summaryrefslogtreecommitdiffstats
path: root/bsps/powerpc/beatnik/net/if_em/if_em_hw.c
diff options
context:
space:
mode:
Diffstat (limited to 'bsps/powerpc/beatnik/net/if_em/if_em_hw.c')
-rw-r--r--bsps/powerpc/beatnik/net/if_em/if_em_hw.c6620
1 files changed, 0 insertions, 6620 deletions
diff --git a/bsps/powerpc/beatnik/net/if_em/if_em_hw.c b/bsps/powerpc/beatnik/net/if_em/if_em_hw.c
deleted file mode 100644
index e200a6c7fe..0000000000
--- a/bsps/powerpc/beatnik/net/if_em/if_em_hw.c
+++ /dev/null
@@ -1,6620 +0,0 @@
-/*******************************************************************************
-
- Copyright (c) 2001-2005, Intel Corporation
- All rights reserved.
-
- Redistribution and use in source and binary forms, with or without
- modification, are permitted provided that the following conditions are met:
-
- 1. Redistributions of source code must retain the above copyright notice,
- this list of conditions and the following disclaimer.
-
- 2. Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in the
- documentation and/or other materials provided with the distribution.
-
- 3. Neither the name of the Intel Corporation nor the names of its
- contributors may be used to endorse or promote products derived from
- this software without specific prior written permission.
-
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- POSSIBILITY OF SUCH DAMAGE.
-
-*******************************************************************************/
-
-/* if_em_hw.c
- * Shared functions for accessing and configuring the MAC
- */
-
-#include <sys/cdefs.h>
-#ifdef __rtems__
-#include "rtemscompat_defs.h"
-#include "../porting/rtemscompat.h"
-#include "if_em_hw.h"
-#else
-__FBSDID("$FreeBSD: /repoman/r/ncvs/src/sys/dev/em/if_em_hw.c,v 1.16 2005/05/26 23:32:02 tackerman Exp $");
-
-#include <dev/em/if_em_hw.h>
-#endif
-
-static int32_t em_set_phy_type(struct em_hw *hw);
-static void em_phy_init_script(struct em_hw *hw);
-static int32_t em_setup_copper_link(struct em_hw *hw);
-static int32_t em_setup_fiber_serdes_link(struct em_hw *hw);
-static int32_t em_adjust_serdes_amplitude(struct em_hw *hw);
-static int32_t em_phy_force_speed_duplex(struct em_hw *hw);
-static int32_t em_config_mac_to_phy(struct em_hw *hw);
-static void em_raise_mdi_clk(struct em_hw *hw, uint32_t *ctrl);
-static void em_lower_mdi_clk(struct em_hw *hw, uint32_t *ctrl);
-static void em_shift_out_mdi_bits(struct em_hw *hw, uint32_t data,
- uint16_t count);
-static uint16_t em_shift_in_mdi_bits(struct em_hw *hw);
-static int32_t em_phy_reset_dsp(struct em_hw *hw);
-static int32_t em_write_eeprom_spi(struct em_hw *hw, uint16_t offset,
- uint16_t words, uint16_t *data);
-static int32_t em_write_eeprom_microwire(struct em_hw *hw,
- uint16_t offset, uint16_t words,
- uint16_t *data);
-static int32_t em_spi_eeprom_ready(struct em_hw *hw);
-static void em_raise_ee_clk(struct em_hw *hw, uint32_t *eecd);
-static void em_lower_ee_clk(struct em_hw *hw, uint32_t *eecd);
-static void em_shift_out_ee_bits(struct em_hw *hw, uint16_t data,
- uint16_t count);
-static int32_t em_write_phy_reg_ex(struct em_hw *hw, uint32_t reg_addr,
- uint16_t phy_data);
-static int32_t em_read_phy_reg_ex(struct em_hw *hw,uint32_t reg_addr,
- uint16_t *phy_data);
-static uint16_t em_shift_in_ee_bits(struct em_hw *hw, uint16_t count);
-static int32_t em_acquire_eeprom(struct em_hw *hw);
-static void em_release_eeprom(struct em_hw *hw);
-static void em_standby_eeprom(struct em_hw *hw);
-static int32_t em_set_vco_speed(struct em_hw *hw);
-static int32_t em_polarity_reversal_workaround(struct em_hw *hw);
-static int32_t em_set_phy_mode(struct em_hw *hw);
-static int32_t em_host_if_read_cookie(struct em_hw *hw, uint8_t *buffer);
-static uint8_t em_calculate_mng_checksum(char *buffer, uint32_t length);
-
-/* IGP cable length table */
-static const
-uint16_t em_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] =
- { 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
- 5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25,
- 25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40,
- 40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60,
- 60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90,
- 90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100,
- 100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110,
- 110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120};
-
-/******************************************************************************
- * Set the phy type member in the hw struct.
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-int32_t
-em_set_phy_type(struct em_hw *hw)
-{
- DEBUGFUNC("em_set_phy_type");
-
- if(hw->mac_type == em_undefined)
- return -E1000_ERR_PHY_TYPE;
-
- switch(hw->phy_id) {
- case M88E1000_E_PHY_ID:
- case M88E1000_I_PHY_ID:
- case M88E1011_I_PHY_ID:
- case M88E1111_I_PHY_ID:
- hw->phy_type = em_phy_m88;
- break;
- case IGP01E1000_I_PHY_ID:
- if(hw->mac_type == em_82541 ||
- hw->mac_type == em_82541_rev_2 ||
- hw->mac_type == em_82547 ||
- hw->mac_type == em_82547_rev_2) {
- hw->phy_type = em_phy_igp;
- break;
- }
- /* Fall Through */
- default:
- /* Should never have loaded on this device */
- hw->phy_type = em_phy_undefined;
- return -E1000_ERR_PHY_TYPE;
- }
-
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * IGP phy init script - initializes the GbE PHY
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-static void
-em_phy_init_script(struct em_hw *hw)
-{
- uint16_t phy_saved_data;
-
- DEBUGFUNC("em_phy_init_script");
-
- if(hw->phy_init_script) {
- msec_delay(20);
-
- /* Save off the current value of register 0x2F5B to be restored at
- * the end of this routine. */
- em_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
-
- /* Disabled the PHY transmitter */
- em_write_phy_reg(hw, 0x2F5B, 0x0003);
-
- msec_delay(20);
-
- em_write_phy_reg(hw,0x0000,0x0140);
-
- msec_delay(5);
-
- switch(hw->mac_type) {
- case em_82541:
- case em_82547:
- em_write_phy_reg(hw, 0x1F95, 0x0001);
-
- em_write_phy_reg(hw, 0x1F71, 0xBD21);
-
- em_write_phy_reg(hw, 0x1F79, 0x0018);
-
- em_write_phy_reg(hw, 0x1F30, 0x1600);
-
- em_write_phy_reg(hw, 0x1F31, 0x0014);
-
- em_write_phy_reg(hw, 0x1F32, 0x161C);
-
- em_write_phy_reg(hw, 0x1F94, 0x0003);
-
- em_write_phy_reg(hw, 0x1F96, 0x003F);
-
- em_write_phy_reg(hw, 0x2010, 0x0008);
- break;
-
- case em_82541_rev_2:
- case em_82547_rev_2:
- em_write_phy_reg(hw, 0x1F73, 0x0099);
- break;
- default:
- break;
- }
-
- em_write_phy_reg(hw, 0x0000, 0x3300);
-
- msec_delay(20);
-
- /* Now enable the transmitter */
- em_write_phy_reg(hw, 0x2F5B, phy_saved_data);
-
- if(hw->mac_type == em_82547) {
- uint16_t fused, fine, coarse;
-
- /* Move to analog registers page */
- em_read_phy_reg(hw, IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused);
-
- if(!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
- em_read_phy_reg(hw, IGP01E1000_ANALOG_FUSE_STATUS, &fused);
-
- fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
- coarse = fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
-
- if(coarse > IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
- coarse -= IGP01E1000_ANALOG_FUSE_COARSE_10;
- fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
- } else if(coarse == IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
- fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
-
- fused = (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
- (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
- (coarse & IGP01E1000_ANALOG_FUSE_COARSE_MASK);
-
- em_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_CONTROL, fused);
- em_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_BYPASS,
- IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
- }
- }
- }
-}
-
-/******************************************************************************
- * Set the mac type member in the hw struct.
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-int32_t
-em_set_mac_type(struct em_hw *hw)
-{
- DEBUGFUNC("em_set_mac_type");
-
- switch (hw->device_id) {
- case E1000_DEV_ID_82542:
- switch (hw->revision_id) {
- case E1000_82542_2_0_REV_ID:
- hw->mac_type = em_82542_rev2_0;
- break;
- case E1000_82542_2_1_REV_ID:
- hw->mac_type = em_82542_rev2_1;
- break;
- default:
- /* Invalid 82542 revision ID */
- return -E1000_ERR_MAC_TYPE;
- }
- break;
- case E1000_DEV_ID_82543GC_FIBER:
- case E1000_DEV_ID_82543GC_COPPER:
- hw->mac_type = em_82543;
- break;
- case E1000_DEV_ID_82544EI_COPPER:
- case E1000_DEV_ID_82544EI_FIBER:
- case E1000_DEV_ID_82544GC_COPPER:
- case E1000_DEV_ID_82544GC_LOM:
- hw->mac_type = em_82544;
- break;
- case E1000_DEV_ID_82540EM:
- case E1000_DEV_ID_82540EM_LOM:
- case E1000_DEV_ID_82540EP:
- case E1000_DEV_ID_82540EP_LOM:
- case E1000_DEV_ID_82540EP_LP:
- hw->mac_type = em_82540;
- break;
- case E1000_DEV_ID_82545EM_COPPER:
- case E1000_DEV_ID_82545EM_FIBER:
- hw->mac_type = em_82545;
- break;
- case E1000_DEV_ID_82545GM_COPPER:
- case E1000_DEV_ID_82545GM_FIBER:
- case E1000_DEV_ID_82545GM_SERDES:
- hw->mac_type = em_82545_rev_3;
- break;
- case E1000_DEV_ID_82546EB_COPPER:
- case E1000_DEV_ID_82546EB_FIBER:
- case E1000_DEV_ID_82546EB_QUAD_COPPER:
- hw->mac_type = em_82546;
- break;
- case E1000_DEV_ID_82546GB_COPPER:
- case E1000_DEV_ID_82546GB_FIBER:
- case E1000_DEV_ID_82546GB_SERDES:
- case E1000_DEV_ID_82546GB_PCIE:
- case E1000_DEV_ID_82546GB_QUAD_COPPER:
- hw->mac_type = em_82546_rev_3;
- break;
- case E1000_DEV_ID_82541EI:
- case E1000_DEV_ID_82541ER_LOM:
- case E1000_DEV_ID_82541EI_MOBILE:
- hw->mac_type = em_82541;
- break;
- case E1000_DEV_ID_82541ER:
- case E1000_DEV_ID_82541GI:
- case E1000_DEV_ID_82541GI_LF:
- case E1000_DEV_ID_82541GI_MOBILE:
- hw->mac_type = em_82541_rev_2;
- break;
- case E1000_DEV_ID_82547EI:
- case E1000_DEV_ID_82547EI_MOBILE:
- hw->mac_type = em_82547;
- break;
- case E1000_DEV_ID_82547GI:
- hw->mac_type = em_82547_rev_2;
- break;
- case E1000_DEV_ID_82573E:
- case E1000_DEV_ID_82573E_IAMT:
- hw->mac_type = em_82573;
- break;
- default:
- /* Should never have loaded on this device */
- return -E1000_ERR_MAC_TYPE;
- }
-
- switch(hw->mac_type) {
- case em_82573:
- hw->eeprom_semaphore_present = TRUE;
- /* fall through */
- case em_82541:
- case em_82547:
- case em_82541_rev_2:
- case em_82547_rev_2:
- hw->asf_firmware_present = TRUE;
- break;
- default:
- break;
- }
-
- return E1000_SUCCESS;
-}
-
-/*****************************************************************************
- * Set media type and TBI compatibility.
- *
- * hw - Struct containing variables accessed by shared code
- * **************************************************************************/
-void
-em_set_media_type(struct em_hw *hw)
-{
- uint32_t status;
-
- DEBUGFUNC("em_set_media_type");
-
- if(hw->mac_type != em_82543) {
- /* tbi_compatibility is only valid on 82543 */
- hw->tbi_compatibility_en = FALSE;
- }
-
- switch (hw->device_id) {
- case E1000_DEV_ID_82545GM_SERDES:
- case E1000_DEV_ID_82546GB_SERDES:
- hw->media_type = em_media_type_internal_serdes;
- break;
- default:
- if(hw->mac_type >= em_82543) {
- status = E1000_READ_REG(hw, STATUS);
- if(status & E1000_STATUS_TBIMODE) {
- hw->media_type = em_media_type_fiber;
- /* tbi_compatibility not valid on fiber */
- hw->tbi_compatibility_en = FALSE;
- } else {
- hw->media_type = em_media_type_copper;
- }
- } else {
- /* This is an 82542 (fiber only) */
- hw->media_type = em_media_type_fiber;
- }
- }
-}
-
-/******************************************************************************
- * Reset the transmit and receive units; mask and clear all interrupts.
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-int32_t
-em_reset_hw(struct em_hw *hw)
-{
- uint32_t ctrl;
- uint32_t ctrl_ext;
- uint32_t manc;
- uint32_t led_ctrl;
- uint32_t timeout;
- uint32_t extcnf_ctrl;
- int32_t ret_val;
-
- DEBUGFUNC("em_reset_hw");
-
- /* For 82542 (rev 2.0), disable MWI before issuing a device reset */
- if(hw->mac_type == em_82542_rev2_0) {
- DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
- em_pci_clear_mwi(hw);
- }
-
- if(hw->bus_type == em_bus_type_pci_express) {
- /* Prevent the PCI-E bus from sticking if there is no TLP connection
- * on the last TLP read/write transaction when MAC is reset.
- */
- if(em_disable_pciex_master(hw) != E1000_SUCCESS) {
- DEBUGOUT("PCI-E Master disable polling has failed.\n");
- }
- }
-
- /* Clear interrupt mask to stop board from generating interrupts */
- DEBUGOUT("Masking off all interrupts\n");
- E1000_WRITE_REG(hw, IMC, 0xffffffff);
-
- /* Disable the Transmit and Receive units. Then delay to allow
- * any pending transactions to complete before we hit the MAC with
- * the global reset.
- */
- E1000_WRITE_REG(hw, RCTL, 0);
- E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP);
- E1000_WRITE_FLUSH(hw);
-
- /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
- hw->tbi_compatibility_on = FALSE;
-
- /* Delay to allow any outstanding PCI transactions to complete before
- * resetting the device
- */
- msec_delay(10);
-
- ctrl = E1000_READ_REG(hw, CTRL);
-
- /* Must reset the PHY before resetting the MAC */
- if((hw->mac_type == em_82541) || (hw->mac_type == em_82547)) {
- E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_PHY_RST));
- msec_delay(5);
- }
-
- /* Must acquire the MDIO ownership before MAC reset.
- * Ownership defaults to firmware after a reset. */
- if(hw->mac_type == em_82573) {
- timeout = 10;
-
- extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
- extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
-
- do {
- E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl);
- extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
-
- if(extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
- break;
- else
- extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
-
- msec_delay(2);
- timeout--;
- } while(timeout);
- }
-
- /* Issue a global reset to the MAC. This will reset the chip's
- * transmit, receive, DMA, and link units. It will not effect
- * the current PCI configuration. The global reset bit is self-
- * clearing, and should clear within a microsecond.
- */
- DEBUGOUT("Issuing a global reset to MAC\n");
-
- switch(hw->mac_type) {
- case em_82544:
- case em_82540:
- case em_82545:
-#ifndef __arm__
- case em_82546:
-#endif
- case em_82541:
- case em_82541_rev_2:
- /* These controllers can't ack the 64-bit write when issuing the
- * reset, so use IO-mapping as a workaround to issue the reset */
- E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST));
- break;
- case em_82545_rev_3:
- case em_82546_rev_3:
- /* Reset is performed on a shadow of the control register */
- E1000_WRITE_REG(hw, CTRL_DUP, (ctrl | E1000_CTRL_RST));
- break;
- default:
- E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
- break;
- }
-
- /* After MAC reset, force reload of EEPROM to restore power-on settings to
- * device. Later controllers reload the EEPROM automatically, so just wait
- * for reload to complete.
- */
- switch(hw->mac_type) {
- case em_82542_rev2_0:
- case em_82542_rev2_1:
- case em_82543:
- case em_82544:
- /* Wait for reset to complete */
- usec_delay(10);
- ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
- ctrl_ext |= E1000_CTRL_EXT_EE_RST;
- E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
- E1000_WRITE_FLUSH(hw);
- /* Wait for EEPROM reload */
- msec_delay(2);
- break;
- case em_82541:
- case em_82541_rev_2:
- case em_82547:
- case em_82547_rev_2:
- /* Wait for EEPROM reload */
- msec_delay(20);
- break;
- case em_82573:
- usec_delay(10);
- ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
- ctrl_ext |= E1000_CTRL_EXT_EE_RST;
- E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
- E1000_WRITE_FLUSH(hw);
- /* fall through */
- ret_val = em_get_auto_rd_done(hw);
- if(ret_val)
- /* We don't want to continue accessing MAC registers. */
- return ret_val;
- break;
- default:
- /* Wait for EEPROM reload (it happens automatically) */
- msec_delay(5);
- break;
- }
-
- /* Disable HW ARPs on ASF enabled adapters */
- if(hw->mac_type >= em_82540 && hw->mac_type <= em_82547_rev_2) {
- manc = E1000_READ_REG(hw, MANC);
- manc &= ~(E1000_MANC_ARP_EN);
- E1000_WRITE_REG(hw, MANC, manc);
- }
-
- if((hw->mac_type == em_82541) || (hw->mac_type == em_82547)) {
- em_phy_init_script(hw);
-
- /* Configure activity LED after PHY reset */
- led_ctrl = E1000_READ_REG(hw, LEDCTL);
- led_ctrl &= IGP_ACTIVITY_LED_MASK;
- led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
- E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
- }
-
- /* Clear interrupt mask to stop board from generating interrupts */
- DEBUGOUT("Masking off all interrupts\n");
- E1000_WRITE_REG(hw, IMC, 0xffffffff);
-
- /* Clear any pending interrupt events. */
- E1000_READ_REG(hw, ICR);
-
- /* If MWI was previously enabled, reenable it. */
- if(hw->mac_type == em_82542_rev2_0) {
- if(hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
- em_pci_set_mwi(hw);
- }
-#ifdef __rtems__
- msec_delay(100);
-#endif
-
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Performs basic configuration of the adapter.
- *
- * hw - Struct containing variables accessed by shared code
- *
- * Assumes that the controller has previously been reset and is in a
- * post-reset uninitialized state. Initializes the receive address registers,
- * multicast table, and VLAN filter table. Calls routines to setup link
- * configuration and flow control settings. Clears all on-chip counters. Leaves
- * the transmit and receive units disabled and uninitialized.
- *****************************************************************************/
-int32_t
-em_init_hw(struct em_hw *hw)
-{
- uint32_t ctrl;
- uint32_t i;
- int32_t ret_val;
- uint16_t pcix_cmd_word;
- uint16_t pcix_stat_hi_word;
- uint16_t cmd_mmrbc;
- uint16_t stat_mmrbc;
- uint32_t mta_size;
-
- DEBUGFUNC("em_init_hw");
-
- /* Initialize Identification LED */
- ret_val = em_id_led_init(hw);
- if(ret_val) {
- DEBUGOUT("Error Initializing Identification LED\n");
- return ret_val;
- }
-
- /* Set the media type and TBI compatibility */
- em_set_media_type(hw);
-
- /* Disabling VLAN filtering. */
- DEBUGOUT("Initializing the IEEE VLAN\n");
- if (hw->mac_type < em_82545_rev_3)
- E1000_WRITE_REG(hw, VET, 0);
- em_clear_vfta(hw);
-
- /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
- if(hw->mac_type == em_82542_rev2_0) {
- DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
- em_pci_clear_mwi(hw);
- E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST);
- E1000_WRITE_FLUSH(hw);
- msec_delay(5);
- }
-
- /* Setup the receive address. This involves initializing all of the Receive
- * Address Registers (RARs 0 - 15).
- */
- em_init_rx_addrs(hw);
-
- /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
- if(hw->mac_type == em_82542_rev2_0) {
- E1000_WRITE_REG(hw, RCTL, 0);
- E1000_WRITE_FLUSH(hw);
- msec_delay(1);
- if(hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
- em_pci_set_mwi(hw);
- }
-
- /* Zero out the Multicast HASH table */
- DEBUGOUT("Zeroing the MTA\n");
- mta_size = E1000_MC_TBL_SIZE;
- for(i = 0; i < mta_size; i++)
- E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
-
- /* Set the PCI priority bit correctly in the CTRL register. This
- * determines if the adapter gives priority to receives, or if it
- * gives equal priority to transmits and receives. Valid only on
- * 82542 and 82543 silicon.
- */
- if(hw->dma_fairness && hw->mac_type <= em_82543) {
- ctrl = E1000_READ_REG(hw, CTRL);
- E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR);
- }
-
- switch(hw->mac_type) {
- case em_82545_rev_3:
- case em_82546_rev_3:
- break;
- default:
- /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
- if(hw->bus_type == em_bus_type_pcix) {
- em_read_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd_word);
- em_read_pci_cfg(hw, PCIX_STATUS_REGISTER_HI,
- &pcix_stat_hi_word);
- cmd_mmrbc = (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >>
- PCIX_COMMAND_MMRBC_SHIFT;
- stat_mmrbc = (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
- PCIX_STATUS_HI_MMRBC_SHIFT;
- if(stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
- stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
- if(cmd_mmrbc > stat_mmrbc) {
- pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK;
- pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
- em_write_pci_cfg(hw, PCIX_COMMAND_REGISTER,
- &pcix_cmd_word);
- }
- }
- break;
- }
-
- /* Call a subroutine to configure the link and setup flow control. */
- ret_val = em_setup_link(hw);
-
- /* Set the transmit descriptor write-back policy */
- if(hw->mac_type > em_82544) {
- ctrl = E1000_READ_REG(hw, TXDCTL);
- ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB;
- switch (hw->mac_type) {
- default:
- break;
- case em_82573:
- ctrl |= E1000_TXDCTL_COUNT_DESC;
- break;
- }
- E1000_WRITE_REG(hw, TXDCTL, ctrl);
- }
-
- if (hw->mac_type == em_82573) {
- em_enable_tx_pkt_filtering(hw);
- }
-
-
- /* Clear all of the statistics registers (clear on read). It is
- * important that we do this after we have tried to establish link
- * because the symbol error count will increment wildly if there
- * is no link.
- */
- em_clear_hw_cntrs(hw);
-
- return ret_val;
-}
-
-/******************************************************************************
- * Adjust SERDES output amplitude based on EEPROM setting.
- *
- * hw - Struct containing variables accessed by shared code.
- *****************************************************************************/
-static int32_t
-em_adjust_serdes_amplitude(struct em_hw *hw)
-{
- uint16_t eeprom_data;
- int32_t ret_val;
-
- DEBUGFUNC("em_adjust_serdes_amplitude");
-
- if(hw->media_type != em_media_type_internal_serdes)
- return E1000_SUCCESS;
-
- switch(hw->mac_type) {
- case em_82545_rev_3:
- case em_82546_rev_3:
- break;
- default:
- return E1000_SUCCESS;
- }
-
- ret_val = em_read_eeprom(hw, EEPROM_SERDES_AMPLITUDE, 1, &eeprom_data);
- if (ret_val) {
- return ret_val;
- }
-
- if(eeprom_data != EEPROM_RESERVED_WORD) {
- /* Adjust SERDES output amplitude only. */
- eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK;
- ret_val = em_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, eeprom_data);
- if(ret_val)
- return ret_val;
- }
-
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Configures flow control and link settings.
- *
- * hw - Struct containing variables accessed by shared code
- *
- * Determines which flow control settings to use. Calls the apropriate media-
- * specific link configuration function. Configures the flow control settings.
- * Assuming the adapter has a valid link partner, a valid link should be
- * established. Assumes the hardware has previously been reset and the
- * transmitter and receiver are not enabled.
- *****************************************************************************/
-int32_t
-em_setup_link(struct em_hw *hw)
-{
- uint32_t ctrl_ext;
- int32_t ret_val;
- uint16_t eeprom_data;
-
- DEBUGFUNC("em_setup_link");
-
- /* Read and store word 0x0F of the EEPROM. This word contains bits
- * that determine the hardware's default PAUSE (flow control) mode,
- * a bit that determines whether the HW defaults to enabling or
- * disabling auto-negotiation, and the direction of the
- * SW defined pins. If there is no SW over-ride of the flow
- * control setting, then the variable hw->fc will
- * be initialized based on a value in the EEPROM.
- */
- if(em_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data)) {
- DEBUGOUT("EEPROM Read Error\n");
- return -E1000_ERR_EEPROM;
- }
-
- if(hw->fc == em_fc_default) {
- if((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
- hw->fc = em_fc_none;
- else if((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
- EEPROM_WORD0F_ASM_DIR)
- hw->fc = em_fc_tx_pause;
- else
- hw->fc = em_fc_full;
- }
-
- /* We want to save off the original Flow Control configuration just
- * in case we get disconnected and then reconnected into a different
- * hub or switch with different Flow Control capabilities.
