summaryrefslogtreecommitdiffstats
path: root/freebsd/sys/dev/e1000
diff options
context:
space:
mode:
authorSebastian Huber <sebastian.huber@embedded-brains.de>2013-11-04 11:33:00 +0100
committerSebastian Huber <sebastian.huber@embedded-brains.de>2013-11-04 15:28:21 +0100
commitaf5333e0a02b2295304d4e029b15ee15a4fe2b3a (patch)
treec5c43680d374f58b487eeeaf18fb7ec6b84ba074 /freebsd/sys/dev/e1000
parentBUS_SPACE(9): Use simple memory model for ARM (diff)
downloadrtems-libbsd-af5333e0a02b2295304d4e029b15ee15a4fe2b3a.tar.bz2
Update to FreeBSD 8.4
Diffstat (limited to 'freebsd/sys/dev/e1000')
-rw-r--r--freebsd/sys/dev/e1000/e1000_80003es2lan.c241
-rw-r--r--freebsd/sys/dev/e1000/e1000_80003es2lan.h67
-rw-r--r--freebsd/sys/dev/e1000/e1000_82540.c109
-rw-r--r--freebsd/sys/dev/e1000/e1000_82541.c6
-rw-r--r--freebsd/sys/dev/e1000/e1000_82542.c5
-rw-r--r--freebsd/sys/dev/e1000/e1000_82543.c11
-rw-r--r--freebsd/sys/dev/e1000/e1000_82571.c633
-rw-r--r--freebsd/sys/dev/e1000/e1000_82575.c1725
-rw-r--r--freebsd/sys/dev/e1000/e1000_82575.h599
-rw-r--r--freebsd/sys/dev/e1000/e1000_api.c110
-rw-r--r--freebsd/sys/dev/e1000/e1000_api.h161
-rw-r--r--freebsd/sys/dev/e1000/e1000_defines.h2590
-rw-r--r--freebsd/sys/dev/e1000/e1000_hw.h426
-rw-r--r--freebsd/sys/dev/e1000/e1000_i210.h92
-rw-r--r--freebsd/sys/dev/e1000/e1000_ich8lan.c2504
-rw-r--r--freebsd/sys/dev/e1000/e1000_ich8lan.h369
-rw-r--r--freebsd/sys/dev/e1000/e1000_mac.c1006
-rw-r--r--freebsd/sys/dev/e1000/e1000_mac.h18
-rw-r--r--freebsd/sys/dev/e1000/e1000_manage.c384
-rw-r--r--freebsd/sys/dev/e1000/e1000_manage.h62
-rw-r--r--freebsd/sys/dev/e1000/e1000_mbx.c8
-rw-r--r--freebsd/sys/dev/e1000/e1000_nvm.c398
-rw-r--r--freebsd/sys/dev/e1000/e1000_nvm.h32
-rw-r--r--freebsd/sys/dev/e1000/e1000_osdep.c6
-rw-r--r--freebsd/sys/dev/e1000/e1000_osdep.h14
-rw-r--r--freebsd/sys/dev/e1000/e1000_phy.c2137
-rw-r--r--freebsd/sys/dev/e1000/e1000_phy.h290
-rw-r--r--freebsd/sys/dev/e1000/e1000_regs.h1092
-rw-r--r--freebsd/sys/dev/e1000/e1000_vf.c64
-rw-r--r--freebsd/sys/dev/e1000/e1000_vf.h15
-rw-r--r--freebsd/sys/dev/e1000/if_em.c1054
-rw-r--r--freebsd/sys/dev/e1000/if_em.h27
-rw-r--r--freebsd/sys/dev/e1000/if_igb.c1466
-rw-r--r--freebsd/sys/dev/e1000/if_igb.h48
-rw-r--r--freebsd/sys/dev/e1000/if_lem.c362
-rw-r--r--freebsd/sys/dev/e1000/if_lem.h6
36 files changed, 11057 insertions, 7080 deletions
diff --git a/freebsd/sys/dev/e1000/e1000_80003es2lan.c b/freebsd/sys/dev/e1000/e1000_80003es2lan.c
index 79fba337..79950c8a 100644
--- a/freebsd/sys/dev/e1000/e1000_80003es2lan.c
+++ b/freebsd/sys/dev/e1000/e1000_80003es2lan.c
@@ -2,7 +2,7 @@
/******************************************************************************
- Copyright (c) 2001-2010, Intel Corporation
+ Copyright (c) 2001-2011, Intel Corporation
All rights reserved.
Redistribution and use in source and binary forms, with or without
@@ -53,18 +53,18 @@ static void e1000_release_phy_80003es2lan(struct e1000_hw *hw);
static s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw);
static void e1000_release_nvm_80003es2lan(struct e1000_hw *hw);
static s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
- u32 offset,
- u16 *data);
+ u32 offset,
+ u16 *data);
static s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
- u32 offset,
- u16 data);
+ u32 offset,
+ u16 data);
static s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset,
- u16 words, u16 *data);
+ u16 words, u16 *data);
static s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw);
static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw);
static s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw);
static s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed,
- u16 *duplex);
+ u16 *duplex);
static s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw);
static s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw);
static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw);
@@ -74,9 +74,9 @@ static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex);
static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw);
static s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw);
static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
- u16 *data);
+ u16 *data);
static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
- u16 data);
+ u16 data);
static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw);
static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw);
static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
@@ -88,11 +88,11 @@ static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw);
* with a lower bound at "index" and the upper bound at
* "index + 5".
*/
-static const u16 e1000_gg82563_cable_length_table[] =
- { 0, 60, 115, 150, 150, 60, 115, 150, 180, 180, 0xFF };
+static const u16 e1000_gg82563_cable_length_table[] = {
+ 0, 60, 115, 150, 150, 60, 115, 150, 180, 180, 0xFF };
#define GG82563_CABLE_LENGTH_TABLE_SIZE \
- (sizeof(e1000_gg82563_cable_length_table) / \
- sizeof(e1000_gg82563_cable_length_table[0]))
+ (sizeof(e1000_gg82563_cable_length_table) / \
+ sizeof(e1000_gg82563_cable_length_table[0]))
/**
* e1000_init_phy_params_80003es2lan - Init ESB2 PHY func ptrs.
