw *hw, struct em_phy_info *phy_info);
-int32_t em_get_cable_length(struct em_hw *hw, uint16_t *min_length, uint16_t *max_length);
-int32_t em_check_polarity(struct em_hw *hw, uint16_t *polarity);
-int32_t em_check_downshift(struct em_hw *hw);
-int32_t em_validate_mdi_setting(struct em_hw *hw);
-
-/* EEPROM Functions */
-int32_t em_init_eeprom_params(struct em_hw *hw);
-boolean_t em_is_onboard_nvm_eeprom(struct em_hw *hw);
-int32_t em_read_eeprom_eerd(struct em_hw *hw, uint16_t offset, uint16_t words, uint16_t *data);
-int32_t em_write_eeprom_eewr(struct em_hw *hw, uint16_t offset, uint16_t words, uint16_t *data);
-int32_t em_poll_eerd_eewr_done(struct em_hw *hw, int eerd);
-
-/* MNG HOST IF functions */
-uint32_t em_enable_mng_pass_thru(struct em_hw *hw);
-
-#define E1000_MNG_DHCP_TX_PAYLOAD_CMD 64
-#define E1000_HI_MAX_MNG_DATA_LENGTH 0x6F8 /* Host Interface data length */
-
-#define E1000_MNG_DHCP_COMMAND_TIMEOUT 10 /* Time in ms to process MNG command */
-#define E1000_MNG_DHCP_COOKIE_OFFSET 0x6F0 /* Cookie offset */
-#define E1000_MNG_DHCP_COOKIE_LENGTH 0x10 /* Cookie length */
-#define E1000_MNG_IAMT_MODE 0x3
-#define E1000_IAMT_SIGNATURE 0x544D4149 /* Intel(R) Active Management Technology signature */
-
-#define E1000_MNG_DHCP_COOKIE_STATUS_PARSING_SUPPORT 0x1 /* DHCP parsing enabled */
-#define E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT 0x2 /* DHCP parsing enabled */
-#define E1000_VFTA_ENTRY_SHIFT 0x5
-#define E1000_VFTA_ENTRY_MASK 0x7F
-#define E1000_VFTA_ENTRY_BIT_SHIFT_MASK 0x1F
-
-struct em_host_mng_command_header {
- uint8_t command_id;
- uint8_t checksum;
- uint16_t reserved1;
- uint16_t reserved2;
- uint16_t command_length;
-};
-
-struct em_host_mng_command_info {
- struct em_host_mng_command_header command_header; /* Command Head/Command Result Head has 4 bytes */
- uint8_t command_data[E1000_HI_MAX_MNG_DATA_LENGTH]; /* Command data can length 0..0x658*/
-};
-#ifdef __BIG_ENDIAN
-struct em_host_mng_dhcp_cookie{
- uint32_t signature;
- uint16_t vlan_id;
- uint8_t reserved0;
- uint8_t status;
- uint32_t reserved1;
- uint8_t checksum;
- uint8_t reserved3;
- uint16_t reserved2;
-};
-#else
-struct em_host_mng_dhcp_cookie{
- uint32_t signature;
- uint8_t status;
- uint8_t reserved0;
- uint16_t vlan_id;
- uint32_t reserved1;
- uint16_t reserved2;
- uint8_t reserved3;
- uint8_t checksum;
-};
-#endif
-
-int32_t em_mng_write_dhcp_info(struct em_hw *hw, uint8_t *buffer,
- uint16_t length);
-boolean_t em_check_mng_mode(struct em_hw *hw);
-boolean_t em_enable_tx_pkt_filtering(struct em_hw *hw);
-int32_t em_mng_enable_host_if(struct em_hw *hw);
-int32_t em_mng_host_if_write(struct em_hw *hw, uint8_t *buffer,
- uint16_t length, uint16_t offset, uint8_t *sum);
-int32_t em_mng_write_cmd_header(struct em_hw* hw,
- struct em_host_mng_command_header* hdr);
-
-int32_t em_mng_write_commit(struct em_hw *hw);
-
-int32_t em_read_eeprom(struct em_hw *hw, uint16_t reg, uint16_t words, uint16_t *data);
-int32_t em_validate_eeprom_checksum(struct em_hw *hw);
-int32_t em_update_eeprom_checksum(struct em_hw *hw);
-int32_t em_write_eeprom(struct em_hw *hw, uint16_t reg, uint16_t words, uint16_t *data);
-int32_t em_read_part_num(struct em_hw *hw, uint32_t * part_num);
-int32_t em_read_mac_addr(struct em_hw * hw);
-int32_t em_swfw_sync_acquire(struct em_hw *hw, uint16_t mask);
-void em_swfw_sync_release(struct em_hw *hw, uint16_t mask);
-
-/* Filters (multicast, vlan, receive) */
-void em_init_rx_addrs(struct em_hw *hw);
-void em_mc_addr_list_update(struct em_hw *hw, uint8_t * mc_addr_list, uint32_t mc_addr_count, uint32_t pad, uint32_t rar_used_count);
-uint32_t em_hash_mc_addr(struct em_hw *hw, uint8_t * mc_addr);
-void em_mta_set(struct em_hw *hw, uint32_t hash_value);
-void em_rar_set(struct em_hw *hw, uint8_t * mc_addr, uint32_t rar_index);
-void em_write_vfta(struct em_hw *hw, uint32_t offset, uint32_t value);
-void em_clear_vfta(struct em_hw *hw);
-
-/* LED functions */
-int32_t em_setup_led(struct em_hw *hw);
-int32_t em_cleanup_led(struct em_hw *hw);
-int32_t em_led_on(struct em_hw *hw);
-int32_t em_led_off(struct em_hw *hw);
-
-/* Adaptive IFS Functions */
-
-/* Everything else */
-void em_clear_hw_cntrs(struct em_hw *hw);
-void em_reset_adaptive(struct em_hw *hw);
-void em_update_adaptive(struct em_hw *hw);
-void em_tbi_adjust_stats(struct em_hw *hw, struct em_hw_stats *stats, uint32_t frame_len, uint8_t * mac_addr);
-void em_get_bus_info(struct em_hw *hw);
-void em_pci_set_mwi(struct em_hw *hw);
-void em_pci_clear_mwi(struct em_hw *hw);
-void em_read_pci_cfg(struct em_hw *hw, uint32_t reg, uint16_t * value);
-void em_write_pci_cfg(struct em_hw *hw, uint32_t reg, uint16_t * value);
-/* Port I/O is only supported on 82544 and newer */
-uint32_t em_io_read(struct em_hw *hw, unsigned long port);
-uint32_t em_read_reg_io(struct em_hw *hw, uint32_t offset);
-void em_io_write(struct em_hw *hw, unsigned long port, uint32_t value);
-void em_write_reg_io(struct em_hw *hw, uint32_t offset, uint32_t value);
-int32_t em_config_dsp_after_link_change(struct em_hw *hw, boolean_t link_up);
-int32_t em_set_d3_lplu_state(struct em_hw *hw, boolean_t active);
-int32_t em_set_d0_lplu_state(struct em_hw *hw, boolean_t active);
-void em_set_pci_express_master_disable(struct em_hw *hw);
-void em_enable_pciex_master(struct em_hw *hw);
-int32_t em_disable_pciex_master(struct em_hw *hw);
-int32_t em_get_auto_rd_done(struct em_hw *hw);
-int32_t em_get_phy_cfg_done(struct em_hw *hw);
-int32_t em_get_software_semaphore(struct em_hw *hw);
-void em_release_software_semaphore(struct em_hw *hw);
-int32_t em_check_phy_reset_block(struct em_hw *hw);
-int32_t em_get_hw_eeprom_semaphore(struct em_hw *hw);
-void em_put_hw_eeprom_semaphore(struct em_hw *hw);
-int32_t em_commit_shadow_ram(struct em_hw *hw);
-uint8_t em_arc_subsystem_valid(struct em_hw *hw);
-
-#define E1000_READ_REG_IO(a, reg) \
- em_read_reg_io((a), E1000_##reg)
-#define E1000_WRITE_REG_IO(a, reg, val) \
- em_write_reg_io((a), E1000_##reg, val)
-
-/* PCI Device IDs */
-#define E1000_DEV_ID_82542 0x1000
-#define E1000_DEV_ID_82543GC_FIBER 0x1001
-#define E1000_DEV_ID_82543GC_COPPER 0x1004
-#define E1000_DEV_ID_82544EI_COPPER 0x1008
-#define E1000_DEV_ID_82544EI_FIBER 0x1009
-#define E1000_DEV_ID_82544GC_COPPER 0x100C
-#define E1000_DEV_ID_82544GC_LOM 0x100D
-#define E1000_DEV_ID_82540EM 0x100E
-#define E1000_DEV_ID_82541ER_LOM 0x1014
-#define E1000_DEV_ID_82540EM_LOM 0x1015
-#define E1000_DEV_ID_82540EP_LOM 0x1016
-#define E1000_DEV_ID_82540EP 0x1017
-#define E1000_DEV_ID_82540EP_LP 0x101E
-#define E1000_DEV_ID_82545EM_COPPER 0x100F
-#define E1000_DEV_ID_82545EM_FIBER 0x1011
-#define E1000_DEV_ID_82545GM_COPPER 0x1026
-#define E1000_DEV_ID_82545GM_FIBER 0x1027
-#define E1000_DEV_ID_82545GM_SERDES 0x1028
-#define E1000_DEV_ID_82546EB_COPPER 0x1010
-#define E1000_DEV_ID_82546EB_FIBER 0x1012
-#define E1000_DEV_ID_82546EB_QUAD_COPPER 0x101D
-#define E1000_DEV_ID_82541EI 0x1013
-#define E1000_DEV_ID_82541EI_MOBILE 0x1018
-#define E1000_DEV_ID_82541ER 0x1078
-#define E1000_DEV_ID_82547GI 0x1075
-#define E1000_DEV_ID_82541GI 0x1076
-#define E1000_DEV_ID_82541GI_MOBILE 0x1077
-#define E1000_DEV_ID_82541GI_LF 0x107C
-#define E1000_DEV_ID_82546GB_COPPER 0x1079
-#define E1000_DEV_ID_82546GB_FIBER 0x107A
-#define E1000_DEV_ID_82546GB_SERDES 0x107B
-#define E1000_DEV_ID_82546GB_PCIE 0x108A
-#define E1000_DEV_ID_82547EI 0x1019
-#define E1000_DEV_ID_82547EI_MOBILE 0x101A
-#define E1000_DEV_ID_82573E 0x108B
-#define E1000_DEV_ID_82573E_IAMT 0x108C
-
-#define E1000_DEV_ID_82546GB_QUAD_COPPER 0x1099
-
-#define NODE_ADDRESS_SIZE 6
-#define ETH_LENGTH_OF_ADDRESS 6
-
-/* MAC decode size is 128K - This is the size of BAR0 */
-#define MAC_DECODE_SIZE (128 * 1024)
-
-#define E1000_82542_2_0_REV_ID 2
-#define E1000_82542_2_1_REV_ID 3
-#define E1000_REVISION_0 0
-#define E1000_REVISION_1 1
-#define E1000_REVISION_2 2
-#define E1000_REVISION_3 3
-
-#define SPEED_10 10
-#define SPEED_100 100
-#define SPEED_1000 1000
-#define HALF_DUPLEX 1
-#define FULL_DUPLEX 2
-
-/* The sizes (in bytes) of a ethernet packet */
-#define ENET_HEADER_SIZE 14
-#define MAXIMUM_ETHERNET_FRAME_SIZE 1518 /* With FCS */
-#define MINIMUM_ETHERNET_FRAME_SIZE 64 /* With FCS */
-#define ETHERNET_FCS_SIZE 4
-#define MAXIMUM_ETHERNET_PACKET_SIZE \
- (MAXIMUM_ETHERNET_FRAME_SIZE - ETHERNET_FCS_SIZE)
-#define MINIMUM_ETHERNET_PACKET_SIZE \
- (MINIMUM_ETHERNET_FRAME_SIZE - ETHERNET_FCS_SIZE)
-#define CRC_LENGTH ETHERNET_FCS_SIZE
-#define MAX_JUMBO_FRAME_SIZE 0x3F00
-
-
-/* 802.1q VLAN Packet Sizes */
-#define VLAN_TAG_SIZE 4 /* 802.3ac tag (not DMAed) */
-
-/* Ethertype field values */
-#define ETHERNET_IEEE_VLAN_TYPE 0x8100 /* 802.3ac packet */
-#define ETHERNET_IP_TYPE 0x0800 /* IP packets */
-#define ETHERNET_ARP_TYPE 0x0806 /* Address Resolution Protocol (ARP) */
-
-/* Packet Header defines */
-#define IP_PROTOCOL_TCP 6
-#define IP_PROTOCOL_UDP 0x11
-
-/* This defines the bits that are set in the Interrupt Mask
- * Set/Read Register. Each bit is documented below:
- * o RXDMT0 = Receive Descriptor Minimum Threshold hit (ring 0)
- * o RXSEQ = Receive Sequence Error
- */
-#define POLL_IMS_ENABLE_MASK ( \
- E1000_IMS_RXDMT0 | \
- E1000_IMS_RXSEQ)
-
-/* This defines the bits that are set in the Interrupt Mask
- * Set/Read Register. Each bit is documented below:
- * o RXT0 = Receiver Timer Interrupt (ring 0)
- * o TXDW = Transmit Descriptor Written Back
- * o RXDMT0 = Receive Descriptor Minimum Threshold hit (ring 0)
- * o RXSEQ = Receive Sequence Error
- * o LSC = Link Status Change
- */
-#define IMS_ENABLE_MASK ( \
- E1000_IMS_RXT0 | \
- E1000_IMS_TXDW | \
- E1000_IMS_RXDMT0 | \
- E1000_IMS_RXSEQ | \
- E1000_IMS_LSC)
-
-
-/* Number of high/low register pairs in the RAR. The RAR (Receive Address
- * Registers) holds the directed and multicast addresses that we monitor. We
- * reserve one of these spots for our directed address, allowing us room for
- * E1000_RAR_ENTRIES - 1 multicast addresses.
- */
-#define E1000_RAR_ENTRIES 15
-
-#define MIN_NUMBER_OF_DESCRIPTORS 8
-#define MAX_NUMBER_OF_DESCRIPTORS 0xFFF8
-
-/* Receive Descriptor */
-struct em_rx_desc {
- uint64_t buffer_addr; /* Address of the descriptor's data buffer */
- uint16_t length; /* Length of data DMAed into data buffer */
- uint16_t csum; /* Packet checksum */
- uint8_t status; /* Descriptor status */
- uint8_t errors; /* Descriptor Errors */
- uint16_t special;
-};
-
-/* Receive Descriptor - Extended */
-union em_rx_desc_extended {
- struct {
- uint64_t buffer_addr;
- uint64_t reserved;
- } read;
- struct {
- struct {
- uint32_t mrq; /* Multiple Rx Queues */
- union {
- uint32_t rss; /* RSS Hash */
- struct {
- uint16_t ip_id; /* IP id */
- uint16_t csum; /* Packet Checksum */
- } csum_ip;
- } hi_dword;
- } lower;
- struct {
- uint32_t status_error; /* ext status/error */
- uint16_t length;
- uint16_t vlan; /* VLAN tag */
- } upper;
- } wb; /* writeback */
-};
-
-#define MAX_PS_BUFFERS 4
-/* Receive Descriptor - Packet Split */
-union em_rx_desc_packet_split {
- struct {
- /* one buffer for protocol header(s), three data buffers */
- uint64_t buffer_addr[MAX_PS_BUFFERS];
- } read;
- struct {
- struct {
- uint32_t mrq; /* Multiple Rx Queues */
- union {
- uint32_t rss; /* RSS Hash */
- struct {
- uint16_t ip_id; /* IP id */
- uint16_t csum; /* Packet Checksum */
- } csum_ip;
- } hi_dword;
- } lower;
- struct {
- uint32_t status_error; /* ext status/error */
- uint16_t length0; /* length of buffer 0 */
- uint16_t vlan; /* VLAN tag */
- } middle;
- struct {
- uint16_t header_status;
- uint16_t length[3]; /* length of buffers 1-3 */
- } upper;
- uint64_t reserved;
- } wb; /* writeback */
-};
-
-/* Receive Decriptor bit definitions */
-#define E1000_RXD_STAT_DD 0x01 /* Descriptor Done */
-#define E1000_RXD_STAT_EOP 0x02 /* End of Packet */
-#define E1000_RXD_STAT_IXSM 0x04 /* Ignore checksum */
-#define E1000_RXD_STAT_VP 0x08 /* IEEE VLAN Packet */
-#define E1000_RXD_STAT_UDPCS 0x10 /* UDP xsum caculated */
-#define E1000_RXD_STAT_TCPCS 0x20 /* TCP xsum calculated */
-#define E1000_RXD_STAT_IPCS 0x40 /* IP xsum calculated */
-#define E1000_RXD_STAT_PIF 0x80 /* passed in-exact filter */
-#define E1000_RXD_STAT_IPIDV 0x200 /* IP identification valid */
-#define E1000_RXD_STAT_UDPV 0x400 /* Valid UDP checksum */
-#define E1000_RXD_STAT_ACK 0x8000 /* ACK Packet indication */
-#define E1000_RXD_ERR_CE 0x01 /* CRC Error */
-#define E1000_RXD_ERR_SE 0x02 /* Symbol Error */
-#define E1000_RXD_ERR_SEQ 0x04 /* Sequence Error */
-#define E1000_RXD_ERR_CXE 0x10 /* Carrier Extension Error */
-#define E1000_RXD_ERR_TCPE 0x20 /* TCP/UDP Checksum Error */
-#define E1000_RXD_ERR_IPE 0x40 /* IP Checksum Error */
-#define E1000_RXD_ERR_RXE 0x80 /* Rx Data Error */
-#define E1000_RXD_SPC_VLAN_MASK 0x0FFF /* VLAN ID is in lower 12 bits */
-#define E1000_RXD_SPC_PRI_MASK 0xE000 /* Priority is in upper 3 bits */
-#define E1000_RXD_SPC_PRI_SHIFT 13
-#define E1000_RXD_SPC_CFI_MASK 0x1000 /* CFI is bit 12 */
-#define E1000_RXD_SPC_CFI_SHIFT 12
-
-#define E1000_RXDEXT_STATERR_CE 0x01000000
-#define E1000_RXDEXT_STATERR_SE 0x02000000
-#define E1000_RXDEXT_STATERR_SEQ 0x04000000
-#define E1000_RXDEXT_STATERR_CXE 0x10000000
-#define E1000_RXDEXT_STATERR_TCPE 0x20000000
-#define E1000_RXDEXT_STATERR_IPE 0x40000000
-#define E1000_RXDEXT_STATERR_RXE 0x80000000
-
-#define E1000_RXDPS_HDRSTAT_HDRSP 0x00008000
-#define E1000_RXDPS_HDRSTAT_HDRLEN_MASK 0x000003FF
-
-/* mask to determine if packets should be dropped due to frame errors */
-#define E1000_RXD_ERR_FRAME_ERR_MASK ( \
- E1000_RXD_ERR_CE | \
- E1000_RXD_ERR_SE | \
- E1000_RXD_ERR_SEQ | \
- E1000_RXD_ERR_CXE | \
- E1000_RXD_ERR_RXE)
-
-
-/* Same mask, but for extended and packet split descriptors */
-#define E1000_RXDEXT_ERR_FRAME_ERR_MASK ( \
- E1000_RXDEXT_STATERR_CE | \
- E1000_RXDEXT_STATERR_SE | \
- E1000_RXDEXT_STATERR_SEQ | \
- E1000_RXDEXT_STATERR_CXE | \
- E1000_RXDEXT_STATERR_RXE)
-
-/* Transmit Descriptor */
-struct em_tx_desc {
- uint64_t buffer_addr; /* Address of the descriptor's data buffer */
- union {
- uint32_t data;
- struct {
- uint16_t length; /* Data buffer length */
- uint8_t cso; /* Checksum offset */
- uint8_t cmd; /* Descriptor control */
- } flags;
- } lower;
- union {
- uint32_t data;
- struct {
- uint8_t status; /* Descriptor status */
- uint8_t css; /* Checksum start */
- uint16_t special;
- } fields;
- } upper;
-};
-
-/* Transmit Descriptor bit definitions */
-#define E1000_TXD_DTYP_D 0x00100000 /* Data Descriptor */
-#define E1000_TXD_DTYP_C 0x00000000 /* Context Descriptor */
-#define E1000_TXD_POPTS_IXSM 0x01 /* Insert IP checksum */
-#define E1000_TXD_POPTS_TXSM 0x02 /* Insert TCP/UDP checksum */
-#define E1000_TXD_CMD_EOP 0x01000000 /* End of Packet */
-#define E1000_TXD_CMD_IFCS 0x02000000 /* Insert FCS (Ethernet CRC) */
-#define E1000_TXD_CMD_IC 0x04000000 /* Insert Checksum */
-#define E1000_TXD_CMD_RS 0x08000000 /* Report Status */
-#define E1000_TXD_CMD_RPS 0x10000000 /* Report Packet Sent */
-#define E1000_TXD_CMD_DEXT 0x20000000 /* Descriptor extension (0 = legacy) */
-#define E1000_TXD_CMD_VLE 0x40000000 /* Add VLAN tag */
-#define E1000_TXD_CMD_IDE 0x80000000 /* Enable Tidv register */
-#define E1000_TXD_STAT_DD 0x00000001 /* Descriptor Done */
-#define E1000_TXD_STAT_EC 0x00000002 /* Excess Collisions */
-#define E1000_TXD_STAT_LC 0x00000004 /* Late Collisions */
-#define E1000_TXD_STAT_TU 0x00000008 /* Transmit underrun */
-#define E1000_TXD_CMD_TCP 0x01000000 /* TCP packet */
-#define E1000_TXD_CMD_IP 0x02000000 /* IP packet */
-#define E1000_TXD_CMD_TSE 0x04000000 /* TCP Seg enable */
-#define E1000_TXD_STAT_TC 0x00000004 /* Tx Underrun */
-
-/* Offload Context Descriptor */
-struct em_context_desc {
- union {
- uint32_t ip_config;
- struct {
- uint8_t ipcss; /* IP checksum start */
- uint8_t ipcso; /* IP checksum offset */
- uint16_t ipcse; /* IP checksum end */
- } ip_fields;
- } lower_setup;
- union {
- uint32_t tcp_config;
- struct {
- uint8_t tucss; /* TCP checksum start */
- uint8_t tucso; /* TCP checksum offset */
- uint16_t tucse; /* TCP checksum end */
- } tcp_fields;
- } upper_setup;
- uint32_t cmd_and_length; /* */
- union {
- uint32_t data;
- struct {
- uint8_t status; /* Descriptor status */
- uint8_t hdr_len; /* Header length */
- uint16_t mss; /* Maximum segment size */
- } fields;
- } tcp_seg_setup;
-};
-
-/* Offload data descriptor */
-struct em_data_desc {
- uint64_t buffer_addr; /* Address of the descriptor's buffer address */
- union {
- uint32_t data;
- struct {
- uint16_t length; /* Data buffer length */
- uint8_t typ_len_ext; /* */
- uint8_t cmd; /* */
- } flags;
- } lower;
- union {
- uint32_t data;
- struct {
- uint8_t status; /* Descriptor status */
- uint8_t popts; /* Packet Options */
- uint16_t special; /* */
- } fields;
- } upper;
-};
-
-/* Filters */
-#define E1000_NUM_UNICAST 16 /* Unicast filter entries */
-#define E1000_MC_TBL_SIZE 128 /* Multicast Filter Table (4096 bits) */
-#define E1000_VLAN_FILTER_TBL_SIZE 128 /* VLAN Filter Table (4096 bits) */
-
-
-/* Receive Address Register */
-struct em_rar {
- volatile uint32_t low; /* receive address low */
- volatile uint32_t high; /* receive address high */
-};
-
-/* Number of entries in the Multicast Table Array (MTA). */
-#define E1000_NUM_MTA_REGISTERS 128
-
-/* IPv4 Address Table Entry */
-struct em_ipv4_at_entry {
- volatile uint32_t ipv4_addr; /* IP Address (RW) */
- volatile uint32_t reserved;
-};
-
-/* Four wakeup IP addresses are supported */
-#define E1000_WAKEUP_IP_ADDRESS_COUNT_MAX 4
-#define E1000_IP4AT_SIZE E1000_WAKEUP_IP_ADDRESS_COUNT_MAX
-#define E1000_IP6AT_SIZE 1
-
-/* IPv6 Address Table Entry */
-struct em_ipv6_at_entry {
- volatile uint8_t ipv6_addr[16];
-};
-
-/* Flexible Filter Length Table Entry */
-struct em_fflt_entry {
- volatile uint32_t length; /* Flexible Filter Length (RW) */
- volatile uint32_t reserved;
-};
-
-/* Flexible Filter Mask Table Entry */
-struct em_ffmt_entry {
- volatile uint32_t mask; /* Flexible Filter Mask (RW) */
- volatile uint32_t reserved;
-};
-
-/* Flexible Filter Value Table Entry */
-struct em_ffvt_entry {
- volatile uint32_t value; /* Flexible Filter Value (RW) */
- volatile uint32_t reserved;
-};
-
-/* Four Flexible Filters are supported */
-#define E1000_FLEXIBLE_FILTER_COUNT_MAX 4
-
-/* Each Flexible Filter is at most 128 (0x80) bytes in length */
-#define E1000_FLEXIBLE_FILTER_SIZE_MAX 128
-
-#define E1000_FFLT_SIZE E1000_FLEXIBLE_FILTER_COUNT_MAX
-#define E1000_FFMT_SIZE E1000_FLEXIBLE_FILTER_SIZE_MAX
-#define E1000_FFVT_SIZE E1000_FLEXIBLE_FILTER_SIZE_MAX
-
-/* Register Set. (82543, 82544)
- *
- * Registers are defined to be 32 bits and should be accessed as 32 bit values.