- */
- if(hw->mac_type == em_82542_rev2_0)
- hw->fc &= (~em_fc_tx_pause);
-
- if((hw->mac_type < em_82543) && (hw->report_tx_early == 1))
- hw->fc &= (~em_fc_rx_pause);
-
- hw->original_fc = hw->fc;
-
- DEBUGOUT1("After fix-ups FlowControl is now = %x\n", hw->fc);
-
- /* Take the 4 bits from EEPROM word 0x0F that determine the initial
- * polarity value for the SW controlled pins, and setup the
- * Extended Device Control reg with that info.
- * This is needed because one of the SW controlled pins is used for
- * signal detection. So this should be done before em_setup_pcs_link()
- * or em_phy_setup() is called.
- */
- if(hw->mac_type == em_82543) {
- ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
- SWDPIO__EXT_SHIFT);
- E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
- }
-
- /* Call the necessary subroutine to configure the link. */
- ret_val = (hw->media_type == em_media_type_copper) ?
- em_setup_copper_link(hw) :
- em_setup_fiber_serdes_link(hw);
-
- /* Initialize the flow control address, type, and PAUSE timer
- * registers to their default values. This is done even if flow
- * control is disabled, because it does not hurt anything to
- * initialize these registers.
- */
- DEBUGOUT("Initializing the Flow Control address, type and timer regs\n");
-
- E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
- E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
- E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
-
- E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time);
-
- /* Set the flow control receive threshold registers. Normally,
- * these registers will be set to a default threshold that may be
- * adjusted later by the driver's runtime code. However, if the
- * ability to transmit pause frames in not enabled, then these
- * registers will be set to 0.
- */
- if(!(hw->fc & em_fc_tx_pause)) {
- E1000_WRITE_REG(hw, FCRTL, 0);
- E1000_WRITE_REG(hw, FCRTH, 0);
- } else {
- /* We need to set up the Receive Threshold high and low water marks
- * as well as (optionally) enabling the transmission of XON frames.
- */
- if(hw->fc_send_xon) {
- E1000_WRITE_REG(hw, FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE));
- E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
- } else {
- E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water);
- E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
- }
- }
- return ret_val;
-}
-
-/******************************************************************************
- * Sets up link for a fiber based or serdes based adapter
- *
- * hw - Struct containing variables accessed by shared code
- *
- * Manipulates Physical Coding Sublayer functions in order to configure
- * link. Assumes the hardware has been previously reset and the transmitter
- * and receiver are not enabled.
- *****************************************************************************/
-static int32_t
-em_setup_fiber_serdes_link(struct em_hw *hw)
-{
- uint32_t ctrl;
- uint32_t status;
- uint32_t txcw = 0;
- uint32_t i;
- uint32_t signal = 0;
- int32_t ret_val;
-
- DEBUGFUNC("em_setup_fiber_serdes_link");
-
- /* On adapters with a MAC newer than 82544, SW Defineable pin 1 will be
- * set when the optics detect a signal. On older adapters, it will be
- * cleared when there is a signal. This applies to fiber media only.
- * If we're on serdes media, adjust the output amplitude to value set in
- * the EEPROM.
- */
- ctrl = E1000_READ_REG(hw, CTRL);
- if(hw->media_type == em_media_type_fiber)
- signal = (hw->mac_type > em_82544) ? E1000_CTRL_SWDPIN1 : 0;
-
- ret_val = em_adjust_serdes_amplitude(hw);
- if(ret_val)
- return ret_val;
-
- /* Take the link out of reset */
- ctrl &= ~(E1000_CTRL_LRST);
-
- /* Adjust VCO speed to improve BER performance */
- ret_val = em_set_vco_speed(hw);
- if(ret_val)
- return ret_val;
-
- em_config_collision_dist(hw);
-
- /* Check for a software override of the flow control settings, and setup
- * the device accordingly. If auto-negotiation is enabled, then software
- * will have to set the "PAUSE" bits to the correct value in the Tranmsit
- * Config Word Register (TXCW) and re-start auto-negotiation. However, if
- * auto-negotiation is disabled, then software will have to manually
- * configure the two flow control enable bits in the CTRL register.
- *
- * The possible values of the "fc" parameter are:
- * 0: Flow control is completely disabled
- * 1: Rx flow control is enabled (we can receive pause frames, but
- * not send pause frames).
- * 2: Tx flow control is enabled (we can send pause frames but we do
- * not support receiving pause frames).
- * 3: Both Rx and TX flow control (symmetric) are enabled.
- */
- switch (hw->fc) {
- case em_fc_none:
- /* Flow control is completely disabled by a software over-ride. */
- txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
- break;
- case em_fc_rx_pause:
- /* RX Flow control is enabled and TX Flow control is disabled by a
- * software over-ride. Since there really isn't a way to advertise
- * that we are capable of RX Pause ONLY, we will advertise that we
- * support both symmetric and asymmetric RX PAUSE. Later, we will
- * disable the adapter's ability to send PAUSE frames.
- */
- txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
- break;
- case em_fc_tx_pause:
- /* TX Flow control is enabled, and RX Flow control is disabled, by a
- * software over-ride.
- */
- txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
- break;
- case em_fc_full:
- /* Flow control (both RX and TX) is enabled by a software over-ride. */
- txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
- break;
- default:
- DEBUGOUT("Flow control param set incorrectly\n");
- return -E1000_ERR_CONFIG;
- break;
- }
-
- /* Since auto-negotiation is enabled, take the link out of reset (the link
- * will be in reset, because we previously reset the chip). This will
- * restart auto-negotiation. If auto-neogtiation is successful then the
- * link-up status bit will be set and the flow control enable bits (RFCE
- * and TFCE) will be set according to their negotiated value.
- */
- DEBUGOUT("Auto-negotiation enabled\n");
-
- E1000_WRITE_REG(hw, TXCW, txcw);
- E1000_WRITE_REG(hw, CTRL, ctrl);
- E1000_WRITE_FLUSH(hw);
-
- hw->txcw = txcw;
- msec_delay(1);
-
- /* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
- * indication in the Device Status Register. Time-out if a link isn't
- * seen in 500 milliseconds seconds (Auto-negotiation should complete in
- * less than 500 milliseconds even if the other end is doing it in SW).
- * For internal serdes, we just assume a signal is present, then poll.
- */
- if(hw->media_type == em_media_type_internal_serdes ||
- (E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) {
- DEBUGOUT("Looking for Link\n");
- for(i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
- msec_delay(10);
- status = E1000_READ_REG(hw, STATUS);
- if(status & E1000_STATUS_LU) break;
- }
- if(i == (LINK_UP_TIMEOUT / 10)) {
- DEBUGOUT("Never got a valid link from auto-neg!!!\n");
- hw->autoneg_failed = 1;
- /* AutoNeg failed to achieve a link, so we'll call
- * em_check_for_link. This routine will force the link up if
- * we detect a signal. This will allow us to communicate with
- * non-autonegotiating link partners.
- */
- ret_val = em_check_for_link(hw);
- if(ret_val) {
- DEBUGOUT("Error while checking for link\n");
- return ret_val;
- }
- hw->autoneg_failed = 0;
- } else {
- hw->autoneg_failed = 0;
- DEBUGOUT("Valid Link Found\n");
- }
- } else {
- DEBUGOUT("No Signal Detected\n");
- }
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
-* Make sure we have a valid PHY and change PHY mode before link setup.
-*
-* hw - Struct containing variables accessed by shared code
-******************************************************************************/
-static int32_t
-em_copper_link_preconfig(struct em_hw *hw)
-{
- uint32_t ctrl;
- int32_t ret_val;
- uint16_t phy_data;
-
- DEBUGFUNC("em_copper_link_preconfig");
-
- ctrl = E1000_READ_REG(hw, CTRL);
- /* With 82543, we need to force speed and duplex on the MAC equal to what
- * the PHY speed and duplex configuration is. In addition, we need to
- * perform a hardware reset on the PHY to take it out of reset.
- */
- if(hw->mac_type > em_82543) {
- ctrl |= E1000_CTRL_SLU;
- ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
- E1000_WRITE_REG(hw, CTRL, ctrl);
- } else {
- ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU);
- E1000_WRITE_REG(hw, CTRL, ctrl);
- ret_val = em_phy_hw_reset(hw);
- if(ret_val)
- return ret_val;
- }
-
- /* Make sure we have a valid PHY */
- ret_val = em_detect_gig_phy(hw);
- if(ret_val) {
- DEBUGOUT("Error, did not detect valid phy.\n");
- return ret_val;
- }
- DEBUGOUT1("Phy ID = %x \n", hw->phy_id);
-
- /* Set PHY to class A mode (if necessary) */
- ret_val = em_set_phy_mode(hw);
- if(ret_val)
- return ret_val;
-
- if((hw->mac_type == em_82545_rev_3) ||
- (hw->mac_type == em_82546_rev_3)) {
- ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
- phy_data |= 0x00000008;
- ret_val = em_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
- }
-
- if(hw->mac_type <= em_82543 ||
- hw->mac_type == em_82541 || hw->mac_type == em_82547 ||
- hw->mac_type == em_82541_rev_2 || hw->mac_type == em_82547_rev_2)
- hw->phy_reset_disable = FALSE;
-
- return E1000_SUCCESS;
-}
-
-
-/********************************************************************
-* Copper link setup for em_phy_igp series.
-*
-* hw - Struct containing variables accessed by shared code
-*********************************************************************/
-static int32_t
-em_copper_link_igp_setup(struct em_hw *hw)
-{
- uint32_t led_ctrl;
- int32_t ret_val;
- uint16_t phy_data;
-
- DEBUGFUNC("em_copper_link_igp_setup");
-
- if (hw->phy_reset_disable)
- return E1000_SUCCESS;
-
- ret_val = em_phy_reset(hw);
- if (ret_val) {
- DEBUGOUT("Error Resetting the PHY\n");
- return ret_val;
- }
-
- /* Wait 10ms for MAC to configure PHY from eeprom settings */
- msec_delay(15);
-
- /* Configure activity LED after PHY reset */
- led_ctrl = E1000_READ_REG(hw, LEDCTL);
- led_ctrl &= IGP_ACTIVITY_LED_MASK;
- led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
- E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
-
- /* disable lplu d3 during driver init */
- ret_val = em_set_d3_lplu_state(hw, FALSE);
- if (ret_val) {
- DEBUGOUT("Error Disabling LPLU D3\n");
- return ret_val;
- }
-
- /* disable lplu d0 during driver init */
- ret_val = em_set_d0_lplu_state(hw, FALSE);
- if (ret_val) {
- DEBUGOUT("Error Disabling LPLU D0\n");
- return ret_val;
- }
- /* Configure mdi-mdix settings */
- ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
-
- if ((hw->mac_type == em_82541) || (hw->mac_type == em_82547)) {
- hw->dsp_config_state = em_dsp_config_disabled;
- /* Force MDI for earlier revs of the IGP PHY */
- phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX | IGP01E1000_PSCR_FORCE_MDI_MDIX);
- hw->mdix = 1;
-
- } else {
- hw->dsp_config_state = em_dsp_config_enabled;
- phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
-
- switch (hw->mdix) {
- case 1:
- phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
- break;
- case 2:
- phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
- break;
- case 0:
- default:
- phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
- break;
- }
- }
- ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
- if(ret_val)
- return ret_val;
-
- /* set auto-master slave resolution settings */
- if(hw->autoneg) {
- em_ms_type phy_ms_setting = hw->master_slave;
-
- if(hw->ffe_config_state == em_ffe_config_active)
- hw->ffe_config_state = em_ffe_config_enabled;
-
- if(hw->dsp_config_state == em_dsp_config_activated)
- hw->dsp_config_state = em_dsp_config_enabled;
-
- /* when autonegotiation advertisment is only 1000Mbps then we
- * should disable SmartSpeed and enable Auto MasterSlave
- * resolution as hardware default. */
- if(hw->autoneg_advertised == ADVERTISE_1000_FULL) {
- /* Disable SmartSpeed */
- ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data);
- if(ret_val)
- return ret_val;
- phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
- ret_val = em_write_phy_reg(hw,
- IGP01E1000_PHY_PORT_CONFIG,
- phy_data);
- if(ret_val)
- return ret_val;
- /* Set auto Master/Slave resolution process */
- ret_val = em_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
- if(ret_val)
- return ret_val;
- phy_data &= ~CR_1000T_MS_ENABLE;
- ret_val = em_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
- if(ret_val)
- return ret_val;
- }
-
- ret_val = em_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
- if(ret_val)
- return ret_val;
-
- /* load defaults for future use */
- hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
- ((phy_data & CR_1000T_MS_VALUE) ?
- em_ms_force_master :
- em_ms_force_slave) :
- em_ms_auto;
-
- switch (phy_ms_setting) {
- case em_ms_force_master:
- phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
- break;
- case em_ms_force_slave:
- phy_data |= CR_1000T_MS_ENABLE;
- phy_data &= ~(CR_1000T_MS_VALUE);
- break;
- case em_ms_auto:
- phy_data &= ~CR_1000T_MS_ENABLE;
- default:
- break;
- }
- ret_val = em_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
- if(ret_val)
- return ret_val;
- }
-
- return E1000_SUCCESS;
-}
-
-
-/********************************************************************
-* Copper link setup for em_phy_m88 series.
-*
-* hw - Struct containing variables accessed by shared code
-*********************************************************************/
-static int32_t
-em_copper_link_mgp_setup(struct em_hw *hw)
-{
- int32_t ret_val;
- uint16_t phy_data;
-
- DEBUGFUNC("em_copper_link_mgp_setup");
-
- if(hw->phy_reset_disable)
- return E1000_SUCCESS;
-
- /* Enable CRS on TX. This must be set for half-duplex operation. */
- ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
- if(ret_val)
- return ret_val;
-
- phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
-
- /* Options:
- * MDI/MDI-X = 0 (default)
- * 0 - Auto for all speeds
- * 1 - MDI mode
- * 2 - MDI-X mode
- * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
- */
- phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
-
- switch (hw->mdix) {
- case 1:
- phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
- break;
- case 2:
- phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
- break;
- case 3:
- phy_data |= M88E1000_PSCR_AUTO_X_1000T;
- break;
- case 0:
- default:
- phy_data |= M88E1000_PSCR_AUTO_X_MODE;
- break;
- }
-
- /* Options:
- * disable_polarity_correction = 0 (default)
- * Automatic Correction for Reversed Cable Polarity
- * 0 - Disabled
- * 1 - Enabled
- */
- phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
- if(hw->disable_polarity_correction == 1)
- phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
- ret_val = em_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
- if(ret_val)
- return ret_val;
-
- /* Force TX_CLK in the Extended PHY Specific Control Register
- * to 25MHz clock.
- */
- ret_val = em_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
- if(ret_val)
- return ret_val;
-
- phy_data |= M88E1000_EPSCR_TX_CLK_25;
-
- if (hw->phy_revision < M88E1011_I_REV_4) {
- /* Configure Master and Slave downshift values */
- phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
- M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
- phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
- M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
- ret_val = em_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
- if(ret_val)
- return ret_val;
- }
-
- /* SW Reset the PHY so all changes take effect */
- ret_val = em_phy_reset(hw);
- if(ret_val) {
- DEBUGOUT("Error Resetting the PHY\n");
- return ret_val;
- }
-
- return E1000_SUCCESS;
-}
-
-/********************************************************************
-* Setup auto-negotiation and flow control advertisements,
-* and then perform auto-negotiation.
-*
-* hw - Struct containing variables accessed by shared code
-*********************************************************************/
-static int32_t
-em_copper_link_autoneg(struct em_hw *hw)
-{
- int32_t ret_val;
- uint16_t phy_data;
-
- DEBUGFUNC("em_copper_link_autoneg");
-
- /* Perform some bounds checking on the hw->autoneg_advertised
- * parameter. If this variable is zero, then set it to the default.
- */
- hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
-
- /* If autoneg_advertised is zero, we assume it was not defaulted
- * by the calling code so we set to advertise full capability.
- */
- if(hw->autoneg_advertised == 0)
- hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
-
- DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
- ret_val = em_phy_setup_autoneg(hw);
- if(ret_val) {
- DEBUGOUT("Error Setting up Auto-Negotiation\n");
- return ret_val;
- }
- DEBUGOUT("Restarting Auto-Neg\n");
-
- /* Restart auto-negotiation by setting the Auto Neg Enable bit and
- * the Auto Neg Restart bit in the PHY control register.
- */
- ret_val = em_read_phy_reg(hw, PHY_CTRL, &phy_data);
- if(ret_val)
- return ret_val;
-
- phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
- ret_val = em_write_phy_reg(hw, PHY_CTRL, phy_data);
- if(ret_val)
- return ret_val;
-
- /* Does the user want to wait for Auto-Neg to complete here, or
- * check at a later time (for example, callback routine).
- */
- if(hw->wait_autoneg_complete) {
- ret_val = em_wait_autoneg(hw);
- if(ret_val) {
- DEBUGOUT("Error while waiting for autoneg to complete\n");
- return ret_val;
- }
- }
-
- hw->get_link_status = TRUE;
-
- return E1000_SUCCESS;
-}
-
-
-/******************************************************************************
-* Config the MAC and the PHY after link is up.
-* 1) Set up the MAC to the current PHY speed/duplex
-* if we are on 82543. If we
-* are on newer silicon, we only need to configure
-* collision distance in the Transmit Control Register.
-* 2) Set up flow control on the MAC to that established with
-* the link partner.
-* 3) Config DSP to improve Gigabit link quality for some PHY revisions.
-*
-* hw - Struct containing variables accessed by shared code
-******************************************************************************/
-static int32_t
-em_copper_link_postconfig(struct em_hw *hw)
-{
- int32_t ret_val;
- DEBUGFUNC("em_copper_link_postconfig");
-
- if(hw->mac_type >= em_82544) {
- em_config_collision_dist(hw);
- } else {
- ret_val = em_config_mac_to_phy(hw);
- if(ret_val) {
- DEBUGOUT("Error configuring MAC to PHY settings\n");
- return ret_val;
- }
- }
- ret_val = em_config_fc_after_link_up(hw);
- if(ret_val) {
- DEBUGOUT("Error Configuring Flow Control\n");
- return ret_val;
- }
-
- /* Config DSP to improve Giga link quality */
- if(hw->phy_type == em_phy_igp) {
- ret_val = em_config_dsp_after_link_change(hw, TRUE);
- if(ret_val) {
- DEBUGOUT("Error Configuring DSP after link up\n");
- return ret_val;
- }
- }
-
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
-* Detects which PHY is present and setup the speed and duplex
-*
-* hw - Struct containing variables accessed by shared code
-******************************************************************************/
-static int32_t
-em_setup_copper_link(struct em_hw *hw)
-{
- int32_t ret_val;
- uint16_t i;
- uint16_t phy_data;
-
- DEBUGFUNC("em_setup_copper_link");
-
- /* Check if it is a valid PHY and set PHY mode if necessary. */
- ret_val = em_copper_link_preconfig(hw);
- if(ret_val)
- return ret_val;
-
- if (hw->phy_type == em_phy_igp ||
- hw->phy_type == em_phy_igp_2) {
- ret_val = em_copper_link_igp_setup(hw);
- if(ret_val)
- return ret_val;
- } else if (hw->phy_type == em_phy_m88) {
- ret_val = em_copper_link_mgp_setup(hw);
- if(ret_val)
- return ret_val;
- }
-
- if(hw->autoneg) {
- /* Setup autoneg and flow control advertisement
- * and perform autonegotiation */
- ret_val = em_copper_link_autoneg(hw);
- if(ret_val)
- return ret_val;
- } else {
- /* PHY will be set to 10H, 10F, 100H,or 100F
- * depending on value from forced_speed_duplex. */
- DEBUGOUT("Forcing speed and duplex\n");
- ret_val = em_phy_force_speed_duplex(hw);
- if(ret_val) {
- DEBUGOUT("Error Forcing Speed and Duplex\n");
- return ret_val;
- }
- }
-
- /* Check link status. Wait up to 100 microseconds for link to become
- * valid.
- */
- for(i = 0; i < 10; i++) {
- ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data);
- if(ret_val)
- return ret_val;
- ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data);
- if(ret_val)
- return ret_val;
-
- if(phy_data & MII_SR_LINK_STATUS) {
- /* Config the MAC and PHY after link is up */
- ret_val = em_copper_link_postconfig(hw);
- if(ret_val)
- return ret_val;
-
- DEBUGOUT("Valid link established!!!\n");
- return E1000_SUCCESS;
- }
- usec_delay(10);
- }
-
- DEBUGOUT("Unable to establish link!!!\n");
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
-* Configures PHY autoneg and flow control advertisement settings
-*
-* hw - Struct containing variables accessed by shared code
-******************************************************************************/
-int32_t
-em_phy_setup_autoneg(struct em_hw *hw)
-{
- int32_t ret_val;
- uint16_t mii_autoneg_adv_reg;
- uint16_t mii_1000t_ctrl_reg;
-
- DEBUGFUNC("em_phy_setup_autoneg");
-
- /* Read the MII Auto-Neg Advertisement Register (Address 4). */
- ret_val = em_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
- if(ret_val)
- return ret_val;
-
- /* Read the MII 1000Base-T Control Register (Address 9). */
- ret_val = em_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
- if(ret_val)
- return ret_val;
-
- /* Need to parse both autoneg_advertised and fc and set up
- * the appropriate PHY registers. First we will parse for
- * autoneg_advertised software override. Since we can advertise
- * a plethora of combinations, we need to check each bit
- * individually.
- */
-
- /* First we clear all the 10/100 mb speed bits in the Auto-Neg
- * Advertisement Register (Address 4) and the 1000 mb speed bits in
- * the 1000Base-T Control Register (Address 9).
- */
- mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
- mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
-
- DEBUGOUT1("autoneg_advertised %x\n", hw->autoneg_advertised);
-
- /* Do we want to advertise 10 Mb Half Duplex? */
- if(hw->autoneg_advertised & ADVERTISE_10_HALF) {
- DEBUGOUT("Advertise 10mb Half duplex\n");
- mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
- }
-
- /* Do we want to advertise 10 Mb Full Duplex? */
- if(hw->autoneg_advertised & ADVERTISE_10_FULL) {
- DEBUGOUT("Advertise 10mb Full duplex\n");
- mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
- }
-
- /* Do we want to advertise 100 Mb Half Duplex? */
- if(hw->autoneg_advertised & ADVERTISE_100_HALF) {
- DEBUGOUT("Advertise 100mb Half duplex\n");
- mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
- }
-
- /* Do we want to advertise 100 Mb Full Duplex? */
- if(hw->autoneg_advertised & ADVERTISE_100_FULL) {
- DEBUGOUT("Advertise 100mb Full duplex\n");
- mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
- }
-
- /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
- if(hw->autoneg_advertised & ADVERTISE_1000_HALF) {
- DEBUGOUT("Advertise 1000mb Half duplex requested, request denied!\n");
- }
-
- /* Do we want to advertise 1000 Mb Full Duplex? */
- if(hw->autoneg_advertised & ADVERTISE_1000_FULL) {
- DEBUGOUT("Advertise 1000mb Full duplex\n");
- mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
- }
-
- /* Check for a software override of the flow control settings, and
- * setup the PHY advertisement registers accordingly. If
- * auto-negotiation is enabled, then software will have to set the
- * "PAUSE" bits to the correct value in the Auto-Negotiation
- * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
- *
- * The possible values of the "fc" parameter are:
- * 0: Flow control is completely disabled
- * 1: Rx flow control is enabled (we can receive pause frames
- * but not send pause frames).
- * 2: Tx flow control is enabled (we can send pause frames
- * but we do not support receiving pause frames).
- * 3: Both Rx and TX flow control (symmetric) are enabled.
- * other: No software override. The flow control configuration
- * in the EEPROM is used.
- */
- switch (hw->fc) {
- case em_fc_none: /* 0 */
- /* Flow control (RX & TX) is completely disabled by a
- * software over-ride.
- */
- mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
- break;
- case em_fc_rx_pause: /* 1 */
- /* RX Flow control is enabled, and TX Flow control is
- * disabled, by a software over-ride.
- */
- /* Since there really isn't a way to advertise that we are
- * capable of RX Pause ONLY, we will advertise that we
- * support both symmetric and asymmetric RX PAUSE. Later
- * (in em_config_fc_after_link_up) we will disable the
- *hw's ability to send PAUSE frames.
- */
- mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
- break;
- case em_fc_tx_pause: /* 2 */
- /* TX Flow control is enabled, and RX Flow control is
- * disabled, by a software over-ride.
- */
- mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
- mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
- break;
- case em_fc_full: /* 3 */
- /* Flow control (both RX and TX) is enabled by a software
- * over-ride.
- */
- mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
- break;
- default:
- DEBUGOUT("Flow control param set incorrectly\n");
- return -E1000_ERR_CONFIG;
- }
-
- ret_val = em_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
- if(ret_val)
- return ret_val;
-
- DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
-
- ret_val = em_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg);
- if(ret_val)
- return ret_val;
-
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
-* Force PHY speed and duplex settings to hw->forced_speed_duplex
-*
-* hw - Struct containing variables accessed by shared code
-******************************************************************************/
-static int32_t
-em_phy_force_speed_duplex(struct em_hw *hw)
-{
- uint32_t ctrl;
- int32_t ret_val;
- uint16_t mii_ctrl_reg;
- uint16_t mii_status_reg;
- uint16_t phy_data;
- uint16_t i;
-
- DEBUGFUNC("em_phy_force_speed_duplex");
-
- /* Turn off Flow control if we are forcing speed and duplex. */
- hw->fc = em_fc_none;
-
- DEBUGOUT1("hw->fc = %d\n", hw->fc);
-
- /* Read the Device Control Register. */
- ctrl = E1000_READ_REG(hw, CTRL);
-
- /* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */
- ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
- ctrl &= ~(DEVICE_SPEED_MASK);
-
- /* Clear the Auto Speed Detect Enable bit. */
- ctrl &= ~E1000_CTRL_ASDE;
-
- /* Read the MII Control Register. */
- ret_val = em_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg);
- if(ret_val)
- return ret_val;
-
- /* We need to disable autoneg in order to force link and duplex. */
-
- mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN;
-
- /* Are we forcing Full or Half Duplex? */
- if(hw->forced_speed_duplex == em_100_full ||
- hw->forced_speed_duplex == em_10_full) {
- /* We want to force full duplex so we SET the full duplex bits in the
- * Device and MII Control Registers.