@@ -106,34 +106,34 @@ static s32 e1000_init_phy_params_80003es2lan(struct e1000_hw *hw)
DEBUGFUNC("e1000_init_phy_params_80003es2lan");
if (hw->phy.media_type != e1000_media_type_copper) {
- phy->type = e1000_phy_none;
+ phy->type = e1000_phy_none;
goto out;
} else {
phy->ops.power_up = e1000_power_up_phy_copper;
phy->ops.power_down = e1000_power_down_phy_copper_80003es2lan;
}
- phy->addr = 1;
- phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
- phy->reset_delay_us = 100;
- phy->type = e1000_phy_gg82563;
-
- phy->ops.acquire = e1000_acquire_phy_80003es2lan;
- phy->ops.check_polarity = e1000_check_polarity_m88;
- phy->ops.check_reset_block = e1000_check_reset_block_generic;
- phy->ops.commit = e1000_phy_sw_reset_generic;
- phy->ops.get_cfg_done = e1000_get_cfg_done_80003es2lan;
- phy->ops.get_info = e1000_get_phy_info_m88;
- phy->ops.release = e1000_release_phy_80003es2lan;
- phy->ops.reset = e1000_phy_hw_reset_generic;
- phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_generic;
+ phy->addr = 1;
+ phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
+ phy->reset_delay_us = 100;
+ phy->type = e1000_phy_gg82563;
+
+ phy->ops.acquire = e1000_acquire_phy_80003es2lan;
+ phy->ops.check_polarity = e1000_check_polarity_m88;
+ phy->ops.check_reset_block = e1000_check_reset_block_generic;
+ phy->ops.commit = e1000_phy_sw_reset_generic;
+ phy->ops.get_cfg_done = e1000_get_cfg_done_80003es2lan;
+ phy->ops.get_info = e1000_get_phy_info_m88;
+ phy->ops.release = e1000_release_phy_80003es2lan;
+ phy->ops.reset = e1000_phy_hw_reset_generic;
+ phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_generic;
phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_80003es2lan;
- phy->ops.get_cable_length = e1000_get_cable_length_80003es2lan;
- phy->ops.read_reg = e1000_read_phy_reg_gg82563_80003es2lan;
- phy->ops.write_reg = e1000_write_phy_reg_gg82563_80003es2lan;
+ phy->ops.get_cable_length = e1000_get_cable_length_80003es2lan;
+ phy->ops.read_reg = e1000_read_phy_reg_gg82563_80003es2lan;
+ phy->ops.write_reg = e1000_write_phy_reg_gg82563_80003es2lan;
- phy->ops.cfg_on_link_up = e1000_cfg_on_link_up_80003es2lan;
+ phy->ops.cfg_on_link_up = e1000_cfg_on_link_up_80003es2lan;
/* This can only be done after all function pointers are setup. */
ret_val = e1000_get_phy_id(hw);
@@ -160,19 +160,19 @@ static s32 e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw)
DEBUGFUNC("e1000_init_nvm_params_80003es2lan");
- nvm->opcode_bits = 8;
- nvm->delay_usec = 1;
+ nvm->opcode_bits = 8;
+ nvm->delay_usec = 1;
switch (nvm->override) {
case e1000_nvm_override_spi_large:
- nvm->page_size = 32;
+ nvm->page_size = 32;
nvm->address_bits = 16;
break;
case e1000_nvm_override_spi_small:
- nvm->page_size = 8;
+ nvm->page_size = 8;
nvm->address_bits = 8;
break;
default:
- nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
+ nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
break;
}
@@ -180,7 +180,7 @@ static s32 e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw)
nvm->type = e1000_nvm_eeprom_spi;
size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
- E1000_EECD_SIZE_EX_SHIFT);
+ E1000_EECD_SIZE_EX_SHIFT);
/*
* Added to a constant, "size" becomes the left-shift value
@@ -191,16 +191,16 @@ static s32 e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw)
/* EEPROM access above 16k is unsupported */
if (size > 14)
size = 14;
- nvm->word_size = 1 << size;
+ nvm->word_size = 1 << size;
/* Function Pointers */
- nvm->ops.acquire = e1000_acquire_nvm_80003es2lan;
- nvm->ops.read = e1000_read_nvm_eerd;
- nvm->ops.release = e1000_release_nvm_80003es2lan;
- nvm->ops.update = e1000_update_nvm_checksum_generic;
+ nvm->ops.acquire = e1000_acquire_nvm_80003es2lan;
+ nvm->ops.read = e1000_read_nvm_eerd;
+ nvm->ops.release = e1000_release_nvm_80003es2lan;
+ nvm->ops.update = e1000_update_nvm_checksum_generic;
nvm->ops.valid_led_default = e1000_valid_led_default_generic;
- nvm->ops.validate = e1000_validate_nvm_checksum_generic;
- nvm->ops.write = e1000_write_nvm_80003es2lan;
+ nvm->ops.validate = e1000_validate_nvm_checksum_generic;
+ nvm->ops.write = e1000_write_nvm_80003es2lan;
return E1000_SUCCESS;
}
@@ -221,13 +221,13 @@ static s32 e1000_init_mac_params_80003es2lan(struct e1000_hw *hw)
hw->phy.media_type = e1000_media_type_internal_serdes;
mac->ops.check_for_link = e1000_check_for_serdes_link_generic;
mac->ops.setup_physical_interface =
- e1000_setup_fiber_serdes_link_generic;
+ e1000_setup_fiber_serdes_link_generic;
break;
default:
hw->phy.media_type = e1000_media_type_copper;
mac->ops.check_for_link = e1000_check_for_copper_link_generic;
mac->ops.setup_physical_interface =
- e1000_setup_copper_link_80003es2lan;
+ e1000_setup_copper_link_80003es2lan;
break;
}
@@ -240,9 +240,8 @@ static s32 e1000_init_mac_params_80003es2lan(struct e1000_hw *hw)
/* FWSM register */
mac->has_fwsm = TRUE;
/* ARC supported; valid only if manageability features are enabled. */
- mac->arc_subsystem_valid =
- (E1000_READ_REG(hw, E1000_FWSM) & E1000_FWSM_MODE_MASK)
- ? TRUE : FALSE;
+ mac->arc_subsystem_valid = (E1000_READ_REG(hw, E1000_FWSM) &
+ E1000_FWSM_MODE_MASK) ? TRUE : FALSE;
/* Adaptive IFS not supported */
mac->adaptive_ifs = FALSE;
@@ -336,7 +335,7 @@ static void e1000_release_phy_80003es2lan(struct e1000_hw *hw)
}
/**
- * e1000_acquire_mac_csr_80003es2lan - Acquire rights to access Kumeran register
+ * e1000_acquire_mac_csr_80003es2lan - Acquire right to access Kumeran register
* @hw: pointer to the HW structure
*
* Acquire the semaphore to access the Kumeran interface.