- * These registers are physically located on the NIC, but are mapped into the
- * host memory address space.
- *
- * RW - register is both readable and writable
- * RO - register is read only
- * WO - register is write only
- * R/clr - register is read only and is cleared when read
- * A - register array
- */
-#define E1000_CTRL 0x00000 /* Device Control - RW */
-#define E1000_CTRL_DUP 0x00004 /* Device Control Duplicate (Shadow) - RW */
-#define E1000_STATUS 0x00008 /* Device Status - RO */
-#define E1000_EECD 0x00010 /* EEPROM/Flash Control - RW */
-#define E1000_EERD 0x00014 /* EEPROM Read - RW */
-#define E1000_CTRL_EXT 0x00018 /* Extended Device Control - RW */
-#define E1000_FLA 0x0001C /* Flash Access - RW */
-#define E1000_MDIC 0x00020 /* MDI Control - RW */
-#define E1000_FCAL 0x00028 /* Flow Control Address Low - RW */
-#define E1000_FCAH 0x0002C /* Flow Control Address High -RW */
-#define E1000_FCT 0x00030 /* Flow Control Type - RW */
-#define E1000_VET 0x00038 /* VLAN Ether Type - RW */
-#define E1000_ICR 0x000C0 /* Interrupt Cause Read - R/clr */
-#define E1000_ITR 0x000C4 /* Interrupt Throttling Rate - RW */
-#define E1000_ICS 0x000C8 /* Interrupt Cause Set - WO */
-#define E1000_IMS 0x000D0 /* Interrupt Mask Set - RW */
-#define E1000_IMC 0x000D8 /* Interrupt Mask Clear - WO */
-#define E1000_IAM 0x000E0 /* Interrupt Acknowledge Auto Mask */
-#define E1000_RCTL 0x00100 /* RX Control - RW */
-#define E1000_FCTTV 0x00170 /* Flow Control Transmit Timer Value - RW */
-#define E1000_TXCW 0x00178 /* TX Configuration Word - RW */
-#define E1000_RXCW 0x00180 /* RX Configuration Word - RO */
-#define E1000_TCTL 0x00400 /* TX Control - RW */
-#define E1000_TIPG 0x00410 /* TX Inter-packet gap -RW */
-#define E1000_TBT 0x00448 /* TX Burst Timer - RW */
-#define E1000_AIT 0x00458 /* Adaptive Interframe Spacing Throttle - RW */
-#define E1000_LEDCTL 0x00E00 /* LED Control - RW */
-#define E1000_EXTCNF_CTRL 0x00F00 /* Extended Configuration Control */
-#define E1000_EXTCNF_SIZE 0x00F08 /* Extended Configuration Size */
-#define E1000_PBA 0x01000 /* Packet Buffer Allocation - RW */
-#define E1000_PBS 0x01008 /* Packet Buffer Size */
-#define E1000_EEMNGCTL 0x01010 /* MNG EEprom Control */
-#define E1000_FLASH_UPDATES 1000
-#define E1000_EEARBC 0x01024 /* EEPROM Auto Read Bus Control */
-#define E1000_FLASHT 0x01028 /* FLASH Timer Register */
-#define E1000_EEWR 0x0102C /* EEPROM Write Register - RW */
-#define E1000_FLSWCTL 0x01030 /* FLASH control register */
-#define E1000_FLSWDATA 0x01034 /* FLASH data register */
-#define E1000_FLSWCNT 0x01038 /* FLASH Access Counter */
-#define E1000_FLOP 0x0103C /* FLASH Opcode Register */
-#define E1000_ERT 0x02008 /* Early Rx Threshold - RW */
-#define E1000_FCRTL 0x02160 /* Flow Control Receive Threshold Low - RW */
-#define E1000_FCRTH 0x02168 /* Flow Control Receive Threshold High - RW */
-#define E1000_PSRCTL 0x02170 /* Packet Split Receive Control - RW */
-#define E1000_RDBAL 0x02800 /* RX Descriptor Base Address Low - RW */
-#define E1000_RDBAH 0x02804 /* RX Descriptor Base Address High - RW */
-#define E1000_RDLEN 0x02808 /* RX Descriptor Length - RW */
-#define E1000_RDH 0x02810 /* RX Descriptor Head - RW */
-#define E1000_RDT 0x02818 /* RX Descriptor Tail - RW */
-#define E1000_RDTR 0x02820 /* RX Delay Timer - RW */
-#define E1000_RXDCTL 0x02828 /* RX Descriptor Control - RW */
-#define E1000_RADV 0x0282C /* RX Interrupt Absolute Delay Timer - RW */
-#define E1000_RSRPD 0x02C00 /* RX Small Packet Detect - RW */
-#define E1000_RAID 0x02C08 /* Receive Ack Interrupt Delay - RW */
-#define E1000_TXDMAC 0x03000 /* TX DMA Control - RW */
-#define E1000_TDFH 0x03410 /* TX Data FIFO Head - RW */
-#define E1000_TDFT 0x03418 /* TX Data FIFO Tail - RW */
-#define E1000_TDFHS 0x03420 /* TX Data FIFO Head Saved - RW */
-#define E1000_TDFTS 0x03428 /* TX Data FIFO Tail Saved - RW */
-#define E1000_TDFPC 0x03430 /* TX Data FIFO Packet Count - RW */
-#define E1000_TDBAL 0x03800 /* TX Descriptor Base Address Low - RW */
-#define E1000_TDBAH 0x03804 /* TX Descriptor Base Address High - RW */
-#define E1000_TDLEN 0x03808 /* TX Descriptor Length - RW */
-#define E1000_TDH 0x03810 /* TX Descriptor Head - RW */
-#define E1000_TDT 0x03818 /* TX Descripotr Tail - RW */
-#define E1000_TIDV 0x03820 /* TX Interrupt Delay Value - RW */
-#define E1000_TXDCTL 0x03828 /* TX Descriptor Control - RW */
-#define E1000_TADV 0x0382C /* TX Interrupt Absolute Delay Val - RW */
-#define E1000_TSPMT 0x03830 /* TCP Segmentation PAD & Min Threshold - RW */
-#define E1000_TARC0 0x03840 /* TX Arbitration Count (0) */
-#define E1000_TDBAL1 0x03900 /* TX Desc Base Address Low (1) - RW */
-#define E1000_TDBAH1 0x03904 /* TX Desc Base Address High (1) - RW */
-#define E1000_TDLEN1 0x03908 /* TX Desc Length (1) - RW */
-#define E1000_TDH1 0x03910 /* TX Desc Head (1) - RW */
-#define E1000_TDT1 0x03918 /* TX Desc Tail (1) - RW */
-#define E1000_TXDCTL1 0x03928 /* TX Descriptor Control (1) - RW */
-#define E1000_TARC1 0x03940 /* TX Arbitration Count (1) */
-#define E1000_CRCERRS 0x04000 /* CRC Error Count - R/clr */
-#define E1000_ALGNERRC 0x04004 /* Alignment Error Count - R/clr */
-#define E1000_SYMERRS 0x04008 /* Symbol Error Count - R/clr */
-#define E1000_RXERRC 0x0400C /* Receive Error Count - R/clr */
-#define E1000_MPC 0x04010 /* Missed Packet Count - R/clr */
-#define E1000_SCC 0x04014 /* Single Collision Count - R/clr */
-#define E1000_ECOL 0x04018 /* Excessive Collision Count - R/clr */
-#define E1000_MCC 0x0401C /* Multiple Collision Count - R/clr */
-#define E1000_LATECOL 0x04020 /* Late Collision Count - R/clr */
-#define E1000_COLC 0x04028 /* Collision Count - R/clr */
-#define E1000_DC 0x04030 /* Defer Count - R/clr */
-#define E1000_TNCRS 0x04034 /* TX-No CRS - R/clr */
-#define E1000_SEC 0x04038 /* Sequence Error Count - R/clr */
-#define E1000_CEXTERR 0x0403C /* Carrier Extension Error Count - R/clr */
-#define E1000_RLEC 0x04040 /* Receive Length Error Count - R/clr */
-#define E1000_XONRXC 0x04048 /* XON RX Count - R/clr */
-#define E1000_XONTXC 0x0404C /* XON TX Count - R/clr */
-#define E1000_XOFFRXC 0x04050 /* XOFF RX Count - R/clr */
-#define E1000_XOFFTXC 0x04054 /* XOFF TX Count - R/clr */
-#define E1000_FCRUC 0x04058 /* Flow Control RX Unsupported Count- R/clr */
-#define E1000_PRC64 0x0405C /* Packets RX (64 bytes) - R/clr */
-#define E1000_PRC127 0x04060 /* Packets RX (65-127 bytes) - R/clr */
-#define E1000_PRC255 0x04064 /* Packets RX (128-255 bytes) - R/clr */
-#define E1000_PRC511 0x04068 /* Packets RX (255-511 bytes) - R/clr */
-#define E1000_PRC1023 0x0406C /* Packets RX (512-1023 bytes) - R/clr */
-#define E1000_PRC1522 0x04070 /* Packets RX (1024-1522 bytes) - R/clr */
-#define E1000_GPRC 0x04074 /* Good Packets RX Count - R/clr */
-#define E1000_BPRC 0x04078 /* Broadcast Packets RX Count - R/clr */
-#define E1000_MPRC 0x0407C /* Multicast Packets RX Count - R/clr */
-#define E1000_GPTC 0x04080 /* Good Packets TX Count - R/clr */
-#define E1000_GORCL 0x04088 /* Good Octets RX Count Low - R/clr */
-#define E1000_GORCH 0x0408C /* Good Octets RX Count High - R/clr */
-#define E1000_GOTCL 0x04090 /* Good Octets TX Count Low - R/clr */
-#define E1000_GOTCH 0x04094 /* Good Octets TX Count High - R/clr */
-#define E1000_RNBC 0x040A0 /* RX No Buffers Count - R/clr */
-#define E1000_RUC 0x040A4 /* RX Undersize Count - R/clr */
-#define E1000_RFC 0x040A8 /* RX Fragment Count - R/clr */
-#define E1000_ROC 0x040AC /* RX Oversize Count - R/clr */
-#define E1000_RJC 0x040B0 /* RX Jabber Count - R/clr */
-#define E1000_MGTPRC 0x040B4 /* Management Packets RX Count - R/clr */
-#define E1000_MGTPDC 0x040B8 /* Management Packets Dropped Count - R/clr */
-#define E1000_MGTPTC 0x040BC /* Management Packets TX Count - R/clr */
-#define E1000_TORL 0x040C0 /* Total Octets RX Low - R/clr */
-#define E1000_TORH 0x040C4 /* Total Octets RX High - R/clr */
-#define E1000_TOTL 0x040C8 /* Total Octets TX Low - R/clr */
-#define E1000_TOTH 0x040CC /* Total Octets TX High - R/clr */
-#define E1000_TPR 0x040D0 /* Total Packets RX - R/clr */
-#define E1000_TPT 0x040D4 /* Total Packets TX - R/clr */
-#define E1000_PTC64 0x040D8 /* Packets TX (64 bytes) - R/clr */
-#define E1000_PTC127 0x040DC /* Packets TX (65-127 bytes) - R/clr */
-#define E1000_PTC255 0x040E0 /* Packets TX (128-255 bytes) - R/clr */
-#define E1000_PTC511 0x040E4 /* Packets TX (256-511 bytes) - R/clr */
-#define E1000_PTC1023 0x040E8 /* Packets TX (512-1023 bytes) - R/clr */
-#define E1000_PTC1522 0x040EC /* Packets TX (1024-1522 Bytes) - R/clr */
-#define E1000_MPTC 0x040F0 /* Multicast Packets TX Count - R/clr */
-#define E1000_BPTC 0x040F4 /* Broadcast Packets TX Count - R/clr */
-#define E1000_TSCTC 0x040F8 /* TCP Segmentation Context TX - R/clr */
-#define E1000_TSCTFC 0x040FC /* TCP Segmentation Context TX Fail - R/clr */
-#define E1000_IAC 0x4100 /* Interrupt Assertion Count */
-#define E1000_ICRXPTC 0x4104 /* Interrupt Cause Rx Packet Timer Expire Count */
-#define E1000_ICRXATC 0x4108 /* Interrupt Cause Rx Absolute Timer Expire Count */
-#define E1000_ICTXPTC 0x410C /* Interrupt Cause Tx Packet Timer Expire Count */
-#define E1000_ICTXATC 0x4110 /* Interrupt Cause Tx Absolute Timer Expire Count */
-#define E1000_ICTXQEC 0x4118 /* Interrupt Cause Tx Queue Empty Count */
-#define E1000_ICTXQMTC 0x411C /* Interrupt Cause Tx Queue Minimum Threshold Count */
-#define E1000_ICRXDMTC 0x4120 /* Interrupt Cause Rx Descriptor Minimum Threshold Count */
-#define E1000_ICRXOC 0x4124 /* Interrupt Cause Receiver Overrun Count */
-#define E1000_RXCSUM 0x05000 /* RX Checksum Control - RW */
-#define E1000_RFCTL 0x05008 /* Receive Filter Control*/
-#define E1000_MTA 0x05200 /* Multicast Table Array - RW Array */
-#define E1000_RA 0x05400 /* Receive Address - RW Array */
-#define E1000_VFTA 0x05600 /* VLAN Filter Table Array - RW Array */
-#define E1000_WUC 0x05800 /* Wakeup Control - RW */
-#define E1000_WUFC 0x05808 /* Wakeup Filter Control - RW */
-#define E1000_WUS 0x05810 /* Wakeup Status - RO */
-#define E1000_MANC 0x05820 /* Management Control - RW */
-#define E1000_IPAV 0x05838 /* IP Address Valid - RW */
-#define E1000_IP4AT 0x05840 /* IPv4 Address Table - RW Array */
-#define E1000_IP6AT 0x05880 /* IPv6 Address Table - RW Array */
-#define E1000_WUPL 0x05900 /* Wakeup Packet Length - RW */
-#define E1000_WUPM 0x05A00 /* Wakeup Packet Memory - RO A */
-#define E1000_FFLT 0x05F00 /* Flexible Filter Length Table - RW Array */
-#define E1000_HOST_IF 0x08800 /* Host Interface */
-#define E1000_FFMT 0x09000 /* Flexible Filter Mask Table - RW Array */
-#define E1000_FFVT 0x09800 /* Flexible Filter Value Table - RW Array */
-
-#define E1000_GCR 0x05B00 /* PCI-Ex Control */
-#define E1000_GSCL_1 0x05B10 /* PCI-Ex Statistic Control #1 */
-#define E1000_GSCL_2 0x05B14 /* PCI-Ex Statistic Control #2 */
-#define E1000_GSCL_3 0x05B18 /* PCI-Ex Statistic Control #3 */
-#define E1000_GSCL_4 0x05B1C /* PCI-Ex Statistic Control #4 */
-#define E1000_FACTPS 0x05B30 /* Function Active and Power State to MNG */
-#define E1000_SWSM 0x05B50 /* SW Semaphore */
-#define E1000_FWSM 0x05B54 /* FW Semaphore */
-#define E1000_FFLT_DBG 0x05F04 /* Debug Register */
-#define E1000_HICR 0x08F00 /* Host Inteface Control */
-/* Register Set (82542)
- *
- * Some of the 82542 registers are located at different offsets than they are
- * in more current versions of the 8254x. Despite the difference in location,
- * the registers function in the same manner.