- */
- ctrl |= E1000_CTRL_FD;
- mii_ctrl_reg |= MII_CR_FULL_DUPLEX;
- DEBUGOUT("Full Duplex\n");
- } else {
- /* We want to force half duplex so we CLEAR the full duplex bits in
- * the Device and MII Control Registers.
- */
- ctrl &= ~E1000_CTRL_FD;
- mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX;
- DEBUGOUT("Half Duplex\n");
- }
-
- /* Are we forcing 100Mbps??? */
- if(hw->forced_speed_duplex == em_100_full ||
- hw->forced_speed_duplex == em_100_half) {
- /* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */
- ctrl |= E1000_CTRL_SPD_100;
- mii_ctrl_reg |= MII_CR_SPEED_100;
- mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
- DEBUGOUT("Forcing 100mb ");
- } else {
- /* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */
- ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
- mii_ctrl_reg |= MII_CR_SPEED_10;
- mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
- DEBUGOUT("Forcing 10mb ");
- }
-
- em_config_collision_dist(hw);
-
- /* Write the configured values back to the Device Control Reg. */
- E1000_WRITE_REG(hw, CTRL, ctrl);
-
- if (hw->phy_type == em_phy_m88) {
- ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
- if(ret_val)
- return ret_val;
-
- /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
- * forced whenever speed are duplex are forced.
- */
- phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
- ret_val = em_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
- if(ret_val)
- return ret_val;
-
- DEBUGOUT1("M88E1000 PSCR: %x \n", phy_data);
-
- /* Need to reset the PHY or these changes will be ignored */
- mii_ctrl_reg |= MII_CR_RESET;
- } else {
- /* Clear Auto-Crossover to force MDI manually. IGP requires MDI
- * forced whenever speed or duplex are forced.
- */
- ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
- if(ret_val)
- return ret_val;
-
- phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
- phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
-
- ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
- if(ret_val)
- return ret_val;
- }
-
- /* Write back the modified PHY MII control register. */
- ret_val = em_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg);
- if(ret_val)
- return ret_val;
-
- usec_delay(1);
-
- /* The wait_autoneg_complete flag may be a little misleading here.
- * Since we are forcing speed and duplex, Auto-Neg is not enabled.
- * But we do want to delay for a period while forcing only so we
- * don't generate false No Link messages. So we will wait here
- * only if the user has set wait_autoneg_complete to 1, which is
- * the default.
- */
- if(hw->wait_autoneg_complete) {
- /* We will wait for autoneg to complete. */
- DEBUGOUT("Waiting for forced speed/duplex link.\n");
- mii_status_reg = 0;
-
- /* We will wait for autoneg to complete or 4.5 seconds to expire. */
- for(i = PHY_FORCE_TIME; i > 0; i--) {
- /* Read the MII Status Register and wait for Auto-Neg Complete bit
- * to be set.
- */
- ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
- if(ret_val)
- return ret_val;
-
- ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
- if(ret_val)
- return ret_val;
-
- if(mii_status_reg & MII_SR_LINK_STATUS) break;
- msec_delay(100);
- }
- if((i == 0) &&
- (hw->phy_type == em_phy_m88)) {
- /* We didn't get link. Reset the DSP and wait again for link. */
- ret_val = em_phy_reset_dsp(hw);
- if(ret_val) {
- DEBUGOUT("Error Resetting PHY DSP\n");
- return ret_val;
- }
- }
- /* This loop will early-out if the link condition has been met. */
- for(i = PHY_FORCE_TIME; i > 0; i--) {
- if(mii_status_reg & MII_SR_LINK_STATUS) break;
- msec_delay(100);
- /* Read the MII Status Register and wait for Auto-Neg Complete bit
- * to be set.
- */
- ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
- if(ret_val)
- return ret_val;
-
- ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
- if(ret_val)
- return ret_val;
- }
- }
-
- if (hw->phy_type == em_phy_m88) {
- /* Because we reset the PHY above, we need to re-force TX_CLK in the
- * Extended PHY Specific Control Register to 25MHz clock. This value
- * defaults back to a 2.5MHz clock when the PHY is reset.
- */
- ret_val = em_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
- if(ret_val)
- return ret_val;
-
- phy_data |= M88E1000_EPSCR_TX_CLK_25;
- ret_val = em_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
- if(ret_val)
- return ret_val;
-
- /* In addition, because of the s/w reset above, we need to enable CRS on
- * TX. This must be set for both full and half duplex operation.
- */
- ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
- if(ret_val)
- return ret_val;
-
- phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
- ret_val = em_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
- if(ret_val)
- return ret_val;
-
- if((hw->mac_type == em_82544 || hw->mac_type == em_82543) &&
- (!hw->autoneg) &&
- (hw->forced_speed_duplex == em_10_full ||
- hw->forced_speed_duplex == em_10_half)) {
- ret_val = em_polarity_reversal_workaround(hw);
- if(ret_val)
- return ret_val;
- }
- }
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
-* Sets the collision distance in the Transmit Control register
-*
-* hw - Struct containing variables accessed by shared code
-*
-* Link should have been established previously. Reads the speed and duplex
-* information from the Device Status register.
-******************************************************************************/
-void
-em_config_collision_dist(struct em_hw *hw)
-{
- uint32_t tctl;
-
- DEBUGFUNC("em_config_collision_dist");
-
- tctl = E1000_READ_REG(hw, TCTL);
-
- tctl &= ~E1000_TCTL_COLD;
- tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
-
- E1000_WRITE_REG(hw, TCTL, tctl);
- E1000_WRITE_FLUSH(hw);
-}
-
-/******************************************************************************
-* Sets MAC speed and duplex settings to reflect the those in the PHY
-*
-* hw - Struct containing variables accessed by shared code
-* mii_reg - data to write to the MII control register
-*
-* The contents of the PHY register containing the needed information need to
-* be passed in.
-******************************************************************************/
-static int32_t
-em_config_mac_to_phy(struct em_hw *hw)
-{
- uint32_t ctrl;
- int32_t ret_val;
- uint16_t phy_data;
-
- DEBUGFUNC("em_config_mac_to_phy");
-
- /* 82544 or newer MAC, Auto Speed Detection takes care of
- * MAC speed/duplex configuration.*/
- if (hw->mac_type >= em_82544)
- return E1000_SUCCESS;
-
- /* Read the Device Control Register and set the bits to Force Speed
- * and Duplex.
- */
- ctrl = E1000_READ_REG(hw, CTRL);
- ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
- ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
-
- /* Set up duplex in the Device Control and Transmit Control
- * registers depending on negotiated values.
- */
- ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
- if(ret_val)
- return ret_val;
-
- if(phy_data & M88E1000_PSSR_DPLX)
- ctrl |= E1000_CTRL_FD;
- else
- ctrl &= ~E1000_CTRL_FD;
-
- em_config_collision_dist(hw);
-
- /* Set up speed in the Device Control register depending on
- * negotiated values.
- */
- if((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
- ctrl |= E1000_CTRL_SPD_1000;
- else if((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
- ctrl |= E1000_CTRL_SPD_100;
-
- /* Write the configured values back to the Device Control Reg. */
- E1000_WRITE_REG(hw, CTRL, ctrl);
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Forces the MAC's flow control settings.
- *
- * hw - Struct containing variables accessed by shared code
- *
- * Sets the TFCE and RFCE bits in the device control register to reflect
- * the adapter settings. TFCE and RFCE need to be explicitly set by
- * software when a Copper PHY is used because autonegotiation is managed
- * by the PHY rather than the MAC. Software must also configure these
- * bits when link is forced on a fiber connection.
- *****************************************************************************/
-int32_t
-em_force_mac_fc(struct em_hw *hw)
-{
- uint32_t ctrl;
-
- DEBUGFUNC("em_force_mac_fc");
-
- /* Get the current configuration of the Device Control Register */
- ctrl = E1000_READ_REG(hw, CTRL);
-
- /* Because we didn't get link via the internal auto-negotiation
- * mechanism (we either forced link or we got link via PHY
- * auto-neg), we have to manually enable/disable transmit an
- * receive flow control.
- *
- * The "Case" statement below enables/disable flow control
- * according to the "hw->fc" parameter.
- *
- * The possible values of the "fc" parameter are:
- * 0: Flow control is completely disabled
- * 1: Rx flow control is enabled (we can receive pause
- * frames but not send pause frames).
- * 2: Tx flow control is enabled (we can send pause frames
- * frames but we do not receive pause frames).
- * 3: Both Rx and TX flow control (symmetric) is enabled.
- * other: No other values should be possible at this point.
- */
-
- switch (hw->fc) {
- case em_fc_none:
- ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
- break;
- case em_fc_rx_pause:
- ctrl &= (~E1000_CTRL_TFCE);
- ctrl |= E1000_CTRL_RFCE;
- break;
- case em_fc_tx_pause:
- ctrl &= (~E1000_CTRL_RFCE);
- ctrl |= E1000_CTRL_TFCE;
- break;
- case em_fc_full:
- ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
- break;
- default:
- DEBUGOUT("Flow control param set incorrectly\n");
- return -E1000_ERR_CONFIG;
- }
-
- /* Disable TX Flow Control for 82542 (rev 2.0) */
- if(hw->mac_type == em_82542_rev2_0)
- ctrl &= (~E1000_CTRL_TFCE);
-
- E1000_WRITE_REG(hw, CTRL, ctrl);
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Configures flow control settings after link is established
- *
- * hw - Struct containing variables accessed by shared code
- *
- * Should be called immediately after a valid link has been established.
- * Forces MAC flow control settings if link was forced. When in MII/GMII mode
- * and autonegotiation is enabled, the MAC flow control settings will be set
- * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
- * and RFCE bits will be automaticaly set to the negotiated flow control mode.
- *****************************************************************************/
-int32_t
-em_config_fc_after_link_up(struct em_hw *hw)
-{
- int32_t ret_val;
- uint16_t mii_status_reg;
- uint16_t mii_nway_adv_reg;
- uint16_t mii_nway_lp_ability_reg;
- uint16_t speed;
- uint16_t duplex;
-
- DEBUGFUNC("em_config_fc_after_link_up");
-
- /* Check for the case where we have fiber media and auto-neg failed
- * so we had to force link. In this case, we need to force the
- * configuration of the MAC to match the "fc" parameter.
- */
- if(((hw->media_type == em_media_type_fiber) && (hw->autoneg_failed)) ||
- ((hw->media_type == em_media_type_internal_serdes) && (hw->autoneg_failed)) ||
- ((hw->media_type == em_media_type_copper) && (!hw->autoneg))) {
- ret_val = em_force_mac_fc(hw);
- if(ret_val) {
- DEBUGOUT("Error forcing flow control settings\n");
- return ret_val;
- }
- }
-
- /* Check for the case where we have copper media and auto-neg is
- * enabled. In this case, we need to check and see if Auto-Neg
- * has completed, and if so, how the PHY and link partner has
- * flow control configured.
- */
- if((hw->media_type == em_media_type_copper) && hw->autoneg) {
- /* Read the MII Status Register and check to see if AutoNeg
- * has completed. We read this twice because this reg has
- * some "sticky" (latched) bits.
- */
- ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
- if(ret_val)
- return ret_val;
- ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
- if(ret_val)
- return ret_val;
-
- if(mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
- /* The AutoNeg process has completed, so we now need to
- * read both the Auto Negotiation Advertisement Register
- * (Address 4) and the Auto_Negotiation Base Page Ability
- * Register (Address 5) to determine how flow control was
- * negotiated.
- */
- ret_val = em_read_phy_reg(hw, PHY_AUTONEG_ADV,
- &mii_nway_adv_reg);
- if(ret_val)
- return ret_val;
- ret_val = em_read_phy_reg(hw, PHY_LP_ABILITY,
- &mii_nway_lp_ability_reg);
- if(ret_val)
- return ret_val;
-
- /* Two bits in the Auto Negotiation Advertisement Register
- * (Address 4) and two bits in the Auto Negotiation Base
- * Page Ability Register (Address 5) determine flow control
- * for both the PHY and the link partner. The following
- * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
- * 1999, describes these PAUSE resolution bits and how flow
- * control is determined based upon these settings.
- * NOTE: DC = Don't Care
- *
- * LOCAL DEVICE | LINK PARTNER
- * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
- *-------|---------|-------|---------|--------------------
- * 0 | 0 | DC | DC | em_fc_none
- * 0 | 1 | 0 | DC | em_fc_none
- * 0 | 1 | 1 | 0 | em_fc_none
- * 0 | 1 | 1 | 1 | em_fc_tx_pause
- * 1 | 0 | 0 | DC | em_fc_none
- * 1 | DC | 1 | DC | em_fc_full
- * 1 | 1 | 0 | 0 | em_fc_none
- * 1 | 1 | 0 | 1 | em_fc_rx_pause
- *
- */
- /* Are both PAUSE bits set to 1? If so, this implies
- * Symmetric Flow Control is enabled at both ends. The
- * ASM_DIR bits are irrelevant per the spec.
- *
- * For Symmetric Flow Control:
- *
- * LOCAL DEVICE | LINK PARTNER
- * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
- *-------|---------|-------|---------|--------------------
- * 1 | DC | 1 | DC | em_fc_full
- *
- */
- if((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
- (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
- /* Now we need to check if the user selected RX ONLY
- * of pause frames. In this case, we had to advertise
- * FULL flow control because we could not advertise RX
- * ONLY. Hence, we must now check to see if we need to
- * turn OFF the TRANSMISSION of PAUSE frames.
- */
- if(hw->original_fc == em_fc_full) {
- hw->fc = em_fc_full;
- DEBUGOUT("Flow Control = FULL.\r\n");
- } else {
- hw->fc = em_fc_rx_pause;
- DEBUGOUT("Flow Control = RX PAUSE frames only.\r\n");
- }
- }
- /* For receiving PAUSE frames ONLY.
- *
- * LOCAL DEVICE | LINK PARTNER
- * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
- *-------|---------|-------|---------|--------------------
- * 0 | 1 | 1 | 1 | em_fc_tx_pause
- *
- */
- else if(!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
- (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
- (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
- (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
- hw->fc = em_fc_tx_pause;
- DEBUGOUT("Flow Control = TX PAUSE frames only.\r\n");
- }
- /* For transmitting PAUSE frames ONLY.
- *
- * LOCAL DEVICE | LINK PARTNER
- * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
- *-------|---------|-------|---------|--------------------
- * 1 | 1 | 0 | 1 | em_fc_rx_pause
- *
- */
- else if((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
- (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
- !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
- (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
- hw->fc = em_fc_rx_pause;
- DEBUGOUT("Flow Control = RX PAUSE frames only.\r\n");
- }
- /* Per the IEEE spec, at this point flow control should be
- * disabled. However, we want to consider that we could
- * be connected to a legacy switch that doesn't advertise
- * desired flow control, but can be forced on the link
- * partner. So if we advertised no flow control, that is
- * what we will resolve to. If we advertised some kind of
- * receive capability (Rx Pause Only or Full Flow Control)
- * and the link partner advertised none, we will configure
- * ourselves to enable Rx Flow Control only. We can do
- * this safely for two reasons: If the link partner really
- * didn't want flow control enabled, and we enable Rx, no
- * harm done since we won't be receiving any PAUSE frames
- * anyway. If the intent on the link partner was to have
- * flow control enabled, then by us enabling RX only, we
- * can at least receive pause frames and process them.
- * This is a good idea because in most cases, since we are
- * predominantly a server NIC, more times than not we will
- * be asked to delay transmission of packets than asking
- * our link partner to pause transmission of frames.
- */
- else if((hw->original_fc == em_fc_none ||
- hw->original_fc == em_fc_tx_pause) ||
- hw->fc_strict_ieee) {
- hw->fc = em_fc_none;
- DEBUGOUT("Flow Control = NONE.\r\n");
- } else {
- hw->fc = em_fc_rx_pause;
- DEBUGOUT("Flow Control = RX PAUSE frames only.\r\n");
- }
-
- /* Now we need to do one last check... If we auto-
- * negotiated to HALF DUPLEX, flow control should not be
- * enabled per IEEE 802.3 spec.
- */
- ret_val = em_get_speed_and_duplex(hw, &speed, &duplex);
- if(ret_val) {
- DEBUGOUT("Error getting link speed and duplex\n");
- return ret_val;
- }
-
- if(duplex == HALF_DUPLEX)
- hw->fc = em_fc_none;
-
- /* Now we call a subroutine to actually force the MAC
- * controller to use the correct flow control settings.
- */
- ret_val = em_force_mac_fc(hw);
- if(ret_val) {
- DEBUGOUT("Error forcing flow control settings\n");
- return ret_val;
- }
- } else {
- DEBUGOUT("Copper PHY and Auto Neg has not completed.\r\n");
- }
- }
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Checks to see if the link status of the hardware has changed.
- *
- * hw - Struct containing variables accessed by shared code
- *
- * Called by any function that needs to check the link status of the adapter.
- *****************************************************************************/
-int32_t
-em_check_for_link(struct em_hw *hw)
-{
- uint32_t rxcw = 0;
- uint32_t ctrl;
- uint32_t status;
- uint32_t rctl;
- uint32_t icr;
- uint32_t signal = 0;
- int32_t ret_val;
- uint16_t phy_data;
-
- DEBUGFUNC("em_check_for_link");
-
- ctrl = E1000_READ_REG(hw, CTRL);
- status = E1000_READ_REG(hw, STATUS);
-
- /* On adapters with a MAC newer than 82544, SW Defineable pin 1 will be
- * set when the optics detect a signal. On older adapters, it will be
- * cleared when there is a signal. This applies to fiber media only.
- */
- if((hw->media_type == em_media_type_fiber) ||
- (hw->media_type == em_media_type_internal_serdes)) {
- rxcw = E1000_READ_REG(hw, RXCW);
-
- if(hw->media_type == em_media_type_fiber) {
- signal = (hw->mac_type > em_82544) ? E1000_CTRL_SWDPIN1 : 0;
- if(status & E1000_STATUS_LU)
- hw->get_link_status = FALSE;
- }
- }
-
- /* If we have a copper PHY then we only want to go out to the PHY
- * registers to see if Auto-Neg has completed and/or if our link
- * status has changed. The get_link_status flag will be set if we
- * receive a Link Status Change interrupt or we have Rx Sequence
- * Errors.
- */
- if((hw->media_type == em_media_type_copper) && hw->get_link_status) {
- /* First we want to see if the MII Status Register reports
- * link. If so, then we want to get the current speed/duplex
- * of the PHY.
- * Read the register twice since the link bit is sticky.
- */
- ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data);
- if(ret_val)
- return ret_val;
- ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data);
- if(ret_val)
- return ret_val;
-
- if(phy_data & MII_SR_LINK_STATUS) {
- hw->get_link_status = FALSE;
- /* Check if there was DownShift, must be checked immediately after
- * link-up */
- em_check_downshift(hw);
-
- /* If we are on 82544 or 82543 silicon and speed/duplex
- * are forced to 10H or 10F, then we will implement the polarity
- * reversal workaround. We disable interrupts first, and upon
- * returning, place the devices interrupt state to its previous
- * value except for the link status change interrupt which will
- * happen due to the execution of this workaround.
- */
-
- if((hw->mac_type == em_82544 || hw->mac_type == em_82543) &&
- (!hw->autoneg) &&
- (hw->forced_speed_duplex == em_10_full ||
- hw->forced_speed_duplex == em_10_half)) {
- E1000_WRITE_REG(hw, IMC, 0xffffffff);
- ret_val = em_polarity_reversal_workaround(hw);
- icr = E1000_READ_REG(hw, ICR);
- E1000_WRITE_REG(hw, ICS, (icr & ~E1000_ICS_LSC));
- E1000_WRITE_REG(hw, IMS, IMS_ENABLE_MASK);
- }
-
- } else {
- /* No link detected */
- em_config_dsp_after_link_change(hw, FALSE);
- return 0;
- }
-
- /* If we are forcing speed/duplex, then we simply return since
- * we have already determined whether we have link or not.
- */
- if(!hw->autoneg) return -E1000_ERR_CONFIG;
-
- /* optimize the dsp settings for the igp phy */
- em_config_dsp_after_link_change(hw, TRUE);
-
- /* We have a M88E1000 PHY and Auto-Neg is enabled. If we
- * have Si on board that is 82544 or newer, Auto
- * Speed Detection takes care of MAC speed/duplex
- * configuration. So we only need to configure Collision
- * Distance in the MAC. Otherwise, we need to force
- * speed/duplex on the MAC to the current PHY speed/duplex
- * settings.
- */
- if(hw->mac_type >= em_82544)
- em_config_collision_dist(hw);
- else {
- ret_val = em_config_mac_to_phy(hw);
- if(ret_val) {
- DEBUGOUT("Error configuring MAC to PHY settings\n");
- return ret_val;
- }
- }
-
- /* Configure Flow Control now that Auto-Neg has completed. First, we
- * need to restore the desired flow control settings because we may
- * have had to re-autoneg with a different link partner.
- */
- ret_val = em_config_fc_after_link_up(hw);
- if(ret_val) {
- DEBUGOUT("Error configuring flow control\n");
- return ret_val;
- }
-
- /* At this point we know that we are on copper and we have
- * auto-negotiated link. These are conditions for checking the link
- * partner capability register. We use the link speed to determine if
- * TBI compatibility needs to be turned on or off. If the link is not
- * at gigabit speed, then TBI compatibility is not needed. If we are
- * at gigabit speed, we turn on TBI compatibility.
- */
- if(hw->tbi_compatibility_en) {
- uint16_t speed, duplex;
- em_get_speed_and_duplex(hw, &speed, &duplex);
- if(speed != SPEED_1000) {
- /* If link speed is not set to gigabit speed, we do not need
- * to enable TBI compatibility.
- */
- if(hw->tbi_compatibility_on) {
- /* If we previously were in the mode, turn it off. */
- rctl = E1000_READ_REG(hw, RCTL);
- rctl &= ~E1000_RCTL_SBP;
- E1000_WRITE_REG(hw, RCTL, rctl);
- hw->tbi_compatibility_on = FALSE;
- }
- } else {
- /* If TBI compatibility is was previously off, turn it on. For
- * compatibility with a TBI link partner, we will store bad
- * packets. Some frames have an additional byte on the end and
- * will look like CRC errors to to the hardware.
- */
- if(!hw->tbi_compatibility_on) {
- hw->tbi_compatibility_on = TRUE;
- rctl = E1000_READ_REG(hw, RCTL);
- rctl |= E1000_RCTL_SBP;
- E1000_WRITE_REG(hw, RCTL, rctl);
- }
- }
- }
- }
- /* If we don't have link (auto-negotiation failed or link partner cannot
- * auto-negotiate), the cable is plugged in (we have signal), and our
- * link partner is not trying to auto-negotiate with us (we are receiving
- * idles or data), we need to force link up. We also need to give
- * auto-negotiation time to complete, in case the cable was just plugged
- * in. The autoneg_failed flag does this.
- */
- else if((((hw->media_type == em_media_type_fiber) &&
- ((ctrl & E1000_CTRL_SWDPIN1) == signal)) ||
- (hw->media_type == em_media_type_internal_serdes)) &&
- (!(status & E1000_STATUS_LU)) &&
- (!(rxcw & E1000_RXCW_C))) {
- if(hw->autoneg_failed == 0) {
- hw->autoneg_failed = 1;
- return 0;
- }
- DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\r\n");
-
- /* Disable auto-negotiation in the TXCW register */
- E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE));
-
- /* Force link-up and also force full-duplex. */
- ctrl = E1000_READ_REG(hw, CTRL);
- ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
- E1000_WRITE_REG(hw, CTRL, ctrl);
-
- /* Configure Flow Control after forcing link up. */
- ret_val = em_config_fc_after_link_up(hw);
- if(ret_val) {
- DEBUGOUT("Error configuring flow control\n");
- return ret_val;
- }
- }
- /* If we are forcing link and we are receiving /C/ ordered sets, re-enable
- * auto-negotiation in the TXCW register and disable forced link in the
- * Device Control register in an attempt to auto-negotiate with our link
- * partner.
- */
- else if(((hw->media_type == em_media_type_fiber) ||
- (hw->media_type == em_media_type_internal_serdes)) &&
- (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
- DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\r\n");
- E1000_WRITE_REG(hw, TXCW, hw->txcw);
- E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU));
-
- hw->serdes_link_down = FALSE;
- }
- /* If we force link for non-auto-negotiation switch, check link status
- * based on MAC synchronization for internal serdes media type.
- */
- else if((hw->media_type == em_media_type_internal_serdes) &&
- !(E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) {
- /* SYNCH bit and IV bit are sticky. */
- usec_delay(10);
- if(E1000_RXCW_SYNCH & E1000_READ_REG(hw, RXCW)) {
- if(!(rxcw & E1000_RXCW_IV)) {
- hw->serdes_link_down = FALSE;
- DEBUGOUT("SERDES: Link is up.\n");
- }
- } else {
- hw->serdes_link_down = TRUE;
- DEBUGOUT("SERDES: Link is down.\n");
- }
- }
- if((hw->media_type == em_media_type_internal_serdes) &&
- (E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) {
- hw->serdes_link_down = !(E1000_STATUS_LU & E1000_READ_REG(hw, STATUS));
- }
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Detects the current speed and duplex settings of the hardware.