@@ -354,7 +353,7 @@ static s32 e1000_acquire_mac_csr_80003es2lan(struct e1000_hw *hw)
}
/**
- * e1000_release_mac_csr_80003es2lan - Release rights to access Kumeran Register
+ * e1000_release_mac_csr_80003es2lan - Release right to access Kumeran Register
* @hw: pointer to the HW structure
*
* Release the semaphore used to access the Kumeran interface
@@ -494,7 +493,7 @@ static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
* Read the GG82563 PHY register.
**/
static s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
- u32 offset, u16 *data)
+ u32 offset, u16 *data)
{
s32 ret_val;
u32 page_select;
@@ -544,14 +543,14 @@ static s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
usec_delay(200);
ret_val = e1000_read_phy_reg_mdic(hw,
- MAX_PHY_REG_ADDRESS & offset,
- data);
+ MAX_PHY_REG_ADDRESS & offset,
+ data);
usec_delay(200);
} else {
ret_val = e1000_read_phy_reg_mdic(hw,
- MAX_PHY_REG_ADDRESS & offset,
- data);
+ MAX_PHY_REG_ADDRESS & offset,
+ data);
}
e1000_release_phy_80003es2lan(hw);
@@ -569,7 +568,7 @@ out:
* Write to the GG82563 PHY register.
**/
static s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
- u32 offset, u16 data)
+ u32 offset, u16 data)
{
s32 ret_val;
u32 page_select;
@@ -619,14 +618,14 @@ static s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
usec_delay(200);
ret_val = e1000_write_phy_reg_mdic(hw,
- MAX_PHY_REG_ADDRESS & offset,
- data);
+ MAX_PHY_REG_ADDRESS & offset,
+ data);
usec_delay(200);
} else {
ret_val = e1000_write_phy_reg_mdic(hw,
- MAX_PHY_REG_ADDRESS & offset,
- data);
+ MAX_PHY_REG_ADDRESS & offset,
+ data);
}
e1000_release_phy_80003es2lan(hw);
@@ -645,7 +644,7 @@ out:
* Write "words" of data to the ESB2 NVM.
**/
static s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset,
- u16 words, u16 *data)
+ u16 words, u16 *data)
{
DEBUGFUNC("e1000_write_nvm_80003es2lan");
@@ -735,11 +734,10 @@ static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw)
usec_delay(1);
if (hw->phy.autoneg_wait_to_complete) {
- DEBUGOUT("Waiting for forced speed/duplex link "
- "on GG82563 phy.\n");
+ DEBUGOUT("Waiting for forced speed/duplex link on GG82563 phy.\n");
ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
- 100000, &link);
+ 100000, &link);
if (ret_val)
goto out;
@@ -755,12 +753,13 @@ static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw)
/* Try once more */
ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
- 100000, &link);
+ 100000, &link);
if (ret_val)
goto out;
}
- ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
+ ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
+ &phy_data);
if (ret_val)
goto out;
@@ -779,7 +778,8 @@ static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw)
* duplex.
*/
phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
- ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data);
+ ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
+ phy_data);
out:
return ret_val;
@@ -832,21 +832,20 @@ out:
* Retrieve the current speed and duplex configuration.
**/
static s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed,
- u16 *duplex)
+ u16 *duplex)
{
s32 ret_val;
DEBUGFUNC("e1000_get_link_up_info_80003es2lan");
if (hw->phy.media_type == e1000_media_type_copper) {
- ret_val = e1000_get_speed_and_duplex_copper_generic(hw,
- speed,
- duplex);
+ ret_val = e1000_get_speed_and_duplex_copper_generic(hw, speed,
+ duplex);
hw->phy.ops.cfg_on_link_up(hw);
} else {
ret_val = e1000_get_speed_and_duplex_fiber_serdes_generic(hw,
- speed,
- duplex);
+ speed,
+ duplex);
}
return ret_val;
@@ -860,7 +859,7 @@ static s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed,
**/
static s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw)
{
- u32 ctrl, icr;
+ u32 ctrl;
s32 ret_val;
DEBUGFUNC("e1000_reset_hw_80003es2lan");
@@ -896,7 +895,7 @@ static s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw)
/* Clear any pending interrupt events. */
E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
- icr = E1000_READ_REG(hw, E1000_ICR);
+ E1000_READ_REG(hw, E1000_ICR);
ret_val = e1000_check_alt_mac_addr_generic(hw);
@@ -915,6 +914,7 @@ static s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw)
struct e1000_mac_info *mac = &hw->mac;
u32 reg_data;
s32 ret_val;
+ u16 kum_reg_data;
u16 i;
DEBUGFUNC("e1000_init_hw_80003es2lan");
@@ -942,16 +942,23 @@ static s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw)
/* Setup link and flow control */
ret_val = mac->ops.setup_link(hw);
+ /* Disable IBIST slave mode (far-end loopback) */
+ e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
+ &kum_reg_data);
+ kum_reg_data |= E1000_KMRNCTRLSTA_IBIST_DISABLE;
+ e1000_write_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
+ kum_reg_data);
+
/* Set the transmit descriptor write-back policy */
reg_data = E1000_READ_REG(hw, E1000_TXDCTL(0));
reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
- E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC;
+ E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC;
E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg_data);
/* ...for both queues. */
reg_data = E1000_READ_REG(hw, E1000_TXDCTL(1));
reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
- E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC;
+ E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC;
E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg_data);
/* Enable retransmit on late collisions */
@@ -979,9 +986,9 @@ static s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw)
hw->dev_spec._80003es2lan.mdic_wa_enable = TRUE;
ret_val = e1000_read_kmrn_reg_80003es2lan(hw,
- E1000_KMRNCTRLSTA_OFFSET >>
- E1000_KMRNCTRLSTA_OFFSET_SHIFT,
- &i);
+ E1000_KMRNCTRLSTA_OFFSET >>
+ E1000_KMRNCTRLSTA_OFFSET_SHIFT,
+ &i);
if (!ret_val) {
if ((i & E1000_KMRNCTRLSTA_OPMODE_MASK) ==
E1000_KMRNCTRLSTA_OPMODE_INBAND_MDIO)
@@ -1054,11 +1061,7 @@ static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
DEBUGFUNC("e1000_copper_link_setup_gg82563_80003es2lan");
- if (phy->reset_disable)
- goto skip_reset;
-
- ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
- &data);
+ ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, &data);
if (ret_val)
goto out;
@@ -1066,8 +1069,7 @@ static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
/* Use 25MHz for both link down and 1000Base-T for Tx clock. */
data |= GG82563_MSCR_TX_CLK_1000MBPS_25;
- ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
- data);
+ ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, data);
if (ret_val)
goto out;
@@ -1120,7 +1122,6 @@ static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
goto out;
}
-skip_reset:
/* Bypass Rx and Tx FIFO's */
ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL,
@@ -1130,14 +1131,12 @@ skip_reset:
goto out;
ret_val = e1000_read_kmrn_reg_80003es2lan(hw,
- E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE,
- &data);
+ E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE, &data);
if (ret_val)
goto out;
data |= E1000_KMRNCTRLSTA_OPMODE_E_IDLE;
ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
- E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE,
- data);
+ E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE, data);
if (ret_val)
goto out;
@@ -1167,18 +1166,18 @@ skip_reset:
/* Enable Electrical Idle on the PHY */
data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_PWR_MGMT_CTRL,
- data);
+ data);
if (ret_val)
goto out;
ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
- &data);
+ &data);
if (ret_val)
goto out;
data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
- data);
+ data);
if (ret_val)
goto out;
}
@@ -1226,27 +1225,25 @@ static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw)
* polling the phy; this fixes erroneous timeouts at 10Mbps.
*/
ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 4),
- 0xFFFF);
+ 0xFFFF);
if (ret_val)
goto out;
ret_val = e1000_read_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
- &reg_data);
+ &reg_data);
if (ret_val)
goto out;
reg_data |= 0x3F;
ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
- reg_data);
+ reg_data);
if (ret_val)
goto out;
ret_val = e1000_read_kmrn_reg_80003es2lan(hw,
- E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
- &reg_data);
+ E1000_KMRNCTRLSTA_OFFSET_INB_CTRL, &reg_data);
if (ret_val)
goto out;
reg_data |= E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING;
ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
- E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
- reg_data);
+ E1000_KMRNCTRLSTA_OFFSET_INB_CTRL, reg_data);
if (ret_val)
goto out;
@@ -1277,9 +1274,8 @@ static s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw)
DEBUGFUNC("e1000_configure_on_link_up");
if (hw->phy.media_type == e1000_media_type_copper) {
- ret_val = e1000_get_speed_and_duplex_copper_generic(hw,
- &speed,
- &duplex);
+ ret_val = e1000_get_speed_and_duplex_copper_generic(hw, &speed,
+ &duplex);
if (ret_val)
goto out;
@@ -1312,8 +1308,8 @@ static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex)
reg_data = E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT;
ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
- E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
- reg_data);
+ E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
+ reg_data);
if (ret_val)
goto out;
@@ -1325,12 +1321,12 @@ static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex)
do {
ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
- &reg_data);
+ &reg_data);
if (ret_val)
goto out;
ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
- &reg_data2);
+ &reg_data2);
if (ret_val)
goto out;
i++;
@@ -1341,7 +1337,8 @@ static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex)
else
reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
- ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
+ ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
+ reg_data);
out:
return ret_val;
@@ -1365,8 +1362,7 @@ static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw)
reg_data = E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT;
ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
- E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
- reg_data);
+ E1000_KMRNCTRLSTA_OFFSET_HD_CTRL, reg_data);
if (ret_val)
goto out;
@@ -1378,19 +1374,20 @@ static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw)
do {
ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
- &reg_data);
+ &reg_data);
if (ret_val)
goto out;
ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
- &reg_data2);
+ &reg_data2);
if (ret_val)
goto out;
i++;
} while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
- ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
+ ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
+ reg_data);
out:
return ret_val;
@@ -1407,7 +1404,7 @@ out:
* Release the semaphore before exiting.
**/
static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
- u16 *data)
+ u16 *data)
{
u32 kmrnctrlsta;
s32 ret_val = E1000_SUCCESS;
@@ -1419,8 +1416,9 @@ static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
goto out;
kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
- E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
+ E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
E1000_WRITE_REG(hw, E1000_KMRNCTRLSTA, kmrnctrlsta);
+ E1000_WRITE_FLUSH(hw);
usec_delay(2);
@@ -1444,7 +1442,7 @@ out:
* before exiting.
**/
static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
- u16 data)
+ u16 data)
{
u32 kmrnctrlsta;
s32 ret_val = E1000_SUCCESS;
@@ -1456,8 +1454,9 @@ static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
goto out;
kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
- E1000_KMRNCTRLSTA_OFFSET) | data;
+ E1000_KMRNCTRLSTA_OFFSET) | data;
E1000_WRITE_REG(hw, E1000_KMRNCTRLSTA, kmrnctrlsta);
+ E1000_WRITE_FLUSH(hw);
usec_delay(2);
diff --git a/freebsd/sys/dev/e1000/e1000_80003es2lan.h b/freebsd/sys/dev/e1000/e1000_80003es2lan.h
index 3ab1ec9d..157468e4 100644
--- a/freebsd/sys/dev/e1000/e1000_80003es2lan.h
+++ b/freebsd/sys/dev/e1000/e1000_80003es2lan.h
@@ -1,6 +1,6 @@
/******************************************************************************
- Copyright (c) 2001-2009, Intel Corporation
+ Copyright (c) 2001-2011, Intel Corporation
All rights reserved.