- */
-#define E1000_82542_CTRL E1000_CTRL
-#define E1000_82542_CTRL_DUP E1000_CTRL_DUP
-#define E1000_82542_STATUS E1000_STATUS
-#define E1000_82542_EECD E1000_EECD
-#define E1000_82542_EERD E1000_EERD
-#define E1000_82542_CTRL_EXT E1000_CTRL_EXT
-#define E1000_82542_FLA E1000_FLA
-#define E1000_82542_MDIC E1000_MDIC
-#define E1000_82542_FCAL E1000_FCAL
-#define E1000_82542_FCAH E1000_FCAH
-#define E1000_82542_FCT E1000_FCT
-#define E1000_82542_VET E1000_VET
-#define E1000_82542_RA 0x00040
-#define E1000_82542_ICR E1000_ICR
-#define E1000_82542_ITR E1000_ITR
-#define E1000_82542_ICS E1000_ICS
-#define E1000_82542_IMS E1000_IMS
-#define E1000_82542_IMC E1000_IMC
-#define E1000_82542_RCTL E1000_RCTL
-#define E1000_82542_RDTR 0x00108
-#define E1000_82542_RDBAL 0x00110
-#define E1000_82542_RDBAH 0x00114
-#define E1000_82542_RDLEN 0x00118
-#define E1000_82542_RDH 0x00120
-#define E1000_82542_RDT 0x00128
-#define E1000_82542_FCRTH 0x00160
-#define E1000_82542_FCRTL 0x00168
-#define E1000_82542_FCTTV E1000_FCTTV
-#define E1000_82542_TXCW E1000_TXCW
-#define E1000_82542_RXCW E1000_RXCW
-#define E1000_82542_MTA 0x00200
-#define E1000_82542_TCTL E1000_TCTL
-#define E1000_82542_TIPG E1000_TIPG
-#define E1000_82542_TDBAL 0x00420
-#define E1000_82542_TDBAH 0x00424
-#define E1000_82542_TDLEN 0x00428
-#define E1000_82542_TDH 0x00430
-#define E1000_82542_TDT 0x00438
-#define E1000_82542_TIDV 0x00440
-#define E1000_82542_TBT E1000_TBT
-#define E1000_82542_AIT E1000_AIT
-#define E1000_82542_VFTA 0x00600
-#define E1000_82542_LEDCTL E1000_LEDCTL
-#define E1000_82542_PBA E1000_PBA
-#define E1000_82542_PBS E1000_PBS
-#define E1000_82542_EEMNGCTL E1000_EEMNGCTL
-#define E1000_82542_EEARBC E1000_EEARBC
-#define E1000_82542_FLASHT E1000_FLASHT
-#define E1000_82542_EEWR E1000_EEWR
-#define E1000_82542_FLSWCTL E1000_FLSWCTL
-#define E1000_82542_FLSWDATA E1000_FLSWDATA
-#define E1000_82542_FLSWCNT E1000_FLSWCNT
-#define E1000_82542_FLOP E1000_FLOP
-#define E1000_82542_EXTCNF_CTRL E1000_EXTCNF_CTRL
-#define E1000_82542_EXTCNF_SIZE E1000_EXTCNF_SIZE
-#define E1000_82542_ERT E1000_ERT
-#define E1000_82542_RXDCTL E1000_RXDCTL
-#define E1000_82542_RADV E1000_RADV
-#define E1000_82542_RSRPD E1000_RSRPD
-#define E1000_82542_TXDMAC E1000_TXDMAC
-#define E1000_82542_TDFHS E1000_TDFHS
-#define E1000_82542_TDFTS E1000_TDFTS
-#define E1000_82542_TDFPC E1000_TDFPC
-#define E1000_82542_TXDCTL E1000_TXDCTL
-#define E1000_82542_TADV E1000_TADV
-#define E1000_82542_TSPMT E1000_TSPMT
-#define E1000_82542_CRCERRS E1000_CRCERRS
-#define E1000_82542_ALGNERRC E1000_ALGNERRC
-#define E1000_82542_SYMERRS E1000_SYMERRS
-#define E1000_82542_RXERRC E1000_RXERRC
-#define E1000_82542_MPC E1000_MPC
-#define E1000_82542_SCC E1000_SCC
-#define E1000_82542_ECOL E1000_ECOL
-#define E1000_82542_MCC E1000_MCC
-#define E1000_82542_LATECOL E1000_LATECOL
-#define E1000_82542_COLC E1000_COLC
-#define E1000_82542_DC E1000_DC
-#define E1000_82542_TNCRS E1000_TNCRS
-#define E1000_82542_SEC E1000_SEC
-#define E1000_82542_CEXTERR E1000_CEXTERR
-#define E1000_82542_RLEC E1000_RLEC
-#define E1000_82542_XONRXC E1000_XONRXC
-#define E1000_82542_XONTXC E1000_XONTXC
-#define E1000_82542_XOFFRXC E1000_XOFFRXC
-#define E1000_82542_XOFFTXC E1000_XOFFTXC
-#define E1000_82542_FCRUC E1000_FCRUC
-#define E1000_82542_PRC64 E1000_PRC64
-#define E1000_82542_PRC127 E1000_PRC127
-#define E1000_82542_PRC255 E1000_PRC255
-#define E1000_82542_PRC511 E1000_PRC511
-#define E1000_82542_PRC1023 E1000_PRC1023
-#define E1000_82542_PRC1522 E1000_PRC1522
-#define E1000_82542_GPRC E1000_GPRC
-#define E1000_82542_BPRC E1000_BPRC
-#define E1000_82542_MPRC E1000_MPRC
-#define E1000_82542_GPTC E1000_GPTC
-#define E1000_82542_GORCL E1000_GORCL
-#define E1000_82542_GORCH E1000_GORCH
-#define E1000_82542_GOTCL E1000_GOTCL
-#define E1000_82542_GOTCH E1000_GOTCH
-#define E1000_82542_RNBC E1000_RNBC
-#define E1000_82542_RUC E1000_RUC
-#define E1000_82542_RFC E1000_RFC
-#define E1000_82542_ROC E1000_ROC
-#define E1000_82542_RJC E1000_RJC
-#define E1000_82542_MGTPRC E1000_MGTPRC
-#define E1000_82542_MGTPDC E1000_MGTPDC
-#define E1000_82542_MGTPTC E1000_MGTPTC
-#define E1000_82542_TORL E1000_TORL
-#define E1000_82542_TORH E1000_TORH
-#define E1000_82542_TOTL E1000_TOTL
-#define E1000_82542_TOTH E1000_TOTH
-#define E1000_82542_TPR E1000_TPR
-#define E1000_82542_TPT E1000_TPT
-#define E1000_82542_PTC64 E1000_PTC64
-#define E1000_82542_PTC127 E1000_PTC127
-#define E1000_82542_PTC255 E1000_PTC255
-#define E1000_82542_PTC511 E1000_PTC511
-#define E1000_82542_PTC1023 E1000_PTC1023
-#define E1000_82542_PTC1522 E1000_PTC1522
-#define E1000_82542_MPTC E1000_MPTC
-#define E1000_82542_BPTC E1000_BPTC
-#define E1000_82542_TSCTC E1000_TSCTC
-#define E1000_82542_TSCTFC E1000_TSCTFC
-#define E1000_82542_RXCSUM E1000_RXCSUM
-#define E1000_82542_WUC E1000_WUC
-#define E1000_82542_WUFC E1000_WUFC
-#define E1000_82542_WUS E1000_WUS
-#define E1000_82542_MANC E1000_MANC
-#define E1000_82542_IPAV E1000_IPAV
-#define E1000_82542_IP4AT E1000_IP4AT
-#define E1000_82542_IP6AT E1000_IP6AT
-#define E1000_82542_WUPL E1000_WUPL
-#define E1000_82542_WUPM E1000_WUPM
-#define E1000_82542_FFLT E1000_FFLT
-#define E1000_82542_TDFH 0x08010
-#define E1000_82542_TDFT 0x08018
-#define E1000_82542_FFMT E1000_FFMT
-#define E1000_82542_FFVT E1000_FFVT
-#define E1000_82542_HOST_IF E1000_HOST_IF
-#define E1000_82542_IAM E1000_IAM
-#define E1000_82542_EEMNGCTL E1000_EEMNGCTL
-#define E1000_82542_PSRCTL E1000_PSRCTL
-#define E1000_82542_RAID E1000_RAID
-#define E1000_82542_TARC0 E1000_TARC0
-#define E1000_82542_TDBAL1 E1000_TDBAL1
-#define E1000_82542_TDBAH1 E1000_TDBAH1
-#define E1000_82542_TDLEN1 E1000_TDLEN1
-#define E1000_82542_TDH1 E1000_TDH1
-#define E1000_82542_TDT1 E1000_TDT1
-#define E1000_82542_TXDCTL1 E1000_TXDCTL1
-#define E1000_82542_TARC1 E1000_TARC1
-#define E1000_82542_RFCTL E1000_RFCTL
-#define E1000_82542_GCR E1000_GCR
-#define E1000_82542_GSCL_1 E1000_GSCL_1
-#define E1000_82542_GSCL_2 E1000_GSCL_2
-#define E1000_82542_GSCL_3 E1000_GSCL_3
-#define E1000_82542_GSCL_4 E1000_GSCL_4
-#define E1000_82542_FACTPS E1000_FACTPS
-#define E1000_82542_SWSM E1000_SWSM
-#define E1000_82542_FWSM E1000_FWSM
-#define E1000_82542_FFLT_DBG E1000_FFLT_DBG
-#define E1000_82542_IAC E1000_IAC
-#define E1000_82542_ICRXPTC E1000_ICRXPTC
-#define E1000_82542_ICRXATC E1000_ICRXATC
-#define E1000_82542_ICTXPTC E1000_ICTXPTC
-#define E1000_82542_ICTXATC E1000_ICTXATC
-#define E1000_82542_ICTXQEC E1000_ICTXQEC
-#define E1000_82542_ICTXQMTC E1000_ICTXQMTC
-#define E1000_82542_ICRXDMTC E1000_ICRXDMTC
-#define E1000_82542_ICRXOC E1000_ICRXOC
-#define E1000_82542_HICR E1000_HICR
-
-/* Statistics counters collected by the MAC */
-struct em_hw_stats {
- uint64_t crcerrs;
- uint64_t algnerrc;
- uint64_t symerrs;
- uint64_t rxerrc;
- uint64_t mpc;
- uint64_t scc;
- uint64_t ecol;
- uint64_t mcc;
- uint64_t latecol;
- uint64_t colc;
- uint64_t dc;
- uint64_t tncrs;
- uint64_t sec;
- uint64_t cexterr;
- uint64_t rlec;
- uint64_t xonrxc;
- uint64_t xontxc;
- uint64_t xoffrxc;
- uint64_t xofftxc;
- uint64_t fcruc;
- uint64_t prc64;
- uint64_t prc127;
- uint64_t prc255;
- uint64_t prc511;
- uint64_t prc1023;
- uint64_t prc1522;
- uint64_t gprc;
- uint64_t bprc;
- uint64_t mprc;
- uint64_t gptc;
- uint64_t gorcl;
- uint64_t gorch;
- uint64_t gotcl;
- uint64_t gotch;
- uint64_t rnbc;
- uint64_t ruc;
- uint64_t rfc;
- uint64_t roc;
- uint64_t rjc;
- uint64_t mgprc;
- uint64_t mgpdc;
- uint64_t mgptc;
- uint64_t torl;
- uint64_t torh;
- uint64_t totl;
- uint64_t toth;
- uint64_t tpr;
- uint64_t tpt;
- uint64_t ptc64;
- uint64_t ptc127;
- uint64_t ptc255;
- uint64_t ptc511;
- uint64_t ptc1023;
- uint64_t ptc1522;
- uint64_t mptc;
- uint64_t bptc;
- uint64_t tsctc;
- uint64_t tsctfc;
- uint64_t iac;
- uint64_t icrxptc;
- uint64_t icrxatc;
- uint64_t ictxptc;
- uint64_t ictxatc;
- uint64_t ictxqec;
- uint64_t ictxqmtc;
- uint64_t icrxdmtc;
- uint64_t icrxoc;
-};
-
-/* Structure containing variables used by the shared code (em_hw.c) */
-struct em_hw {
- uint8_t *hw_addr;
- uint8_t *flash_address;
- em_mac_type mac_type;
- em_phy_type phy_type;
- uint32_t phy_init_script;
- em_media_type media_type;
- void *back;
- em_fc_type fc;
- em_bus_speed bus_speed;
- em_bus_width bus_width;
- em_bus_type bus_type;
- struct em_eeprom_info eeprom;
- em_ms_type master_slave;
- em_ms_type original_master_slave;
- em_ffe_config ffe_config_state;
- uint32_t asf_firmware_present;
- uint32_t eeprom_semaphore_present;
- unsigned long io_base;
- uint32_t phy_id;
- uint32_t phy_revision;
- uint32_t phy_addr;
- uint32_t original_fc;
- uint32_t txcw;
- uint32_t autoneg_failed;
- uint32_t max_frame_size;
- uint32_t min_frame_size;
- uint32_t mc_filter_type;
- uint32_t num_mc_addrs;
- uint32_t collision_delta;
- uint32_t tx_packet_delta;
- uint32_t ledctl_default;
- uint32_t ledctl_mode1;
- uint32_t ledctl_mode2;
- boolean_t tx_pkt_filtering;
- struct em_host_mng_dhcp_cookie mng_cookie;
- uint16_t phy_spd_default;
- uint16_t autoneg_advertised;
- uint16_t pci_cmd_word;
- uint16_t fc_high_water;
- uint16_t fc_low_water;
- uint16_t fc_pause_time;
- uint16_t current_ifs_val;
- uint16_t ifs_min_val;
- uint16_t ifs_max_val;
- uint16_t ifs_step_size;
- uint16_t ifs_ratio;
- uint16_t device_id;
- uint16_t vendor_id;
- uint16_t subsystem_id;
- uint16_t subsystem_vendor_id;
- uint8_t revision_id;
- uint8_t autoneg;
- uint8_t mdix;
- uint8_t forced_speed_duplex;
- uint8_t wait_autoneg_complete;
- uint8_t dma_fairness;
- uint8_t mac_addr[NODE_ADDRESS_SIZE];
- uint8_t perm_mac_addr[NODE_ADDRESS_SIZE];
- boolean_t disable_polarity_correction;
- boolean_t speed_downgraded;
- em_smart_speed smart_speed;
- em_dsp_config dsp_config_state;
- boolean_t get_link_status;
- boolean_t serdes_link_down;
- boolean_t tbi_compatibility_en;
- boolean_t tbi_compatibility_on;
- boolean_t phy_reset_disable;
- boolean_t fc_send_xon;
- boolean_t fc_strict_ieee;
- boolean_t report_tx_early;
- boolean_t adaptive_ifs;
- boolean_t ifs_params_forced;
- boolean_t in_ifs_mode;
- boolean_t mng_reg_access_disabled;
-};
-
-
-#define E1000_EEPROM_SWDPIN0 0x0001 /* SWDPIN 0 EEPROM Value */
-#define E1000_EEPROM_LED_LOGIC 0x0020 /* Led Logic Word */
-#define E1000_EEPROM_RW_REG_DATA 16 /* Offset to data in EEPROM read/write registers */
-#define E1000_EEPROM_RW_REG_DONE 2 /* Offset to READ/WRITE done bit */
-#define E1000_EEPROM_RW_REG_START 1 /* First bit for telling part to start operation */
-#define E1000_EEPROM_RW_ADDR_SHIFT 2 /* Shift to the address bits */
-#define E1000_EEPROM_POLL_WRITE 1 /* Flag for polling for write complete */
-#define E1000_EEPROM_POLL_READ 0 /* Flag for polling for read complete */
-/* Register Bit Masks */
-/* Device Control */
-#define E1000_CTRL_FD 0x00000001 /* Full duplex.0=half; 1=full */
-#define E1000_CTRL_BEM 0x00000002 /* Endian Mode.0=little,1=big */
-#define E1000_CTRL_PRIOR 0x00000004 /* Priority on PCI. 0=rx,1=fair */
-#define E1000_CTRL_GIO_MASTER_DISABLE 0x00000004 /*Blocks new Master requests */
-#define E1000_CTRL_LRST 0x00000008 /* Link reset. 0=normal,1=reset */
-#define E1000_CTRL_TME 0x00000010 /* Test mode. 0=normal,1=test */
-#define E1000_CTRL_SLE 0x00000020 /* Serial Link on 0=dis,1=en */
-#define E1000_CTRL_ASDE 0x00000020 /* Auto-speed detect enable */
-#define E1000_CTRL_SLU 0x00000040 /* Set link up (Force Link) */
-#define E1000_CTRL_ILOS 0x00000080 /* Invert Loss-Of Signal */
-#define E1000_CTRL_SPD_SEL 0x00000300 /* Speed Select Mask */
-#define E1000_CTRL_SPD_10 0x00000000 /* Force 10Mb */
-#define E1000_CTRL_SPD_100 0x00000100 /* Force 100Mb */
-#define E1000_CTRL_SPD_1000 0x00000200 /* Force 1Gb */
-#define E1000_CTRL_BEM32 0x00000400 /* Big Endian 32 mode */
-#define E1000_CTRL_FRCSPD 0x00000800 /* Force Speed */
-#define E1000_CTRL_FRCDPX 0x00001000 /* Force Duplex */
-#define E1000_CTRL_D_UD_POLARITY 0x00004000 /* Defined polarity of Dock/Undock indication in SDP[0] */
-#define E1000_CTRL_SWDPIN0 0x00040000 /* SWDPIN 0 value */
-#define E1000_CTRL_SWDPIN1 0x00080000 /* SWDPIN 1 value */
-#define E1000_CTRL_SWDPIN2 0x00100000 /* SWDPIN 2 value */
-#define E1000_CTRL_SWDPIN3 0x00200000 /* SWDPIN 3 value */
-#define E1000_CTRL_SWDPIO0 0x00400000 /* SWDPIN 0 Input or output */
-#define E1000_CTRL_SWDPIO1 0x00800000 /* SWDPIN 1 input or output */
-#define E1000_CTRL_SWDPIO2 0x01000000 /* SWDPIN 2 input or output */
-#define E1000_CTRL_SWDPIO3 0x02000000 /* SWDPIN 3 input or output */
-#define E1000_CTRL_RST 0x04000000 /* Global reset */
-#define E1000_CTRL_RFCE 0x08000000 /* Receive Flow Control enable */
-#define E1000_CTRL_TFCE 0x10000000 /* Transmit flow control enable */
-#define E1000_CTRL_RTE 0x20000000 /* Routing tag enable */
-#define E1000_CTRL_VME 0x40000000 /* IEEE VLAN mode enable */
-#define E1000_CTRL_PHY_RST 0x80000000 /* PHY Reset */
-
-/* Device Status */
-#define E1000_STATUS_FD 0x00000001 /* Full duplex.0=half,1=full */
-#define E1000_STATUS_LU 0x00000002 /* Link up.0=no,1=link */
-#define E1000_STATUS_FUNC_MASK 0x0000000C /* PCI Function Mask */
-#define E1000_STATUS_FUNC_SHIFT 2
-#define E1000_STATUS_FUNC_0 0x00000000 /* Function 0 */
-#define E1000_STATUS_FUNC_1 0x00000004 /* Function 1 */
-#define E1000_STATUS_TXOFF 0x00000010 /* transmission paused */
-#define E1000_STATUS_TBIMODE 0x00000020 /* TBI mode */
-#define E1000_STATUS_SPEED_MASK 0x000000C0
-#define E1000_STATUS_SPEED_10 0x00000000 /* Speed 10Mb/s */
-#define E1000_STATUS_SPEED_100 0x00000040 /* Speed 100Mb/s */
-#define E1000_STATUS_SPEED_1000 0x00000080 /* Speed 1000Mb/s */
-#define E1000_STATUS_ASDV 0x00000300 /* Auto speed detect value */
-#define E1000_STATUS_DOCK_CI 0x00000800 /* Change in Dock/Undock state. Clear on write '0'. */
-#define E1000_STATUS_GIO_MASTER_ENABLE 0x00080000 /* Status of Master requests. */
-#define E1000_STATUS_MTXCKOK 0x00000400 /* MTX clock running OK */
-#define E1000_STATUS_PCI66 0x00000800 /* In 66Mhz slot */
-#define E1000_STATUS_BUS64 0x00001000 /* In 64 bit slot */
-#define E1000_STATUS_PCIX_MODE 0x00002000 /* PCI-X mode */
-#define E1000_STATUS_PCIX_SPEED 0x0000C000 /* PCI-X bus speed */
-
-/* Constants used to intrepret the masked PCI-X bus speed. */
-#define E1000_STATUS_PCIX_SPEED_66 0x00000000 /* PCI-X bus speed 50-66 MHz */
-#define E1000_STATUS_PCIX_SPEED_100 0x00004000 /* PCI-X bus speed 66-100 MHz */
-#define E1000_STATUS_PCIX_SPEED_133 0x00008000 /* PCI-X bus speed 100-133 MHz */
-
-/* EEPROM/Flash Control */
-#define E1000_EECD_SK 0x00000001 /* EEPROM Clock */
-#define E1000_EECD_CS 0x00000002 /* EEPROM Chip Select */
-#define E1000_EECD_DI 0x00000004 /* EEPROM Data In */
-#define E1000_EECD_DO 0x00000008 /* EEPROM Data Out */
-#define E1000_EECD_FWE_MASK 0x00000030
-#define E1000_EECD_FWE_DIS 0x00000010 /* Disable FLASH writes */
-#define E1000_EECD_FWE_EN 0x00000020 /* Enable FLASH writes */
-#define E1000_EECD_FWE_SHIFT 4
-#define E1000_EECD_REQ 0x00000040 /* EEPROM Access Request */
-#define E1000_EECD_GNT 0x00000080 /* EEPROM Access Grant */
-#define E1000_EECD_PRES 0x00000100 /* EEPROM Present */
-#define E1000_EECD_SIZE 0x00000200 /* EEPROM Size (0=64 word 1=256 word) */
-#define E1000_EECD_ADDR_BITS 0x00000400 /* EEPROM Addressing bits based on type
- * (0-small, 1-large) */
-#define E1000_EECD_TYPE 0x00002000 /* EEPROM Type (1-SPI, 0-Microwire) */
-#ifndef E1000_EEPROM_GRANT_ATTEMPTS
-#define E1000_EEPROM_GRANT_ATTEMPTS 1000 /* EEPROM # attempts to gain grant */