- *
- * hw - Struct containing variables accessed by shared code
- * speed - Speed of the connection
- * duplex - Duplex setting of the connection
- *****************************************************************************/
-int32_t
-em_get_speed_and_duplex(struct em_hw *hw,
- uint16_t *speed,
- uint16_t *duplex)
-{
- uint32_t status;
- int32_t ret_val;
- uint16_t phy_data;
-
- DEBUGFUNC("em_get_speed_and_duplex");
-
- if(hw->mac_type >= em_82543) {
- status = E1000_READ_REG(hw, STATUS);
- if(status & E1000_STATUS_SPEED_1000) {
- *speed = SPEED_1000;
- DEBUGOUT("1000 Mbs, ");
- } else if(status & E1000_STATUS_SPEED_100) {
- *speed = SPEED_100;
- DEBUGOUT("100 Mbs, ");
- } else {
- *speed = SPEED_10;
- DEBUGOUT("10 Mbs, ");
- }
-
- if(status & E1000_STATUS_FD) {
- *duplex = FULL_DUPLEX;
- DEBUGOUT("Full Duplex\r\n");
- } else {
- *duplex = HALF_DUPLEX;
- DEBUGOUT(" Half Duplex\r\n");
- }
- } else {
- DEBUGOUT("1000 Mbs, Full Duplex\r\n");
- *speed = SPEED_1000;
- *duplex = FULL_DUPLEX;
- }
-
- /* IGP01 PHY may advertise full duplex operation after speed downgrade even
- * if it is operating at half duplex. Here we set the duplex settings to
- * match the duplex in the link partner's capabilities.
- */
- if(hw->phy_type == em_phy_igp && hw->speed_downgraded) {
- ret_val = em_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
- if(ret_val)
- return ret_val;
-
- if(!(phy_data & NWAY_ER_LP_NWAY_CAPS))
- *duplex = HALF_DUPLEX;
- else {
- ret_val = em_read_phy_reg(hw, PHY_LP_ABILITY, &phy_data);
- if(ret_val)
- return ret_val;
- if((*speed == SPEED_100 && !(phy_data & NWAY_LPAR_100TX_FD_CAPS)) ||
- (*speed == SPEED_10 && !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
- *duplex = HALF_DUPLEX;
- }
- }
-
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
-* Blocks until autoneg completes or times out (~4.5 seconds)
-*
-* hw - Struct containing variables accessed by shared code
-******************************************************************************/
-int32_t
-em_wait_autoneg(struct em_hw *hw)
-{
- int32_t ret_val;
- uint16_t i;
- uint16_t phy_data;
-
- DEBUGFUNC("em_wait_autoneg");
- DEBUGOUT("Waiting for Auto-Neg to complete.\n");
-
- /* We will wait for autoneg to complete or 4.5 seconds to expire. */
- for(i = PHY_AUTO_NEG_TIME; i > 0; i--) {
- /* Read the MII Status Register and wait for Auto-Neg
- * Complete bit to be set.
- */
- ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data);
- if(ret_val)
- return ret_val;
- ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data);
- if(ret_val)
- return ret_val;
- if(phy_data & MII_SR_AUTONEG_COMPLETE) {
- return E1000_SUCCESS;
- }
- msec_delay(100);
- }
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
-* Raises the Management Data Clock
-*
-* hw - Struct containing variables accessed by shared code
-* ctrl - Device control register's current value
-******************************************************************************/
-static void
-em_raise_mdi_clk(struct em_hw *hw,
- uint32_t *ctrl)
-{
- /* Raise the clock input to the Management Data Clock (by setting the MDC
- * bit), and then delay 10 microseconds.
- */
- E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC));
- E1000_WRITE_FLUSH(hw);
- usec_delay(10);
-}
-
-/******************************************************************************
-* Lowers the Management Data Clock
-*
-* hw - Struct containing variables accessed by shared code
-* ctrl - Device control register's current value
-******************************************************************************/
-static void
-em_lower_mdi_clk(struct em_hw *hw,
- uint32_t *ctrl)
-{
- /* Lower the clock input to the Management Data Clock (by clearing the MDC
- * bit), and then delay 10 microseconds.
- */
- E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC));
- E1000_WRITE_FLUSH(hw);
- usec_delay(10);
-}
-
-/******************************************************************************
-* Shifts data bits out to the PHY
-*
-* hw - Struct containing variables accessed by shared code
-* data - Data to send out to the PHY
-* count - Number of bits to shift out
-*
-* Bits are shifted out in MSB to LSB order.
-******************************************************************************/
-static void
-em_shift_out_mdi_bits(struct em_hw *hw,
- uint32_t data,
- uint16_t count)
-{
- uint32_t ctrl;
- uint32_t mask;
-
- /* We need to shift "count" number of bits out to the PHY. So, the value
- * in the "data" parameter will be shifted out to the PHY one bit at a
- * time. In order to do this, "data" must be broken down into bits.
- */
- mask = 0x01;
- mask <<= (count - 1);
-
- ctrl = E1000_READ_REG(hw, CTRL);
-
- /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
- ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
-
- while(mask) {
- /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
- * then raising and lowering the Management Data Clock. A "0" is
- * shifted out to the PHY by setting the MDIO bit to "0" and then
- * raising and lowering the clock.
- */
- if(data & mask) ctrl |= E1000_CTRL_MDIO;
- else ctrl &= ~E1000_CTRL_MDIO;
-
- E1000_WRITE_REG(hw, CTRL, ctrl);
- E1000_WRITE_FLUSH(hw);
-
- usec_delay(10);
-
- em_raise_mdi_clk(hw, &ctrl);
- em_lower_mdi_clk(hw, &ctrl);
-
- mask = mask >> 1;
- }
-}
-
-/******************************************************************************
-* Shifts data bits in from the PHY
-*
-* hw - Struct containing variables accessed by shared code
-*
-* Bits are shifted in in MSB to LSB order.
-******************************************************************************/
-static uint16_t
-em_shift_in_mdi_bits(struct em_hw *hw)
-{
- uint32_t ctrl;
- uint16_t data = 0;
- uint8_t i;
-
- /* In order to read a register from the PHY, we need to shift in a total
- * of 18 bits from the PHY. The first two bit (turnaround) times are used
- * to avoid contention on the MDIO pin when a read operation is performed.
- * These two bits are ignored by us and thrown away. Bits are "shifted in"
- * by raising the input to the Management Data Clock (setting the MDC bit),
- * and then reading the value of the MDIO bit.
- */
- ctrl = E1000_READ_REG(hw, CTRL);
-
- /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
- ctrl &= ~E1000_CTRL_MDIO_DIR;
- ctrl &= ~E1000_CTRL_MDIO;
-
- E1000_WRITE_REG(hw, CTRL, ctrl);
- E1000_WRITE_FLUSH(hw);
-
- /* Raise and Lower the clock before reading in the data. This accounts for
- * the turnaround bits. The first clock occurred when we clocked out the
- * last bit of the Register Address.
- */
- em_raise_mdi_clk(hw, &ctrl);
- em_lower_mdi_clk(hw, &ctrl);
-
- for(data = 0, i = 0; i < 16; i++) {
- data = data << 1;
- em_raise_mdi_clk(hw, &ctrl);
- ctrl = E1000_READ_REG(hw, CTRL);
- /* Check to see if we shifted in a "1". */
- if(ctrl & E1000_CTRL_MDIO) data |= 1;
- em_lower_mdi_clk(hw, &ctrl);
- }
-
- em_raise_mdi_clk(hw, &ctrl);
- em_lower_mdi_clk(hw, &ctrl);
-
- return data;
-}
-
-/*****************************************************************************
-* Reads the value from a PHY register, if the value is on a specific non zero
-* page, sets the page first.
-* hw - Struct containing variables accessed by shared code
-* reg_addr - address of the PHY register to read
-******************************************************************************/
-int32_t
-em_read_phy_reg(struct em_hw *hw,
- uint32_t reg_addr,
- uint16_t *phy_data)
-{
- uint32_t ret_val;
-
- DEBUGFUNC("em_read_phy_reg");
-
- if((hw->phy_type == em_phy_igp ||
- hw->phy_type == em_phy_igp_2) &&
- (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
- ret_val = em_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
- (uint16_t)reg_addr);
- if(ret_val) {
- return ret_val;
- }
- }
-
- ret_val = em_read_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
- phy_data);
-
- return ret_val;
-}
-
-int32_t
-em_read_phy_reg_ex(struct em_hw *hw,
- uint32_t reg_addr,
- uint16_t *phy_data)
-{
- uint32_t i;
- uint32_t mdic = 0;
- const uint32_t phy_addr = 1;
-
- DEBUGFUNC("em_read_phy_reg_ex");
-
- if(reg_addr > MAX_PHY_REG_ADDRESS) {
- DEBUGOUT1("PHY Address %d is out of range\n", reg_addr);
- return -E1000_ERR_PARAM;
- }
-
- if(hw->mac_type > em_82543) {
- /* Set up Op-code, Phy Address, and register address in the MDI
- * Control register. The MAC will take care of interfacing with the
- * PHY to retrieve the desired data.
- */
- mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
- (phy_addr << E1000_MDIC_PHY_SHIFT) |
- (E1000_MDIC_OP_READ));
-
- E1000_WRITE_REG(hw, MDIC, mdic);
-
- /* Poll the ready bit to see if the MDI read completed */
- for(i = 0; i < 64; i++) {
- usec_delay(50);
- mdic = E1000_READ_REG(hw, MDIC);
- if(mdic & E1000_MDIC_READY) break;
- }
- if(!(mdic & E1000_MDIC_READY)) {
- DEBUGOUT("MDI Read did not complete\n");
- return -E1000_ERR_PHY;
- }
- if(mdic & E1000_MDIC_ERROR) {
- DEBUGOUT("MDI Error\n");
- return -E1000_ERR_PHY;
- }
- *phy_data = (uint16_t) mdic;
- } else {
- /* We must first send a preamble through the MDIO pin to signal the
- * beginning of an MII instruction. This is done by sending 32
- * consecutive "1" bits.
- */
- em_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
-
- /* Now combine the next few fields that are required for a read
- * operation. We use this method instead of calling the
- * em_shift_out_mdi_bits routine five different times. The format of
- * a MII read instruction consists of a shift out of 14 bits and is
- * defined as follows:
- * <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
- * followed by a shift in of 18 bits. This first two bits shifted in
- * are TurnAround bits used to avoid contention on the MDIO pin when a
- * READ operation is performed. These two bits are thrown away
- * followed by a shift in of 16 bits which contains the desired data.
- */
- mdic = ((reg_addr) | (phy_addr << 5) |
- (PHY_OP_READ << 10) | (PHY_SOF << 12));
-
- em_shift_out_mdi_bits(hw, mdic, 14);
-
- /* Now that we've shifted out the read command to the MII, we need to
- * "shift in" the 16-bit value (18 total bits) of the requested PHY
- * register address.
- */
- *phy_data = em_shift_in_mdi_bits(hw);
- }
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
-* Writes a value to a PHY register
-*
-* hw - Struct containing variables accessed by shared code
-* reg_addr - address of the PHY register to write
-* data - data to write to the PHY
-******************************************************************************/
-int32_t
-em_write_phy_reg(struct em_hw *hw,
- uint32_t reg_addr,
- uint16_t phy_data)
-{
- uint32_t ret_val;
-
- DEBUGFUNC("em_write_phy_reg");
-
- if((hw->phy_type == em_phy_igp ||
- hw->phy_type == em_phy_igp_2) &&
- (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
- ret_val = em_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
- (uint16_t)reg_addr);
- if(ret_val) {
- return ret_val;
- }
- }
-
- ret_val = em_write_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
- phy_data);
-
- return ret_val;
-}
-
-int32_t
-em_write_phy_reg_ex(struct em_hw *hw,
- uint32_t reg_addr,
- uint16_t phy_data)
-{
- uint32_t i;
- uint32_t mdic = 0;
- const uint32_t phy_addr = 1;
-
- DEBUGFUNC("em_write_phy_reg_ex");
-
- if(reg_addr > MAX_PHY_REG_ADDRESS) {
- DEBUGOUT1("PHY Address %d is out of range\n", reg_addr);
- return -E1000_ERR_PARAM;
- }
-
- if(hw->mac_type > em_82543) {
- /* Set up Op-code, Phy Address, register address, and data intended
- * for the PHY register in the MDI Control register. The MAC will take
- * care of interfacing with the PHY to send the desired data.
- */
- mdic = (((uint32_t) phy_data) |
- (reg_addr << E1000_MDIC_REG_SHIFT) |
- (phy_addr << E1000_MDIC_PHY_SHIFT) |
- (E1000_MDIC_OP_WRITE));
-
- E1000_WRITE_REG(hw, MDIC, mdic);
-
- /* Poll the ready bit to see if the MDI read completed */
- for(i = 0; i < 640; i++) {
- usec_delay(5);
- mdic = E1000_READ_REG(hw, MDIC);
- if(mdic & E1000_MDIC_READY) break;
- }
- if(!(mdic & E1000_MDIC_READY)) {
- DEBUGOUT("MDI Write did not complete\n");
- return -E1000_ERR_PHY;
- }
- } else {
- /* We'll need to use the SW defined pins to shift the write command
- * out to the PHY. We first send a preamble to the PHY to signal the
- * beginning of the MII instruction. This is done by sending 32
- * consecutive "1" bits.
- */
- em_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
-
- /* Now combine the remaining required fields that will indicate a
- * write operation. We use this method instead of calling the
- * em_shift_out_mdi_bits routine for each field in the command. The
- * format of a MII write instruction is as follows:
- * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
- */
- mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
- (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
- mdic <<= 16;
- mdic |= (uint32_t) phy_data;
-
- em_shift_out_mdi_bits(hw, mdic, 32);
- }
-
- return E1000_SUCCESS;
-}
-
-
-/******************************************************************************
-* Returns the PHY to the power-on reset state
-*
-* hw - Struct containing variables accessed by shared code
-******************************************************************************/
-int32_t
-em_phy_hw_reset(struct em_hw *hw)
-{
- uint32_t ctrl, ctrl_ext;
- uint32_t led_ctrl;
- int32_t ret_val;
-
- DEBUGFUNC("em_phy_hw_reset");
-
- /* In the case of the phy reset being blocked, it's not an error, we
- * simply return success without performing the reset. */
- ret_val = em_check_phy_reset_block(hw);
- if (ret_val)
- return E1000_SUCCESS;
-
- DEBUGOUT("Resetting Phy...\n");
-
- if(hw->mac_type > em_82543) {
- /* Read the device control register and assert the E1000_CTRL_PHY_RST
- * bit. Then, take it out of reset.
- */
- ctrl = E1000_READ_REG(hw, CTRL);
- E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST);
- E1000_WRITE_FLUSH(hw);
- msec_delay(10);
- E1000_WRITE_REG(hw, CTRL, ctrl);
- E1000_WRITE_FLUSH(hw);
- } else {
- /* Read the Extended Device Control Register, assert the PHY_RESET_DIR
- * bit to put the PHY into reset. Then, take it out of reset.
- */
- ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
- ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
- ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
- E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
- E1000_WRITE_FLUSH(hw);
- msec_delay(10);
- ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
- E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
- E1000_WRITE_FLUSH(hw);
- }
- usec_delay(150);
-
- if((hw->mac_type == em_82541) || (hw->mac_type == em_82547)) {
- /* Configure activity LED after PHY reset */
- led_ctrl = E1000_READ_REG(hw, LEDCTL);
- led_ctrl &= IGP_ACTIVITY_LED_MASK;
- led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
- E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
- }
-
- /* Wait for FW to finish PHY configuration. */
- ret_val = em_get_phy_cfg_done(hw);
-
- return ret_val;
-}
-
-/******************************************************************************
-* Resets the PHY
-*
-* hw - Struct containing variables accessed by shared code
-*
-* Sets bit 15 of the MII Control regiser
-******************************************************************************/
-int32_t
-em_phy_reset(struct em_hw *hw)
-{
- int32_t ret_val;
- uint16_t phy_data;
-
- DEBUGFUNC("em_phy_reset");
-
- /* In the case of the phy reset being blocked, it's not an error, we
- * simply return success without performing the reset. */
- ret_val = em_check_phy_reset_block(hw);
- if (ret_val)
- return E1000_SUCCESS;
-
- switch (hw->mac_type) {
- case em_82541_rev_2:
- ret_val = em_phy_hw_reset(hw);
- if(ret_val)
- return ret_val;
- break;
- default:
- ret_val = em_read_phy_reg(hw, PHY_CTRL, &phy_data);
- if(ret_val)
- return ret_val;
-
- phy_data |= MII_CR_RESET;
- ret_val = em_write_phy_reg(hw, PHY_CTRL, phy_data);
- if(ret_val)
- return ret_val;
-
- usec_delay(1);
- break;
- }
-
- if(hw->phy_type == em_phy_igp || hw->phy_type == em_phy_igp_2)
- em_phy_init_script(hw);
-
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
-* Probes the expected PHY address for known PHY IDs
-*
-* hw - Struct containing variables accessed by shared code
-******************************************************************************/
-int32_t
-em_detect_gig_phy(struct em_hw *hw)
-{
- int32_t phy_init_status, ret_val;
- uint16_t phy_id_high, phy_id_low;
- boolean_t match = FALSE;
-
- DEBUGFUNC("em_detect_gig_phy");
-
- /* Read the PHY ID Registers to identify which PHY is onboard. */
- ret_val = em_read_phy_reg(hw, PHY_ID1, &phy_id_high);
- if(ret_val)
- return ret_val;
-
- hw->phy_id = (uint32_t) (phy_id_high << 16);
- usec_delay(20);
- ret_val = em_read_phy_reg(hw, PHY_ID2, &phy_id_low);
- if(ret_val)
- return ret_val;
-
- hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK);
- hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK;
-
- switch(hw->mac_type) {
- case em_82543:
- if(hw->phy_id == M88E1000_E_PHY_ID) match = TRUE;
- break;
- case em_82544:
- if(hw->phy_id == M88E1000_I_PHY_ID) match = TRUE;
- break;
- case em_82540:
- case em_82545:
- case em_82545_rev_3:
- case em_82546:
- case em_82546_rev_3:
- if(hw->phy_id == M88E1011_I_PHY_ID) match = TRUE;
- break;
- case em_82541:
- case em_82541_rev_2:
- case em_82547:
- case em_82547_rev_2:
- if(hw->phy_id == IGP01E1000_I_PHY_ID) match = TRUE;
- break;
- case em_82573:
- if(hw->phy_id == M88E1111_I_PHY_ID) match = TRUE;
- break;
- default:
- DEBUGOUT1("Invalid MAC type %d\n", hw->mac_type);
- return -E1000_ERR_CONFIG;
- }
- phy_init_status = em_set_phy_type(hw);
-
- if ((match) && (phy_init_status == E1000_SUCCESS)) {
- DEBUGOUT1("PHY ID 0x%X detected\n", hw->phy_id);
- return E1000_SUCCESS;
- }
- DEBUGOUT1("Invalid PHY ID 0x%X\n", hw->phy_id);
- return -E1000_ERR_PHY;
-}
-
-/******************************************************************************
-* Resets the PHY's DSP
-*
-* hw - Struct containing variables accessed by shared code
-******************************************************************************/
-static int32_t
-em_phy_reset_dsp(struct em_hw *hw)
-{
- int32_t ret_val;
- DEBUGFUNC("em_phy_reset_dsp");
-
- do {
- ret_val = em_write_phy_reg(hw, 29, 0x001d);
- if(ret_val) break;
- ret_val = em_write_phy_reg(hw, 30, 0x00c1);
- if(ret_val) break;
- ret_val = em_write_phy_reg(hw, 30, 0x0000);
- if(ret_val) break;
- ret_val = E1000_SUCCESS;
- } while(0);
-
- return ret_val;
-}
-
-/******************************************************************************
-* Get PHY information from various PHY registers for igp PHY only.
-*
-* hw - Struct containing variables accessed by shared code
-* phy_info - PHY information structure
-******************************************************************************/
-int32_t
-em_phy_igp_get_info(struct em_hw *hw,
- struct em_phy_info *phy_info)
-{
- int32_t ret_val;
- uint16_t phy_data, polarity, min_length, max_length, average;
-
- DEBUGFUNC("em_phy_igp_get_info");
-
- /* The downshift status is checked only once, after link is established,
- * and it stored in the hw->speed_downgraded parameter. */
- phy_info->downshift = (em_downshift)hw->speed_downgraded;
-
- /* IGP01E1000 does not need to support it. */
- phy_info->extended_10bt_distance = em_10bt_ext_dist_enable_normal;
-
- /* IGP01E1000 always correct polarity reversal */
- phy_info->polarity_correction = em_polarity_reversal_enabled;
-
- /* Check polarity status */
- ret_val = em_check_polarity(hw, &polarity);
- if(ret_val)
- return ret_val;
-
- phy_info->cable_polarity = polarity;
-
- ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &phy_data);
- if(ret_val)
- return ret_val;
-
- phy_info->mdix_mode = (phy_data & IGP01E1000_PSSR_MDIX) >>
- IGP01E1000_PSSR_MDIX_SHIFT;
-
- if((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
- IGP01E1000_PSSR_SPEED_1000MBPS) {
- /* Local/Remote Receiver Information are only valid at 1000 Mbps */
- ret_val = em_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
- if(ret_val)
- return ret_val;
-
- phy_info->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS) >>
- SR_1000T_LOCAL_RX_STATUS_SHIFT;
- phy_info->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS) >>
- SR_1000T_REMOTE_RX_STATUS_SHIFT;
-
- /* Get cable length */
- ret_val = em_get_cable_length(hw, &min_length, &max_length);
- if(ret_val)
- return ret_val;
-
- /* Translate to old method */
- average = (max_length + min_length) / 2;
-
- if(average <= em_igp_cable_length_50)
- phy_info->cable_length = em_cable_length_50;
- else if(average <= em_igp_cable_length_80)
- phy_info->cable_length = em_cable_length_50_80;
- else if(average <= em_igp_cable_length_110)
- phy_info->cable_length = em_cable_length_80_110;
- else if(average <= em_igp_cable_length_140)
- phy_info->cable_length = em_cable_length_110_140;
- else
- phy_info->cable_length = em_cable_length_140;
- }
-
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
-* Get PHY information from various PHY registers fot m88 PHY only.
-*
-* hw - Struct containing variables accessed by shared code
-* phy_info - PHY information structure
-******************************************************************************/
-int32_t
-em_phy_m88_get_info(struct em_hw *hw,
- struct em_phy_info *phy_info)
-{
- int32_t ret_val;
- uint16_t phy_data, polarity;
-
- DEBUGFUNC("em_phy_m88_get_info");
-
- /* The downshift status is checked only once, after link is established,
- * and it stored in the hw->speed_downgraded parameter. */
- phy_info->downshift = (em_downshift)hw->speed_downgraded;
-
- ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
- if(ret_val)
- return ret_val;
-
- phy_info->extended_10bt_distance =
- (phy_data & M88E1000_PSCR_10BT_EXT_DIST_ENABLE) >>
- M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT;
- phy_info->polarity_correction =
- (phy_data & M88E1000_PSCR_POLARITY_REVERSAL) >>
- M88E1000_PSCR_POLARITY_REVERSAL_SHIFT;
-
- /* Check polarity status */
- ret_val = em_check_polarity(hw, &polarity);
- if(ret_val)
- return ret_val;
- phy_info->cable_polarity = polarity;
-
- ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
- if(ret_val)
- return ret_val;
-
- phy_info->mdix_mode = (phy_data & M88E1000_PSSR_MDIX) >>
- M88E1000_PSSR_MDIX_SHIFT;
-
- if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
- /* Cable Length Estimation and Local/Remote Receiver Information
- * are only valid at 1000 Mbps.
- */
- phy_info->cable_length = ((phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
- M88E1000_PSSR_CABLE_LENGTH_SHIFT);
-
- ret_val = em_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
- if(ret_val)
- return ret_val;
-
- phy_info->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS) >>
- SR_1000T_LOCAL_RX_STATUS_SHIFT;
-
- phy_info->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS) >>
- SR_1000T_REMOTE_RX_STATUS_SHIFT;
- }
-
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
-* Get PHY information from various PHY registers
-*
-* hw - Struct containing variables accessed by shared code
-* phy_info - PHY information structure
-******************************************************************************/
-int32_t
-em_phy_get_info(struct em_hw *hw,
- struct em_phy_info *phy_info)
-{
- int32_t ret_val;
- uint16_t phy_data;
-
- DEBUGFUNC("em_phy_get_info");
-
- phy_info->cable_length = em_cable_length_undefined;
- phy_info->extended_10bt_distance = em_10bt_ext_dist_enable_undefined;
- phy_info->cable_polarity = em_rev_polarity_undefined;
- phy_info->downshift = em_downshift_undefined;
- phy_info->polarity_correction = em_polarity_reversal_undefined;
- phy_info->mdix_mode = em_auto_x_mode_undefined;
- phy_info->local_rx = em_1000t_rx_status_undefined;
- phy_info->remote_rx = em_1000t_rx_status_undefined;
-
- if(hw->media_type != em_media_type_copper) {
- DEBUGOUT("PHY info is only valid for copper media\n");
- return -E1000_ERR_CONFIG;
- }
-
- ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data);
- if(ret_val)
- return ret_val;
-
- ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data);
- if(ret_val)
- return ret_val;
-
- if((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) {
- DEBUGOUT("PHY info is only valid if link is up\n");
- return -E1000_ERR_CONFIG;
- }
-
- if(hw->phy_type == em_phy_igp ||
- hw->phy_type == em_phy_igp_2)
- return em_phy_igp_get_info(hw, phy_info);
- else
- return em_phy_m88_get_info(hw, phy_info);
-}
-
-int32_t
-em_validate_mdi_setting(struct em_hw *hw)
-{
- DEBUGFUNC("em_validate_mdi_settings");
-
- if(!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) {
- DEBUGOUT("Invalid MDI setting detected\n");
- hw->mdix = 1;
- return -E1000_ERR_CONFIG;
- }
- return E1000_SUCCESS;
-}
-
-
-/******************************************************************************
- * Sets up eeprom variables in the hw struct. Must be called after mac_type
- * is configured.