Redistribution and use in source and binary forms, with or without
@@ -35,48 +35,47 @@
#ifndef _E1000_80003ES2LAN_H_
#define _E1000_80003ES2LAN_H_
-#define E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL 0x00
-#define E1000_KMRNCTRLSTA_OFFSET_INB_CTRL 0x02
-#define E1000_KMRNCTRLSTA_OFFSET_HD_CTRL 0x10
-#define E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE 0x1F
+#define E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL 0x00
+#define E1000_KMRNCTRLSTA_OFFSET_INB_CTRL 0x02
+#define E1000_KMRNCTRLSTA_OFFSET_HD_CTRL 0x10
+#define E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE 0x1F
-#define E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS 0x0008
-#define E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS 0x0800
-#define E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING 0x0010
+#define E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS 0x0008
+#define E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS 0x0800
+#define E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING 0x0010
#define E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT 0x0004
-#define E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT 0x0000
-#define E1000_KMRNCTRLSTA_OPMODE_E_IDLE 0x2000
+#define E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT 0x0000
+#define E1000_KMRNCTRLSTA_OPMODE_E_IDLE 0x2000
-#define E1000_KMRNCTRLSTA_OPMODE_MASK 0x000C
-#define E1000_KMRNCTRLSTA_OPMODE_INBAND_MDIO 0x0004
+#define E1000_KMRNCTRLSTA_OPMODE_MASK 0x000C
+#define E1000_KMRNCTRLSTA_OPMODE_INBAND_MDIO 0x0004
#define E1000_TCTL_EXT_GCEX_MASK 0x000FFC00 /* Gigabit Carry Extend Padding */
-#define DEFAULT_TCTL_EXT_GCEX_80003ES2LAN 0x00010000
+#define DEFAULT_TCTL_EXT_GCEX_80003ES2LAN 0x00010000
-#define DEFAULT_TIPG_IPGT_1000_80003ES2LAN 0x8
-#define DEFAULT_TIPG_IPGT_10_100_80003ES2LAN 0x9
+#define DEFAULT_TIPG_IPGT_1000_80003ES2LAN 0x8
+#define DEFAULT_TIPG_IPGT_10_100_80003ES2LAN 0x9
/* GG82563 PHY Specific Status Register (Page 0, Register 16 */
-#define GG82563_PSCR_POLARITY_REVERSAL_DISABLE 0x0002 /* 1=Reversal Disabled */
-#define GG82563_PSCR_CROSSOVER_MODE_MASK 0x0060
-#define GG82563_PSCR_CROSSOVER_MODE_MDI 0x0000 /* 00=Manual MDI */
-#define GG82563_PSCR_CROSSOVER_MODE_MDIX 0x0020 /* 01=Manual MDIX */
-#define GG82563_PSCR_CROSSOVER_MODE_AUTO 0x0060 /* 11=Auto crossover */
+#define GG82563_PSCR_POLARITY_REVERSAL_DISABLE 0x0002 /* 1=Reversal Disabled */
+#define GG82563_PSCR_CROSSOVER_MODE_MASK 0x0060
+#define GG82563_PSCR_CROSSOVER_MODE_MDI 0x0000 /* 00=Manual MDI */
+#define GG82563_PSCR_CROSSOVER_MODE_MDIX 0x0020 /* 01=Manual MDIX */
+#define GG82563_PSCR_CROSSOVER_MODE_AUTO 0x0060 /* 11=Auto crossover */
/* PHY Specific Control Register 2 (Page 0, Register 26) */
-#define GG82563_PSCR2_REVERSE_AUTO_NEG 0x2000
- /* 1=Reverse Auto-Negotiation */
+#define GG82563_PSCR2_REVERSE_AUTO_NEG 0x2000 /* 1=Reverse Auto-Nego */
/* MAC Specific Control Register (Page 2, Register 21) */
/* Tx clock speed for Link Down and 1000BASE-T for the following speeds */
-#define GG82563_MSCR_TX_CLK_MASK 0x0007
-#define GG82563_MSCR_TX_CLK_10MBPS_2_5 0x0004
-#define GG82563_MSCR_TX_CLK_100MBPS_25 0x0005
-#define GG82563_MSCR_TX_CLK_1000MBPS_2_5 0x0006
-#define GG82563_MSCR_TX_CLK_1000MBPS_25 0x0007
+#define GG82563_MSCR_TX_CLK_MASK 0x0007
+#define GG82563_MSCR_TX_CLK_10MBPS_2_5 0x0004
+#define GG82563_MSCR_TX_CLK_100MBPS_25 0x0005
+#define GG82563_MSCR_TX_CLK_1000MBPS_2_5 0x0006
+#define GG82563_MSCR_TX_CLK_1000MBPS_25 0x0007
-#define GG82563_MSCR_ASSERT_CRS_ON_TX 0x0010 /* 1=Assert */
+#define GG82563_MSCR_ASSERT_CRS_ON_TX 0x0010 /* 1=Assert */
/* DSP Distance Register (Page 5, Register 26) */
/*
@@ -86,19 +85,19 @@
* 3 = 110-140M
* 4 = >140M
*/
-#define GG82563_DSPD_CABLE_LENGTH 0x0007
+#define GG82563_DSPD_CABLE_LENGTH 0x0007
/* Kumeran Mode Control Register (Page 193, Register 16) */
-#define GG82563_KMCR_PASS_FALSE_CARRIER 0x0800
+#define GG82563_KMCR_PASS_FALSE_CARRIER 0x0800
/* Max number of times Kumeran read/write should be validated */
-#define GG82563_MAX_KMRN_RETRY 0x5
+#define GG82563_MAX_KMRN_RETRY 0x5
/* Power Management Control Register (Page 193, Register 20) */
-#define GG82563_PMCR_ENABLE_ELECTRICAL_IDLE 0x0001
- /* 1=Enable SERDES Electrical Idle */
+/* 1=Enable SERDES Electrical Idle */
+#define GG82563_PMCR_ENABLE_ELECTRICAL_IDLE 0x0001
/* In-Band Control Register (Page 194, Register 18) */
-#define GG82563_ICR_DIS_PADDING 0x0010 /* Disable Padding */
+#define GG82563_ICR_DIS_PADDING 0x0010 /* Disable Padding */
#endif
diff --git a/freebsd/sys/dev/e1000/e1000_82540.c b/freebsd/sys/dev/e1000/e1000_82540.c
index c0e8932f..e8c46f3b 100644
--- a/freebsd/sys/dev/e1000/e1000_82540.c
+++ b/freebsd/sys/dev/e1000/e1000_82540.c
@@ -2,7 +2,7 @@
/******************************************************************************
- Copyright (c) 2001-2010, Intel Corporation
+ Copyright (c) 2001-2011, Intel Corporation
All rights reserved.