-#endif
-#define E1000_EECD_AUTO_RD 0x00000200 /* EEPROM Auto Read done */
-#define E1000_EECD_SIZE_EX_MASK 0x00007800 /* EEprom Size */
-#define E1000_EECD_SIZE_EX_SHIFT 11
-#define E1000_EECD_NVADDS 0x00018000 /* NVM Address Size */
-#define E1000_EECD_SELSHAD 0x00020000 /* Select Shadow RAM */
-#define E1000_EECD_INITSRAM 0x00040000 /* Initialize Shadow RAM */
-#define E1000_EECD_FLUPD 0x00080000 /* Update FLASH */
-#define E1000_EECD_AUPDEN 0x00100000 /* Enable Autonomous FLASH update */
-#define E1000_EECD_SHADV 0x00200000 /* Shadow RAM Data Valid */
-#define E1000_EECD_SEC1VAL 0x00400000 /* Sector One Valid */
-#define E1000_STM_OPCODE 0xDB00
-#define E1000_HICR_FW_RESET 0xC0
-
-/* EEPROM Read */
-#define E1000_EERD_START 0x00000001 /* Start Read */
-#define E1000_EERD_DONE 0x00000010 /* Read Done */
-#define E1000_EERD_ADDR_SHIFT 8
-#define E1000_EERD_ADDR_MASK 0x0000FF00 /* Read Address */
-#define E1000_EERD_DATA_SHIFT 16
-#define E1000_EERD_DATA_MASK 0xFFFF0000 /* Read Data */
-
-/* SPI EEPROM Status Register */
-#define EEPROM_STATUS_RDY_SPI 0x01
-#define EEPROM_STATUS_WEN_SPI 0x02
-#define EEPROM_STATUS_BP0_SPI 0x04
-#define EEPROM_STATUS_BP1_SPI 0x08
-#define EEPROM_STATUS_WPEN_SPI 0x80
-
-/* Extended Device Control */
-#define E1000_CTRL_EXT_GPI0_EN 0x00000001 /* Maps SDP4 to GPI0 */
-#define E1000_CTRL_EXT_GPI1_EN 0x00000002 /* Maps SDP5 to GPI1 */
-#define E1000_CTRL_EXT_PHYINT_EN E1000_CTRL_EXT_GPI1_EN
-#define E1000_CTRL_EXT_GPI2_EN 0x00000004 /* Maps SDP6 to GPI2 */
-#define E1000_CTRL_EXT_GPI3_EN 0x00000008 /* Maps SDP7 to GPI3 */
-#define E1000_CTRL_EXT_SDP4_DATA 0x00000010 /* Value of SW Defineable Pin 4 */
-#define E1000_CTRL_EXT_SDP5_DATA 0x00000020 /* Value of SW Defineable Pin 5 */
-#define E1000_CTRL_EXT_PHY_INT E1000_CTRL_EXT_SDP5_DATA
-#define E1000_CTRL_EXT_SDP6_DATA 0x00000040 /* Value of SW Defineable Pin 6 */
-#define E1000_CTRL_EXT_SDP7_DATA 0x00000080 /* Value of SW Defineable Pin 7 */
-#define E1000_CTRL_EXT_SDP4_DIR 0x00000100 /* Direction of SDP4 0=in 1=out */
-#define E1000_CTRL_EXT_SDP5_DIR 0x00000200 /* Direction of SDP5 0=in 1=out */
-#define E1000_CTRL_EXT_SDP6_DIR 0x00000400 /* Direction of SDP6 0=in 1=out */
-#define E1000_CTRL_EXT_SDP7_DIR 0x00000800 /* Direction of SDP7 0=in 1=out */
-#define E1000_CTRL_EXT_ASDCHK 0x00001000 /* Initiate an ASD sequence */
-#define E1000_CTRL_EXT_EE_RST 0x00002000 /* Reinitialize from EEPROM */
-#define E1000_CTRL_EXT_IPS 0x00004000 /* Invert Power State */
-#define E1000_CTRL_EXT_SPD_BYPS 0x00008000 /* Speed Select Bypass */
-#define E1000_CTRL_EXT_LINK_MODE_MASK 0x00C00000
-#define E1000_CTRL_EXT_LINK_MODE_GMII 0x00000000
-#define E1000_CTRL_EXT_LINK_MODE_TBI 0x00C00000
-#define E1000_CTRL_EXT_WR_WMARK_MASK 0x03000000
-#define E1000_CTRL_EXT_WR_WMARK_256 0x00000000
-#define E1000_CTRL_EXT_WR_WMARK_320 0x01000000
-#define E1000_CTRL_EXT_WR_WMARK_384 0x02000000
-#define E1000_CTRL_EXT_WR_WMARK_448 0x03000000
-#define E1000_CTRL_EXT_IAME 0x08000000 /* Interrupt acknowledge Auto-mask */
-#define E1000_CTRL_EXT_INT_TIMER_CLR 0x20000000 /* Clear Interrupt timers after IMS clear */
-
-/* MDI Control */
-#define E1000_MDIC_DATA_MASK 0x0000FFFF
-#define E1000_MDIC_REG_MASK 0x001F0000
-#define E1000_MDIC_REG_SHIFT 16
-#define E1000_MDIC_PHY_MASK 0x03E00000
-#define E1000_MDIC_PHY_SHIFT 21
-#define E1000_MDIC_OP_WRITE 0x04000000
-#define E1000_MDIC_OP_READ 0x08000000
-#define E1000_MDIC_READY 0x10000000
-#define E1000_MDIC_INT_EN 0x20000000
-#define E1000_MDIC_ERROR 0x40000000
-
-/* LED Control */
-#define E1000_LEDCTL_LED0_MODE_MASK 0x0000000F
-#define E1000_LEDCTL_LED0_MODE_SHIFT 0
-#define E1000_LEDCTL_LED0_BLINK_RATE 0x0000020
-#define E1000_LEDCTL_LED0_IVRT 0x00000040
-#define E1000_LEDCTL_LED0_BLINK 0x00000080
-#define E1000_LEDCTL_LED1_MODE_MASK 0x00000F00
-#define E1000_LEDCTL_LED1_MODE_SHIFT 8
-#define E1000_LEDCTL_LED1_BLINK_RATE 0x0002000
-#define E1000_LEDCTL_LED1_IVRT 0x00004000
-#define E1000_LEDCTL_LED1_BLINK 0x00008000
-#define E1000_LEDCTL_LED2_MODE_MASK 0x000F0000
-#define E1000_LEDCTL_LED2_MODE_SHIFT 16
-#define E1000_LEDCTL_LED2_BLINK_RATE 0x00200000
-#define E1000_LEDCTL_LED2_IVRT 0x00400000
-#define E1000_LEDCTL_LED2_BLINK 0x00800000
-#define E1000_LEDCTL_LED3_MODE_MASK 0x0F000000
-#define E1000_LEDCTL_LED3_MODE_SHIFT 24
-#define E1000_LEDCTL_LED3_IVRT 0x40000000
-#define E1000_LEDCTL_LED3_BLINK 0x80000000
-
-#define E1000_LEDCTL_MODE_LINK_10_1000 0x0
-#define E1000_LEDCTL_MODE_LINK_100_1000 0x1
-#define E1000_LEDCTL_MODE_LINK_UP 0x2
-#define E1000_LEDCTL_MODE_ACTIVITY 0x3
-#define E1000_LEDCTL_MODE_LINK_ACTIVITY 0x4
-#define E1000_LEDCTL_MODE_LINK_10 0x5
-#define E1000_LEDCTL_MODE_LINK_100 0x6
-#define E1000_LEDCTL_MODE_LINK_1000 0x7
-#define E1000_LEDCTL_MODE_PCIX_MODE 0x8
-#define E1000_LEDCTL_MODE_FULL_DUPLEX 0x9
-#define E1000_LEDCTL_MODE_COLLISION 0xA
-#define E1000_LEDCTL_MODE_BUS_SPEED 0xB
-#define E1000_LEDCTL_MODE_BUS_SIZE 0xC
-#define E1000_LEDCTL_MODE_PAUSED 0xD
-#define E1000_LEDCTL_MODE_LED_ON 0xE
-#define E1000_LEDCTL_MODE_LED_OFF 0xF
-
-/* Receive Address */
-#define E1000_RAH_AV 0x80000000 /* Receive descriptor valid */
-
-/* Interrupt Cause Read */
-#define E1000_ICR_TXDW 0x00000001 /* Transmit desc written back */
-#define E1000_ICR_TXQE 0x00000002 /* Transmit Queue empty */
-#define E1000_ICR_LSC 0x00000004 /* Link Status Change */
-#define E1000_ICR_RXSEQ 0x00000008 /* rx sequence error */
-#define E1000_ICR_RXDMT0 0x00000010 /* rx desc min. threshold (0) */
-#define E1000_ICR_RXO 0x00000040 /* rx overrun */
-#define E1000_ICR_RXT0 0x00000080 /* rx timer intr (ring 0) */
-#define E1000_ICR_MDAC 0x00000200 /* MDIO access complete */
-#define E1000_ICR_RXCFG 0x00000400 /* RX /c/ ordered set */
-#define E1000_ICR_GPI_EN0 0x00000800 /* GP Int 0 */
-#define E1000_ICR_GPI_EN1 0x00001000 /* GP Int 1 */
-#define E1000_ICR_GPI_EN2 0x00002000 /* GP Int 2 */
-#define E1000_ICR_GPI_EN3 0x00004000 /* GP Int 3 */
-#define E1000_ICR_TXD_LOW 0x00008000
-#define E1000_ICR_SRPD 0x00010000
-#define E1000_ICR_ACK 0x00020000 /* Receive Ack frame */
-#define E1000_ICR_MNG 0x00040000 /* Manageability event */
-#define E1000_ICR_DOCK 0x00080000 /* Dock/Undock */
-#define E1000_ICR_INT_ASSERTED 0x80000000 /* If this bit asserted, the driver should claim the interrupt */
-
-/* Interrupt Cause Set */
-#define E1000_ICS_TXDW E1000_ICR_TXDW /* Transmit desc written back */
-#define E1000_ICS_TXQE E1000_ICR_TXQE /* Transmit Queue empty */
-#define E1000_ICS_LSC E1000_ICR_LSC /* Link Status Change */
-#define E1000_ICS_RXSEQ E1000_ICR_RXSEQ /* rx sequence error */
-#define E1000_ICS_RXDMT0 E1000_ICR_RXDMT0 /* rx desc min. threshold */
-#define E1000_ICS_RXO E1000_ICR_RXO /* rx overrun */
-#define E1000_ICS_RXT0 E1000_ICR_RXT0 /* rx timer intr */
-#define E1000_ICS_MDAC E1000_ICR_MDAC /* MDIO access complete */
-#define E1000_ICS_RXCFG E1000_ICR_RXCFG /* RX /c/ ordered set */
-#define E1000_ICS_GPI_EN0 E1000_ICR_GPI_EN0 /* GP Int 0 */
-#define E1000_ICS_GPI_EN1 E1000_ICR_GPI_EN1 /* GP Int 1 */
-#define E1000_ICS_GPI_EN2 E1000_ICR_GPI_EN2 /* GP Int 2 */
-#define E1000_ICS_GPI_EN3 E1000_ICR_GPI_EN3 /* GP Int 3 */
-#define E1000_ICS_TXD_LOW E1000_ICR_TXD_LOW
-#define E1000_ICS_SRPD E1000_ICR_SRPD
-#define E1000_ICS_ACK E1000_ICR_ACK /* Receive Ack frame */
-#define E1000_ICS_MNG E1000_ICR_MNG /* Manageability event */
-#define E1000_ICS_DOCK E1000_ICR_DOCK /* Dock/Undock */
-
-/* Interrupt Mask Set */
-#define E1000_IMS_TXDW E1000_ICR_TXDW /* Transmit desc written back */
-#define E1000_IMS_TXQE E1000_ICR_TXQE /* Transmit Queue empty */
-#define E1000_IMS_LSC E1000_ICR_LSC /* Link Status Change */
-#define E1000_IMS_RXSEQ E1000_ICR_RXSEQ /* rx sequence error */
-#define E1000_IMS_RXDMT0 E1000_ICR_RXDMT0 /* rx desc min. threshold */
-#define E1000_IMS_RXO E1000_ICR_RXO /* rx overrun */
-#define E1000_IMS_RXT0 E1000_ICR_RXT0 /* rx timer intr */
-#define E1000_IMS_MDAC E1000_ICR_MDAC /* MDIO access complete */
-#define E1000_IMS_RXCFG E1000_ICR_RXCFG /* RX /c/ ordered set */
-#define E1000_IMS_GPI_EN0 E1000_ICR_GPI_EN0 /* GP Int 0 */
-#define E1000_IMS_GPI_EN1 E1000_ICR_GPI_EN1 /* GP Int 1 */
-#define E1000_IMS_GPI_EN2 E1000_ICR_GPI_EN2 /* GP Int 2 */
-#define E1000_IMS_GPI_EN3 E1000_ICR_GPI_EN3 /* GP Int 3 */
-#define E1000_IMS_TXD_LOW E1000_ICR_TXD_LOW
-#define E1000_IMS_SRPD E1000_ICR_SRPD
-#define E1000_IMS_ACK E1000_ICR_ACK /* Receive Ack frame */
-#define E1000_IMS_MNG E1000_ICR_MNG /* Manageability event */
-#define E1000_IMS_DOCK E1000_ICR_DOCK /* Dock/Undock */
-
-/* Interrupt Mask Clear */
-#define E1000_IMC_TXDW E1000_ICR_TXDW /* Transmit desc written back */
-#define E1000_IMC_TXQE E1000_ICR_TXQE /* Transmit Queue empty */
-#define E1000_IMC_LSC E1000_ICR_LSC /* Link Status Change */
-#define E1000_IMC_RXSEQ E1000_ICR_RXSEQ /* rx sequence error */
-#define E1000_IMC_RXDMT0 E1000_ICR_RXDMT0 /* rx desc min. threshold */
-#define E1000_IMC_RXO E1000_ICR_RXO /* rx overrun */
-#define E1000_IMC_RXT0 E1000_ICR_RXT0 /* rx timer intr */
-#define E1000_IMC_MDAC E1000_ICR_MDAC /* MDIO access complete */
-#define E1000_IMC_RXCFG E1000_ICR_RXCFG /* RX /c/ ordered set */
-#define E1000_IMC_GPI_EN0 E1000_ICR_GPI_EN0 /* GP Int 0 */
-#define E1000_IMC_GPI_EN1 E1000_ICR_GPI_EN1 /* GP Int 1 */
-#define E1000_IMC_GPI_EN2 E1000_ICR_GPI_EN2 /* GP Int 2 */
-#define E1000_IMC_GPI_EN3 E1000_ICR_GPI_EN3 /* GP Int 3 */
-#define E1000_IMC_TXD_LOW E1000_ICR_TXD_LOW
-#define E1000_IMC_SRPD E1000_ICR_SRPD
-#define E1000_IMC_ACK E1000_ICR_ACK /* Receive Ack frame */
-#define E1000_IMC_MNG E1000_ICR_MNG /* Manageability event */
-#define E1000_IMC_DOCK E1000_ICR_DOCK /* Dock/Undock */
-
-/* Receive Control */
-#define E1000_RCTL_RST 0x00000001 /* Software reset */
-#define E1000_RCTL_EN 0x00000002 /* enable */
-#define E1000_RCTL_SBP 0x00000004 /* store bad packet */
-#define E1000_RCTL_UPE 0x00000008 /* unicast promiscuous enable */
-#define E1000_RCTL_MPE 0x00000010 /* multicast promiscuous enab */
-#define E1000_RCTL_LPE 0x00000020 /* long packet enable */
-#define E1000_RCTL_LBM_NO 0x00000000 /* no loopback mode */
-#define E1000_RCTL_LBM_MAC 0x00000040 /* MAC loopback mode */
-#define E1000_RCTL_LBM_SLP 0x00000080 /* serial link loopback mode */
-#define E1000_RCTL_LBM_TCVR 0x000000C0 /* tcvr loopback mode */
-#define E1000_RCTL_DTYP_MASK 0x00000C00 /* Descriptor type mask */
-#define E1000_RCTL_DTYP_PS 0x00000400 /* Packet Split descriptor */
-#define E1000_RCTL_RDMTS_HALF 0x00000000 /* rx desc min threshold size */
-#define E1000_RCTL_RDMTS_QUAT 0x00000100 /* rx desc min threshold size */
-#define E1000_RCTL_RDMTS_EIGTH 0x00000200 /* rx desc min threshold size */
-#define E1000_RCTL_MO_SHIFT 12 /* multicast offset shift */
-#define E1000_RCTL_MO_0 0x00000000 /* multicast offset 11:0 */
-#define E1000_RCTL_MO_1 0x00001000 /* multicast offset 12:1 */
-#define E1000_RCTL_MO_2 0x00002000 /* multicast offset 13:2 */
-#define E1000_RCTL_MO_3 0x00003000 /* multicast offset 15:4 */
-#define E1000_RCTL_MDR 0x00004000 /* multicast desc ring 0 */
-#define E1000_RCTL_BAM 0x00008000 /* broadcast enable */
-/* these buffer sizes are valid if E1000_RCTL_BSEX is 0 */
-#define E1000_RCTL_SZ_2048 0x00000000 /* rx buffer size 2048 */
-#define E1000_RCTL_SZ_1024 0x00010000 /* rx buffer size 1024 */
-#define E1000_RCTL_SZ_512 0x00020000 /* rx buffer size 512 */
-#define E1000_RCTL_SZ_256 0x00030000 /* rx buffer size 256 */
-/* these buffer sizes are valid if E1000_RCTL_BSEX is 1 */
-#define E1000_RCTL_SZ_16384 0x00010000 /* rx buffer size 16384 */
-#define E1000_RCTL_SZ_8192 0x00020000 /* rx buffer size 8192 */
-#define E1000_RCTL_SZ_4096 0x00030000 /* rx buffer size 4096 */
-#define E1000_RCTL_VFE 0x00040000 /* vlan filter enable */
-#define E1000_RCTL_CFIEN 0x00080000 /* canonical form enable */
-#define E1000_RCTL_CFI 0x00100000 /* canonical form indicator */
-#define E1000_RCTL_DPF 0x00400000 /* discard pause frames */
-#define E1000_RCTL_PMCF 0x00800000 /* pass MAC control frames */
-#define E1000_RCTL_BSEX 0x02000000 /* Buffer size extension */
-#define E1000_RCTL_SECRC 0x04000000 /* Strip Ethernet CRC */
-#define E1000_RCTL_FLXBUF_MASK 0x78000000 /* Flexible buffer size */
-#define E1000_RCTL_FLXBUF_SHIFT 27 /* Flexible buffer shift */
-
-/* Use byte values for the following shift parameters
- * Usage:
- * psrctl |= (((ROUNDUP(value0, 128) >> E1000_PSRCTL_BSIZE0_SHIFT) &
- * E1000_PSRCTL_BSIZE0_MASK) |
- * ((ROUNDUP(value1, 1024) >> E1000_PSRCTL_BSIZE1_SHIFT) &
- * E1000_PSRCTL_BSIZE1_MASK) |
- * ((ROUNDUP(value2, 1024) << E1000_PSRCTL_BSIZE2_SHIFT) &
- * E1000_PSRCTL_BSIZE2_MASK) |
- * ((ROUNDUP(value3, 1024) << E1000_PSRCTL_BSIZE3_SHIFT) |;
- * E1000_PSRCTL_BSIZE3_MASK))
- * where value0 = [128..16256], default=256
- * value1 = [1024..64512], default=4096
- * value2 = [0..64512], default=4096
- * value3 = [0..64512], default=0
- */
-
-#define E1000_PSRCTL_BSIZE0_MASK 0x0000007F
-#define E1000_PSRCTL_BSIZE1_MASK 0x00003F00
-#define E1000_PSRCTL_BSIZE2_MASK 0x003F0000
-#define E1000_PSRCTL_BSIZE3_MASK 0x3F000000
-
-#define E1000_PSRCTL_BSIZE0_SHIFT 7 /* Shift _right_ 7 */
-#define E1000_PSRCTL_BSIZE1_SHIFT 2 /* Shift _right_ 2 */
-#define E1000_PSRCTL_BSIZE2_SHIFT 6 /* Shift _left_ 6 */
-#define E1000_PSRCTL_BSIZE3_SHIFT 14 /* Shift _left_ 14 */
-
-/* Receive Descriptor */
-#define E1000_RDT_DELAY 0x0000ffff /* Delay timer (1=1024us) */
-#define E1000_RDT_FPDB 0x80000000 /* Flush descriptor block */
-#define E1000_RDLEN_LEN 0x0007ff80 /* descriptor length */
-#define E1000_RDH_RDH 0x0000ffff /* receive descriptor head */
-#define E1000_RDT_RDT 0x0000ffff /* receive descriptor tail */
-
-/* Flow Control */
-#define E1000_FCRTH_RTH 0x0000FFF8 /* Mask Bits[15:3] for RTH */
-#define E1000_FCRTH_XFCE 0x80000000 /* External Flow Control Enable */
-#define E1000_FCRTL_RTL 0x0000FFF8 /* Mask Bits[15:3] for RTL */
-#define E1000_FCRTL_XONE 0x80000000 /* Enable XON frame transmission */
-
-/* Header split receive */
-#define E1000_RFCTL_ISCSI_DIS 0x00000001
-#define E1000_RFCTL_ISCSI_DWC_MASK 0x0000003E
-#define E1000_RFCTL_ISCSI_DWC_SHIFT 1
-#define E1000_RFCTL_NFSW_DIS 0x00000040
-#define E1000_RFCTL_NFSR_DIS 0x00000080
-#define E1000_RFCTL_NFS_VER_MASK 0x00000300
-#define E1000_RFCTL_NFS_VER_SHIFT 8
-#define E1000_RFCTL_IPV6_DIS 0x00000400
-#define E1000_RFCTL_IPV6_XSUM_DIS 0x00000800
-#define E1000_RFCTL_ACK_DIS 0x00001000
-#define E1000_RFCTL_ACKD_DIS 0x00002000
-#define E1000_RFCTL_IPFRSP_DIS 0x00004000
-#define E1000_RFCTL_EXTEN 0x00008000
-#define E1000_RFCTL_IPV6_EX_DIS 0x00010000
-#define E1000_RFCTL_NEW_IPV6_EXT_DIS 0x00020000
-
-/* Receive Descriptor Control */
-#define E1000_RXDCTL_PTHRESH 0x0000003F /* RXDCTL Prefetch Threshold */
-#define E1000_RXDCTL_HTHRESH 0x00003F00 /* RXDCTL Host Threshold */
-#define E1000_RXDCTL_WTHRESH 0x003F0000 /* RXDCTL Writeback Threshold */
-#define E1000_RXDCTL_GRAN 0x01000000 /* RXDCTL Granularity */
-
-/* Transmit Descriptor Control */
-#define E1000_TXDCTL_PTHRESH 0x000000FF /* TXDCTL Prefetch Threshold */
-#define E1000_TXDCTL_HTHRESH 0x0000FF00 /* TXDCTL Host Threshold */
-#define E1000_TXDCTL_WTHRESH 0x00FF0000 /* TXDCTL Writeback Threshold */
-#define E1000_TXDCTL_GRAN 0x01000000 /* TXDCTL Granularity */
-#define E1000_TXDCTL_LWTHRESH 0xFE000000 /* TXDCTL Low Threshold */
-#define E1000_TXDCTL_FULL_TX_DESC_WB 0x01010000 /* GRAN=1, WTHRESH=1 */
-#define E1000_TXDCTL_COUNT_DESC 0x00400000 /* Enable the counting of desc.