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-int32_t
-em_init_eeprom_params(struct em_hw *hw)
-{
- struct em_eeprom_info *eeprom = &hw->eeprom;
- uint32_t eecd = E1000_READ_REG(hw, EECD);
- int32_t ret_val = E1000_SUCCESS;
- uint16_t eeprom_size;
-
- DEBUGFUNC("em_init_eeprom_params");
-
- switch (hw->mac_type) {
- case em_82542_rev2_0:
- case em_82542_rev2_1:
- case em_82543:
- case em_82544:
- eeprom->type = em_eeprom_microwire;
- eeprom->word_size = 64;
- eeprom->opcode_bits = 3;
- eeprom->address_bits = 6;
- eeprom->delay_usec = 50;
- eeprom->use_eerd = FALSE;
- eeprom->use_eewr = FALSE;
- break;
- case em_82540:
- case em_82545:
- case em_82545_rev_3:
- case em_82546:
- case em_82546_rev_3:
- eeprom->type = em_eeprom_microwire;
- eeprom->opcode_bits = 3;
- eeprom->delay_usec = 50;
- if(eecd & E1000_EECD_SIZE) {
- eeprom->word_size = 256;
- eeprom->address_bits = 8;
- } else {
- eeprom->word_size = 64;
- eeprom->address_bits = 6;
- }
- eeprom->use_eerd = FALSE;
- eeprom->use_eewr = FALSE;
- break;
- case em_82541:
- case em_82541_rev_2:
- case em_82547:
- case em_82547_rev_2:
- if (eecd & E1000_EECD_TYPE) {
- eeprom->type = em_eeprom_spi;
- eeprom->opcode_bits = 8;
- eeprom->delay_usec = 1;
- if (eecd & E1000_EECD_ADDR_BITS) {
- eeprom->page_size = 32;
- eeprom->address_bits = 16;
- } else {
- eeprom->page_size = 8;
- eeprom->address_bits = 8;
- }
- } else {
- eeprom->type = em_eeprom_microwire;
- eeprom->opcode_bits = 3;
- eeprom->delay_usec = 50;
- if (eecd & E1000_EECD_ADDR_BITS) {
- eeprom->word_size = 256;
- eeprom->address_bits = 8;
- } else {
- eeprom->word_size = 64;
- eeprom->address_bits = 6;
- }
- }
- eeprom->use_eerd = FALSE;
- eeprom->use_eewr = FALSE;
- break;
- case em_82573:
- eeprom->type = em_eeprom_spi;
- eeprom->opcode_bits = 8;
- eeprom->delay_usec = 1;
- if (eecd & E1000_EECD_ADDR_BITS) {
- eeprom->page_size = 32;
- eeprom->address_bits = 16;
- } else {
- eeprom->page_size = 8;
- eeprom->address_bits = 8;
- }
- eeprom->use_eerd = TRUE;
- eeprom->use_eewr = TRUE;
- if(em_is_onboard_nvm_eeprom(hw) == FALSE) {
- eeprom->type = em_eeprom_flash;
- eeprom->word_size = 2048;
-
- /* Ensure that the Autonomous FLASH update bit is cleared due to
- * Flash update issue on parts which use a FLASH for NVM. */
- eecd &= ~E1000_EECD_AUPDEN;
- E1000_WRITE_REG(hw, EECD, eecd);
- }
- break;
- default:
- break;
- }
-
- if (eeprom->type == em_eeprom_spi) {
- /* eeprom_size will be an enum [0..8] that maps to eeprom sizes 128B to
- * 32KB (incremented by powers of 2).
- */
- if(hw->mac_type <= em_82547_rev_2) {
- /* Set to default value for initial eeprom read. */
- eeprom->word_size = 64;
- ret_val = em_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size);
- if(ret_val)
- return ret_val;
- eeprom_size = (eeprom_size & EEPROM_SIZE_MASK) >> EEPROM_SIZE_SHIFT;
- /* 256B eeprom size was not supported in earlier hardware, so we
- * bump eeprom_size up one to ensure that "1" (which maps to 256B)
- * is never the result used in the shifting logic below. */
- if(eeprom_size)
- eeprom_size++;
- } else {
- eeprom_size = (uint16_t)((eecd & E1000_EECD_SIZE_EX_MASK) >>
- E1000_EECD_SIZE_EX_SHIFT);
- }
-
- eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
- }
- return ret_val;
-}
-
-/******************************************************************************
- * Raises the EEPROM's clock input.
- *
- * hw - Struct containing variables accessed by shared code
- * eecd - EECD's current value
- *****************************************************************************/
-static void
-em_raise_ee_clk(struct em_hw *hw,
- uint32_t *eecd)
-{
- /* Raise the clock input to the EEPROM (by setting the SK bit), and then
- * wait <delay> microseconds.
- */
- *eecd = *eecd | E1000_EECD_SK;
- E1000_WRITE_REG(hw, EECD, *eecd);
- E1000_WRITE_FLUSH(hw);
- usec_delay(hw->eeprom.delay_usec);
-}
-
-/******************************************************************************
- * Lowers the EEPROM's clock input.
- *
- * hw - Struct containing variables accessed by shared code
- * eecd - EECD's current value
- *****************************************************************************/
-static void
-em_lower_ee_clk(struct em_hw *hw,
- uint32_t *eecd)
-{
- /* Lower the clock input to the EEPROM (by clearing the SK bit), and then
- * wait 50 microseconds.
- */
- *eecd = *eecd & ~E1000_EECD_SK;
- E1000_WRITE_REG(hw, EECD, *eecd);
- E1000_WRITE_FLUSH(hw);
- usec_delay(hw->eeprom.delay_usec);
-}
-
-/******************************************************************************
- * Shift data bits out to the EEPROM.
- *
- * hw - Struct containing variables accessed by shared code
- * data - data to send to the EEPROM
- * count - number of bits to shift out
- *****************************************************************************/
-static void
-em_shift_out_ee_bits(struct em_hw *hw,
- uint16_t data,
- uint16_t count)
-{
- struct em_eeprom_info *eeprom = &hw->eeprom;
- uint32_t eecd;
- uint32_t mask;
-
- /* We need to shift "count" bits out to the EEPROM. So, value in the
- * "data" parameter will be shifted out to the EEPROM one bit at a time.
- * In order to do this, "data" must be broken down into bits.
- */
- mask = 0x01 << (count - 1);
- eecd = E1000_READ_REG(hw, EECD);
- if (eeprom->type == em_eeprom_microwire) {
- eecd &= ~E1000_EECD_DO;
- } else if (eeprom->type == em_eeprom_spi) {
- eecd |= E1000_EECD_DO;
- }
- do {
- /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
- * and then raising and then lowering the clock (the SK bit controls
- * the clock input to the EEPROM). A "0" is shifted out to the EEPROM
- * by setting "DI" to "0" and then raising and then lowering the clock.
- */
- eecd &= ~E1000_EECD_DI;
-
- if(data & mask)
- eecd |= E1000_EECD_DI;
-
- E1000_WRITE_REG(hw, EECD, eecd);
- E1000_WRITE_FLUSH(hw);
-
- usec_delay(eeprom->delay_usec);
-
- em_raise_ee_clk(hw, &eecd);
- em_lower_ee_clk(hw, &eecd);
-
- mask = mask >> 1;
-
- } while(mask);
-
- /* We leave the "DI" bit set to "0" when we leave this routine. */
- eecd &= ~E1000_EECD_DI;
- E1000_WRITE_REG(hw, EECD, eecd);
-}
-
-/******************************************************************************
- * Shift data bits in from the EEPROM
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-static uint16_t
-em_shift_in_ee_bits(struct em_hw *hw,
- uint16_t count)
-{
- uint32_t eecd;
- uint32_t i;
- uint16_t data;
-
- /* In order to read a register from the EEPROM, we need to shift 'count'
- * bits in from the EEPROM. Bits are "shifted in" by raising the clock
- * input to the EEPROM (setting the SK bit), and then reading the value of
- * the "DO" bit. During this "shifting in" process the "DI" bit should
- * always be clear.
- */
-
- eecd = E1000_READ_REG(hw, EECD);
-
- eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
- data = 0;
-
- for(i = 0; i < count; i++) {
- data = data << 1;
- em_raise_ee_clk(hw, &eecd);
-
- eecd = E1000_READ_REG(hw, EECD);
-
- eecd &= ~(E1000_EECD_DI);
- if(eecd & E1000_EECD_DO)
- data |= 1;
-
- em_lower_ee_clk(hw, &eecd);
- }
-
- return data;
-}
-
-/******************************************************************************
- * Prepares EEPROM for access
- *
- * hw - Struct containing variables accessed by shared code
- *
- * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
- * function should be called before issuing a command to the EEPROM.
- *****************************************************************************/
-static int32_t
-em_acquire_eeprom(struct em_hw *hw)
-{
- struct em_eeprom_info *eeprom = &hw->eeprom;
- uint32_t eecd, i=0;
-
- DEBUGFUNC("em_acquire_eeprom");
-
- if(em_get_hw_eeprom_semaphore(hw))
- return -E1000_ERR_EEPROM;
-
- eecd = E1000_READ_REG(hw, EECD);
-
- if (hw->mac_type != em_82573) {
- /* Request EEPROM Access */
- if(hw->mac_type > em_82544) {
- eecd |= E1000_EECD_REQ;
- E1000_WRITE_REG(hw, EECD, eecd);
- eecd = E1000_READ_REG(hw, EECD);
- while((!(eecd & E1000_EECD_GNT)) &&
- (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
- i++;
- usec_delay(5);
- eecd = E1000_READ_REG(hw, EECD);
- }
- if(!(eecd & E1000_EECD_GNT)) {
- eecd &= ~E1000_EECD_REQ;
- E1000_WRITE_REG(hw, EECD, eecd);
- DEBUGOUT("Could not acquire EEPROM grant\n");
- return -E1000_ERR_EEPROM;
- }
- }
- }
-
- /* Setup EEPROM for Read/Write */
-
- if (eeprom->type == em_eeprom_microwire) {
- /* Clear SK and DI */
- eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
- E1000_WRITE_REG(hw, EECD, eecd);
-
- /* Set CS */
- eecd |= E1000_EECD_CS;
- E1000_WRITE_REG(hw, EECD, eecd);
- } else if (eeprom->type == em_eeprom_spi) {
- /* Clear SK and CS */
- eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
- E1000_WRITE_REG(hw, EECD, eecd);
- usec_delay(1);
- }
-
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Returns EEPROM to a "standby" state
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-static void
-em_standby_eeprom(struct em_hw *hw)
-{
- struct em_eeprom_info *eeprom = &hw->eeprom;
- uint32_t eecd;
-
- eecd = E1000_READ_REG(hw, EECD);
-
- if(eeprom->type == em_eeprom_microwire) {
- eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
- E1000_WRITE_REG(hw, EECD, eecd);
- E1000_WRITE_FLUSH(hw);
- usec_delay(eeprom->delay_usec);
-
- /* Clock high */
- eecd |= E1000_EECD_SK;
- E1000_WRITE_REG(hw, EECD, eecd);
- E1000_WRITE_FLUSH(hw);
- usec_delay(eeprom->delay_usec);
-
- /* Select EEPROM */
- eecd |= E1000_EECD_CS;
- E1000_WRITE_REG(hw, EECD, eecd);
- E1000_WRITE_FLUSH(hw);
- usec_delay(eeprom->delay_usec);
-
- /* Clock low */
- eecd &= ~E1000_EECD_SK;
- E1000_WRITE_REG(hw, EECD, eecd);
- E1000_WRITE_FLUSH(hw);
- usec_delay(eeprom->delay_usec);
- } else if(eeprom->type == em_eeprom_spi) {
- /* Toggle CS to flush commands */
- eecd |= E1000_EECD_CS;
- E1000_WRITE_REG(hw, EECD, eecd);
- E1000_WRITE_FLUSH(hw);
- usec_delay(eeprom->delay_usec);
- eecd &= ~E1000_EECD_CS;
- E1000_WRITE_REG(hw, EECD, eecd);
- E1000_WRITE_FLUSH(hw);
- usec_delay(eeprom->delay_usec);
- }
-}
-
-/******************************************************************************
- * Terminates a command by inverting the EEPROM's chip select pin
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-static void
-em_release_eeprom(struct em_hw *hw)
-{
- uint32_t eecd;
-
- DEBUGFUNC("em_release_eeprom");
-
- eecd = E1000_READ_REG(hw, EECD);
-
- if (hw->eeprom.type == em_eeprom_spi) {
- eecd |= E1000_EECD_CS; /* Pull CS high */
- eecd &= ~E1000_EECD_SK; /* Lower SCK */
-
- E1000_WRITE_REG(hw, EECD, eecd);
-
- usec_delay(hw->eeprom.delay_usec);
- } else if(hw->eeprom.type == em_eeprom_microwire) {
- /* cleanup eeprom */
-
- /* CS on Microwire is active-high */
- eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
-
- E1000_WRITE_REG(hw, EECD, eecd);
-
- /* Rising edge of clock */
- eecd |= E1000_EECD_SK;
- E1000_WRITE_REG(hw, EECD, eecd);
- E1000_WRITE_FLUSH(hw);
- usec_delay(hw->eeprom.delay_usec);
-
- /* Falling edge of clock */
- eecd &= ~E1000_EECD_SK;
- E1000_WRITE_REG(hw, EECD, eecd);
- E1000_WRITE_FLUSH(hw);
- usec_delay(hw->eeprom.delay_usec);
- }
-
- /* Stop requesting EEPROM access */
- if(hw->mac_type > em_82544) {
- eecd &= ~E1000_EECD_REQ;
- E1000_WRITE_REG(hw, EECD, eecd);
- }
-
- em_put_hw_eeprom_semaphore(hw);
-}
-
-/******************************************************************************
- * Reads a 16 bit word from the EEPROM.
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-int32_t
-em_spi_eeprom_ready(struct em_hw *hw)
-{
- uint16_t retry_count = 0;
- uint8_t spi_stat_reg;
-
- DEBUGFUNC("em_spi_eeprom_ready");
-
- /* Read "Status Register" repeatedly until the LSB is cleared. The
- * EEPROM will signal that the command has been completed by clearing
- * bit 0 of the internal status register. If it's not cleared within
- * 5 milliseconds, then error out.
- */
- retry_count = 0;
- do {
- em_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
- hw->eeprom.opcode_bits);
- spi_stat_reg = (uint8_t)em_shift_in_ee_bits(hw, 8);
- if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
- break;
-
- usec_delay(5);
- retry_count += 5;
-
- em_standby_eeprom(hw);
- } while(retry_count < EEPROM_MAX_RETRY_SPI);
-
- /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
- * only 0-5mSec on 5V devices)
- */
- if(retry_count >= EEPROM_MAX_RETRY_SPI) {
- DEBUGOUT("SPI EEPROM Status error\n");
- return -E1000_ERR_EEPROM;
- }
-
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Reads a 16 bit word from the EEPROM.
- *
- * hw - Struct containing variables accessed by shared code
- * offset - offset of word in the EEPROM to read
- * data - word read from the EEPROM
- * words - number of words to read
- *****************************************************************************/
-int32_t
-em_read_eeprom(struct em_hw *hw,
- uint16_t offset,
- uint16_t words,
- uint16_t *data)
-{
- struct em_eeprom_info *eeprom = &hw->eeprom;
- uint32_t i = 0;
- int32_t ret_val;
-
- DEBUGFUNC("em_read_eeprom");
-
- /* A check for invalid values: offset too large, too many words, and not
- * enough words.
- */
- if((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) ||
- (words == 0)) {
- DEBUGOUT("\"words\" parameter out of bounds\n");
- return -E1000_ERR_EEPROM;
- }
-
- /* FLASH reads without acquiring the semaphore are safe in 82573-based
- * controllers.
- */
- if ((em_is_onboard_nvm_eeprom(hw) == TRUE) ||
- (hw->mac_type != em_82573)) {
- /* Prepare the EEPROM for reading */
- if(em_acquire_eeprom(hw) != E1000_SUCCESS)
- return -E1000_ERR_EEPROM;
- }
-
- if(eeprom->use_eerd == TRUE) {
- ret_val = em_read_eeprom_eerd(hw, offset, words, data);
- if ((em_is_onboard_nvm_eeprom(hw) == TRUE) ||
- (hw->mac_type != em_82573))
- em_release_eeprom(hw);
- return ret_val;
- }
-
- if(eeprom->type == em_eeprom_spi) {
- uint16_t word_in;
- uint8_t read_opcode = EEPROM_READ_OPCODE_SPI;
-
- if(em_spi_eeprom_ready(hw)) {
- em_release_eeprom(hw);
- return -E1000_ERR_EEPROM;
- }
-
- em_standby_eeprom(hw);
-
- /* Some SPI eeproms use the 8th address bit embedded in the opcode */
- if((eeprom->address_bits == 8) && (offset >= 128))
- read_opcode |= EEPROM_A8_OPCODE_SPI;
-
- /* Send the READ command (opcode + addr) */
- em_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
- em_shift_out_ee_bits(hw, (uint16_t)(offset*2), eeprom->address_bits);
-
- /* Read the data. The address of the eeprom internally increments with
- * each byte (spi) being read, saving on the overhead of eeprom setup
- * and tear-down. The address counter will roll over if reading beyond
- * the size of the eeprom, thus allowing the entire memory to be read
- * starting from any offset. */
- for (i = 0; i < words; i++) {
- word_in = em_shift_in_ee_bits(hw, 16);
- data[i] = (word_in >> 8) | (word_in << 8);
- }
- } else if(eeprom->type == em_eeprom_microwire) {
- for (i = 0; i < words; i++) {
- /* Send the READ command (opcode + addr) */
- em_shift_out_ee_bits(hw, EEPROM_READ_OPCODE_MICROWIRE,
- eeprom->opcode_bits);
- em_shift_out_ee_bits(hw, (uint16_t)(offset + i),
- eeprom->address_bits);
-
- /* Read the data. For microwire, each word requires the overhead
- * of eeprom setup and tear-down. */
- data[i] = em_shift_in_ee_bits(hw, 16);
- em_standby_eeprom(hw);
- }
- }
-
- /* End this read operation */
- em_release_eeprom(hw);
-
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Reads a 16 bit word from the EEPROM using the EERD register.
- *
- * hw - Struct containing variables accessed by shared code
- * offset - offset of word in the EEPROM to read
- * data - word read from the EEPROM
- * words - number of words to read
- *****************************************************************************/
-int32_t
-em_read_eeprom_eerd(struct em_hw *hw,
- uint16_t offset,
- uint16_t words,
- uint16_t *data)
-{
- uint32_t i, eerd = 0;
- int32_t error = 0;
-
- for (i = 0; i < words; i++) {
- eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) +
- E1000_EEPROM_RW_REG_START;
-
- E1000_WRITE_REG(hw, EERD, eerd);
- error = em_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ);
-
- if(error) {
- break;
- }
- data[i] = (E1000_READ_REG(hw, EERD) >> E1000_EEPROM_RW_REG_DATA);
-
- }
-
- return error;
-}
-
-/******************************************************************************
- * Writes a 16 bit word from the EEPROM using the EEWR register.
- *
- * hw - Struct containing variables accessed by shared code
- * offset - offset of word in the EEPROM to read
- * data - word read from the EEPROM
- * words - number of words to read
- *****************************************************************************/
-int32_t
-em_write_eeprom_eewr(struct em_hw *hw,
- uint16_t offset,
- uint16_t words,
- uint16_t *data)
-{
- uint32_t register_value = 0;
- uint32_t i = 0;
- int32_t error = 0;
-
- for (i = 0; i < words; i++) {
- register_value = (data[i] << E1000_EEPROM_RW_REG_DATA) |
- ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) |
- E1000_EEPROM_RW_REG_START;
-
- error = em_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE);
- if(error) {
- break;
- }
-
- E1000_WRITE_REG(hw, EEWR, register_value);
-
- error = em_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE);
-
- if(error) {
- break;
- }
- }
-
- return error;
-}
-
-/******************************************************************************
- * Polls the status bit (bit 1) of the EERD to determine when the read is done.
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-int32_t
-em_poll_eerd_eewr_done(struct em_hw *hw, int eerd)
-{
- uint32_t attempts = 100000;
- uint32_t i, reg = 0;
- int32_t done = E1000_ERR_EEPROM;
-
- for(i = 0; i < attempts; i++) {
- if(eerd == E1000_EEPROM_POLL_READ)
- reg = E1000_READ_REG(hw, EERD);
- else
- reg = E1000_READ_REG(hw, EEWR);
-
- if(reg & E1000_EEPROM_RW_REG_DONE) {
- done = E1000_SUCCESS;
- break;
- }
- usec_delay(5);
- }
-
- return done;
-}
-
-/***************************************************************************
-* Description: Determines if the onboard NVM is FLASH or EEPROM.
-*
-* hw - Struct containing variables accessed by shared code
-****************************************************************************/
-boolean_t
-em_is_onboard_nvm_eeprom(struct em_hw *hw)
-{
- uint32_t eecd = 0;
-
- if(hw->mac_type == em_82573) {
- eecd = E1000_READ_REG(hw, EECD);
-
- /* Isolate bits 15 & 16 */
- eecd = ((eecd >> 15) & 0x03);
-
- /* If both bits are set, device is Flash type */
- if(eecd == 0x03) {
- return FALSE;
- }
- }
- return TRUE;
-}
-
-/******************************************************************************
- * Verifies that the EEPROM has a valid checksum
- *
- * hw - Struct containing variables accessed by shared code
- *
- * Reads the first 64 16 bit words of the EEPROM and sums the values read.
- * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
- * valid.
- *****************************************************************************/
-int32_t
-em_validate_eeprom_checksum(struct em_hw *hw)
-{
- uint16_t checksum = 0;
- uint16_t i, eeprom_data;
-
- DEBUGFUNC("em_validate_eeprom_checksum");
-
- if ((hw->mac_type == em_82573) &&
- (em_is_onboard_nvm_eeprom(hw) == FALSE)) {
- /* Check bit 4 of word 10h. If it is 0, firmware is done updating
- * 10h-12h. Checksum may need to be fixed. */
- em_read_eeprom(hw, 0x10, 1, &eeprom_data);
- if ((eeprom_data & 0x10) == 0) {
- /* Read 0x23 and check bit 15. This bit is a 1 when the checksum
- * has already been fixed. If the checksum is still wrong and this
- * bit is a 1, we need to return bad checksum. Otherwise, we need
- * to set this bit to a 1 and update the checksum. */
- em_read_eeprom(hw, 0x23, 1, &eeprom_data);
- if ((eeprom_data & 0x8000) == 0) {
- eeprom_data |= 0x8000;
- em_write_eeprom(hw, 0x23, 1, &eeprom_data);
- em_update_eeprom_checksum(hw);
- }
- }
- }
-
- for(i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
- if(em_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
- DEBUGOUT("EEPROM Read Error\n");
- return -E1000_ERR_EEPROM;
- }
- checksum += eeprom_data;
- }
-
- if(checksum == (uint16_t) EEPROM_SUM)
- return E1000_SUCCESS;
- else {
- DEBUGOUT("EEPROM Checksum Invalid\n");
- return -E1000_ERR_EEPROM;
- }
-}
-
-/******************************************************************************
- * Calculates the EEPROM checksum and writes it to the EEPROM
- *
- * hw - Struct containing variables accessed by shared code
- *
- * Sums the first 63 16 bit words of the EEPROM. Subtracts the sum from 0xBABA.
- * Writes the difference to word offset 63 of the EEPROM.
- *****************************************************************************/
-int32_t
-em_update_eeprom_checksum(struct em_hw *hw)
-{
- uint16_t checksum = 0;
- uint16_t i, eeprom_data;
-
- DEBUGFUNC("em_update_eeprom_checksum");
-
- for(i = 0; i < EEPROM_CHECKSUM_REG; i++) {
- if(em_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
- DEBUGOUT("EEPROM Read Error\n");
- return -E1000_ERR_EEPROM;
- }
- checksum += eeprom_data;
- }
- checksum = (uint16_t) EEPROM_SUM - checksum;
- if(em_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) {
- DEBUGOUT("EEPROM Write Error\n");
- return -E1000_ERR_EEPROM;
- } else if (hw->eeprom.type == em_eeprom_flash) {
- em_commit_shadow_ram(hw);
- }
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Parent function for writing words to the different EEPROM types.
- *
- * hw - Struct containing variables accessed by shared code
- * offset - offset within the EEPROM to be written to
- * words - number of words to write
- * data - 16 bit word to be written to the EEPROM
- *
- * If em_update_eeprom_checksum is not called after this function, the
- * EEPROM will most likely contain an invalid checksum.
- *****************************************************************************/
-int32_t
-em_write_eeprom(struct em_hw *hw,
- uint16_t offset,
- uint16_t words,
- uint16_t *data)
-{
- struct em_eeprom_info *eeprom = &hw->eeprom;
- int32_t status = 0;
-
- DEBUGFUNC("em_write_eeprom");
-
- /* A check for invalid values: offset too large, too many words, and not
- * enough words.