Redistribution and use in source and binary forms, with or without
@@ -74,23 +74,23 @@ static s32 e1000_init_phy_params_82540(struct e1000_hw *hw)
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val = E1000_SUCCESS;
- phy->addr = 1;
- phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
- phy->reset_delay_us = 10000;
- phy->type = e1000_phy_m88;
+ phy->addr = 1;
+ phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
+ phy->reset_delay_us = 10000;
+ phy->type = e1000_phy_m88;
/* Function Pointers */
- phy->ops.check_polarity = e1000_check_polarity_m88;
- phy->ops.commit = e1000_phy_sw_reset_generic;
- phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
- phy->ops.get_cable_length = e1000_get_cable_length_m88;
- phy->ops.get_cfg_done = e1000_get_cfg_done_generic;
- phy->ops.read_reg = e1000_read_phy_reg_m88;
- phy->ops.reset = e1000_phy_hw_reset_generic;
- phy->ops.write_reg = e1000_write_phy_reg_m88;
- phy->ops.get_info = e1000_get_phy_info_m88;
- phy->ops.power_up = e1000_power_up_phy_copper;
- phy->ops.power_down = e1000_power_down_phy_copper_82540;
+ phy->ops.check_polarity = e1000_check_polarity_m88;
+ phy->ops.commit = e1000_phy_sw_reset_generic;
+ phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
+ phy->ops.get_cable_length = e1000_get_cable_length_m88;
+ phy->ops.get_cfg_done = e1000_get_cfg_done_generic;
+ phy->ops.read_reg = e1000_read_phy_reg_m88;
+ phy->ops.reset = e1000_phy_hw_reset_generic;
+ phy->ops.write_reg = e1000_write_phy_reg_m88;
+ phy->ops.get_info = e1000_get_phy_info_m88;
+ phy->ops.power_up = e1000_power_up_phy_copper;
+ phy->ops.power_down = e1000_power_down_phy_copper_82540;
ret_val = e1000_get_phy_id(hw);
if (ret_val)
@@ -127,32 +127,32 @@ static s32 e1000_init_nvm_params_82540(struct e1000_hw *hw)
DEBUGFUNC("e1000_init_nvm_params_82540");
- nvm->type = e1000_nvm_eeprom_microwire;
- nvm->delay_usec = 50;
- nvm->opcode_bits = 3;
+ nvm->type = e1000_nvm_eeprom_microwire;
+ nvm->delay_usec = 50;
+ nvm->opcode_bits = 3;
switch (nvm->override) {
case e1000_nvm_override_microwire_large:
- nvm->address_bits = 8;
- nvm->word_size = 256;
+ nvm->address_bits = 8;
+ nvm->word_size = 256;
break;
case e1000_nvm_override_microwire_small:
- nvm->address_bits = 6;
- nvm->word_size = 64;
+ nvm->address_bits = 6;
+ nvm->word_size = 64;
break;
default:
- nvm->address_bits = eecd & E1000_EECD_SIZE ? 8 : 6;
- nvm->word_size = eecd & E1000_EECD_SIZE ? 256 : 64;
+ nvm->address_bits = eecd & E1000_EECD_SIZE ? 8 : 6;
+ nvm->word_size = eecd & E1000_EECD_SIZE ? 256 : 64;
break;
}
/* Function Pointers */
- nvm->ops.acquire = e1000_acquire_nvm_generic;
- nvm->ops.read = e1000_read_nvm_microwire;
- nvm->ops.release = e1000_release_nvm_generic;
- nvm->ops.update = e1000_update_nvm_checksum_generic;
- nvm->ops.valid_led_default = e1000_valid_led_default_generic;
- nvm->ops.validate = e1000_validate_nvm_checksum_generic;
- nvm->ops.write = e1000_write_nvm_microwire;
+ nvm->ops.acquire = e1000_acquire_nvm_generic;
+ nvm->ops.read = e1000_read_nvm_microwire;
+ nvm->ops.release = e1000_release_nvm_generic;
+ nvm->ops.update = e1000_update_nvm_checksum_generic;
+ nvm->ops.valid_led_default = e1000_valid_led_default_generic;
+ nvm->ops.validate = e1000_validate_nvm_checksum_generic;
+ nvm->ops.write = e1000_write_nvm_microwire;
return E1000_SUCCESS;
}
@@ -204,9 +204,9 @@ static s32 e1000_init_mac_params_82540(struct e1000_hw *hw)
mac->ops.setup_link = e1000_setup_link_generic;
/* physical interface setup */
mac->ops.setup_physical_interface =
- (hw->phy.media_type == e1000_media_type_copper)
- ? e1000_setup_copper_link_82540
- : e1000_setup_fiber_serdes_link_82540;
+ (hw->phy.media_type == e1000_media_type_copper)
+ ? e1000_setup_copper_link_82540
+ : e1000_setup_fiber_serdes_link_82540;
/* check for link */
switch (hw->phy.media_type) {
case e1000_media_type_copper:
@@ -225,9 +225,9 @@ static s32 e1000_init_mac_params_82540(struct e1000_hw *hw)
}
/* link info */
mac->ops.get_link_up_info =
- (hw->phy.media_type == e1000_media_type_copper)
- ? e1000_get_speed_and_duplex_copper_generic
- : e1000_get_speed_and_duplex_fiber_serdes_generic;
+ (hw->phy.media_type == e1000_media_type_copper)
+ ? e1000_get_speed_and_duplex_copper_generic
+ : e1000_get_speed_and_duplex_fiber_serdes_generic;
/* multicast address update */
mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
/* writing VFTA */
@@ -275,7 +275,7 @@ void e1000_init_function_pointers_82540(struct e1000_hw *hw)
**/
static s32 e1000_reset_hw_82540(struct e1000_hw *hw)
{
- u32 ctrl, icr, manc;
+ u32 ctrl, manc;
s32 ret_val = E1000_SUCCESS;
DEBUGFUNC("e1000_reset_hw_82540");
@@ -320,7 +320,7 @@ static s32 e1000_reset_hw_82540(struct e1000_hw *hw)
E1000_WRITE_REG(hw, E1000_MANC, manc);
E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
- icr = E1000_READ_REG(hw, E1000_ICR);
+ E1000_READ_REG(hw, E1000_ICR);
return ret_val;
}
@@ -380,7 +380,7 @@ static s32 e1000_init_hw_82540(struct e1000_hw *hw)