- still to be processed. */
-
-/* Transmit Configuration Word */
-#define E1000_TXCW_FD 0x00000020 /* TXCW full duplex */
-#define E1000_TXCW_HD 0x00000040 /* TXCW half duplex */
-#define E1000_TXCW_PAUSE 0x00000080 /* TXCW sym pause request */
-#define E1000_TXCW_ASM_DIR 0x00000100 /* TXCW astm pause direction */
-#define E1000_TXCW_PAUSE_MASK 0x00000180 /* TXCW pause request mask */
-#define E1000_TXCW_RF 0x00003000 /* TXCW remote fault */
-#define E1000_TXCW_NP 0x00008000 /* TXCW next page */
-#define E1000_TXCW_CW 0x0000ffff /* TxConfigWord mask */
-#define E1000_TXCW_TXC 0x40000000 /* Transmit Config control */
-#define E1000_TXCW_ANE 0x80000000 /* Auto-neg enable */
-
-/* Receive Configuration Word */
-#define E1000_RXCW_CW 0x0000ffff /* RxConfigWord mask */
-#define E1000_RXCW_NC 0x04000000 /* Receive config no carrier */
-#define E1000_RXCW_IV 0x08000000 /* Receive config invalid */
-#define E1000_RXCW_CC 0x10000000 /* Receive config change */
-#define E1000_RXCW_C 0x20000000 /* Receive config */
-#define E1000_RXCW_SYNCH 0x40000000 /* Receive config synch */
-#define E1000_RXCW_ANC 0x80000000 /* Auto-neg complete */
-
-/* Transmit Control */
-#define E1000_TCTL_RST 0x00000001 /* software reset */
-#define E1000_TCTL_EN 0x00000002 /* enable tx */
-#define E1000_TCTL_BCE 0x00000004 /* busy check enable */
-#define E1000_TCTL_PSP 0x00000008 /* pad short packets */
-#define E1000_TCTL_CT 0x00000ff0 /* collision threshold */
-#define E1000_TCTL_COLD 0x003ff000 /* collision distance */
-#define E1000_TCTL_SWXOFF 0x00400000 /* SW Xoff transmission */
-#define E1000_TCTL_PBE 0x00800000 /* Packet Burst Enable */
-#define E1000_TCTL_RTLC 0x01000000 /* Re-transmit on late collision */
-#define E1000_TCTL_NRTU 0x02000000 /* No Re-transmit on underrun */
-#define E1000_TCTL_MULR 0x10000000 /* Multiple request support */
-
-/* Receive Checksum Control */
-#define E1000_RXCSUM_PCSS_MASK 0x000000FF /* Packet Checksum Start */
-#define E1000_RXCSUM_IPOFL 0x00000100 /* IPv4 checksum offload */
-#define E1000_RXCSUM_TUOFL 0x00000200 /* TCP / UDP checksum offload */
-#define E1000_RXCSUM_IPV6OFL 0x00000400 /* IPv6 checksum offload */
-#define E1000_RXCSUM_IPPCSE 0x00001000 /* IP payload checksum enable */
-#define E1000_RXCSUM_PCSD 0x00002000 /* packet checksum disabled */
-
-
-/* Definitions for power management and wakeup registers */
-/* Wake Up Control */
-#define E1000_WUC_APME 0x00000001 /* APM Enable */
-#define E1000_WUC_PME_EN 0x00000002 /* PME Enable */
-#define E1000_WUC_PME_STATUS 0x00000004 /* PME Status */
-#define E1000_WUC_APMPME 0x00000008 /* Assert PME on APM Wakeup */
-#define E1000_WUC_SPM 0x80000000 /* Enable SPM */
-
-/* Wake Up Filter Control */
-#define E1000_WUFC_LNKC 0x00000001 /* Link Status Change Wakeup Enable */
-#define E1000_WUFC_MAG 0x00000002 /* Magic Packet Wakeup Enable */
-#define E1000_WUFC_EX 0x00000004 /* Directed Exact Wakeup Enable */
-#define E1000_WUFC_MC 0x00000008 /* Directed Multicast Wakeup Enable */
-#define E1000_WUFC_BC 0x00000010 /* Broadcast Wakeup Enable */
-#define E1000_WUFC_ARP 0x00000020 /* ARP Request Packet Wakeup Enable */
-#define E1000_WUFC_IPV4 0x00000040 /* Directed IPv4 Packet Wakeup Enable */
-#define E1000_WUFC_IPV6 0x00000080 /* Directed IPv6 Packet Wakeup Enable */
-#define E1000_WUFC_IGNORE_TCO 0x00008000 /* Ignore WakeOn TCO packets */
-#define E1000_WUFC_FLX0 0x00010000 /* Flexible Filter 0 Enable */
-#define E1000_WUFC_FLX1 0x00020000 /* Flexible Filter 1 Enable */
-#define E1000_WUFC_FLX2 0x00040000 /* Flexible Filter 2 Enable */
-#define E1000_WUFC_FLX3 0x00080000 /* Flexible Filter 3 Enable */
-#define E1000_WUFC_ALL_FILTERS 0x000F00FF /* Mask for all wakeup filters */
-#define E1000_WUFC_FLX_OFFSET 16 /* Offset to the Flexible Filters bits */
-#define E1000_WUFC_FLX_FILTERS 0x000F0000 /* Mask for the 4 flexible filters */
-
-/* Wake Up Status */
-#define E1000_WUS_LNKC 0x00000001 /* Link Status Changed */
-#define E1000_WUS_MAG 0x00000002 /* Magic Packet Received */
-#define E1000_WUS_EX 0x00000004 /* Directed Exact Received */
-#define E1000_WUS_MC 0x00000008 /* Directed Multicast Received */
-#define E1000_WUS_BC 0x00000010 /* Broadcast Received */
-#define E1000_WUS_ARP 0x00000020 /* ARP Request Packet Received */
-#define E1000_WUS_IPV4 0x00000040 /* Directed IPv4 Packet Wakeup Received */
-#define E1000_WUS_IPV6 0x00000080 /* Directed IPv6 Packet Wakeup Received */
-#define E1000_WUS_FLX0 0x00010000 /* Flexible Filter 0 Match */
-#define E1000_WUS_FLX1 0x00020000 /* Flexible Filter 1 Match */
-#define E1000_WUS_FLX2 0x00040000 /* Flexible Filter 2 Match */
-#define E1000_WUS_FLX3 0x00080000 /* Flexible Filter 3 Match */
-#define E1000_WUS_FLX_FILTERS 0x000F0000 /* Mask for the 4 flexible filters */
-
-/* Management Control */
-#define E1000_MANC_SMBUS_EN 0x00000001 /* SMBus Enabled - RO */
-#define E1000_MANC_ASF_EN 0x00000002 /* ASF Enabled - RO */
-#define E1000_MANC_R_ON_FORCE 0x00000004 /* Reset on Force TCO - RO */
-#define E1000_MANC_RMCP_EN 0x00000100 /* Enable RCMP 026Fh Filtering */
-#define E1000_MANC_0298_EN 0x00000200 /* Enable RCMP 0298h Filtering */
-#define E1000_MANC_IPV4_EN 0x00000400 /* Enable IPv4 */
-#define E1000_MANC_IPV6_EN 0x00000800 /* Enable IPv6 */
-#define E1000_MANC_SNAP_EN 0x00001000 /* Accept LLC/SNAP */
-#define E1000_MANC_ARP_EN 0x00002000 /* Enable ARP Request Filtering */
-#define E1000_MANC_NEIGHBOR_EN 0x00004000 /* Enable Neighbor Discovery
- * Filtering */
-#define E1000_MANC_ARP_RES_EN 0x00008000 /* Enable ARP response Filtering */
-#define E1000_MANC_TCO_RESET 0x00010000 /* TCO Reset Occurred */
-#define E1000_MANC_RCV_TCO_EN 0x00020000 /* Receive TCO Packets Enabled */
-#define E1000_MANC_REPORT_STATUS 0x00040000 /* Status Reporting Enabled */
-#define E1000_MANC_BLK_PHY_RST_ON_IDE 0x00040000 /* Block phy resets */
-#define E1000_MANC_EN_MAC_ADDR_FILTER 0x00100000 /* Enable MAC address
- * filtering */
-#define E1000_MANC_EN_MNG2HOST 0x00200000 /* Enable MNG packets to host
- * memory */
-#define E1000_MANC_EN_IP_ADDR_FILTER 0x00400000 /* Enable IP address
- * filtering */
-#define E1000_MANC_EN_XSUM_FILTER 0x00800000 /* Enable checksum filtering */
-#define E1000_MANC_BR_EN 0x01000000 /* Enable broadcast filtering */
-#define E1000_MANC_SMB_REQ 0x01000000 /* SMBus Request */
-#define E1000_MANC_SMB_GNT 0x02000000 /* SMBus Grant */
-#define E1000_MANC_SMB_CLK_IN 0x04000000 /* SMBus Clock In */
-#define E1000_MANC_SMB_DATA_IN 0x08000000 /* SMBus Data In */
-#define E1000_MANC_SMB_DATA_OUT 0x10000000 /* SMBus Data Out */
-#define E1000_MANC_SMB_CLK_OUT 0x20000000 /* SMBus Clock Out */
-
-#define E1000_MANC_SMB_DATA_OUT_SHIFT 28 /* SMBus Data Out Shift */
-#define E1000_MANC_SMB_CLK_OUT_SHIFT 29 /* SMBus Clock Out Shift */
-
-/* SW Semaphore Register */
-#define E1000_SWSM_SMBI 0x00000001 /* Driver Semaphore bit */
-#define E1000_SWSM_SWESMBI 0x00000002 /* FW Semaphore bit */
-#define E1000_SWSM_WMNG 0x00000004 /* Wake MNG Clock */
-#define E1000_SWSM_DRV_LOAD 0x00000008 /* Driver Loaded Bit */
-
-/* FW Semaphore Register */
-#define E1000_FWSM_MODE_MASK 0x0000000E /* FW mode */
-#define E1000_FWSM_MODE_SHIFT 1
-#define E1000_FWSM_FW_VALID 0x00008000 /* FW established a valid mode */
-
-/* FFLT Debug Register */
-#define E1000_FFLT_DBG_INVC 0x00100000 /* Invalid /C/ code handling */
-
-typedef enum {
- em_mng_mode_none = 0,
- em_mng_mode_asf,
- em_mng_mode_pt,
- em_mng_mode_ipmi,
- em_mng_mode_host_interface_only
-} em_mng_mode;
-
-/* Host Inteface Control Register */
-#define E1000_HICR_EN 0x00000001 /* Enable Bit - RO */
-#define E1000_HICR_C 0x00000002 /* Driver sets this bit when done
- * to put command in RAM */
-#define E1000_HICR_SV 0x00000004 /* Status Validity */
-#define E1000_HICR_FWR 0x00000080 /* FW reset. Set by the Host */
-
-/* Host Interface Command Interface - Address range 0x8800-0x8EFF */
-#define E1000_HI_MAX_DATA_LENGTH 252 /* Host Interface data length */
-#define E1000_HI_MAX_BLOCK_BYTE_LENGTH 1792 /* Number of bytes in range */
-#define E1000_HI_MAX_BLOCK_DWORD_LENGTH 448 /* Number of dwords in range */
-#define E1000_HI_COMMAND_TIMEOUT 500 /* Time in ms to process HI command */
-
-struct em_host_command_header {
- uint8_t command_id;
- uint8_t command_length;
- uint8_t command_options; /* I/F bits for command, status for return */
- uint8_t checksum;
-};
-struct em_host_command_info {
- struct em_host_command_header command_header; /* Command Head/Command Result Head has 4 bytes */
- uint8_t command_data[E1000_HI_MAX_DATA_LENGTH]; /* Command data can length 0..252 */
-};
-
-/* Host SMB register #0 */
-#define E1000_HSMC0R_CLKIN 0x00000001 /* SMB Clock in */
-#define E1000_HSMC0R_DATAIN 0x00000002 /* SMB Data in */
-#define E1000_HSMC0R_DATAOUT 0x00000004 /* SMB Data out */
-#define E1000_HSMC0R_CLKOUT 0x00000008 /* SMB Clock out */
-
-/* Host SMB register #1 */
-#define E1000_HSMC1R_CLKIN E1000_HSMC0R_CLKIN
-#define E1000_HSMC1R_DATAIN E1000_HSMC0R_DATAIN
-#define E1000_HSMC1R_DATAOUT E1000_HSMC0R_DATAOUT
-#define E1000_HSMC1R_CLKOUT E1000_HSMC0R_CLKOUT
-
-/* FW Status Register */
-#define E1000_FWSTS_FWS_MASK 0x000000FF /* FW Status */
-
-/* Wake Up Packet Length */
-#define E1000_WUPL_LENGTH_MASK 0x0FFF /* Only the lower 12 bits are valid */
-
-#define E1000_MDALIGN 4096
-
-#define E1000_GCR_BEM32 0x00400000
-/* Function Active and Power State to MNG */
-#define E1000_FACTPS_FUNC0_POWER_STATE_MASK 0x00000003
-#define E1000_FACTPS_LAN0_VALID 0x00000004
-#define E1000_FACTPS_FUNC0_AUX_EN 0x00000008
-#define E1000_FACTPS_FUNC1_POWER_STATE_MASK 0x000000C0
-#define E1000_FACTPS_FUNC1_POWER_STATE_SHIFT 6
-#define E1000_FACTPS_LAN1_VALID 0x00000100
-#define E1000_FACTPS_FUNC1_AUX_EN 0x00000200
-#define E1000_FACTPS_FUNC2_POWER_STATE_MASK 0x00003000
-#define E1000_FACTPS_FUNC2_POWER_STATE_SHIFT 12
-#define E1000_FACTPS_IDE_ENABLE 0x00004000
-#define E1000_FACTPS_FUNC2_AUX_EN 0x00008000
-#define E1000_FACTPS_FUNC3_POWER_STATE_MASK 0x000C0000
-#define E1000_FACTPS_FUNC3_POWER_STATE_SHIFT 18
-#define E1000_FACTPS_SP_ENABLE 0x00100000
-#define E1000_FACTPS_FUNC3_AUX_EN 0x00200000
-#define E1000_FACTPS_FUNC4_POWER_STATE_MASK 0x03000000
-#define E1000_FACTPS_FUNC4_POWER_STATE_SHIFT 24
-#define E1000_FACTPS_IPMI_ENABLE 0x04000000
-#define E1000_FACTPS_FUNC4_AUX_EN 0x08000000
-#define E1000_FACTPS_MNGCG 0x20000000
-#define E1000_FACTPS_LAN_FUNC_SEL 0x40000000
-#define E1000_FACTPS_PM_STATE_CHANGED 0x80000000
-
-/* EEPROM Commands - Microwire */
-#define EEPROM_READ_OPCODE_MICROWIRE 0x6 /* EEPROM read opcode */
-#define EEPROM_WRITE_OPCODE_MICROWIRE 0x5 /* EEPROM write opcode */
-#define EEPROM_ERASE_OPCODE_MICROWIRE 0x7 /* EEPROM erase opcode */
-#define EEPROM_EWEN_OPCODE_MICROWIRE 0x13 /* EEPROM erase/write enable */
-#define EEPROM_EWDS_OPCODE_MICROWIRE 0x10 /* EEPROM erast/write disable */
-
-/* EEPROM Commands - SPI */
-#define EEPROM_MAX_RETRY_SPI 5000 /* Max wait of 5ms, for RDY signal */
-#define EEPROM_READ_OPCODE_SPI 0x03 /* EEPROM read opcode */
-#define EEPROM_WRITE_OPCODE_SPI 0x02 /* EEPROM write opcode */
-#define EEPROM_A8_OPCODE_SPI 0x08 /* opcode bit-3 = address bit-8 */
-#define EEPROM_WREN_OPCODE_SPI 0x06 /* EEPROM set Write Enable latch */
-#define EEPROM_WRDI_OPCODE_SPI 0x04 /* EEPROM reset Write Enable latch */
-#define EEPROM_RDSR_OPCODE_SPI 0x05 /* EEPROM read Status register */
-#define EEPROM_WRSR_OPCODE_SPI 0x01 /* EEPROM write Status register */
-#define EEPROM_ERASE4K_OPCODE_SPI 0x20 /* EEPROM ERASE 4KB */
-#define EEPROM_ERASE64K_OPCODE_SPI 0xD8 /* EEPROM ERASE 64KB */
-#define EEPROM_ERASE256_OPCODE_SPI 0xDB /* EEPROM ERASE 256B */
-
-/* EEPROM Size definitions */
-#define EEPROM_WORD_SIZE_SHIFT 6
-#define EEPROM_SIZE_SHIFT 10
-#define EEPROM_SIZE_MASK 0x1C00
-
-/* EEPROM Word Offsets */
-#define EEPROM_COMPAT 0x0003
-#define EEPROM_ID_LED_SETTINGS 0x0004
-#define EEPROM_SERDES_AMPLITUDE 0x0006 /* For SERDES output amplitude adjustment. */
-#define EEPROM_PHY_CLASS_WORD 0x0007
-#define EEPROM_INIT_CONTROL1_REG 0x000A
-#define EEPROM_INIT_CONTROL2_REG 0x000F
-#define EEPROM_INIT_CONTROL3_PORT_B 0x0014
-#define EEPROM_INIT_CONTROL3_PORT_A 0x0024
-#define EEPROM_CFG 0x0012
-#define EEPROM_FLASH_VERSION 0x0032
-#define EEPROM_CHECKSUM_REG 0x003F
-
-/* Word definitions for ID LED Settings */
-#define ID_LED_RESERVED_0000 0x0000
-#define ID_LED_RESERVED_FFFF 0xFFFF
-#define ID_LED_DEFAULT ((ID_LED_OFF1_ON2 << 12) | \
- (ID_LED_OFF1_OFF2 << 8) | \
- (ID_LED_DEF1_DEF2 << 4) | \
- (ID_LED_DEF1_DEF2))
-#define ID_LED_DEF1_DEF2 0x1
-#define ID_LED_DEF1_ON2 0x2
-#define ID_LED_DEF1_OFF2 0x3
-#define ID_LED_ON1_DEF2 0x4
-#define ID_LED_ON1_ON2 0x5
-#define ID_LED_ON1_OFF2 0x6
-#define ID_LED_OFF1_DEF2 0x7
-#define ID_LED_OFF1_ON2 0x8
-#define ID_LED_OFF1_OFF2 0x9
-
-#define IGP_ACTIVITY_LED_MASK 0xFFFFF0FF
-#define IGP_ACTIVITY_LED_ENABLE 0x0300
-#define IGP_LED3_MODE 0x07000000
-
-
-/* Mask bits for SERDES amplitude adjustment in Word 6 of the EEPROM */
-#define EEPROM_SERDES_AMPLITUDE_MASK 0x000F
-
-/* Mask bit for PHY class in Word 7 of the EEPROM */
-#define EEPROM_PHY_CLASS_A 0x8000
-
-/* Mask bits for fields in Word 0x0a of the EEPROM */
-#define EEPROM_WORD0A_ILOS 0x0010
-#define EEPROM_WORD0A_SWDPIO 0x01E0
-#define EEPROM_WORD0A_LRST 0x0200
-#define EEPROM_WORD0A_FD 0x0400
-#define EEPROM_WORD0A_66MHZ 0x0800
-
-/* Mask bits for fields in Word 0x0f of the EEPROM */
-#define EEPROM_WORD0F_PAUSE_MASK 0x3000
-#define EEPROM_WORD0F_PAUSE 0x1000
-#define EEPROM_WORD0F_ASM_DIR 0x2000
-#define EEPROM_WORD0F_ANE 0x0800
-#define EEPROM_WORD0F_SWPDIO_EXT 0x00F0
-
-/* For checksumming, the sum of all words in the EEPROM should equal 0xBABA. */
-#define EEPROM_SUM 0xBABA