- */
- if((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) ||
- (words == 0)) {
- DEBUGOUT("\"words\" parameter out of bounds\n");
- return -E1000_ERR_EEPROM;
- }
-
- /* 82573 reads only through eerd */
- if(eeprom->use_eewr == TRUE)
- return em_write_eeprom_eewr(hw, offset, words, data);
-
- /* Prepare the EEPROM for writing */
- if (em_acquire_eeprom(hw) != E1000_SUCCESS)
- return -E1000_ERR_EEPROM;
-
- if(eeprom->type == em_eeprom_microwire) {
- status = em_write_eeprom_microwire(hw, offset, words, data);
- } else {
- status = em_write_eeprom_spi(hw, offset, words, data);
- msec_delay(10);
- }
-
- /* Done with writing */
- em_release_eeprom(hw);
-
- return status;
-}
-
-/******************************************************************************
- * Writes a 16 bit word to a given offset in an SPI EEPROM.
- *
- * hw - Struct containing variables accessed by shared code
- * offset - offset within the EEPROM to be written to
- * words - number of words to write
- * data - pointer to array of 8 bit words to be written to the EEPROM
- *
- *****************************************************************************/
-int32_t
-em_write_eeprom_spi(struct em_hw *hw,
- uint16_t offset,
- uint16_t words,
- uint16_t *data)
-{
- struct em_eeprom_info *eeprom = &hw->eeprom;
- uint16_t widx = 0;
-
- DEBUGFUNC("em_write_eeprom_spi");
-
- while (widx < words) {
- uint8_t write_opcode = EEPROM_WRITE_OPCODE_SPI;
-
- if(em_spi_eeprom_ready(hw)) return -E1000_ERR_EEPROM;
-
- em_standby_eeprom(hw);
-
- /* Send the WRITE ENABLE command (8 bit opcode ) */
- em_shift_out_ee_bits(hw, EEPROM_WREN_OPCODE_SPI,
- eeprom->opcode_bits);
-
- em_standby_eeprom(hw);
-
- /* Some SPI eeproms use the 8th address bit embedded in the opcode */
- if((eeprom->address_bits == 8) && (offset >= 128))
- write_opcode |= EEPROM_A8_OPCODE_SPI;
-
- /* Send the Write command (8-bit opcode + addr) */
- em_shift_out_ee_bits(hw, write_opcode, eeprom->opcode_bits);
-
- em_shift_out_ee_bits(hw, (uint16_t)((offset + widx)*2),
- eeprom->address_bits);
-
- /* Send the data */
-
- /* Loop to allow for up to whole page write (32 bytes) of eeprom */
- while (widx < words) {
- uint16_t word_out = data[widx];
- word_out = (word_out >> 8) | (word_out << 8);
- em_shift_out_ee_bits(hw, word_out, 16);
- widx++;
-
- /* Some larger eeprom sizes are capable of a 32-byte PAGE WRITE
- * operation, while the smaller eeproms are capable of an 8-byte
- * PAGE WRITE operation. Break the inner loop to pass new address
- */
- if((((offset + widx)*2) % eeprom->page_size) == 0) {
- em_standby_eeprom(hw);
- break;
- }
- }
- }
-
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Writes a 16 bit word to a given offset in a Microwire EEPROM.
- *
- * hw - Struct containing variables accessed by shared code
- * offset - offset within the EEPROM to be written to
- * words - number of words to write
- * data - pointer to array of 16 bit words to be written to the EEPROM
- *
- *****************************************************************************/
-int32_t
-em_write_eeprom_microwire(struct em_hw *hw,
- uint16_t offset,
- uint16_t words,
- uint16_t *data)
-{
- struct em_eeprom_info *eeprom = &hw->eeprom;
- uint32_t eecd;
- uint16_t words_written = 0;
- uint16_t i = 0;
-
- DEBUGFUNC("em_write_eeprom_microwire");
-
- /* Send the write enable command to the EEPROM (3-bit opcode plus
- * 6/8-bit dummy address beginning with 11). It's less work to include
- * the 11 of the dummy address as part of the opcode than it is to shift
- * it over the correct number of bits for the address. This puts the
- * EEPROM into write/erase mode.
- */
- em_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE_MICROWIRE,
- (uint16_t)(eeprom->opcode_bits + 2));
-
- em_shift_out_ee_bits(hw, 0, (uint16_t)(eeprom->address_bits - 2));
-
- /* Prepare the EEPROM */
- em_standby_eeprom(hw);
-
- while (words_written < words) {
- /* Send the Write command (3-bit opcode + addr) */
- em_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE_MICROWIRE,
- eeprom->opcode_bits);
-
- em_shift_out_ee_bits(hw, (uint16_t)(offset + words_written),
- eeprom->address_bits);
-
- /* Send the data */
- em_shift_out_ee_bits(hw, data[words_written], 16);
-
- /* Toggle the CS line. This in effect tells the EEPROM to execute
- * the previous command.
- */
- em_standby_eeprom(hw);
-
- /* Read DO repeatedly until it is high (equal to '1'). The EEPROM will
- * signal that the command has been completed by raising the DO signal.
- * If DO does not go high in 10 milliseconds, then error out.
- */
- for(i = 0; i < 200; i++) {
- eecd = E1000_READ_REG(hw, EECD);
- if(eecd & E1000_EECD_DO) break;
- usec_delay(50);
- }
- if(i == 200) {
- DEBUGOUT("EEPROM Write did not complete\n");
- return -E1000_ERR_EEPROM;
- }
-
- /* Recover from write */
- em_standby_eeprom(hw);
-
- words_written++;
- }
-
- /* Send the write disable command to the EEPROM (3-bit opcode plus
- * 6/8-bit dummy address beginning with 10). It's less work to include
- * the 10 of the dummy address as part of the opcode than it is to shift
- * it over the correct number of bits for the address. This takes the
- * EEPROM out of write/erase mode.
- */
- em_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE_MICROWIRE,
- (uint16_t)(eeprom->opcode_bits + 2));
-
- em_shift_out_ee_bits(hw, 0, (uint16_t)(eeprom->address_bits - 2));
-
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Flushes the cached eeprom to NVM. This is done by saving the modified values
- * in the eeprom cache and the non modified values in the currently active bank
- * to the new bank.
- *
- * hw - Struct containing variables accessed by shared code
- * offset - offset of word in the EEPROM to read
- * data - word read from the EEPROM
- * words - number of words to read
- *****************************************************************************/
-int32_t
-em_commit_shadow_ram(struct em_hw *hw)
-{
- uint32_t attempts = 100000;
- uint32_t eecd = 0;
- uint32_t flop = 0;
- uint32_t i = 0;
- int32_t error = E1000_SUCCESS;
-
- /* The flop register will be used to determine if flash type is STM */
- flop = E1000_READ_REG(hw, FLOP);
-
- if (hw->mac_type == em_82573) {
- for (i=0; i < attempts; i++) {
- eecd = E1000_READ_REG(hw, EECD);
- if ((eecd & E1000_EECD_FLUPD) == 0) {
- break;
- }
- usec_delay(5);
- }
-
- if (i == attempts) {
- return -E1000_ERR_EEPROM;
- }
-
- /* If STM opcode located in bits 15:8 of flop, reset firmware */
- if ((flop & 0xFF00) == E1000_STM_OPCODE) {
- E1000_WRITE_REG(hw, HICR, E1000_HICR_FW_RESET);
- }
-
- /* Perform the flash update */
- E1000_WRITE_REG(hw, EECD, eecd | E1000_EECD_FLUPD);
-
- for (i=0; i < attempts; i++) {
- eecd = E1000_READ_REG(hw, EECD);
- if ((eecd & E1000_EECD_FLUPD) == 0) {
- break;
- }
- usec_delay(5);
- }
-
- if (i == attempts) {
- return -E1000_ERR_EEPROM;
- }
- }
-
- return error;
-}
-
-/******************************************************************************
- * Reads the adapter's part number from the EEPROM
- *
- * hw - Struct containing variables accessed by shared code
- * part_num - Adapter's part number
- *****************************************************************************/
-int32_t
-em_read_part_num(struct em_hw *hw,
- uint32_t *part_num)
-{
- uint16_t offset = EEPROM_PBA_BYTE_1;
- uint16_t eeprom_data;
-
- DEBUGFUNC("em_read_part_num");
-
- /* Get word 0 from EEPROM */
- if(em_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
- DEBUGOUT("EEPROM Read Error\n");
- return -E1000_ERR_EEPROM;
- }
- /* Save word 0 in upper half of part_num */
- *part_num = (uint32_t) (eeprom_data << 16);
-
- /* Get word 1 from EEPROM */
- if(em_read_eeprom(hw, ++offset, 1, &eeprom_data) < 0) {
- DEBUGOUT("EEPROM Read Error\n");
- return -E1000_ERR_EEPROM;
- }
- /* Save word 1 in lower half of part_num */
- *part_num |= eeprom_data;
-
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
- * second function of dual function devices
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-int32_t
-em_read_mac_addr(struct em_hw * hw)
-{
- uint16_t offset;
- uint16_t eeprom_data, i;
-
- DEBUGFUNC("em_read_mac_addr");
-
- for(i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
- offset = i >> 1;
- if(em_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
- DEBUGOUT("EEPROM Read Error\n");
- return -E1000_ERR_EEPROM;
- }
- hw->perm_mac_addr[i] = (uint8_t) (eeprom_data & 0x00FF);
- hw->perm_mac_addr[i+1] = (uint8_t) (eeprom_data >> 8);
- }
- if(((hw->mac_type == em_82546) || (hw->mac_type == em_82546_rev_3)) &&
- (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1))
- hw->perm_mac_addr[5] ^= 0x01;
-
- for(i = 0; i < NODE_ADDRESS_SIZE; i++)
- hw->mac_addr[i] = hw->perm_mac_addr[i];
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Initializes receive address filters.
- *
- * hw - Struct containing variables accessed by shared code
- *
- * Places the MAC address in receive address register 0 and clears the rest
- * of the receive addresss registers. Clears the multicast table. Assumes
- * the receiver is in reset when the routine is called.
- *****************************************************************************/
-void
-em_init_rx_addrs(struct em_hw *hw)
-{
- uint32_t i;
- uint32_t rar_num;
-
- DEBUGFUNC("em_init_rx_addrs");
-
- /* Setup the receive address. */
- DEBUGOUT("Programming MAC Address into RAR[0]\n");
-
- em_rar_set(hw, hw->mac_addr, 0);
-
- rar_num = E1000_RAR_ENTRIES;
- /* Zero out the other 15 receive addresses. */
- DEBUGOUT("Clearing RAR[1-15]\n");
- for(i = 1; i < rar_num; i++) {
- E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
- E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
- }
-}
-
-/******************************************************************************
- * Updates the MAC's list of multicast addresses.
- *
- * hw - Struct containing variables accessed by shared code
- * mc_addr_list - the list of new multicast addresses
- * mc_addr_count - number of addresses
- * pad - number of bytes between addresses in the list
- * rar_used_count - offset where to start adding mc addresses into the RAR's
- *
- * The given list replaces any existing list. Clears the last 15 receive
- * address registers and the multicast table. Uses receive address registers
- * for the first 15 multicast addresses, and hashes the rest into the
- * multicast table.
- *****************************************************************************/
-void
-em_mc_addr_list_update(struct em_hw *hw,
- uint8_t *mc_addr_list,
- uint32_t mc_addr_count,
- uint32_t pad,
- uint32_t rar_used_count)
-{
- uint32_t hash_value;
- uint32_t i;
- uint32_t num_rar_entry;
- uint32_t num_mta_entry;
-
- DEBUGFUNC("em_mc_addr_list_update");
-
- /* Set the new number of MC addresses that we are being requested to use. */
- hw->num_mc_addrs = mc_addr_count;
-
- /* Clear RAR[1-15] */
- DEBUGOUT(" Clearing RAR[1-15]\n");
- num_rar_entry = E1000_RAR_ENTRIES;
- for(i = rar_used_count; i < num_rar_entry; i++) {
- E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
- E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
- }
-
- /* Clear the MTA */
- DEBUGOUT(" Clearing MTA\n");
- num_mta_entry = E1000_NUM_MTA_REGISTERS;
- for(i = 0; i < num_mta_entry; i++) {
- E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
- }
-
- /* Add the new addresses */
- for(i = 0; i < mc_addr_count; i++) {
- DEBUGOUT(" Adding the multicast addresses:\n");
- DEBUGOUT7(" MC Addr #%d =%.2X %.2X %.2X %.2X %.2X %.2X\n", i,
- mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad)],
- mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 1],
- mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 2],
- mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 3],
- mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 4],
- mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 5]);
-
- hash_value = em_hash_mc_addr(hw,
- mc_addr_list +
- (i * (ETH_LENGTH_OF_ADDRESS + pad)));
-
- DEBUGOUT1(" Hash value = 0x%03X\n", hash_value);
-
- /* Place this multicast address in the RAR if there is room, *
- * else put it in the MTA
- */
- if (rar_used_count < num_rar_entry) {
- em_rar_set(hw,
- mc_addr_list + (i * (ETH_LENGTH_OF_ADDRESS + pad)),
- rar_used_count);
- rar_used_count++;
- } else {
- em_mta_set(hw, hash_value);
- }
- }
- DEBUGOUT("MC Update Complete\n");
-}
-
-/******************************************************************************
- * Hashes an address to determine its location in the multicast table
- *
- * hw - Struct containing variables accessed by shared code
- * mc_addr - the multicast address to hash
- *****************************************************************************/
-uint32_t
-em_hash_mc_addr(struct em_hw *hw,
- uint8_t *mc_addr)
-{
- uint32_t hash_value = 0;
-
- /* The portion of the address that is used for the hash table is
- * determined by the mc_filter_type setting.
- */
- switch (hw->mc_filter_type) {
- /* [0] [1] [2] [3] [4] [5]
- * 01 AA 00 12 34 56
- * LSB MSB
- */
- case 0:
- /* [47:36] i.e. 0x563 for above example address */
- hash_value = ((mc_addr[4] >> 4) | (((uint16_t) mc_addr[5]) << 4));
- break;
- case 1:
- /* [46:35] i.e. 0xAC6 for above example address */
- hash_value = ((mc_addr[4] >> 3) | (((uint16_t) mc_addr[5]) << 5));
- break;
- case 2:
- /* [45:34] i.e. 0x5D8 for above example address */
- hash_value = ((mc_addr[4] >> 2) | (((uint16_t) mc_addr[5]) << 6));
- break;
- case 3:
- /* [43:32] i.e. 0x634 for above example address */
- hash_value = ((mc_addr[4]) | (((uint16_t) mc_addr[5]) << 8));
- break;
- }
-
- hash_value &= 0xFFF;
-
- return hash_value;
-}
-
-/******************************************************************************
- * Sets the bit in the multicast table corresponding to the hash value.
- *
- * hw - Struct containing variables accessed by shared code
- * hash_value - Multicast address hash value
- *****************************************************************************/
-void
-em_mta_set(struct em_hw *hw,
- uint32_t hash_value)
-{
- uint32_t hash_bit, hash_reg;
- uint32_t mta;
- uint32_t temp;
-
- /* The MTA is a register array of 128 32-bit registers.
- * It is treated like an array of 4096 bits. We want to set
- * bit BitArray[hash_value]. So we figure out what register
- * the bit is in, read it, OR in the new bit, then write
- * back the new value. The register is determined by the
- * upper 7 bits of the hash value and the bit within that
- * register are determined by the lower 5 bits of the value.
- */
- hash_reg = (hash_value >> 5) & 0x7F;
- hash_bit = hash_value & 0x1F;
-
- mta = E1000_READ_REG_ARRAY(hw, MTA, hash_reg);
-
- mta |= (1 << hash_bit);
-
- /* If we are on an 82544 and we are trying to write an odd offset
- * in the MTA, save off the previous entry before writing and
- * restore the old value after writing.
- */
- if((hw->mac_type == em_82544) && ((hash_reg & 0x1) == 1)) {
- temp = E1000_READ_REG_ARRAY(hw, MTA, (hash_reg - 1));
- E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta);
- E1000_WRITE_REG_ARRAY(hw, MTA, (hash_reg - 1), temp);
- } else {
- E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta);
- }
-}
-
-/******************************************************************************
- * Puts an ethernet address into a receive address register.
- *
- * hw - Struct containing variables accessed by shared code
- * addr - Address to put into receive address register
- * index - Receive address register to write
- *****************************************************************************/
-void
-em_rar_set(struct em_hw *hw,
- uint8_t *addr,
- uint32_t index)
-{
- uint32_t rar_low, rar_high;
-
- /* HW expects these in little endian so we reverse the byte order
- * from network order (big endian) to little endian
- */
- rar_low = ((uint32_t) addr[0] |
- ((uint32_t) addr[1] << 8) |
- ((uint32_t) addr[2] << 16) | ((uint32_t) addr[3] << 24));
-
- rar_high = ((uint32_t) addr[4] | ((uint32_t) addr[5] << 8) | E1000_RAH_AV);
-
- E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low);
- E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high);
-}
-
-/******************************************************************************
- * Writes a value to the specified offset in the VLAN filter table.
- *
- * hw - Struct containing variables accessed by shared code
- * offset - Offset in VLAN filer table to write
- * value - Value to write into VLAN filter table
- *****************************************************************************/
-void
-em_write_vfta(struct em_hw *hw,
- uint32_t offset,
- uint32_t value)
-{
- uint32_t temp;
-
- if((hw->mac_type == em_82544) && ((offset & 0x1) == 1)) {
- temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1));
- E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
- E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp);
- } else {
- E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
- }
-}
-
-/******************************************************************************
- * Clears the VLAN filer table
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-void
-em_clear_vfta(struct em_hw *hw)
-{
- uint32_t offset;
- uint32_t vfta_value = 0;
- uint32_t vfta_offset = 0;
- uint32_t vfta_bit_in_reg = 0;
-
- if (hw->mac_type == em_82573) {
- if (hw->mng_cookie.vlan_id != 0) {
- /* The VFTA is a 4096b bit-field, each identifying a single VLAN
- * ID. The following operations determine which 32b entry
- * (i.e. offset) into the array we want to set the VLAN ID
- * (i.e. bit) of the manageability unit. */
- vfta_offset = (hw->mng_cookie.vlan_id >>
- E1000_VFTA_ENTRY_SHIFT) &
- E1000_VFTA_ENTRY_MASK;
- vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id &
- E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
- }
- }
- for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
- /* If the offset we want to clear is the same offset of the
- * manageability VLAN ID, then clear all bits except that of the
- * manageability unit */
- vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
- E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value);
- }
-}
-
-int32_t
-em_id_led_init(struct em_hw * hw)
-{
- uint32_t ledctl;
- const uint32_t ledctl_mask = 0x000000FF;
- const uint32_t ledctl_on = E1000_LEDCTL_MODE_LED_ON;
- const uint32_t ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
- uint16_t eeprom_data, i, temp;
- const uint16_t led_mask = 0x0F;
-
- DEBUGFUNC("em_id_led_init");
-
- if(hw->mac_type < em_82540) {
- /* Nothing to do */
- return E1000_SUCCESS;
- }
-
- ledctl = E1000_READ_REG(hw, LEDCTL);
- hw->ledctl_default = ledctl;
- hw->ledctl_mode1 = hw->ledctl_default;
- hw->ledctl_mode2 = hw->ledctl_default;
-
- if(em_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) {
- DEBUGOUT("EEPROM Read Error\n");
- return -E1000_ERR_EEPROM;
- }
- if((eeprom_data== ID_LED_RESERVED_0000) ||
- (eeprom_data == ID_LED_RESERVED_FFFF)) eeprom_data = ID_LED_DEFAULT;
- for(i = 0; i < 4; i++) {
- temp = (eeprom_data >> (i << 2)) & led_mask;
- switch(temp) {
- case ID_LED_ON1_DEF2:
- case ID_LED_ON1_ON2:
- case ID_LED_ON1_OFF2:
- hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
- hw->ledctl_mode1 |= ledctl_on << (i << 3);
- break;
- case ID_LED_OFF1_DEF2:
- case ID_LED_OFF1_ON2:
- case ID_LED_OFF1_OFF2:
- hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
- hw->ledctl_mode1 |= ledctl_off << (i << 3);
- break;
- default:
- /* Do nothing */
- break;
- }
- switch(temp) {
- case ID_LED_DEF1_ON2:
- case ID_LED_ON1_ON2:
- case ID_LED_OFF1_ON2:
- hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
- hw->ledctl_mode2 |= ledctl_on << (i << 3);
- break;
- case ID_LED_DEF1_OFF2:
- case ID_LED_ON1_OFF2:
- case ID_LED_OFF1_OFF2:
- hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
- hw->ledctl_mode2 |= ledctl_off << (i << 3);
- break;
- default:
- /* Do nothing */
- break;
- }
- }
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Prepares SW controlable LED for use and saves the current state of the LED.
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-int32_t
-em_setup_led(struct em_hw *hw)
-{
- uint32_t ledctl;
- int32_t ret_val = E1000_SUCCESS;
-
- DEBUGFUNC("em_setup_led");
-
- switch(hw->mac_type) {
- case em_82542_rev2_0:
- case em_82542_rev2_1:
- case em_82543:
- case em_82544:
- /* No setup necessary */
- break;
- case em_82541:
- case em_82547:
- case em_82541_rev_2:
- case em_82547_rev_2:
- /* Turn off PHY Smart Power Down (if enabled) */
- ret_val = em_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
- &hw->phy_spd_default);
- if(ret_val)
- return ret_val;
- ret_val = em_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
- (uint16_t)(hw->phy_spd_default &
- ~IGP01E1000_GMII_SPD));
- if(ret_val)
- return ret_val;
- /* Fall Through */
- default:
- if(hw->media_type == em_media_type_fiber) {
- ledctl = E1000_READ_REG(hw, LEDCTL);
- /* Save current LEDCTL settings */
- hw->ledctl_default = ledctl;
- /* Turn off LED0 */
- ledctl &= ~(E1000_LEDCTL_LED0_IVRT |
- E1000_LEDCTL_LED0_BLINK |
- E1000_LEDCTL_LED0_MODE_MASK);
- ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
- E1000_LEDCTL_LED0_MODE_SHIFT);
- E1000_WRITE_REG(hw, LEDCTL, ledctl);
- } else if(hw->media_type == em_media_type_copper)
- E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode1);
- break;
- }
-
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Restores the saved state of the SW controlable LED.
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-int32_t
-em_cleanup_led(struct em_hw *hw)
-{
- int32_t ret_val = E1000_SUCCESS;
-
- DEBUGFUNC("em_cleanup_led");
-
- switch(hw->mac_type) {
- case em_82542_rev2_0:
- case em_82542_rev2_1:
- case em_82543:
- case em_82544:
- /* No cleanup necessary */
- break;
- case em_82541:
- case em_82547:
- case em_82541_rev_2:
- case em_82547_rev_2:
- /* Turn on PHY Smart Power Down (if previously enabled) */
- ret_val = em_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
- hw->phy_spd_default);
- if(ret_val)
- return ret_val;
- /* Fall Through */
- default:
- /* Restore LEDCTL settings */
- E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_default);
- break;
- }
-
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Turns on the software controllable LED
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-int32_t
-em_led_on(struct em_hw *hw)
-{
- uint32_t ctrl = E1000_READ_REG(hw, CTRL);
-
- DEBUGFUNC("em_led_on");
-
- switch(hw->mac_type) {
- case em_82542_rev2_0:
- case em_82542_rev2_1:
- case em_82543:
- /* Set SW Defineable Pin 0 to turn on the LED */
- ctrl |= E1000_CTRL_SWDPIN0;
- ctrl |= E1000_CTRL_SWDPIO0;
- break;
- case em_82544:
- if(hw->media_type == em_media_type_fiber) {
- /* Set SW Defineable Pin 0 to turn on the LED */
- ctrl |= E1000_CTRL_SWDPIN0;
- ctrl |= E1000_CTRL_SWDPIO0;
- } else {
- /* Clear SW Defineable Pin 0 to turn on the LED */
- ctrl &= ~E1000_CTRL_SWDPIN0;
- ctrl |= E1000_CTRL_SWDPIO0;
- }
- break;
- default:
- if(hw->media_type == em_media_type_fiber) {
- /* Clear SW Defineable Pin 0 to turn on the LED */
- ctrl &= ~E1000_CTRL_SWDPIN0;
- ctrl |= E1000_CTRL_SWDPIO0;
- } else if(hw->media_type == em_media_type_copper) {
- E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode2);
- return E1000_SUCCESS;
- }
- break;
- }
-
- E1000_WRITE_REG(hw, CTRL, ctrl);
-
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Turns off the software controllable LED
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-int32_t
-em_led_off(struct em_hw *hw)
-{
- uint32_t ctrl = E1000_READ_REG(hw, CTRL);
-
- DEBUGFUNC("em_led_off");
-
- switch(hw->mac_type) {
- case em_82542_rev2_0:
- case em_82542_rev2_1:
- case em_82543:
- /* Clear SW Defineable Pin 0 to turn off the LED */
- ctrl &= ~E1000_CTRL_SWDPIN0;
- ctrl |= E1000_CTRL_SWDPIO0;
- break;
- case em_82544:
- if(hw->media_type == em_media_type_fiber) {
- /* Clear SW Defineable Pin 0 to turn off the LED */
- ctrl &= ~E1000_CTRL_SWDPIN0;
- ctrl |= E1000_CTRL_SWDPIO0;
- } else {
- /* Set SW Defineable Pin 0 to turn off the LED */
- ctrl |= E1000_CTRL_SWDPIN0;
- ctrl |= E1000_CTRL_SWDPIO0;
- }
- break;
- default:
- if(hw->media_type == em_media_type_fiber) {
- /* Set SW Defineable Pin 0 to turn off the LED */
- ctrl |= E1000_CTRL_SWDPIN0;
- ctrl |= E1000_CTRL_SWDPIO0;
- } else if(hw->media_type == em_media_type_copper) {
- E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode1);
- return E1000_SUCCESS;
- }
- break;
- }
-
- E1000_WRITE_REG(hw, CTRL, ctrl);
-
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Clears all hardware statistics counters.