txdctl = E1000_READ_REG(hw, E1000_TXDCTL(0));
txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
- E1000_TXDCTL_FULL_TX_DESC_WB;
+ E1000_TXDCTL_FULL_TX_DESC_WB;
E1000_WRITE_REG(hw, E1000_TXDCTL(0), txdctl);
/*
@@ -433,11 +433,13 @@ static s32 e1000_setup_copper_link_82540(struct e1000_hw *hw)
if (hw->mac.type == e1000_82545_rev_3 ||
hw->mac.type == e1000_82546_rev_3) {
- ret_val = hw->phy.ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &data);
+ ret_val = hw->phy.ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL,
+ &data);
if (ret_val)
goto out;
data |= 0x00000008;
- ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, data);
+ ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL,
+ data);
if (ret_val)
goto out;
}
@@ -514,9 +516,8 @@ static s32 e1000_adjust_serdes_amplitude_82540(struct e1000_hw *hw)
if (nvm_data != NVM_RESERVED_WORD) {
/* Adjust serdes output amplitude only. */
nvm_data &= NVM_SERDES_AMPLITUDE_MASK;
- ret_val = hw->phy.ops.write_reg(hw,
- M88E1000_PHY_EXT_CTRL,
- nvm_data);
+ ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_EXT_CTRL,
+ nvm_data);
if (ret_val)
goto out;
}
@@ -541,9 +542,8 @@ static s32 e1000_set_vco_speed_82540(struct e1000_hw *hw)
/* Set PHY register 30, page 5, bit 8 to 0 */
- ret_val = hw->phy.ops.read_reg(hw,
- M88E1000_PHY_PAGE_SELECT,
- &default_page);
+ ret_val = hw->phy.ops.read_reg(hw, M88E1000_PHY_PAGE_SELECT,
+ &default_page);
if (ret_val)
goto out;
@@ -576,7 +576,7 @@ static s32 e1000_set_vco_speed_82540(struct e1000_hw *hw)
goto out;
ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT,
- default_page);
+ default_page);
out:
return ret_val;
@@ -593,7 +593,6 @@ out:
**/
static s32 e1000_set_phy_mode_82540(struct e1000_hw *hw)
{
- struct e1000_phy_info *phy = &hw->phy;
s32 ret_val = E1000_SUCCESS;
u16 nvm_data;
@@ -610,20 +609,18 @@ static s32 e1000_set_phy_mode_82540(struct e1000_hw *hw)
if ((nvm_data != NVM_RESERVED_WORD) && (nvm_data & NVM_PHY_CLASS_A)) {
ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT,
- 0x000B);
+ 0x000B);
if (ret_val) {
ret_val = -E1000_ERR_PHY;
goto out;
}
- ret_val = hw->phy.ops.write_reg(hw,
- M88E1000_PHY_GEN_CONTROL,
- 0x8104);
+ ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL,
+ 0x8104);
if (ret_val) {
ret_val = -E1000_ERR_PHY;
goto out;
}
- phy->reset_disable = FALSE;
}
out:
diff --git a/freebsd/sys/dev/e1000/e1000_82541.c b/freebsd/sys/dev/e1000/e1000_82541.c
index 2b655738..a3c05f82 100644
--- a/freebsd/sys/dev/e1000/e1000_82541.c
+++ b/freebsd/sys/dev/e1000/e1000_82541.c
@@ -2,7 +2,7 @@
/******************************************************************************
- Copyright (c) 2001-2010, Intel Corporation
+ Copyright (c) 2001-2011, Intel Corporation
All rights reserved.
Redistribution and use in source and binary forms, with or without
@@ -555,8 +555,6 @@ static s32 e1000_setup_copper_link_82541(struct e1000_hw *hw)
ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
- hw->phy.reset_disable = FALSE;
-
/* Earlier revs of the IGP phy require us to force MDI. */
if (hw->mac.type == e1000_82541 || hw->mac.type == e1000_82547) {
dev_spec->dsp_config = e1000_dsp_config_disabled;
@@ -650,7 +648,7 @@ static s32 e1000_check_for_link_82541(struct e1000_hw *hw)
* of MAC speed/duplex configuration. So we only need to
* configure Collision Distance in the MAC.
*/
- e1000_config_collision_dist_generic(hw);
+ mac->ops.config_collision_dist(hw);
/*
* Configure Flow Control now that Auto-Neg has completed.
diff --git a/freebsd/sys/dev/e1000/e1000_82542.c b/freebsd/sys/dev/e1000/e1000_82542.c
index 1e2f8671..4d6986ac 100644
--- a/freebsd/sys/dev/e1000/e1000_82542.c
+++ b/freebsd/sys/dev/e1000/e1000_82542.c
@@ -57,7 +57,6 @@ static void e1000_rar_set_82542(struct e1000_hw *hw, u8 *addr, u32 index);
static void e1000_clear_hw_cntrs_82542(struct e1000_hw *hw);
static s32 e1000_read_mac_addr_82542(struct e1000_hw *hw);
-
/**
* e1000_init_phy_params_82542 - Init PHY func ptrs.
* @hw: pointer to the HW structure
@@ -198,7 +197,7 @@ static s32 e1000_reset_hw_82542(struct e1000_hw *hw)
{
struct e1000_bus_info *bus = &hw->bus;
s32 ret_val = E1000_SUCCESS;
- u32 ctrl, icr;
+ u32 ctrl;
DEBUGFUNC("e1000_reset_hw_82542");
@@ -229,7 +228,7 @@ static s32 e1000_reset_hw_82542(struct e1000_hw *hw)
msec_delay(2);
E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
- icr = E1000_READ_REG(hw, E1000_ICR);
+ E1000_READ_REG(hw, E1000_ICR);
if (hw->revision_id == E1000_REVISION_2) {
if (bus->pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
diff --git a/freebsd/sys/dev/e1000/e1000_82543.c b/freebsd/sys/dev/e1000/e1000_82543.c
index ccf5bddf..f0b58519 100644
--- a/freebsd/sys/dev/e1000/e1000_82543.c
+++ b/freebsd/sys/dev/e1000/e1000_82543.c
@@ -2,7 +2,7 @@
/******************************************************************************
- Copyright (c) 2001-2010, Intel Corporation
+ Copyright (c) 2001-2011, Intel Corporation
All rights reserved.