-
-/* EEPROM Map defines (WORD OFFSETS)*/
-#define EEPROM_NODE_ADDRESS_BYTE_0 0
-#define EEPROM_PBA_BYTE_1 8
-
-#define EEPROM_RESERVED_WORD 0xFFFF
-
-/* EEPROM Map Sizes (Byte Counts) */
-#define PBA_SIZE 4
-
-/* Collision related configuration parameters */
-#define E1000_COLLISION_THRESHOLD 15
-#define E1000_CT_SHIFT 4
-#define E1000_COLLISION_DISTANCE 64
-#define E1000_FDX_COLLISION_DISTANCE E1000_COLLISION_DISTANCE
-#define E1000_HDX_COLLISION_DISTANCE E1000_COLLISION_DISTANCE
-#define E1000_COLD_SHIFT 12
-
-/* Number of Transmit and Receive Descriptors must be a multiple of 8 */
-#define REQ_TX_DESCRIPTOR_MULTIPLE 8
-#define REQ_RX_DESCRIPTOR_MULTIPLE 8
-
-/* Default values for the transmit IPG register */
-#define DEFAULT_82542_TIPG_IPGT 10
-#define DEFAULT_82543_TIPG_IPGT_FIBER 9
-#define DEFAULT_82543_TIPG_IPGT_COPPER 8
-
-#define E1000_TIPG_IPGT_MASK 0x000003FF
-#define E1000_TIPG_IPGR1_MASK 0x000FFC00
-#define E1000_TIPG_IPGR2_MASK 0x3FF00000
-
-#define DEFAULT_82542_TIPG_IPGR1 2
-#define DEFAULT_82543_TIPG_IPGR1 8
-#define E1000_TIPG_IPGR1_SHIFT 10
-
-#define DEFAULT_82542_TIPG_IPGR2 10
-#define DEFAULT_82543_TIPG_IPGR2 6
-#define E1000_TIPG_IPGR2_SHIFT 20
-
-#define E1000_TXDMAC_DPP 0x00000001
-
-/* Adaptive IFS defines */
-#define TX_THRESHOLD_START 8
-#define TX_THRESHOLD_INCREMENT 10
-#define TX_THRESHOLD_DECREMENT 1
-#define TX_THRESHOLD_STOP 190
-#define TX_THRESHOLD_DISABLE 0
-#define TX_THRESHOLD_TIMER_MS 10000
-#define MIN_NUM_XMITS 1000
-#define IFS_MAX 80
-#define IFS_STEP 10
-#define IFS_MIN 40
-#define IFS_RATIO 4
-
-/* Extended Configuration Control and Size */
-#define E1000_EXTCNF_CTRL_PCIE_WRITE_ENABLE 0x00000001
-#define E1000_EXTCNF_CTRL_PHY_WRITE_ENABLE 0x00000002
-#define E1000_EXTCNF_CTRL_D_UD_ENABLE 0x00000004
-#define E1000_EXTCNF_CTRL_D_UD_LATENCY 0x00000008
-#define E1000_EXTCNF_CTRL_D_UD_OWNER 0x00000010
-#define E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP 0x00000020
-#define E1000_EXTCNF_CTRL_MDIO_HW_OWNERSHIP 0x00000040
-#define E1000_EXTCNF_CTRL_EXT_CNF_POINTER 0x1FFF0000
-
-#define E1000_EXTCNF_SIZE_EXT_PHY_LENGTH 0x000000FF
-#define E1000_EXTCNF_SIZE_EXT_DOCK_LENGTH 0x0000FF00
-#define E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH 0x00FF0000
-
-/* PBA constants */
-#define E1000_PBA_12K 0x000C /* 12KB, default Rx allocation */
-#define E1000_PBA_16K 0x0010 /* 16KB, default TX allocation */
-#define E1000_PBA_22K 0x0016
-#define E1000_PBA_24K 0x0018
-#define E1000_PBA_30K 0x001E
-#define E1000_PBA_40K 0x0028
-#define E1000_PBA_48K 0x0030 /* 48KB, default RX allocation */
-
-/* Flow Control Constants */
-#define FLOW_CONTROL_ADDRESS_LOW 0x00C28001
-#define FLOW_CONTROL_ADDRESS_HIGH 0x00000100
-#define FLOW_CONTROL_TYPE 0x8808
-
-/* The historical defaults for the flow control values are given below. */
-#define FC_DEFAULT_HI_THRESH (0x8000) /* 32KB */
-#define FC_DEFAULT_LO_THRESH (0x4000) /* 16KB */
-#define FC_DEFAULT_TX_TIMER (0x100) /* ~130 us */
-
-/* PCIX Config space */
-#define PCIX_COMMAND_REGISTER 0xE6
-#define PCIX_STATUS_REGISTER_LO 0xE8
-#define PCIX_STATUS_REGISTER_HI 0xEA
-
-#define PCIX_COMMAND_MMRBC_MASK 0x000C
-#define PCIX_COMMAND_MMRBC_SHIFT 0x2
-#define PCIX_STATUS_HI_MMRBC_MASK 0x0060
-#define PCIX_STATUS_HI_MMRBC_SHIFT 0x5
-#define PCIX_STATUS_HI_MMRBC_4K 0x3
-#define PCIX_STATUS_HI_MMRBC_2K 0x2
-
-
-/* Number of bits required to shift right the "pause" bits from the
- * EEPROM (bits 13:12) to the "pause" (bits 8:7) field in the TXCW register.
- */
-#define PAUSE_SHIFT 5
-
-/* Number of bits required to shift left the "SWDPIO" bits from the
- * EEPROM (bits 8:5) to the "SWDPIO" (bits 25:22) field in the CTRL register.
- */
-#define SWDPIO_SHIFT 17
-
-/* Number of bits required to shift left the "SWDPIO_EXT" bits from the
- * EEPROM word F (bits 7:4) to the bits 11:8 of The Extended CTRL register.
- */
-#define SWDPIO__EXT_SHIFT 4
-
-/* Number of bits required to shift left the "ILOS" bit from the EEPROM
- * (bit 4) to the "ILOS" (bit 7) field in the CTRL register.
- */
-#define ILOS_SHIFT 3
-
-
-#define RECEIVE_BUFFER_ALIGN_SIZE (256)
-
-/* Number of milliseconds we wait for auto-negotiation to complete */
-#define LINK_UP_TIMEOUT 500
-
-/* Number of 100 microseconds we wait for PCI Express master disable */
-#define MASTER_DISABLE_TIMEOUT 800
-/* Number of milliseconds we wait for Eeprom auto read bit done after MAC reset */
-#define AUTO_READ_DONE_TIMEOUT 10
-/* Number of milliseconds we wait for PHY configuration done after MAC reset */
-#define PHY_CFG_TIMEOUT 40
-
-#define E1000_TX_BUFFER_SIZE ((uint32_t)1514)
-
-/* The carrier extension symbol, as received by the NIC. */
-#define CARRIER_EXTENSION 0x0F
-
-/* TBI_ACCEPT macro definition:
- *
- * This macro requires:
- * adapter = a pointer to struct em_hw
- * status = the 8 bit status field of the RX descriptor with EOP set
- * error = the 8 bit error field of the RX descriptor with EOP set
- * length = the sum of all the length fields of the RX descriptors that
- * make up the current frame
- * last_byte = the last byte of the frame DMAed by the hardware
- * max_frame_length = the maximum frame length we want to accept.
- * min_frame_length = the minimum frame length we want to accept.
- *
- * This macro is a conditional that should be used in the interrupt
- * handler's Rx processing routine when RxErrors have been detected.
- *
- * Typical use:
- * ...
- * if (TBI_ACCEPT) {
- * accept_frame = TRUE;
- * em_tbi_adjust_stats(adapter, MacAddress);
- * frame_length--;
- * } else {
- * accept_frame = FALSE;
- * }
- * ...
- */
-
-#define TBI_ACCEPT(adapter, status, errors, length, last_byte) \
- ((adapter)->tbi_compatibility_on && \
- (((errors) & E1000_RXD_ERR_FRAME_ERR_MASK) == E1000_RXD_ERR_CE) && \
- ((last_byte) == CARRIER_EXTENSION) && \
- (((status) & E1000_RXD_STAT_VP) ? \
- (((length) > ((adapter)->min_frame_size - VLAN_TAG_SIZE)) && \
- ((length) <= ((adapter)->max_frame_size + 1))) : \
- (((length) > (adapter)->min_frame_size) && \
- ((length) <= ((adapter)->max_frame_size + VLAN_TAG_SIZE + 1)))))
-
-
-/* Structures, enums, and macros for the PHY */
-
-/* Bit definitions for the Management Data IO (MDIO) and Management Data
- * Clock (MDC) pins in the Device Control Register.
- */
-#define E1000_CTRL_PHY_RESET_DIR E1000_CTRL_SWDPIO0
-#define E1000_CTRL_PHY_RESET E1000_CTRL_SWDPIN0
-#define E1000_CTRL_MDIO_DIR E1000_CTRL_SWDPIO2
-#define E1000_CTRL_MDIO E1000_CTRL_SWDPIN2
-#define E1000_CTRL_MDC_DIR E1000_CTRL_SWDPIO3
-#define E1000_CTRL_MDC E1000_CTRL_SWDPIN3
-#define E1000_CTRL_PHY_RESET_DIR4 E1000_CTRL_EXT_SDP4_DIR
-#define E1000_CTRL_PHY_RESET4 E1000_CTRL_EXT_SDP4_DATA
-
-/* PHY 1000 MII Register/Bit Definitions */
-/* PHY Registers defined by IEEE */
-#define PHY_CTRL 0x00 /* Control Register */
-#define PHY_STATUS 0x01 /* Status Regiser */
-#define PHY_ID1 0x02 /* Phy Id Reg (word 1) */
-#define PHY_ID2 0x03 /* Phy Id Reg (word 2) */
-#define PHY_AUTONEG_ADV 0x04 /* Autoneg Advertisement */
-#define PHY_LP_ABILITY 0x05 /* Link Partner Ability (Base Page) */
-#define PHY_AUTONEG_EXP 0x06 /* Autoneg Expansion Reg */
-#define PHY_NEXT_PAGE_TX 0x07 /* Next Page TX */
-#define PHY_LP_NEXT_PAGE 0x08 /* Link Partner Next Page */
-#define PHY_1000T_CTRL 0x09 /* 1000Base-T Control Reg */
-#define PHY_1000T_STATUS 0x0A /* 1000Base-T Status Reg */
-#define PHY_EXT_STATUS 0x0F /* Extended Status Reg */
-
-/* M88E1000 Specific Registers */
-#define M88E1000_PHY_SPEC_CTRL 0x10 /* PHY Specific Control Register */
-#define M88E1000_PHY_SPEC_STATUS 0x11 /* PHY Specific Status Register */
-#define M88E1000_INT_ENABLE 0x12 /* Interrupt Enable Register */
-#define M88E1000_INT_STATUS 0x13 /* Interrupt Status Register */
-#define M88E1000_EXT_PHY_SPEC_CTRL 0x14 /* Extended PHY Specific Control */
-#define M88E1000_RX_ERR_CNTR 0x15 /* Receive Error Counter */
-
-#define M88E1000_PHY_EXT_CTRL 0x1A /* PHY extend control register */
-#define M88E1000_PHY_PAGE_SELECT 0x1D /* Reg 29 for page number setting */
-#define M88E1000_PHY_GEN_CONTROL 0x1E /* Its meaning depends on reg 29 */
-#define M88E1000_PHY_VCO_REG_BIT8 0x100 /* Bits 8 & 11 are adjusted for */
-#define M88E1000_PHY_VCO_REG_BIT11 0x800 /* improved BER performance */
-
-#define IGP01E1000_IEEE_REGS_PAGE 0x0000
-#define IGP01E1000_IEEE_RESTART_AUTONEG 0x3300
-#define IGP01E1000_IEEE_FORCE_GIGA 0x0140
-
-/* IGP01E1000 Specific Registers */
-#define IGP01E1000_PHY_PORT_CONFIG 0x10 /* PHY Specific Port Config Register */
-#define IGP01E1000_PHY_PORT_STATUS 0x11 /* PHY Specific Status Register */
-#define IGP01E1000_PHY_PORT_CTRL 0x12 /* PHY Specific Control Register */
-#define IGP01E1000_PHY_LINK_HEALTH 0x13 /* PHY Link Health Register */
-#define IGP01E1000_GMII_FIFO 0x14 /* GMII FIFO Register */
-#define IGP01E1000_PHY_CHANNEL_QUALITY 0x15 /* PHY Channel Quality Register */
-#define IGP02E1000_PHY_POWER_MGMT 0x19
-#define IGP01E1000_PHY_PAGE_SELECT 0x1F /* PHY Page Select Core Register */
-
-/* IGP01E1000 AGC Registers - stores the cable length values*/
-#define IGP01E1000_PHY_AGC_A 0x1172
-#define IGP01E1000_PHY_AGC_B 0x1272
-#define IGP01E1000_PHY_AGC_C 0x1472
-#define IGP01E1000_PHY_AGC_D 0x1872
-
-/* IGP02E1000 AGC Registers for cable length values */
-#define IGP02E1000_PHY_AGC_A 0x11B1
-#define IGP02E1000_PHY_AGC_B 0x12B1
-#define IGP02E1000_PHY_AGC_C 0x14B1
-#define IGP02E1000_PHY_AGC_D 0x18B1
-
-/* IGP01E1000 DSP Reset Register */
-#define IGP01E1000_PHY_DSP_RESET 0x1F33
-#define IGP01E1000_PHY_DSP_SET 0x1F71
-#define IGP01E1000_PHY_DSP_FFE 0x1F35
-
-#define IGP01E1000_PHY_CHANNEL_NUM 4
-#define IGP02E1000_PHY_CHANNEL_NUM 4
-
-#define IGP01E1000_PHY_AGC_PARAM_A 0x1171
-#define IGP01E1000_PHY_AGC_PARAM_B 0x1271
-#define IGP01E1000_PHY_AGC_PARAM_C 0x1471
-#define IGP01E1000_PHY_AGC_PARAM_D 0x1871
-
-#define IGP01E1000_PHY_EDAC_MU_INDEX 0xC000
-#define IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS 0x8000
-
-#define IGP01E1000_PHY_ANALOG_TX_STATE 0x2890
-#define IGP01E1000_PHY_ANALOG_CLASS_A 0x2000
-#define IGP01E1000_PHY_FORCE_ANALOG_ENABLE 0x0004
-#define IGP01E1000_PHY_DSP_FFE_CM_CP 0x0069
-
-#define IGP01E1000_PHY_DSP_FFE_DEFAULT 0x002A
-/* IGP01E1000 PCS Initialization register - stores the polarity status when
- * speed = 1000 Mbps. */
-#define IGP01E1000_PHY_PCS_INIT_REG 0x00B4
-#define IGP01E1000_PHY_PCS_CTRL_REG 0x00B5
-
-#define IGP01E1000_ANALOG_REGS_PAGE 0x20C0
-
-#define MAX_PHY_REG_ADDRESS 0x1F /* 5 bit address bus (0-0x1F) */
-#define MAX_PHY_MULTI_PAGE_REG 0xF /*Registers that are equal on all pages*/
-/* PHY Control Register */
-#define MII_CR_SPEED_SELECT_MSB 0x0040 /* bits 6,13: 10=1000, 01=100, 00=10 */
-#define MII_CR_COLL_TEST_ENABLE 0x0080 /* Collision test enable */
-#define MII_CR_FULL_DUPLEX 0x0100 /* FDX =1, half duplex =0 */
-#define MII_CR_RESTART_AUTO_NEG 0x0200 /* Restart auto negotiation */
-#define MII_CR_ISOLATE 0x0400 /* Isolate PHY from MII */
-#define MII_CR_POWER_DOWN 0x0800 /* Power down */
-#define MII_CR_AUTO_NEG_EN 0x1000 /* Auto Neg Enable */
-#define MII_CR_SPEED_SELECT_LSB 0x2000 /* bits 6,13: 10=1000, 01=100, 00=10 */
-#define MII_CR_LOOPBACK 0x4000 /* 0 = normal, 1 = loopback */
-#define MII_CR_RESET 0x8000 /* 0 = normal, 1 = PHY reset */
-
-/* PHY Status Register */
-#define MII_SR_EXTENDED_CAPS 0x0001 /* Extended register capabilities */
-#define MII_SR_JABBER_DETECT 0x0002 /* Jabber Detected */
-#define MII_SR_LINK_STATUS 0x0004 /* Link Status 1 = link */
-#define MII_SR_AUTONEG_CAPS 0x0008 /* Auto Neg Capable */
-#define MII_SR_REMOTE_FAULT 0x0010 /* Remote Fault Detect */
-#define MII_SR_AUTONEG_COMPLETE 0x0020 /* Auto Neg Complete */
-#define MII_SR_PREAMBLE_SUPPRESS 0x0040 /* Preamble may be suppressed */
-#define MII_SR_EXTENDED_STATUS 0x0100 /* Ext. status info in Reg 0x0F */
-#define MII_SR_100T2_HD_CAPS 0x0200 /* 100T2 Half Duplex Capable */
-#define MII_SR_100T2_FD_CAPS 0x0400 /* 100T2 Full Duplex Capable */
-#define MII_SR_10T_HD_CAPS 0x0800 /* 10T Half Duplex Capable */
-#define MII_SR_10T_FD_CAPS 0x1000 /* 10T Full Duplex Capable */
-#define MII_SR_100X_HD_CAPS 0x2000 /* 100X Half Duplex Capable */
-#define MII_SR_100X_FD_CAPS 0x4000 /* 100X Full Duplex Capable */
-#define MII_SR_100T4_CAPS 0x8000 /* 100T4 Capable */
-
-/* Autoneg Advertisement Register */
-#define NWAY_AR_SELECTOR_FIELD 0x0001 /* indicates IEEE 802.3 CSMA/CD */
-#define NWAY_AR_10T_HD_CAPS 0x0020 /* 10T Half Duplex Capable */
-#define NWAY_AR_10T_FD_CAPS 0x0040 /* 10T Full Duplex Capable */
-#define NWAY_AR_100TX_HD_CAPS 0x0080 /* 100TX Half Duplex Capable */
-#define NWAY_AR_100TX_FD_CAPS 0x0100 /* 100TX Full Duplex Capable */
-#define NWAY_AR_100T4_CAPS 0x0200 /* 100T4 Capable */
-#define NWAY_AR_PAUSE 0x0400 /* Pause operation desired */
-#define NWAY_AR_ASM_DIR 0x0800 /* Asymmetric Pause Direction bit */
-#define NWAY_AR_REMOTE_FAULT 0x2000 /* Remote Fault detected */
-#define NWAY_AR_NEXT_PAGE 0x8000 /* Next Page ability supported */
-
-/* Link Partner Ability Register (Base Page) */
-#define NWAY_LPAR_SELECTOR_FIELD 0x0000 /* LP protocol selector field */
-#define NWAY_LPAR_10T_HD_CAPS 0x0020 /* LP is 10T Half Duplex Capable */
-#define NWAY_LPAR_10T_FD_CAPS 0x0040 /* LP is 10T Full Duplex Capable */
-#define NWAY_LPAR_100TX_HD_CAPS 0x0080 /* LP is 100TX Half Duplex Capable */
-#define NWAY_LPAR_100TX_FD_CAPS 0x0100 /* LP is 100TX Full Duplex Capable */
-#define NWAY_LPAR_100T4_CAPS 0x0200 /* LP is 100T4 Capable */
-#define NWAY_LPAR_PAUSE 0x0400 /* LP Pause operation desired */
-#define NWAY_LPAR_ASM_DIR 0x0800 /* LP Asymmetric Pause Direction bit */
-#define NWAY_LPAR_REMOTE_FAULT 0x2000 /* LP has detected Remote Fault */