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-void
-em_clear_hw_cntrs(struct em_hw *hw)
-{
- E1000_READ_REG(hw, CRCERRS);
- E1000_READ_REG(hw, SYMERRS);
- E1000_READ_REG(hw, MPC);
- E1000_READ_REG(hw, SCC);
- E1000_READ_REG(hw, ECOL);
- E1000_READ_REG(hw, MCC);
- E1000_READ_REG(hw, LATECOL);
- E1000_READ_REG(hw, COLC);
- E1000_READ_REG(hw, DC);
- E1000_READ_REG(hw, SEC);
- E1000_READ_REG(hw, RLEC);
- E1000_READ_REG(hw, XONRXC);
- E1000_READ_REG(hw, XONTXC);
- E1000_READ_REG(hw, XOFFRXC);
- E1000_READ_REG(hw, XOFFTXC);
- E1000_READ_REG(hw, FCRUC);
- E1000_READ_REG(hw, PRC64);
- E1000_READ_REG(hw, PRC127);
- E1000_READ_REG(hw, PRC255);
- E1000_READ_REG(hw, PRC511);
- E1000_READ_REG(hw, PRC1023);
- E1000_READ_REG(hw, PRC1522);
- E1000_READ_REG(hw, GPRC);
- E1000_READ_REG(hw, BPRC);
- E1000_READ_REG(hw, MPRC);
- E1000_READ_REG(hw, GPTC);
- E1000_READ_REG(hw, GORCL);
- E1000_READ_REG(hw, GORCH);
- E1000_READ_REG(hw, GOTCL);
- E1000_READ_REG(hw, GOTCH);
- E1000_READ_REG(hw, RNBC);
- E1000_READ_REG(hw, RUC);
- E1000_READ_REG(hw, RFC);
- E1000_READ_REG(hw, ROC);
- E1000_READ_REG(hw, RJC);
- E1000_READ_REG(hw, TORL);
- E1000_READ_REG(hw, TORH);
- E1000_READ_REG(hw, TOTL);
- E1000_READ_REG(hw, TOTH);
- E1000_READ_REG(hw, TPR);
- E1000_READ_REG(hw, TPT);
- E1000_READ_REG(hw, PTC64);
- E1000_READ_REG(hw, PTC127);
- E1000_READ_REG(hw, PTC255);
- E1000_READ_REG(hw, PTC511);
- E1000_READ_REG(hw, PTC1023);
- E1000_READ_REG(hw, PTC1522);
- E1000_READ_REG(hw, MPTC);
- E1000_READ_REG(hw, BPTC);
-
- if(hw->mac_type < em_82543) return;
-
- E1000_READ_REG(hw, ALGNERRC);
- E1000_READ_REG(hw, RXERRC);
- E1000_READ_REG(hw, TNCRS);
- E1000_READ_REG(hw, CEXTERR);
- E1000_READ_REG(hw, TSCTC);
- E1000_READ_REG(hw, TSCTFC);
-
- if(hw->mac_type <= em_82544) return;
-
- E1000_READ_REG(hw, MGTPRC);
- E1000_READ_REG(hw, MGTPDC);
- E1000_READ_REG(hw, MGTPTC);
-
- if(hw->mac_type <= em_82547_rev_2) return;
-
- E1000_READ_REG(hw, IAC);
- E1000_READ_REG(hw, ICRXOC);
- E1000_READ_REG(hw, ICRXPTC);
- E1000_READ_REG(hw, ICRXATC);
- E1000_READ_REG(hw, ICTXPTC);
- E1000_READ_REG(hw, ICTXATC);
- E1000_READ_REG(hw, ICTXQEC);
- E1000_READ_REG(hw, ICTXQMTC);
- E1000_READ_REG(hw, ICRXDMTC);
-
-}
-
-/******************************************************************************
- * Resets Adaptive IFS to its default state.
- *
- * hw - Struct containing variables accessed by shared code
- *
- * Call this after em_init_hw. You may override the IFS defaults by setting
- * hw->ifs_params_forced to TRUE. However, you must initialize hw->
- * current_ifs_val, ifs_min_val, ifs_max_val, ifs_step_size, and ifs_ratio
- * before calling this function.
- *****************************************************************************/
-void
-em_reset_adaptive(struct em_hw *hw)
-{
- DEBUGFUNC("em_reset_adaptive");
-
- if(hw->adaptive_ifs) {
- if(!hw->ifs_params_forced) {
- hw->current_ifs_val = 0;
- hw->ifs_min_val = IFS_MIN;
- hw->ifs_max_val = IFS_MAX;
- hw->ifs_step_size = IFS_STEP;
- hw->ifs_ratio = IFS_RATIO;
- }
- hw->in_ifs_mode = FALSE;
- E1000_WRITE_REG(hw, AIT, 0);
- } else {
- DEBUGOUT("Not in Adaptive IFS mode!\n");
- }
-}
-
-/******************************************************************************
- * Called during the callback/watchdog routine to update IFS value based on
- * the ratio of transmits to collisions.
- *
- * hw - Struct containing variables accessed by shared code
- * tx_packets - Number of transmits since last callback
- * total_collisions - Number of collisions since last callback
- *****************************************************************************/
-void
-em_update_adaptive(struct em_hw *hw)
-{
- DEBUGFUNC("em_update_adaptive");
-
- if(hw->adaptive_ifs) {
- if((hw->collision_delta * hw->ifs_ratio) > hw->tx_packet_delta) {
- if(hw->tx_packet_delta > MIN_NUM_XMITS) {
- hw->in_ifs_mode = TRUE;
- if(hw->current_ifs_val < hw->ifs_max_val) {
- if(hw->current_ifs_val == 0)
- hw->current_ifs_val = hw->ifs_min_val;
- else
- hw->current_ifs_val += hw->ifs_step_size;
- E1000_WRITE_REG(hw, AIT, hw->current_ifs_val);
- }
- }
- } else {
- if(hw->in_ifs_mode && (hw->tx_packet_delta <= MIN_NUM_XMITS)) {
- hw->current_ifs_val = 0;
- hw->in_ifs_mode = FALSE;
- E1000_WRITE_REG(hw, AIT, 0);
- }
- }
- } else {
- DEBUGOUT("Not in Adaptive IFS mode!\n");
- }
-}
-
-/******************************************************************************
- * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
- *
- * hw - Struct containing variables accessed by shared code
- * frame_len - The length of the frame in question
- * mac_addr - The Ethernet destination address of the frame in question
- *****************************************************************************/
-void
-em_tbi_adjust_stats(struct em_hw *hw,
- struct em_hw_stats *stats,
- uint32_t frame_len,
- uint8_t *mac_addr)
-{
- uint64_t carry_bit;
-
- /* First adjust the frame length. */
- frame_len--;
- /* We need to adjust the statistics counters, since the hardware
- * counters overcount this packet as a CRC error and undercount
- * the packet as a good packet
- */
- /* This packet should not be counted as a CRC error. */
- stats->crcerrs--;
- /* This packet does count as a Good Packet Received. */
- stats->gprc++;
-
- /* Adjust the Good Octets received counters */
- carry_bit = 0x80000000 & stats->gorcl;
- stats->gorcl += frame_len;
- /* If the high bit of Gorcl (the low 32 bits of the Good Octets
- * Received Count) was one before the addition,
- * AND it is zero after, then we lost the carry out,
- * need to add one to Gorch (Good Octets Received Count High).
- * This could be simplified if all environments supported
- * 64-bit integers.
- */
- if(carry_bit && ((stats->gorcl & 0x80000000) == 0))
- stats->gorch++;
- /* Is this a broadcast or multicast? Check broadcast first,
- * since the test for a multicast frame will test positive on
- * a broadcast frame.
- */
- if((mac_addr[0] == (uint8_t) 0xff) && (mac_addr[1] == (uint8_t) 0xff))
- /* Broadcast packet */
- stats->bprc++;
- else if(*mac_addr & 0x01)
- /* Multicast packet */
- stats->mprc++;
-
- if(frame_len == hw->max_frame_size) {
- /* In this case, the hardware has overcounted the number of
- * oversize frames.
- */
- if(stats->roc > 0)
- stats->roc--;
- }
-
- /* Adjust the bin counters when the extra byte put the frame in the
- * wrong bin. Remember that the frame_len was adjusted above.
- */
- if(frame_len == 64) {
- stats->prc64++;
- stats->prc127--;
- } else if(frame_len == 127) {
- stats->prc127++;
- stats->prc255--;
- } else if(frame_len == 255) {
- stats->prc255++;
- stats->prc511--;
- } else if(frame_len == 511) {
- stats->prc511++;
- stats->prc1023--;
- } else if(frame_len == 1023) {
- stats->prc1023++;
- stats->prc1522--;
- } else if(frame_len == 1522) {
- stats->prc1522++;
- }
-}
-
-/******************************************************************************
- * Gets the current PCI bus type, speed, and width of the hardware
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-void
-em_get_bus_info(struct em_hw *hw)
-{
- uint32_t status;
-
- switch (hw->mac_type) {
- case em_82542_rev2_0:
- case em_82542_rev2_1:
- hw->bus_type = em_bus_type_unknown;
- hw->bus_speed = em_bus_speed_unknown;
- hw->bus_width = em_bus_width_unknown;
- break;
- case em_82573:
- hw->bus_type = em_bus_type_pci_express;
- hw->bus_speed = em_bus_speed_2500;
- hw->bus_width = em_bus_width_pciex_4;
- break;
- default:
- status = E1000_READ_REG(hw, STATUS);
- hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
- em_bus_type_pcix : em_bus_type_pci;
-
- if(hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) {
- hw->bus_speed = (hw->bus_type == em_bus_type_pci) ?
- em_bus_speed_66 : em_bus_speed_120;
- } else if(hw->bus_type == em_bus_type_pci) {
- hw->bus_speed = (status & E1000_STATUS_PCI66) ?
- em_bus_speed_66 : em_bus_speed_33;
- } else {
- switch (status & E1000_STATUS_PCIX_SPEED) {
- case E1000_STATUS_PCIX_SPEED_66:
- hw->bus_speed = em_bus_speed_66;
- break;
- case E1000_STATUS_PCIX_SPEED_100:
- hw->bus_speed = em_bus_speed_100;
- break;
- case E1000_STATUS_PCIX_SPEED_133:
- hw->bus_speed = em_bus_speed_133;
- break;
- default:
- hw->bus_speed = em_bus_speed_reserved;
- break;
- }
- }
- hw->bus_width = (status & E1000_STATUS_BUS64) ?
- em_bus_width_64 : em_bus_width_32;
- break;
- }
-}
-/******************************************************************************
- * Reads a value from one of the devices registers using port I/O (as opposed
- * memory mapped I/O). Only 82544 and newer devices support port I/O.
- *
- * hw - Struct containing variables accessed by shared code
- * offset - offset to read from
- *****************************************************************************/
-uint32_t
-em_read_reg_io(struct em_hw *hw,
- uint32_t offset)
-{
- unsigned long io_addr = hw->io_base;
- unsigned long io_data = hw->io_base + 4;
-
- em_io_write(hw, io_addr, offset);
- return em_io_read(hw, io_data);
-}
-
-/******************************************************************************
- * Writes a value to one of the devices registers using port I/O (as opposed to
- * memory mapped I/O). Only 82544 and newer devices support port I/O.
- *
- * hw - Struct containing variables accessed by shared code
- * offset - offset to write to
- * value - value to write
- *****************************************************************************/
-void
-em_write_reg_io(struct em_hw *hw,
- uint32_t offset,
- uint32_t value)
-{
- unsigned long io_addr = hw->io_base;
- unsigned long io_data = hw->io_base + 4;
-
- em_io_write(hw, io_addr, offset);
- em_io_write(hw, io_data, value);
-}
-
-
-/******************************************************************************
- * Estimates the cable length.
- *
- * hw - Struct containing variables accessed by shared code
- * min_length - The estimated minimum length
- * max_length - The estimated maximum length
- *
- * returns: - E1000_ERR_XXX
- * E1000_SUCCESS
- *
- * This function always returns a ranged length (minimum & maximum).
- * So for M88 phy's, this function interprets the one value returned from the
- * register to the minimum and maximum range.
- * For IGP phy's, the function calculates the range by the AGC registers.
- *****************************************************************************/
-int32_t
-em_get_cable_length(struct em_hw *hw,
- uint16_t *min_length,
- uint16_t *max_length)
-{
- int32_t ret_val;
- uint16_t agc_value = 0;
- uint16_t cur_agc, min_agc = IGP01E1000_AGC_LENGTH_TABLE_SIZE;
- uint16_t i, phy_data;
- uint16_t cable_length;
-
- DEBUGFUNC("em_get_cable_length");
-
- *min_length = *max_length = 0;
-
- /* Use old method for Phy older than IGP */
- if(hw->phy_type == em_phy_m88) {
-
- ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
- &phy_data);
- if(ret_val)
- return ret_val;
- cable_length = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
- M88E1000_PSSR_CABLE_LENGTH_SHIFT;
-
- /* Convert the enum value to ranged values */
- switch (cable_length) {
- case em_cable_length_50:
- *min_length = 0;
- *max_length = em_igp_cable_length_50;
- break;
- case em_cable_length_50_80:
- *min_length = em_igp_cable_length_50;
- *max_length = em_igp_cable_length_80;
- break;
- case em_cable_length_80_110:
- *min_length = em_igp_cable_length_80;
- *max_length = em_igp_cable_length_110;
- break;
- case em_cable_length_110_140:
- *min_length = em_igp_cable_length_110;
- *max_length = em_igp_cable_length_140;
- break;
- case em_cable_length_140:
- *min_length = em_igp_cable_length_140;
- *max_length = em_igp_cable_length_170;
- break;
- default:
- return -E1000_ERR_PHY;
- break;
- }
- } else if(hw->phy_type == em_phy_igp) { /* For IGP PHY */
- uint16_t agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] =
- {IGP01E1000_PHY_AGC_A,
- IGP01E1000_PHY_AGC_B,
- IGP01E1000_PHY_AGC_C,
- IGP01E1000_PHY_AGC_D};
- /* Read the AGC registers for all channels */
- for(i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
-
- ret_val = em_read_phy_reg(hw, agc_reg_array[i], &phy_data);
- if(ret_val)
- return ret_val;
-
- cur_agc = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT;
-
- /* Array bound check. */
- if((cur_agc >= IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) ||
- (cur_agc == 0))
- return -E1000_ERR_PHY;
-
- agc_value += cur_agc;
-
- /* Update minimal AGC value. */
- if(min_agc > cur_agc)
- min_agc = cur_agc;
- }
-
- /* Remove the minimal AGC result for length < 50m */
- if(agc_value < IGP01E1000_PHY_CHANNEL_NUM * em_igp_cable_length_50) {
- agc_value -= min_agc;
-
- /* Get the average length of the remaining 3 channels */
- agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1);
- } else {
- /* Get the average length of all the 4 channels. */
- agc_value /= IGP01E1000_PHY_CHANNEL_NUM;
- }
-
- /* Set the range of the calculated length. */
- *min_length = ((em_igp_cable_length_table[agc_value] -
- IGP01E1000_AGC_RANGE) > 0) ?
- (em_igp_cable_length_table[agc_value] -
- IGP01E1000_AGC_RANGE) : 0;
- *max_length = em_igp_cable_length_table[agc_value] +
- IGP01E1000_AGC_RANGE;
- }
-
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Check the cable polarity
- *
- * hw - Struct containing variables accessed by shared code
- * polarity - output parameter : 0 - Polarity is not reversed
- * 1 - Polarity is reversed.
- *
- * returns: - E1000_ERR_XXX
- * E1000_SUCCESS
- *
- * For phy's older then IGP, this function simply reads the polarity bit in the
- * Phy Status register. For IGP phy's, this bit is valid only if link speed is
- * 10 Mbps. If the link speed is 100 Mbps there is no polarity so this bit will
- * return 0. If the link speed is 1000 Mbps the polarity status is in the
- * IGP01E1000_PHY_PCS_INIT_REG.
- *****************************************************************************/
-int32_t
-em_check_polarity(struct em_hw *hw,
- uint16_t *polarity)
-{
- int32_t ret_val;
- uint16_t phy_data;
-#ifdef __rtems__
- *polarity = 0; /* keep compiler happy */
-#endif
-
- DEBUGFUNC("em_check_polarity");
-
- if(hw->phy_type == em_phy_m88) {
- /* return the Polarity bit in the Status register. */
- ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
- &phy_data);
- if(ret_val)
- return ret_val;
- *polarity = (phy_data & M88E1000_PSSR_REV_POLARITY) >>
- M88E1000_PSSR_REV_POLARITY_SHIFT;
- } else if(hw->phy_type == em_phy_igp ||
- hw->phy_type == em_phy_igp_2) {
- /* Read the Status register to check the speed */
- ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS,
- &phy_data);
- if(ret_val)
- return ret_val;
-
- /* If speed is 1000 Mbps, must read the IGP01E1000_PHY_PCS_INIT_REG to
- * find the polarity status */
- if((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
- IGP01E1000_PSSR_SPEED_1000MBPS) {
-
- /* Read the GIG initialization PCS register (0x00B4) */
- ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG,
- &phy_data);
- if(ret_val)
- return ret_val;
-
- /* Check the polarity bits */
- *polarity = (phy_data & IGP01E1000_PHY_POLARITY_MASK) ? 1 : 0;
- } else {
- /* For 10 Mbps, read the polarity bit in the status register. (for
- * 100 Mbps this bit is always 0) */
- *polarity = phy_data & IGP01E1000_PSSR_POLARITY_REVERSED;
- }
- }
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Check if Downshift occured
- *
- * hw - Struct containing variables accessed by shared code
- * downshift - output parameter : 0 - No Downshift ocured.
- * 1 - Downshift ocured.
- *
- * returns: - E1000_ERR_XXX
- * E1000_SUCCESS
- *
- * For phy's older then IGP, this function reads the Downshift bit in the Phy
- * Specific Status register. For IGP phy's, it reads the Downgrade bit in the
- * Link Health register. In IGP this bit is latched high, so the driver must
- * read it immediately after link is established.
- *****************************************************************************/
-int32_t
-em_check_downshift(struct em_hw *hw)
-{
- int32_t ret_val;
- uint16_t phy_data;
-
- DEBUGFUNC("em_check_downshift");
-
- if(hw->phy_type == em_phy_igp ||
- hw->phy_type == em_phy_igp_2) {
- ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH,
- &phy_data);
- if(ret_val)
- return ret_val;
-
- hw->speed_downgraded = (phy_data & IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0;
- } else if(hw->phy_type == em_phy_m88) {
- ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
- &phy_data);
- if(ret_val)
- return ret_val;
-
- hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >>
- M88E1000_PSSR_DOWNSHIFT_SHIFT;
- }
-
- return E1000_SUCCESS;
-}
-
-/*****************************************************************************
- *
- * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a
- * gigabit link is achieved to improve link quality.
- *
- * hw: Struct containing variables accessed by shared code
- *
- * returns: - E1000_ERR_PHY if fail to read/write the PHY
- * E1000_SUCCESS at any other case.
- *
- ****************************************************************************/
-
-int32_t
-em_config_dsp_after_link_change(struct em_hw *hw,
- boolean_t link_up)
-{
- int32_t ret_val;
- uint16_t phy_data, phy_saved_data, speed, duplex, i;
- uint16_t dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] =
- {IGP01E1000_PHY_AGC_PARAM_A,
- IGP01E1000_PHY_AGC_PARAM_B,
- IGP01E1000_PHY_AGC_PARAM_C,
- IGP01E1000_PHY_AGC_PARAM_D};
- uint16_t min_length, max_length;
-
- DEBUGFUNC("em_config_dsp_after_link_change");
-
- if(hw->phy_type != em_phy_igp)
- return E1000_SUCCESS;
-
- if(link_up) {
- ret_val = em_get_speed_and_duplex(hw, &speed, &duplex);
- if(ret_val) {
- DEBUGOUT("Error getting link speed and duplex\n");
- return ret_val;
- }
-
- if(speed == SPEED_1000) {
-
- em_get_cable_length(hw, &min_length, &max_length);
-
- if((hw->dsp_config_state == em_dsp_config_enabled) &&
- min_length >= em_igp_cable_length_50) {
-
- for(i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
- ret_val = em_read_phy_reg(hw, dsp_reg_array[i],
- &phy_data);
- if(ret_val)
- return ret_val;
-
- phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
-
- ret_val = em_write_phy_reg(hw, dsp_reg_array[i],
- phy_data);
- if(ret_val)
- return ret_val;
- }
- hw->dsp_config_state = em_dsp_config_activated;
- }
-
- if((hw->ffe_config_state == em_ffe_config_enabled) &&
- (min_length < em_igp_cable_length_50)) {
-
- uint16_t ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_20;
- uint32_t idle_errs = 0;
-
- /* clear previous idle error counts */
- ret_val = em_read_phy_reg(hw, PHY_1000T_STATUS,
- &phy_data);
- if(ret_val)
- return ret_val;
-
- for(i = 0; i < ffe_idle_err_timeout; i++) {
- usec_delay(1000);
- ret_val = em_read_phy_reg(hw, PHY_1000T_STATUS,
- &phy_data);
- if(ret_val)
- return ret_val;
-
- idle_errs += (phy_data & SR_1000T_IDLE_ERROR_CNT);
- if(idle_errs > SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) {
- hw->ffe_config_state = em_ffe_config_active;
-
- ret_val = em_write_phy_reg(hw,
- IGP01E1000_PHY_DSP_FFE,
- IGP01E1000_PHY_DSP_FFE_CM_CP);
- if(ret_val)
- return ret_val;
- break;
- }
-
- if(idle_errs)
- ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_100;
- }
- }
- }
- } else {
- if(hw->dsp_config_state == em_dsp_config_activated) {
- /* Save off the current value of register 0x2F5B to be restored at
- * the end of the routines. */
- ret_val = em_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
-
- if(ret_val)
- return ret_val;
-
- /* Disable the PHY transmitter */
- ret_val = em_write_phy_reg(hw, 0x2F5B, 0x0003);
-
- if(ret_val)
- return ret_val;
-
- msec_delay_irq(20);
-
- ret_val = em_write_phy_reg(hw, 0x0000,
- IGP01E1000_IEEE_FORCE_GIGA);
- if(ret_val)
- return ret_val;
- for(i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
- ret_val = em_read_phy_reg(hw, dsp_reg_array[i], &phy_data);
- if(ret_val)
- return ret_val;
-
- phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
- phy_data |= IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS;
-
- ret_val = em_write_phy_reg(hw,dsp_reg_array[i], phy_data);
- if(ret_val)
- return ret_val;
- }
-
- ret_val = em_write_phy_reg(hw, 0x0000,
- IGP01E1000_IEEE_RESTART_AUTONEG);
- if(ret_val)
- return ret_val;
-
- msec_delay_irq(20);
-
- /* Now enable the transmitter */
- ret_val = em_write_phy_reg(hw, 0x2F5B, phy_saved_data);
-
- if(ret_val)
- return ret_val;
-
- hw->dsp_config_state = em_dsp_config_enabled;
- }
-
- if(hw->ffe_config_state == em_ffe_config_active) {
- /* Save off the current value of register 0x2F5B to be restored at
- * the end of the routines. */
- ret_val = em_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
-
- if(ret_val)
- return ret_val;
-
- /* Disable the PHY transmitter */
- ret_val = em_write_phy_reg(hw, 0x2F5B, 0x0003);
-
- if(ret_val)
- return ret_val;
-
- msec_delay_irq(20);
-
- ret_val = em_write_phy_reg(hw, 0x0000,
- IGP01E1000_IEEE_FORCE_GIGA);
- if(ret_val)
- return ret_val;
- ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE,
- IGP01E1000_PHY_DSP_FFE_DEFAULT);
- if(ret_val)
- return ret_val;
-
- ret_val = em_write_phy_reg(hw, 0x0000,
- IGP01E1000_IEEE_RESTART_AUTONEG);
- if(ret_val)
- return ret_val;
-
- msec_delay_irq(20);
-
- /* Now enable the transmitter */
- ret_val = em_write_phy_reg(hw, 0x2F5B, phy_saved_data);
-
- if(ret_val)
- return ret_val;
-
- hw->ffe_config_state = em_ffe_config_enabled;
- }
- }
- return E1000_SUCCESS;
-}
-
-/*****************************************************************************
- * Set PHY to class A mode
- * Assumes the following operations will follow to enable the new class mode.
- * 1. Do a PHY soft reset
- * 2. Restart auto-negotiation or force link.
- *
- * hw - Struct containing variables accessed by shared code
- ****************************************************************************/
-static int32_t
-em_set_phy_mode(struct em_hw *hw)
-{
- int32_t ret_val;
- uint16_t eeprom_data;
-
- DEBUGFUNC("em_set_phy_mode");
-
- if((hw->mac_type == em_82545_rev_3) &&
- (hw->media_type == em_media_type_copper)) {
- ret_val = em_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, 1, &eeprom_data);
- if(ret_val) {
- return ret_val;
- }
-
- if((eeprom_data != EEPROM_RESERVED_WORD) &&
- (eeprom_data & EEPROM_PHY_CLASS_A)) {
- ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x000B);
- if(ret_val)
- return ret_val;
- ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x8104);
- if(ret_val)
- return ret_val;
-
- hw->phy_reset_disable = FALSE;
- }
- }
-
- return E1000_SUCCESS;
-}
-
-/*****************************************************************************
- *
- * This function sets the lplu state according to the active flag. When
- * activating lplu this function also disables smart speed and vise versa.