-#define NWAY_LPAR_ACKNOWLEDGE 0x4000 /* LP has rx'd link code word */
-#define NWAY_LPAR_NEXT_PAGE 0x8000 /* Next Page ability supported */
-
-/* Autoneg Expansion Register */
-#define NWAY_ER_LP_NWAY_CAPS 0x0001 /* LP has Auto Neg Capability */
-#define NWAY_ER_PAGE_RXD 0x0002 /* LP is 10T Half Duplex Capable */
-#define NWAY_ER_NEXT_PAGE_CAPS 0x0004 /* LP is 10T Full Duplex Capable */
-#define NWAY_ER_LP_NEXT_PAGE_CAPS 0x0008 /* LP is 100TX Half Duplex Capable */
-#define NWAY_ER_PAR_DETECT_FAULT 0x0010 /* LP is 100TX Full Duplex Capable */
-
-/* Next Page TX Register */
-#define NPTX_MSG_CODE_FIELD 0x0001 /* NP msg code or unformatted data */
-#define NPTX_TOGGLE 0x0800 /* Toggles between exchanges
- * of different NP
- */
-#define NPTX_ACKNOWLDGE2 0x1000 /* 1 = will comply with msg
- * 0 = cannot comply with msg
- */
-#define NPTX_MSG_PAGE 0x2000 /* formatted(1)/unformatted(0) pg */
-#define NPTX_NEXT_PAGE 0x8000 /* 1 = addition NP will follow
- * 0 = sending last NP
- */
-
-/* Link Partner Next Page Register */
-#define LP_RNPR_MSG_CODE_FIELD 0x0001 /* NP msg code or unformatted data */
-#define LP_RNPR_TOGGLE 0x0800 /* Toggles between exchanges
- * of different NP
- */
-#define LP_RNPR_ACKNOWLDGE2 0x1000 /* 1 = will comply with msg
- * 0 = cannot comply with msg
- */
-#define LP_RNPR_MSG_PAGE 0x2000 /* formatted(1)/unformatted(0) pg */
-#define LP_RNPR_ACKNOWLDGE 0x4000 /* 1 = ACK / 0 = NO ACK */
-#define LP_RNPR_NEXT_PAGE 0x8000 /* 1 = addition NP will follow
- * 0 = sending last NP
- */
-
-/* 1000BASE-T Control Register */
-#define CR_1000T_ASYM_PAUSE 0x0080 /* Advertise asymmetric pause bit */
-#define CR_1000T_HD_CAPS 0x0100 /* Advertise 1000T HD capability */
-#define CR_1000T_FD_CAPS 0x0200 /* Advertise 1000T FD capability */
-#define CR_1000T_REPEATER_DTE 0x0400 /* 1=Repeater/switch device port */
- /* 0=DTE device */
-#define CR_1000T_MS_VALUE 0x0800 /* 1=Configure PHY as Master */
- /* 0=Configure PHY as Slave */
-#define CR_1000T_MS_ENABLE 0x1000 /* 1=Master/Slave manual config value */
- /* 0=Automatic Master/Slave config */
-#define CR_1000T_TEST_MODE_NORMAL 0x0000 /* Normal Operation */
-#define CR_1000T_TEST_MODE_1 0x2000 /* Transmit Waveform test */
-#define CR_1000T_TEST_MODE_2 0x4000 /* Master Transmit Jitter test */
-#define CR_1000T_TEST_MODE_3 0x6000 /* Slave Transmit Jitter test */
-#define CR_1000T_TEST_MODE_4 0x8000 /* Transmitter Distortion test */
-
-/* 1000BASE-T Status Register */
-#define SR_1000T_IDLE_ERROR_CNT 0x00FF /* Num idle errors since last read */
-#define SR_1000T_ASYM_PAUSE_DIR 0x0100 /* LP asymmetric pause direction bit */
-#define SR_1000T_LP_HD_CAPS 0x0400 /* LP is 1000T HD capable */
-#define SR_1000T_LP_FD_CAPS 0x0800 /* LP is 1000T FD capable */
-#define SR_1000T_REMOTE_RX_STATUS 0x1000 /* Remote receiver OK */
-#define SR_1000T_LOCAL_RX_STATUS 0x2000 /* Local receiver OK */
-#define SR_1000T_MS_CONFIG_RES 0x4000 /* 1=Local TX is Master, 0=Slave */
-#define SR_1000T_MS_CONFIG_FAULT 0x8000 /* Master/Slave config fault */
-#define SR_1000T_REMOTE_RX_STATUS_SHIFT 12
-#define SR_1000T_LOCAL_RX_STATUS_SHIFT 13
-#define SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT 5
-#define FFE_IDLE_ERR_COUNT_TIMEOUT_20 20
-#define FFE_IDLE_ERR_COUNT_TIMEOUT_100 100
-
-/* Extended Status Register */
-#define IEEE_ESR_1000T_HD_CAPS 0x1000 /* 1000T HD capable */
-#define IEEE_ESR_1000T_FD_CAPS 0x2000 /* 1000T FD capable */
-#define IEEE_ESR_1000X_HD_CAPS 0x4000 /* 1000X HD capable */
-#define IEEE_ESR_1000X_FD_CAPS 0x8000 /* 1000X FD capable */
-
-#define PHY_TX_POLARITY_MASK 0x0100 /* register 10h bit 8 (polarity bit) */
-#define PHY_TX_NORMAL_POLARITY 0 /* register 10h bit 8 (normal polarity) */
-
-#define AUTO_POLARITY_DISABLE 0x0010 /* register 11h bit 4 */
- /* (0=enable, 1=disable) */
-
-/* M88E1000 PHY Specific Control Register */
-#define M88E1000_PSCR_JABBER_DISABLE 0x0001 /* 1=Jabber Function disabled */
-#define M88E1000_PSCR_POLARITY_REVERSAL 0x0002 /* 1=Polarity Reversal enabled */
-#define M88E1000_PSCR_SQE_TEST 0x0004 /* 1=SQE Test enabled */
-#define M88E1000_PSCR_CLK125_DISABLE 0x0010 /* 1=CLK125 low,
- * 0=CLK125 toggling
- */
-#define M88E1000_PSCR_MDI_MANUAL_MODE 0x0000 /* MDI Crossover Mode bits 6:5 */
- /* Manual MDI configuration */
-#define M88E1000_PSCR_MDIX_MANUAL_MODE 0x0020 /* Manual MDIX configuration */
-#define M88E1000_PSCR_AUTO_X_1000T 0x0040 /* 1000BASE-T: Auto crossover,
- * 100BASE-TX/10BASE-T:
- * MDI Mode
- */
-#define M88E1000_PSCR_AUTO_X_MODE 0x0060 /* Auto crossover enabled
- * all speeds.
- */
-#define M88E1000_PSCR_10BT_EXT_DIST_ENABLE 0x0080
- /* 1=Enable Extended 10BASE-T distance
- * (Lower 10BASE-T RX Threshold)
- * 0=Normal 10BASE-T RX Threshold */
-#define M88E1000_PSCR_MII_5BIT_ENABLE 0x0100
- /* 1=5-Bit interface in 100BASE-TX
- * 0=MII interface in 100BASE-TX */
-#define M88E1000_PSCR_SCRAMBLER_DISABLE 0x0200 /* 1=Scrambler disable */
-#define M88E1000_PSCR_FORCE_LINK_GOOD 0x0400 /* 1=Force link good */
-#define M88E1000_PSCR_ASSERT_CRS_ON_TX 0x0800 /* 1=Assert CRS on Transmit */
-
-#define M88E1000_PSCR_POLARITY_REVERSAL_SHIFT 1
-#define M88E1000_PSCR_AUTO_X_MODE_SHIFT 5
-#define M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT 7
-
-/* M88E1000 PHY Specific Status Register */
-#define M88E1000_PSSR_JABBER 0x0001 /* 1=Jabber */
-#define M88E1000_PSSR_REV_POLARITY 0x0002 /* 1=Polarity reversed */
-#define M88E1000_PSSR_DOWNSHIFT 0x0020 /* 1=Downshifted */
-#define M88E1000_PSSR_MDIX 0x0040 /* 1=MDIX; 0=MDI */
-#define M88E1000_PSSR_CABLE_LENGTH 0x0380 /* 0=<50M;1=50-80M;2=80-110M;
- * 3=110-140M;4=>140M */
-#define M88E1000_PSSR_LINK 0x0400 /* 1=Link up, 0=Link down */
-#define M88E1000_PSSR_SPD_DPLX_RESOLVED 0x0800 /* 1=Speed & Duplex resolved */
-#define M88E1000_PSSR_PAGE_RCVD 0x1000 /* 1=Page received */
-#define M88E1000_PSSR_DPLX 0x2000 /* 1=Duplex 0=Half Duplex */
-#define M88E1000_PSSR_SPEED 0xC000 /* Speed, bits 14:15 */
-#define M88E1000_PSSR_10MBS 0x0000 /* 00=10Mbs */
-#define M88E1000_PSSR_100MBS 0x4000 /* 01=100Mbs */
-#define M88E1000_PSSR_1000MBS 0x8000 /* 10=1000Mbs */
-
-#define M88E1000_PSSR_REV_POLARITY_SHIFT 1
-#define M88E1000_PSSR_DOWNSHIFT_SHIFT 5
-#define M88E1000_PSSR_MDIX_SHIFT 6
-#define M88E1000_PSSR_CABLE_LENGTH_SHIFT 7
-
-/* M88E1000 Extended PHY Specific Control Register */
-#define M88E1000_EPSCR_FIBER_LOOPBACK 0x4000 /* 1=Fiber loopback */
-#define M88E1000_EPSCR_DOWN_NO_IDLE 0x8000 /* 1=Lost lock detect enabled.
- * Will assert lost lock and bring
- * link down if idle not seen
- * within 1ms in 1000BASE-T
- */
-/* Number of times we will attempt to autonegotiate before downshifting if we
- * are the master */
-#define M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK 0x0C00
-#define M88E1000_EPSCR_MASTER_DOWNSHIFT_1X 0x0000
-#define M88E1000_EPSCR_MASTER_DOWNSHIFT_2X 0x0400
-#define M88E1000_EPSCR_MASTER_DOWNSHIFT_3X 0x0800
-#define M88E1000_EPSCR_MASTER_DOWNSHIFT_4X 0x0C00
-/* Number of times we will attempt to autonegotiate before downshifting if we
- * are the slave */
-#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK 0x0300
-#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_DIS 0x0000
-#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X 0x0100
-#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_2X 0x0200
-#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_3X 0x0300
-#define M88E1000_EPSCR_TX_CLK_2_5 0x0060 /* 2.5 MHz TX_CLK */
-#define M88E1000_EPSCR_TX_CLK_25 0x0070 /* 25 MHz TX_CLK */
-#define M88E1000_EPSCR_TX_CLK_0 0x0000 /* NO TX_CLK */
-
-/* IGP01E1000 Specific Port Config Register - R/W */
-#define IGP01E1000_PSCFR_AUTO_MDIX_PAR_DETECT 0x0010
-#define IGP01E1000_PSCFR_PRE_EN 0x0020
-#define IGP01E1000_PSCFR_SMART_SPEED 0x0080
-#define IGP01E1000_PSCFR_DISABLE_TPLOOPBACK 0x0100
-#define IGP01E1000_PSCFR_DISABLE_JABBER 0x0400
-#define IGP01E1000_PSCFR_DISABLE_TRANSMIT 0x2000
-
-/* IGP01E1000 Specific Port Status Register - R/O */
-#define IGP01E1000_PSSR_AUTONEG_FAILED 0x0001 /* RO LH SC */
-#define IGP01E1000_PSSR_POLARITY_REVERSED 0x0002
-#define IGP01E1000_PSSR_CABLE_LENGTH 0x007C
-#define IGP01E1000_PSSR_FULL_DUPLEX 0x0200
-#define IGP01E1000_PSSR_LINK_UP 0x0400
-#define IGP01E1000_PSSR_MDIX 0x0800
-#define IGP01E1000_PSSR_SPEED_MASK 0xC000 /* speed bits mask */
-#define IGP01E1000_PSSR_SPEED_10MBPS 0x4000
-#define IGP01E1000_PSSR_SPEED_100MBPS 0x8000
-#define IGP01E1000_PSSR_SPEED_1000MBPS 0xC000
-#define IGP01E1000_PSSR_CABLE_LENGTH_SHIFT 0x0002 /* shift right 2 */
-#define IGP01E1000_PSSR_MDIX_SHIFT 0x000B /* shift right 11 */
-
-/* IGP01E1000 Specific Port Control Register - R/W */
-#define IGP01E1000_PSCR_TP_LOOPBACK 0x0010
-#define IGP01E1000_PSCR_CORRECT_NC_SCMBLR 0x0200
-#define IGP01E1000_PSCR_TEN_CRS_SELECT 0x0400
-#define IGP01E1000_PSCR_FLIP_CHIP 0x0800
-#define IGP01E1000_PSCR_AUTO_MDIX 0x1000
-#define IGP01E1000_PSCR_FORCE_MDI_MDIX 0x2000 /* 0-MDI, 1-MDIX */
-
-/* IGP01E1000 Specific Port Link Health Register */
-#define IGP01E1000_PLHR_SS_DOWNGRADE 0x8000
-#define IGP01E1000_PLHR_GIG_SCRAMBLER_ERROR 0x4000
-#define IGP01E1000_PLHR_MASTER_FAULT 0x2000
-#define IGP01E1000_PLHR_MASTER_RESOLUTION 0x1000
-#define IGP01E1000_PLHR_GIG_REM_RCVR_NOK 0x0800 /* LH */
-#define IGP01E1000_PLHR_IDLE_ERROR_CNT_OFLOW 0x0400 /* LH */
-#define IGP01E1000_PLHR_DATA_ERR_1 0x0200 /* LH */
-#define IGP01E1000_PLHR_DATA_ERR_0 0x0100
-#define IGP01E1000_PLHR_AUTONEG_FAULT 0x0040
-#define IGP01E1000_PLHR_AUTONEG_ACTIVE 0x0010
-#define IGP01E1000_PLHR_VALID_CHANNEL_D 0x0008
-#define IGP01E1000_PLHR_VALID_CHANNEL_C 0x0004
-#define IGP01E1000_PLHR_VALID_CHANNEL_B 0x0002
-#define IGP01E1000_PLHR_VALID_CHANNEL_A 0x0001
-
-/* IGP01E1000 Channel Quality Register */
-#define IGP01E1000_MSE_CHANNEL_D 0x000F
-#define IGP01E1000_MSE_CHANNEL_C 0x00F0
-#define IGP01E1000_MSE_CHANNEL_B 0x0F00
-#define IGP01E1000_MSE_CHANNEL_A 0xF000
-
-#define IGP02E1000_PM_SPD 0x0001 /* Smart Power Down */
-#define IGP02E1000_PM_D3_LPLU 0x0004 /* Enable LPLU in non-D0a modes */
-#define IGP02E1000_PM_D0_LPLU 0x0002 /* Enable LPLU in D0a mode */
-
-/* IGP01E1000 DSP reset macros */
-#define DSP_RESET_ENABLE 0x0
-#define DSP_RESET_DISABLE 0x2
-#define E1000_MAX_DSP_RESETS 10
-
-/* IGP01E1000 & IGP02E1000 AGC Registers */
-
-#define IGP01E1000_AGC_LENGTH_SHIFT 7 /* Coarse - 13:11, Fine - 10:7 */
-#define IGP02E1000_AGC_LENGTH_SHIFT 9 /* Coarse - 15:13, Fine - 12:9 */
-
-/* IGP02E1000 AGC Register Length 9-bit mask */
-#define IGP02E1000_AGC_LENGTH_MASK 0x7F
-
-/* 7 bits (3 Coarse + 4 Fine) --> 128 optional values */
-#define IGP01E1000_AGC_LENGTH_TABLE_SIZE 128
-#define IGP02E1000_AGC_LENGTH_TABLE_SIZE 128
-
-/* The precision error of the cable length is +/- 10 meters */
-#define IGP01E1000_AGC_RANGE 10
-#define IGP02E1000_AGC_RANGE 10
-
-/* IGP01E1000 PCS Initialization register */
-/* bits 3:6 in the PCS registers stores the channels polarity */
-#define IGP01E1000_PHY_POLARITY_MASK 0x0078
-
-/* IGP01E1000 GMII FIFO Register */
-#define IGP01E1000_GMII_FLEX_SPD 0x10 /* Enable flexible speed
- * on Link-Up */
-#define IGP01E1000_GMII_SPD 0x20 /* Enable SPD */
-
-/* IGP01E1000 Analog Register */
-#define IGP01E1000_ANALOG_SPARE_FUSE_STATUS 0x20D1
-#define IGP01E1000_ANALOG_FUSE_STATUS 0x20D0
-#define IGP01E1000_ANALOG_FUSE_CONTROL 0x20DC
-#define IGP01E1000_ANALOG_FUSE_BYPASS 0x20DE
-
-#define IGP01E1000_ANALOG_FUSE_POLY_MASK 0xF000
-#define IGP01E1000_ANALOG_FUSE_FINE_MASK 0x0F80
-#define IGP01E1000_ANALOG_FUSE_COARSE_MASK 0x0070
-#define IGP01E1000_ANALOG_SPARE_FUSE_ENABLED 0x0100
-#define IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL 0x0002
-
-#define IGP01E1000_ANALOG_FUSE_COARSE_THRESH 0x0040
-#define IGP01E1000_ANALOG_FUSE_COARSE_10 0x0010
-#define IGP01E1000_ANALOG_FUSE_FINE_1 0x0080
-#define IGP01E1000_ANALOG_FUSE_FINE_10 0x0500
-
-
-/* Bit definitions for valid PHY IDs. */
-/* I = Integrated
- * E = External
- */
-#define M88E1000_E_PHY_ID 0x01410C50
-#define M88E1000_I_PHY_ID 0x01410C30
-#define M88E1011_I_PHY_ID 0x01410C20
-#define IGP01E1000_I_PHY_ID 0x02A80380
-#define M88E1000_12_PHY_ID M88E1000_E_PHY_ID
-#define M88E1000_14_PHY_ID M88E1000_E_PHY_ID
-#define M88E1011_I_REV_4 0x04
-#define M88E1111_I_PHY_ID 0x01410CC0
-#define L1LXT971A_PHY_ID 0x001378E0
-
-/* Miscellaneous PHY bit definitions. */
-#define PHY_PREAMBLE 0xFFFFFFFF
-#define PHY_SOF 0x01
-#define PHY_OP_READ 0x02
-#define PHY_OP_WRITE 0x01
-#define PHY_TURNAROUND 0x02
-#define PHY_PREAMBLE_SIZE 32
-#define MII_CR_SPEED_1000 0x0040
-#define MII_CR_SPEED_100 0x2000
-#define MII_CR_SPEED_10 0x0000
-#define E1000_PHY_ADDRESS 0x01
-#define PHY_AUTO_NEG_TIME 45 /* 4.5 Seconds */
-#define PHY_FORCE_TIME 20 /* 2.0 Seconds */
-#define PHY_REVISION_MASK 0xFFFFFFF0
-#define DEVICE_SPEED_MASK 0x00000300 /* Device Ctrl Reg Speed Mask */
-#define REG4_SPEED_MASK 0x01E0
-#define REG9_SPEED_MASK 0x0300
-#define ADVERTISE_10_HALF 0x0001
-#define ADVERTISE_10_FULL 0x0002
-#define ADVERTISE_100_HALF 0x0004
-#define ADVERTISE_100_FULL 0x0008
-#define ADVERTISE_1000_HALF 0x0010
-#define ADVERTISE_1000_FULL 0x0020
-#define AUTONEG_ADVERTISE_SPEED_DEFAULT 0x002F /* Everything but 1000-Half */
-#define AUTONEG_ADVERTISE_10_100_ALL 0x000F /* All 10/100 speeds*/
-#define AUTONEG_ADVERTISE_10_ALL 0x0003 /* 10Mbps Full & Half speeds*/
-
-#endif /* _EM_HW_H_ */
diff --git a/bsps/powerpc/beatnik/net/if_em/if_em_osdep.h b/bsps/powerpc/beatnik/net/if_em/if_em_osdep.h
deleted file mode 100644
index 4bc5843a73..0000000000
--- a/bsps/powerpc/beatnik/net/if_em/if_em_osdep.h
+++ /dev/null
@@ -1,146 +0,0 @@
-/**************************************************************************
-
-Copyright (c) 2001-2005, Intel Corporation
-All rights reserved.
-
-Redistribution and use in source and binary forms, with or without
-modification, are permitted provided that the following conditions are met:
-
- 1. Redistributions of source code must retain the above copyright notice,
- this list of conditions and the following disclaimer.
-
- 2. Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in the
- documentation and/or other materials provided with the distribution.
-
- 3. Neither the name of the Intel Corporation nor the names of its
- contributors may be used to endorse or promote products derived from
- this software without specific prior written permission.
-
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
-AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
-LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
-CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
-SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
-INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
-CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
-ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-POSSIBILITY OF SUCH DAMAGE.
-
-***************************************************************************/
-
-/*$FreeBSD: /repoman/r/ncvs/src/sys/dev/em/if_em_osdep.h,v 1.14 2005/05/26 23:32:02 tackerman Exp $*/
-
-#ifndef _RTEMS_OS_H_
-#define _RTEMS_OS_H_
-
-#include <rtems.h>
-#include "../porting/rtemscompat.h"
-
-#include <sys/types.h>
-#include <sys/param.h>
-#include <sys/systm.h>
-#include <sys/mbuf.h>
-#include <sys/protosw.h>
-#include <sys/socket.h>
-#include <sys/malloc.h>
-#include <sys/kernel.h>
-#include <bsp/pci.h>
-
-/* Eventually, we should include this
-#include <rtems/rtems-mii-ioctl.h>
-*/
-#define IFM_LINK_OK IFM_FLAG0
-#define IFM_ANEG_DIS IFM_FLAG1
-
-#define ASSERT(x) if(!(x)) panic("EM: x")
-
-/* The happy-fun DELAY macro is defined in /usr/src/sys/i386/include/clock.h */
-#define usec_delay(x) DELAY(x)
-#define msec_delay(x) DELAY(1000*(x))
-/* TODO: Should we be paranoid about delaying in interrupt context? */
-#define msec_delay_irq(x) DELAY(1000*(x))
-
-#define MSGOUT(S, A, B) printf(S "\n", A, B)
-#define DEBUGFUNC(F) DEBUGOUT(F);
-#if DBG
- #define DEBUGOUT(S) printf(S "\n")
- #define DEBUGOUT1(S,A) printf(S "\n",A)
- #define DEBUGOUT2(S,A,B) printf(S "\n",A,B)
- #define DEBUGOUT3(S,A,B,C) printf(S "\n",A,B,C)
- #define bootverbose (1)
- #define DEBUGOUT7(S,A,B,C,D,E,F,G) printf(S "\n",A,B,C,D,E,F,G)
-#else
- #define DEBUGOUT(S)
- #define DEBUGOUT1(S,A)
- #define DEBUGOUT2(S,A,B)
- #define DEBUGOUT3(S,A,B,C)
- #define bootverbose (0)
- #define DEBUGOUT7(S,A,B,C,D,E,F,G)
-#endif
-
-#define CMD_MEM_WRT_INVALIDATE 0x0010 /* BIT_4 */
-#define PCI_COMMAND_REGISTER PCIR_COMMAND
-
-struct em_osdep
-{
- unsigned mem_bus_space_handle;
- device_t dev;
-};
-
-struct rtems_ifmedia {
- int ifm_media;
-};
-
-#define E1000_WRITE_FLUSH(hw) E1000_READ_REG(hw, STATUS)
-
-/* Read from an absolute offset in the adapter's memory space */
-#define E1000_READ_OFFSET(hw, offset) \
- bus_space_read_4( ((struct em_osdep *)(hw)->back)->mem_bus_space_tag, \
- ((struct em_osdep *)(hw)->back)->mem_bus_space_handle, \
- offset)
-
-/* Write to an absolute offset in the adapter's memory space */
-#define E1000_WRITE_OFFSET(hw, offset, value) \
- bus_space_write_4( ((struct em_osdep *)(hw)->back)->mem_bus_space_tag, \
- ((struct em_osdep *)(hw)->back)->mem_bus_space_handle, \
- offset, \
- value)
-
-/* Convert a register name to its offset in the adapter's memory space */
-#define E1000_REG_OFFSET(hw, reg) \
- ((hw)->mac_type >= em_82543 ? E1000_##reg : E1000_82542_##reg)
-
-#define E1000_READ_REG(hw, reg) \
- E1000_READ_OFFSET(hw, E1000_REG_OFFSET(hw, reg))
-
-#define E1000_WRITE_REG(hw, reg, value) \
- E1000_WRITE_OFFSET(hw, E1000_REG_OFFSET(hw, reg), value)
-
-#define E1000_READ_REG_ARRAY(hw, reg, index) \
- E1000_READ_OFFSET(hw, E1000_REG_OFFSET(hw, reg) + ((index) << 2))
-
-#define E1000_READ_REG_ARRAY_DWORD E1000_READ_REG_ARRAY
-
-#define E1000_WRITE_REG_ARRAY(hw, reg, index, value) \
- E1000_WRITE_OFFSET(hw, E1000_REG_OFFSET(hw, reg) + ((index) << 2), value)
-
-#define E1000_WRITE_REG_ARRAY_BYTE(hw, reg, index, value) \
- bus_space_write_1( ((struct em_osdep *)(hw)->back)->mem_bus_space_tag, \
- ((struct em_osdep *)(hw)->back)->mem_bus_space_handle, \
- E1000_REG_OFFSET(hw, reg) + (index), \
- value)
-
-#define E1000_WRITE_REG_ARRAY_WORD(hw, reg, index, value) \
- bus_space_write_2( ((struct em_osdep *)(hw)->back)->mem_bus_space_tag, \
- ((struct em_osdep *)(hw)->back)->mem_bus_space_handle, \
- E1000_REG_OFFSET(hw, reg) + (index), \
- value)
-
-#define E1000_WRITE_REG_ARRAY_DWORD(hw, reg, index, value) \
- E1000_WRITE_OFFSET(hw, E1000_REG_OFFSET(hw, reg) + ((index) << 2), value)
-
-#endif /* _FREEBSD_OS_H_ */
-
diff --git a/bsps/powerpc/beatnik/net/if_em/if_em_rtems.c b/bsps/powerpc/beatnik/net/if_em/if_em_rtems.c
deleted file mode 100644
index fde1de7dc7..0000000000
--- a/bsps/powerpc/beatnik/net/if_em/if_em_rtems.c
+++ /dev/null
@@ -1,106 +0,0 @@
-#include "rtemscompat_defs.h"
-#include "../porting/if_xxx_rtems.c"
-#include <bsp/early_enet_link_status.h>
-#include <bsp/if_em_pub.h>
-
-/* Provide a routine to check link status early,
- * i.e., before the network is really running.
- * In case someone wants to decide whether to use/configure
- * this interface at all :-)
- *
- * NOTE: this routine tries to enable autonegotiation!
- *
- * unit: unit number starting with 1 (usual BSDNET convention)
- *
- * RETURNS: Phy status register contents (1<<2 means link up).
- * or -1 on error.
- */
-
-/*
- * Authorship
- * ----------
- * This software ('beatnik' RTEMS BSP for MVME6100 and MVME5500) was
- * created by Till Straumann <strauman@slac.stanford.edu>, 2005-2007,
- * Stanford Linear Accelerator Center, Stanford University.
- *
- * Acknowledgement of sponsorship
- * ------------------------------
- * The 'beatnik' BSP was produced by
- * the Stanford Linear Accelerator Center, Stanford University,
- * under Contract DE-AC03-76SFO0515 with the Department of Energy.
- *
- * Government disclaimer of liability
- * ----------------------------------
- * Neither the United States nor the United States Department of Energy,
- * nor any of their employees, makes any warranty, express or implied, or
- * assumes any legal liability or responsibility for the accuracy,
- * completeness, or usefulness of any data, apparatus, product, or process
- * disclosed, or represents that its use would not infringe privately owned
- * rights.
- *
- * Stanford disclaimer of liability
- * --------------------------------
- * Stanford University makes no representations or warranties, express or
- * implied, nor assumes any liability for the use of this software.
- *
- * Stanford disclaimer of copyright
- * --------------------------------
- * Stanford University, owner of the copyright, hereby disclaims its
- * copyright and all other rights in this software. Hence, anyone may
- * freely use it for any purpose without restriction.
- *
- * Maintenance of notices
- * ----------------------
- * In the interest of clarity regarding the origin and status of this
- * SLAC software, this and all the preceding Stanford University notices
- * are to remain affixed to any copy or derivative of this software made
- * or distributed by the recipient and are to be affixed to any copy of
- * software made or distributed by the recipient that contains a copy or
- * derivative of this software.
- *
- * ------------------ SLAC Software Notices, Set 4 OTT.002a, 2004 FEB 03
- */
-
-static int
-em_early_init(int idx)
-{
- if ( idx < 0 || idx >= NETDRIVER_SLOTS )
- return -1;
- return em_hw_early_init(&the_em_devs[idx]);
-}
-
-static int
-em_early_read_phy(int idx, unsigned reg)
-{
-unsigned short data;
- if ( idx < 0 || idx >= NETDRIVER_SLOTS )
- return -1;
- /* Bizarre - I always have to read PHY_STATUS twice until a good link
- * status is read
- */
- if ( em_read_phy_reg(&the_em_devs[idx].d_softc.hw, reg, &data) )
- return -1;
- if ( PHY_STATUS == reg ) {
- /* read again */
- if ( em_read_phy_reg(&the_em_devs[idx].d_softc.hw, PHY_STATUS, &data) )
- return -1;
- }
- return data;
-}
-
-static int
-em_early_write_phy(int idx, unsigned reg, unsigned val)
-{
- if ( idx < 0 || idx >= NETDRIVER_SLOTS )
- return -1;
- return em_write_phy_reg(&the_em_devs[idx].d_softc.hw, reg, val);
-}
-
-rtems_bsdnet_early_link_check_ops
-rtems_em_early_link_check_ops = {
- init: em_early_init,
- read_phy: em_early_read_phy,
- write_phy: em_early_write_phy,
- name: NETDRIVER,
- num_slots: NETDRIVER_SLOTS
-};
diff --git a/bsps/powerpc/beatnik/net/if_em/rtemscompat_defs.h b/bsps/powerpc/beatnik/net/if_em/rtemscompat_defs.h
deleted file mode 100644
index 6a132a1b26..0000000000
--- a/bsps/powerpc/beatnik/net/if_em/rtemscompat_defs.h
+++ /dev/null
@@ -1,198 +0,0 @@
-#ifndef RTEMS_COMPAT_DEFS_H
-#define RTEMS_COMPAT_DEFS_H
-
-/* Number of device instances the driver should support
- * - may be limited to 1 depending on IRQ API
- * (braindamaged PC586 and powerpc)
- */
-#define NETDRIVER_SLOTS 1
-
-/* String name to print with error messages */
-#define NETDRIVER "em"
-/* Name snippet used to make global symbols unique to this driver */
-#define NETDRIVER_PREFIX em
-
-#define adapter em_softc
-#define interface_data arpcom
-
-/* Define according to endianness of the *ethernet*chip*
- * (not the CPU - most probably are LE)
- * This must be either NET_CHIP_LE or NET_CHIP_BE
- */
-
-#define NET_CHIP_LE
-#undef NET_CHIP_BE
-
-/* Define either NET_CHIP_MEM_IO or NET_CHIP_PORT_IO,
- * depending whether the CPU sees it in memory address space
- * or (e.g. x86) uses special I/O instructions.
- */
-#define NET_CHIP_MEM_IO
-#undef NET_CHIP_PORT_IO
-
-/* The name of the hijacked 'bus handle' field in the softc
- * structure. We use this field to store the chip's base address.
- */
-#define NET_SOFTC_BHANDLE_FIELD osdep.mem_bus_space_handle
-
-/* define the names of the 'if_XXXreg.h' and 'if_XXXvar.h' headers
- * (only if present, i.e., if the BSDNET driver has no respective
- * header, leave this undefined).
- *
- */
-#define IF_REG_HEADER "../if_em/if_em.h"
-#undef IF_VAR_HEADER
-
-/* define if a pci device */
-#define NETDRIVER_PCI <bsp/pci.h>
-
-/* Macros to disable and enable interrupts, respectively.
- * The 'disable' macro is expanded in the ISR, the 'enable'
- * macro is expanded in the driver task.
- * The global network semaphore usually provides mutex
- * protection of the device registers.
- * Special care must be taken when coding the 'disable' macro,
- * however to MAKE SURE THERE ARE NO OTHER SIDE EFFECTS such
- * as:
- * - macro must not clear any status flags
- * - macro must save/restore any context information
- * (e.g., a address register pointer or a bank switch register)
- *
- * ARGUMENT: the macro arg is a pointer to the driver's 'softc' structure
- */
-
-#define NET_ENABLE_IRQS(sc) do { \
- E1000_WRITE_REG(&sc->hw, IMS, (IMS_ENABLE_MASK)); \
- } while (0)
-
-#define NET_DISABLE_IRQS(sc) do { \
- E1000_WRITE_REG(&sc->hw, IMC, 0xffffffff); \
- } while (0)
-
-#define KASSERT(a...) do {} while (0)
-
-/* dmamap stuff; these are defined just to work with the current version
- * of this driver and the implementation must be carefully checked if
- * a newer version is merged.!
- *
- * The more cumbersome routines have been commented in the source, the
- * simpler ones are defined to be NOOPs here so the source gets less
- * cluttered...
- *
- * ASSUMPTIONS:
- *
- * -> dmamap_sync cannot sync caches; assume we have HW snooping
- *
- */
-
-typedef unsigned bus_size_t;
-typedef unsigned bus_addr_t;
-
-typedef struct {
- unsigned ds_addr;
- unsigned ds_len;
-} bus_dma_segment_t;
-
-#define bus_dma_tag_destroy(args...) do {} while(0)
-
-#define bus_dmamap_destroy(args...) do {} while(0)
-
-#define bus_dmamap_unload(args...) do {} while (0)
-
-#ifdef __PPC__
-#define bus_dmamap_sync(args...) do { __asm__ volatile("sync":::"memory"); } while (0)
-#else
-#define bus_dmamap_sync(args...) do {} while (0)
-#endif
-
-#define BUS_DMA_NOWAIT 0xdeadbeef /* unused */
-
-#define em_adapter_list _bsd_em_adapter_list
-#define em_arc_subsystem_valid _bsd_em_arc_subsystem_valid
-#define em_check_downshift _bsd_em_check_downshift
-#define em_check_for_link _bsd_em_check_for_link
-#define em_check_mng_mode _bsd_em_check_mng_mode
-#define em_check_phy_reset_block _bsd_em_check_phy_reset_block
-#define em_check_polarity _bsd_em_check_polarity
-#define em_cleanup_led _bsd_em_cleanup_led
-#define em_clear_hw_cntrs _bsd_em_clear_hw_cntrs
-#define em_clear_vfta _bsd_em_clear_vfta
-#define em_commit_shadow_ram _bsd_em_commit_shadow_ram
-#define em_config_collision_dist _bsd_em_config_collision_dist
-#define em_config_dsp_after_link_change _bsd_em_config_dsp_after_link_change
-#define em_config_fc_after_link_up _bsd_em_config_fc_after_link_up
-#define em_dbg_config _bsd_em_dbg_config
-#define em_detect_gig_phy _bsd_em_detect_gig_phy
-#define em_disable_pciex_master _bsd_em_disable_pciex_master
-#define em_display_debug_stats _bsd_em_display_debug_stats
-#define em_driver_version _bsd_em_driver_version
-#define em_enable_mng_pass_thru _bsd_em_enable_mng_pass_thru
-#define em_enable_pciex_master _bsd_em_enable_pciex_master
-#define em_enable_tx_pkt_filtering _bsd_em_enable_tx_pkt_filtering
-#define em_force_mac_fc _bsd_em_force_mac_fc
-#define em_get_auto_rd_done _bsd_em_get_auto_rd_done
-#define em_get_bus_info _bsd_em_get_bus_info
-#define em_get_cable_length _bsd_em_get_cable_length
-#define em_get_hw_eeprom_semaphore _bsd_em_get_hw_eeprom_semaphore
-#define em_get_phy_cfg_done _bsd_em_get_phy_cfg_done
-#define em_get_speed_and_duplex _bsd_em_get_speed_and_duplex
-#define em_hash_mc_addr _bsd_em_hash_mc_addr
-#define em_hw_early_init _bsd_em_hw_early_init
-#define em_id_led_init _bsd_em_id_led_init
-#define em_init_eeprom_params _bsd_em_init_eeprom_params
-#define em_init_hw _bsd_em_init_hw
-#define em_init_rx_addrs _bsd_em_init_rx_addrs
-#define em_io_read _bsd_em_io_read
-#define em_io_write _bsd_em_io_write
-#define em_is_onboard_nvm_eeprom _bsd_em_is_onboard_nvm_eeprom
-#define em_led_off _bsd_em_led_off
-#define em_led_on _bsd_em_led_on
-#define em_mc_addr_list_update _bsd_em_mc_addr_list_update
-#define em_mng_enable_host_if _bsd_em_mng_enable_host_if
-#define em_mng_host_if_write _bsd_em_mng_host_if_write
-#define em_mng_write_cmd_header _bsd_em_mng_write_cmd_header
-#define em_mng_write_commit _bsd_em_mng_write_commit
-#define em_mng_write_dhcp_info _bsd_em_mng_write_dhcp_info
-#define em_mta_set _bsd_em_mta_set
-#define em_pci_clear_mwi _bsd_em_pci_clear_mwi
-#define em_pci_set_mwi _bsd_em_pci_set_mwi
-#define em_phy_get_info _bsd_em_phy_get_info
-#define em_phy_hw_reset _bsd_em_phy_hw_reset
-#define em_phy_igp_get_info _bsd_em_phy_igp_get_info
-#define em_phy_m88_get_info _bsd_em_phy_m88_get_info
-#define em_phy_reset _bsd_em_phy_reset
-#define em_phy_setup_autoneg _bsd_em_phy_setup_autoneg
-#define em_poll_eerd_eewr_done _bsd_em_poll_eerd_eewr_done
-#define em_put_hw_eeprom_semaphore _bsd_em_put_hw_eeprom_semaphore
-#define em_rar_set _bsd_em_rar_set
-#define em_read_eeprom _bsd_em_read_eeprom
-#define em_read_eeprom_eerd _bsd_em_read_eeprom_eerd
-#define em_read_mac_addr _bsd_em_read_mac_addr
-#define em_read_part_num _bsd_em_read_part_num
-#define em_read_pci_cfg _bsd_em_read_pci_cfg
-#define em_read_phy_reg _bsd_em_read_phy_reg
-#define em_read_reg_io _bsd_em_read_reg_io
-#define em_reset_adaptive _bsd_em_reset_adaptive
-#define em_reset_hw _bsd_em_reset_hw
-#define em_set_d0_lplu_state _bsd_em_set_d0_lplu_state
-#define em_set_d3_lplu_state _bsd_em_set_d3_lplu_state
-#define em_set_mac_type _bsd_em_set_mac_type
-#define em_set_media_type _bsd_em_set_media_type
-#define em_set_pci_express_master_disable _bsd_em_set_pci_express_master_disable
-#define em_setup_led _bsd_em_setup_led
-#define em_setup_link _bsd_em_setup_link
-#define em_tbi_adjust_stats _bsd_em_tbi_adjust_stats
-#define em_update_adaptive _bsd_em_update_adaptive
-#define em_update_eeprom_checksum _bsd_em_update_eeprom_checksum
-#define em_validate_eeprom_checksum _bsd_em_validate_eeprom_checksum
-#define em_validate_mdi_setting _bsd_em_validate_mdi_setting
-#define em_wait_autoneg _bsd_em_wait_autoneg
-#define em_write_eeprom _bsd_em_write_eeprom
-#define em_write_eeprom_eewr _bsd_em_write_eeprom_eewr
-#define em_write_pci_cfg _bsd_em_write_pci_cfg
-#define em_write_phy_reg _bsd_em_write_phy_reg
-#define em_write_reg_io _bsd_em_write_reg_io
-#define em_write_vfta _bsd_em_write_vfta
-#define the_em_devs _bsd_the_em_devs
-
-#endif