- * lplu will not be activated unless the device autonegotiation advertisment
- * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
- * hw: Struct containing variables accessed by shared code
- * active - true to enable lplu false to disable lplu.
- *
- * returns: - E1000_ERR_PHY if fail to read/write the PHY
- * E1000_SUCCESS at any other case.
- *
- ****************************************************************************/
-
-int32_t
-em_set_d3_lplu_state(struct em_hw *hw,
- boolean_t active)
-{
- int32_t ret_val;
- uint16_t phy_data;
- DEBUGFUNC("em_set_d3_lplu_state");
-
- if(hw->phy_type != em_phy_igp && hw->phy_type != em_phy_igp_2)
- return E1000_SUCCESS;
-
- /* During driver activity LPLU should not be used or it will attain link
- * from the lowest speeds starting from 10Mbps. The capability is used for
- * Dx transitions and states */
- if(hw->mac_type == em_82541_rev_2 || hw->mac_type == em_82547_rev_2) {
- ret_val = em_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data);
- if(ret_val)
- return ret_val;
- } else {
- ret_val = em_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
- if(ret_val)
- return ret_val;
- }
-
- if(!active) {
- if(hw->mac_type == em_82541_rev_2 ||
- hw->mac_type == em_82547_rev_2) {
- phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
- ret_val = em_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data);
- if(ret_val)
- return ret_val;
- } else {
- phy_data &= ~IGP02E1000_PM_D3_LPLU;
- ret_val = em_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
- phy_data);
- if (ret_val)
- return ret_val;
- }
-
- /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during
- * Dx states where the power conservation is most important. During
- * driver activity we should enable SmartSpeed, so performance is
- * maintained. */
- if (hw->smart_speed == em_smart_speed_on) {
- ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
- &phy_data);
- if(ret_val)
- return ret_val;
-
- phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
- ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
- phy_data);
- if(ret_val)
- return ret_val;
- } else if (hw->smart_speed == em_smart_speed_off) {
- ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
- &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
- ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
- phy_data);
- if(ret_val)
- return ret_val;
- }
-
- } else if((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT) ||
- (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL ) ||
- (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
-
- if(hw->mac_type == em_82541_rev_2 ||
- hw->mac_type == em_82547_rev_2) {
- phy_data |= IGP01E1000_GMII_FLEX_SPD;
- ret_val = em_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data);
- if(ret_val)
- return ret_val;
- } else {
- phy_data |= IGP02E1000_PM_D3_LPLU;
- ret_val = em_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
- phy_data);
- if (ret_val)
- return ret_val;
- }
-
- /* When LPLU is enabled we should disable SmartSpeed */
- ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data);
- if(ret_val)
- return ret_val;
-
- phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
- ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data);
- if(ret_val)
- return ret_val;
-
- }
- return E1000_SUCCESS;
-}
-
-/*****************************************************************************
- *
- * This function sets the lplu d0 state according to the active flag. When
- * activating lplu this function also disables smart speed and vise versa.
- * lplu will not be activated unless the device autonegotiation advertisment
- * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
- * hw: Struct containing variables accessed by shared code
- * active - true to enable lplu false to disable lplu.
- *
- * returns: - E1000_ERR_PHY if fail to read/write the PHY
- * E1000_SUCCESS at any other case.
- *
- ****************************************************************************/
-
-int32_t
-em_set_d0_lplu_state(struct em_hw *hw,
- boolean_t active)
-{
- int32_t ret_val;
- uint16_t phy_data;
- DEBUGFUNC("em_set_d0_lplu_state");
-
- if(hw->mac_type <= em_82547_rev_2)
- return E1000_SUCCESS;
-
- ret_val = em_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
- if(ret_val)
- return ret_val;
-
- if (!active) {
- phy_data &= ~IGP02E1000_PM_D0_LPLU;
- ret_val = em_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
- if (ret_val)
- return ret_val;
-
- /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during
- * Dx states where the power conservation is most important. During
- * driver activity we should enable SmartSpeed, so performance is
- * maintained. */
- if (hw->smart_speed == em_smart_speed_on) {
- ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
- &phy_data);
- if(ret_val)
- return ret_val;
-
- phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
- ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
- phy_data);
- if(ret_val)
- return ret_val;
- } else if (hw->smart_speed == em_smart_speed_off) {
- ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
- &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
- ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
- phy_data);
- if(ret_val)
- return ret_val;
- }
-
-
- } else {
-
- phy_data |= IGP02E1000_PM_D0_LPLU;
- ret_val = em_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
- if (ret_val)
- return ret_val;
-
- /* When LPLU is enabled we should disable SmartSpeed */
- ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data);
- if(ret_val)
- return ret_val;
-
- phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
- ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data);
- if(ret_val)
- return ret_val;
-
- }
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Change VCO speed register to improve Bit Error Rate performance of SERDES.
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-static int32_t
-em_set_vco_speed(struct em_hw *hw)
-{
- int32_t ret_val;
- uint16_t default_page = 0;
- uint16_t phy_data;
-
- DEBUGFUNC("em_set_vco_speed");
-
- switch(hw->mac_type) {
- case em_82545_rev_3:
- case em_82546_rev_3:
- break;
- default:
- return E1000_SUCCESS;
- }
-
- /* Set PHY register 30, page 5, bit 8 to 0 */
-
- ret_val = em_read_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, &default_page);
- if(ret_val)
- return ret_val;
-
- ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005);
- if(ret_val)
- return ret_val;
-
- ret_val = em_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
- if(ret_val)
- return ret_val;
-
- phy_data &= ~M88E1000_PHY_VCO_REG_BIT8;
- ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
- if(ret_val)
- return ret_val;
-
- /* Set PHY register 30, page 4, bit 11 to 1 */
-
- ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004);
- if(ret_val)
- return ret_val;
-
- ret_val = em_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
- if(ret_val)
- return ret_val;
-
- phy_data |= M88E1000_PHY_VCO_REG_BIT11;
- ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
- if(ret_val)
- return ret_val;
-
- ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, default_page);
- if(ret_val)
- return ret_val;
-
- return E1000_SUCCESS;
-}
-
-
-/*****************************************************************************
- * This function reads the cookie from ARC ram.
- *
- * returns: - E1000_SUCCESS .
- ****************************************************************************/
-int32_t
-em_host_if_read_cookie(struct em_hw * hw, uint8_t *buffer)
-{
- uint8_t i;
- uint32_t offset = E1000_MNG_DHCP_COOKIE_OFFSET;
- uint8_t length = E1000_MNG_DHCP_COOKIE_LENGTH;
-
- length = (length >> 2);
- offset = (offset >> 2);
-
- for (i = 0; i < length; i++) {
- *((uint32_t *) buffer + i) =
- E1000_READ_REG_ARRAY_DWORD(hw, HOST_IF, offset + i);
- }
- return E1000_SUCCESS;
-}
-
-
-/*****************************************************************************
- * This function checks whether the HOST IF is enabled for command operaton
- * and also checks whether the previous command is completed.
- * It busy waits in case of previous command is not completed.
- *
- * returns: - E1000_ERR_HOST_INTERFACE_COMMAND in case if is not ready or
- * timeout
- * - E1000_SUCCESS for success.
- ****************************************************************************/
-int32_t
-em_mng_enable_host_if(struct em_hw * hw)
-{
- uint32_t hicr;
- uint8_t i;
-
- /* Check that the host interface is enabled. */
- hicr = E1000_READ_REG(hw, HICR);
- if ((hicr & E1000_HICR_EN) == 0) {
- DEBUGOUT("E1000_HOST_EN bit disabled.\n");
- return -E1000_ERR_HOST_INTERFACE_COMMAND;
- }
- /* check the previous command is completed */
- for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT; i++) {
- hicr = E1000_READ_REG(hw, HICR);
- if (!(hicr & E1000_HICR_C))
- break;
- msec_delay_irq(1);
- }
-
- if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) {
- DEBUGOUT("Previous command timeout failed .\n");
- return -E1000_ERR_HOST_INTERFACE_COMMAND;
- }
- return E1000_SUCCESS;
-}
-
-/*****************************************************************************
- * This function writes the buffer content at the offset given on the host if.
- * It also does alignment considerations to do the writes in most efficient way.
- * Also fills up the sum of the buffer in *buffer parameter.
- *
- * returns - E1000_SUCCESS for success.
- ****************************************************************************/
-int32_t
-em_mng_host_if_write(struct em_hw * hw, uint8_t *buffer,
- uint16_t length, uint16_t offset, uint8_t *sum)
-{
- uint8_t *tmp;
- uint8_t *bufptr = buffer;
- uint32_t data;
- uint16_t remaining, i, j, prev_bytes;
-
- /* sum = only sum of the data and it is not checksum */
-
- if (length == 0 || offset + length > E1000_HI_MAX_MNG_DATA_LENGTH) {
- return -E1000_ERR_PARAM;
- }
-
- tmp = (uint8_t *)&data;
- prev_bytes = offset & 0x3;
- offset &= 0xFFFC;
- offset >>= 2;
-
- if (prev_bytes) {
- data = E1000_READ_REG_ARRAY_DWORD(hw, HOST_IF, offset);
- for (j = prev_bytes; j < sizeof(uint32_t); j++) {
- *(tmp + j) = *bufptr++;
- *sum += *(tmp + j);
- }
- E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset, data);
- length -= j - prev_bytes;
- offset++;
- }
-
- remaining = length & 0x3;
- length -= remaining;
-
- /* Calculate length in DWORDs */
- length >>= 2;
-
- /* The device driver writes the relevant command block into the
- * ram area. */
- for (i = 0; i < length; i++) {
- for (j = 0; j < sizeof(uint32_t); j++) {
- *(tmp + j) = *bufptr++;
- *sum += *(tmp + j);
- }
-
- E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset + i, data);
- }
- if (remaining) {
- for (j = 0; j < sizeof(uint32_t); j++) {
- if (j < remaining)
- *(tmp + j) = *bufptr++;
- else
- *(tmp + j) = 0;
-
- *sum += *(tmp + j);
- }
- E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset + i, data);
- }
-
- return E1000_SUCCESS;
-}
-
-
-/*****************************************************************************
- * This function writes the command header after does the checksum calculation.
- *
- * returns - E1000_SUCCESS for success.
- ****************************************************************************/
-int32_t
-em_mng_write_cmd_header(struct em_hw * hw,
- struct em_host_mng_command_header * hdr)
-{
- uint16_t i;
- uint8_t sum;
- uint8_t *buffer;
-
- /* Write the whole command header structure which includes sum of
- * the buffer */
-
- uint16_t length = sizeof(struct em_host_mng_command_header);
-
- sum = hdr->checksum;
- hdr->checksum = 0;
-
- buffer = (uint8_t *) hdr;
- i = length;
- while(i--)
- sum += buffer[i];
-
- hdr->checksum = 0 - sum;
-
- length >>= 2;
- /* The device driver writes the relevant command block into the ram area. */
- for (i = 0; i < length; i++)
- E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, i, *((uint32_t *) hdr + i));
-
- return E1000_SUCCESS;
-}
-
-
-/*****************************************************************************
- * This function indicates to ARC that a new command is pending which completes
- * one write operation by the driver.
- *
- * returns - E1000_SUCCESS for success.
- ****************************************************************************/
-int32_t
-em_mng_write_commit(
- struct em_hw * hw)
-{
- uint32_t hicr;
-
- hicr = E1000_READ_REG(hw, HICR);
- /* Setting this bit tells the ARC that a new command is pending. */
- E1000_WRITE_REG(hw, HICR, hicr | E1000_HICR_C);
-
- return E1000_SUCCESS;
-}
-
-
-/*****************************************************************************
- * This function checks the mode of the firmware.
- *
- * returns - TRUE when the mode is IAMT or FALSE.
- ****************************************************************************/
-boolean_t
-em_check_mng_mode(
- struct em_hw *hw)
-{
- uint32_t fwsm;
-
- fwsm = E1000_READ_REG(hw, FWSM);
-
- if((fwsm & E1000_FWSM_MODE_MASK) ==
- (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
- return TRUE;
-
- return FALSE;
-}
-
-
-/*****************************************************************************
- * This function writes the dhcp info .
- ****************************************************************************/
-int32_t
-em_mng_write_dhcp_info(struct em_hw * hw, uint8_t *buffer,
- uint16_t length)
-{
- int32_t ret_val;
- struct em_host_mng_command_header hdr;
-
- hdr.command_id = E1000_MNG_DHCP_TX_PAYLOAD_CMD;
- hdr.command_length = length;
- hdr.reserved1 = 0;
- hdr.reserved2 = 0;
- hdr.checksum = 0;
-
- ret_val = em_mng_enable_host_if(hw);
- if (ret_val == E1000_SUCCESS) {
- ret_val = em_mng_host_if_write(hw, buffer, length, sizeof(hdr),
- &(hdr.checksum));
- if (ret_val == E1000_SUCCESS) {
- ret_val = em_mng_write_cmd_header(hw, &hdr);
- if (ret_val == E1000_SUCCESS)
- ret_val = em_mng_write_commit(hw);
- }
- }
- return ret_val;
-}
-
-
-/*****************************************************************************
- * This function calculates the checksum.
- *
- * returns - checksum of buffer contents.
- ****************************************************************************/
-uint8_t
-em_calculate_mng_checksum(char *buffer, uint32_t length)
-{
- uint8_t sum = 0;
- uint32_t i;
-
- if (!buffer)
- return 0;
-
- for (i=0; i < length; i++)
- sum += buffer[i];
-
- return (uint8_t) (0 - sum);
-}
-
-/*****************************************************************************
- * This function checks whether tx pkt filtering needs to be enabled or not.
- *
- * returns - TRUE for packet filtering or FALSE.
- ****************************************************************************/
-boolean_t
-em_enable_tx_pkt_filtering(struct em_hw *hw)
-{
- /* called in init as well as watchdog timer functions */
-
- int32_t ret_val, checksum;
- boolean_t tx_filter = FALSE;
- struct em_host_mng_dhcp_cookie *hdr = &(hw->mng_cookie);
- uint8_t *buffer = (uint8_t *) &(hw->mng_cookie);
-
- if (em_check_mng_mode(hw)) {
- ret_val = em_mng_enable_host_if(hw);
- if (ret_val == E1000_SUCCESS) {
- ret_val = em_host_if_read_cookie(hw, buffer);
- if (ret_val == E1000_SUCCESS) {
- checksum = hdr->checksum;
- hdr->checksum = 0;
- if ((hdr->signature == E1000_IAMT_SIGNATURE) &&
- checksum == em_calculate_mng_checksum((char *)buffer,
- E1000_MNG_DHCP_COOKIE_LENGTH)) {
- if (hdr->status &
- E1000_MNG_DHCP_COOKIE_STATUS_PARSING_SUPPORT)
- tx_filter = TRUE;
- } else
- tx_filter = TRUE;
- } else
- tx_filter = TRUE;
- }
- }
-
- hw->tx_pkt_filtering = tx_filter;
- return tx_filter;
-}
-
-/******************************************************************************
- * Verifies the hardware needs to allow ARPs to be processed by the host
- *
- * hw - Struct containing variables accessed by shared code
- *
- * returns: - TRUE/FALSE
- *
- *****************************************************************************/
-uint32_t
-em_enable_mng_pass_thru(struct em_hw *hw)
-{
- uint32_t manc;
- uint32_t fwsm, factps;
-
- if (hw->asf_firmware_present) {
- manc = E1000_READ_REG(hw, MANC);
-
- if (!(manc & E1000_MANC_RCV_TCO_EN) ||
- !(manc & E1000_MANC_EN_MAC_ADDR_FILTER))
- return FALSE;
- if (em_arc_subsystem_valid(hw) == TRUE) {
- fwsm = E1000_READ_REG(hw, FWSM);
- factps = E1000_READ_REG(hw, FACTPS);
-
- if (((fwsm & E1000_FWSM_MODE_MASK) ==
- (em_mng_mode_pt << E1000_FWSM_MODE_SHIFT)) &&
- (factps & E1000_FACTPS_MNGCG))
- return TRUE;
- } else
- if ((manc & E1000_MANC_SMBUS_EN) && !(manc & E1000_MANC_ASF_EN))
- return TRUE;
- }
- return FALSE;
-}
-
-static int32_t
-em_polarity_reversal_workaround(struct em_hw *hw)
-{
- int32_t ret_val;
- uint16_t mii_status_reg;
- uint16_t i;
-
- /* Polarity reversal workaround for forced 10F/10H links. */
-
- /* Disable the transmitter on the PHY */
-
- ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
- if(ret_val)
- return ret_val;
- ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF);
- if(ret_val)
- return ret_val;
-
- ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
- if(ret_val)
- return ret_val;
-
- /* This loop will early-out if the NO link condition has been met. */
- for(i = PHY_FORCE_TIME; i > 0; i--) {
- /* Read the MII Status Register and wait for Link Status bit
- * to be clear.
- */
-
- ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
- if(ret_val)
- return ret_val;
-
- ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
- if(ret_val)
- return ret_val;
-
- if((mii_status_reg & ~MII_SR_LINK_STATUS) == 0) break;
- msec_delay_irq(100);
- }
-
- /* Recommended delay time after link has been lost */
- msec_delay_irq(1000);
-
- /* Now we will re-enable th transmitter on the PHY */
-
- ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
- if(ret_val)
- return ret_val;
- msec_delay_irq(50);
- ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0);
- if(ret_val)
- return ret_val;
- msec_delay_irq(50);
- ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00);
- if(ret_val)
- return ret_val;
- msec_delay_irq(50);
- ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000);
- if(ret_val)
- return ret_val;
-
- ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
- if(ret_val)
- return ret_val;
-
- /* This loop will early-out if the link condition has been met. */
- for(i = PHY_FORCE_TIME; i > 0; i--) {
- /* Read the MII Status Register and wait for Link Status bit
- * to be set.
- */
-
- ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
- if(ret_val)
- return ret_val;
-
- ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
- if(ret_val)
- return ret_val;
-
- if(mii_status_reg & MII_SR_LINK_STATUS) break;
- msec_delay_irq(100);
- }
- return E1000_SUCCESS;
-}
-
-/***************************************************************************
- *
- * Disables PCI-Express master access.
- *
- * hw: Struct containing variables accessed by shared code
- *
- * returns: - none.
- *
- ***************************************************************************/
-void
-em_set_pci_express_master_disable(struct em_hw *hw)
-{
- uint32_t ctrl;
-
- DEBUGFUNC("em_set_pci_express_master_disable");
-
- if (hw->bus_type != em_bus_type_pci_express)
- return;
-
- ctrl = E1000_READ_REG(hw, CTRL);
- ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
- E1000_WRITE_REG(hw, CTRL, ctrl);
-}
-
-/***************************************************************************
- *
- * Enables PCI-Express master access.
- *
- * hw: Struct containing variables accessed by shared code
- *
- * returns: - none.
- *
- ***************************************************************************/
-void
-em_enable_pciex_master(struct em_hw *hw)
-{
- uint32_t ctrl;
-
- DEBUGFUNC("em_enable_pciex_master");
-
- if (hw->bus_type != em_bus_type_pci_express)
- return;
-
- ctrl = E1000_READ_REG(hw, CTRL);
- ctrl &= ~E1000_CTRL_GIO_MASTER_DISABLE;
- E1000_WRITE_REG(hw, CTRL, ctrl);
-}
-
-/*******************************************************************************
- *
- * Disables PCI-Express master access and verifies there are no pending requests
- *
- * hw: Struct containing variables accessed by shared code
- *
- * returns: - E1000_ERR_MASTER_REQUESTS_PENDING if master disable bit hasn't
- * caused the master requests to be disabled.
- * E1000_SUCCESS master requests disabled.
- *
- ******************************************************************************/
-int32_t
-em_disable_pciex_master(struct em_hw *hw)
-{
- int32_t timeout = MASTER_DISABLE_TIMEOUT; /* 80ms */
-
- DEBUGFUNC("em_disable_pciex_master");
-
- if (hw->bus_type != em_bus_type_pci_express)
- return E1000_SUCCESS;
-
- em_set_pci_express_master_disable(hw);
-
- while(timeout) {
- if(!(E1000_READ_REG(hw, STATUS) & E1000_STATUS_GIO_MASTER_ENABLE))
- break;
- else
- usec_delay(100);
- timeout--;
- }
-
- if(!timeout) {
- DEBUGOUT("Master requests are pending.\n");
- return -E1000_ERR_MASTER_REQUESTS_PENDING;
- }
-
- return E1000_SUCCESS;
-}
-
-/*******************************************************************************
- *
- * Check for EEPROM Auto Read bit done.
- *
- * hw: Struct containing variables accessed by shared code
- *
- * returns: - E1000_ERR_RESET if fail to reset MAC
- * E1000_SUCCESS at any other case.
- *
- ******************************************************************************/
-int32_t
-em_get_auto_rd_done(struct em_hw *hw)
-{
- int32_t timeout = AUTO_READ_DONE_TIMEOUT;
-
- DEBUGFUNC("em_get_auto_rd_done");
-
- switch (hw->mac_type) {
- default:
- msec_delay(5);
- break;
- case em_82573:
- while(timeout) {
- if (E1000_READ_REG(hw, EECD) & E1000_EECD_AUTO_RD) break;
- else msec_delay(1);
- timeout--;
- }
-
- if(!timeout) {
- DEBUGOUT("Auto read by HW from EEPROM has not completed.\n");
- return -E1000_ERR_RESET;
- }
- break;
- }
-
- return E1000_SUCCESS;
-}
-
-/***************************************************************************
- * Checks if the PHY configuration is done
- *
- * hw: Struct containing variables accessed by shared code
- *
- * returns: - E1000_ERR_RESET if fail to reset MAC
- * E1000_SUCCESS at any other case.
- *
- ***************************************************************************/
-int32_t
-em_get_phy_cfg_done(struct em_hw *hw)
-{
- DEBUGFUNC("em_get_phy_cfg_done");
-
- /* Simply wait for 10ms */
- msec_delay(10);
-
- return E1000_SUCCESS;
-}
-
-/***************************************************************************
- *
- * Using the combination of SMBI and SWESMBI semaphore bits when resetting
- * adapter or Eeprom access.
- *
- * hw: Struct containing variables accessed by shared code
- *
- * returns: - E1000_ERR_EEPROM if fail to access EEPROM.
- * E1000_SUCCESS at any other case.
- *
- ***************************************************************************/
-int32_t
-em_get_hw_eeprom_semaphore(struct em_hw *hw)
-{
- int32_t timeout;
- uint32_t swsm;
-
- DEBUGFUNC("em_get_hw_eeprom_semaphore");
-
- if(!hw->eeprom_semaphore_present)
- return E1000_SUCCESS;
-
-
- /* Get the FW semaphore. */
- timeout = hw->eeprom.word_size + 1;
- while(timeout) {
- swsm = E1000_READ_REG(hw, SWSM);
- swsm |= E1000_SWSM_SWESMBI;
- E1000_WRITE_REG(hw, SWSM, swsm);
- /* if we managed to set the bit we got the semaphore. */
- swsm = E1000_READ_REG(hw, SWSM);
- if(swsm & E1000_SWSM_SWESMBI)
- break;
-
- usec_delay(50);
- timeout--;
- }
-
- if(!timeout) {
- /* Release semaphores */
- em_put_hw_eeprom_semaphore(hw);
- DEBUGOUT("Driver can't access the Eeprom - SWESMBI bit is set.\n");
- return -E1000_ERR_EEPROM;
- }
-
- return E1000_SUCCESS;
-}
-
-/***************************************************************************
- * This function clears HW semaphore bits.
- *
- * hw: Struct containing variables accessed by shared code
- *
- * returns: - None.
- *
- ***************************************************************************/
-void
-em_put_hw_eeprom_semaphore(struct em_hw *hw)
-{
- uint32_t swsm;
-
- DEBUGFUNC("em_put_hw_eeprom_semaphore");
-
- if(!hw->eeprom_semaphore_present)
- return;
-
- swsm = E1000_READ_REG(hw, SWSM);
- /* Release both semaphores. */
- swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
- E1000_WRITE_REG(hw, SWSM, swsm);
-}
-
-/******************************************************************************
- * Checks if PHY reset is blocked due to SOL/IDER session, for example.
- * Returning E1000_BLK_PHY_RESET isn't necessarily an error. But it's up to
- * the caller to figure out how to deal with it.
- *
- * hw - Struct containing variables accessed by shared code
- *
- * returns: - E1000_BLK_PHY_RESET
- * E1000_SUCCESS
- *
- *****************************************************************************/
-int32_t
-em_check_phy_reset_block(struct em_hw *hw)
-{
- uint32_t manc = 0;
- if(hw->mac_type > em_82547_rev_2)
- manc = E1000_READ_REG(hw, MANC);
- return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
- E1000_BLK_PHY_RESET : E1000_SUCCESS;
-}
-
-uint8_t
-em_arc_subsystem_valid(struct em_hw *hw)
-{
- uint32_t fwsm;
-
- /* On 8257x silicon, registers in the range of 0x8800 - 0x8FFC
- * may not be provided a DMA clock when no manageability features are
- * enabled. We do not want to perform any reads/writes to these registers
- * if this is the case. We read FWSM to determine the manageability mode.
- */
- switch (hw->mac_type) {
- case em_82573:
- fwsm = E1000_READ_REG(hw, FWSM);
- if((fwsm & E1000_FWSM_MODE_MASK) != 0)
- return TRUE;
- break;
- default:
- break;
- }
- return FALSE;
-}
-
-
-