Redistribution and use in source and binary forms, with or without
@@ -1085,7 +1085,6 @@ static s32 e1000_setup_copper_link_82543(struct e1000_hw *hw)
ret_val = hw->phy.ops.reset(hw);
if (ret_val)
goto out;
- hw->phy.reset_disable = FALSE;
} else {
ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
@@ -1133,7 +1132,7 @@ static s32 e1000_setup_copper_link_82543(struct e1000_hw *hw)
DEBUGOUT("Valid link established!!!\n");
/* Config the MAC and PHY after link is up */
if (hw->mac.type == e1000_82544) {
- e1000_config_collision_dist_generic(hw);
+ hw->mac.ops.config_collision_dist(hw);
} else {
ret_val = e1000_config_mac_to_phy_82543(hw);
if (ret_val)
@@ -1167,7 +1166,7 @@ static s32 e1000_setup_fiber_link_82543(struct e1000_hw *hw)
/* Take the link out of reset */
ctrl &= ~E1000_CTRL_LRST;
- e1000_config_collision_dist_generic(hw);
+ hw->mac.ops.config_collision_dist(hw);
ret_val = e1000_commit_fc_settings_generic(hw);
if (ret_val)
@@ -1266,7 +1265,7 @@ static s32 e1000_check_for_copper_link_82543(struct e1000_hw *hw)
* settings.
*/
if (mac->type == e1000_82544)
- e1000_config_collision_dist_generic(hw);
+ hw->mac.ops.config_collision_dist(hw);
else {
ret_val = e1000_config_mac_to_phy_82543(hw);
if (ret_val) {
@@ -1440,7 +1439,7 @@ static s32 e1000_config_mac_to_phy_82543(struct e1000_hw *hw)
if (phy_data & M88E1000_PSSR_DPLX)
ctrl |= E1000_CTRL_FD;
- e1000_config_collision_dist_generic(hw);
+ hw->mac.ops.config_collision_dist(hw);
/*
* Set up speed in the Device Control register depending on
diff --git a/freebsd/sys/dev/e1000/e1000_82571.c b/freebsd/sys/dev/e1000/e1000_82571.c
index 8faf6f91..fe87aa71 100644
--- a/freebsd/sys/dev/e1000/e1000_82571.c
+++ b/freebsd/sys/dev/e1000/e1000_82571.c
@@ -2,7 +2,7 @@
/******************************************************************************
- Copyright (c) 2001-2010, Intel Corporation
+ Copyright (c) 2001-2013, Intel Corporation
All rights reserved.
Redistribution and use in source and binary forms, with or without
@@ -34,8 +34,7 @@
******************************************************************************/
/*$FreeBSD$*/
-/*
- * 82571EB Gigabit Ethernet Controller
+/* 82571EB Gigabit Ethernet Controller
* 82571EB Gigabit Ethernet Controller (Copper)
* 82571EB Gigabit Ethernet Controller (Fiber)
* 82571EB Dual Port Gigabit Mezzanine Adapter
@@ -57,18 +56,15 @@
#include <rtems/bsd/local/e1000_api.h>
#endif
-static s32 e1000_init_phy_params_82571(struct e1000_hw *hw);
-static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw);
-static s32 e1000_init_mac_params_82571(struct e1000_hw *hw);
static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw);
static void e1000_release_nvm_82571(struct e1000_hw *hw);
static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset,
- u16 words, u16 *data);
+ u16 words, u16 *data);
static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw);
static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw);
static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw);
static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw,
- bool active);
+ bool active);
static s32 e1000_reset_hw_82571(struct e1000_hw *hw);
static s32 e1000_init_hw_82571(struct e1000_hw *hw);
static void e1000_clear_vfta_82571(struct e1000_hw *hw);
@@ -84,13 +80,16 @@ static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw);
static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw);
static s32 e1000_get_phy_id_82571(struct e1000_hw *hw);
static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw);
-static s32 e1000_get_hw_semaphore_82573(struct e1000_hw *hw);
static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw);
static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw);
static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw);
+static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw,
+ bool active);
+static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw,
+ bool active);
static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw);
static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
- u16 words, u16 *data);
+ u16 words, u16 *data);
static s32 e1000_read_mac_addr_82571(struct e1000_hw *hw);
static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw);
@@ -101,106 +100,107 @@ static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw);
static s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
- struct e1000_dev_spec_82571 *dev_spec = &hw->dev_spec._82571;
- s32 ret_val = E1000_SUCCESS;
+ s32 ret_val;
DEBUGFUNC("e1000_init_phy_params_82571");
if (hw->phy.media_type != e1000_media_type_copper) {
phy->type = e1000_phy_none;
- goto out;
+ return E1000_SUCCESS;
}
- phy->addr = 1;
- phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
- phy->reset_delay_us = 100;
+ phy->addr = 1;
+ phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
+ phy->reset_delay_us = 100;
- phy->ops.check_reset_block = e1000_check_reset_block_generic;
- phy->ops.reset = e1000_phy_hw_reset_generic;
- phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82571;
- phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_generic;
- phy->ops.power_up = e1000_power_up_phy_copper;
- phy->ops.power_down = e1000_power_down_phy_copper_82571;
+ phy->ops.check_reset_block = e1000_check_reset_block_generic;
+ phy->ops.reset = e1000_phy_hw_reset_generic;
+ phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82571;
+ phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_generic;
+ phy->ops.power_up = e1000_power_up_phy_copper;
+ phy->ops.power_down = e1000_power_down_phy_copper_82571;
switch (hw->mac.type) {
case e1000_82571:
case e1000_82572:
- phy->type = e1000_phy_igp_2;
- phy->ops.get_cfg_done = e1000_get_cfg_done_82571;
- phy->ops.get_info = e1000_get_phy_info_igp;
- phy->ops.check_polarity = e1000_check_polarity_igp;
+ phy->type = e1000_phy_igp_2;
+ phy->ops.get_cfg_done = e1000_get_cfg_done_82571;
+ phy->ops.get_info = e1000_get_phy_info_igp;
+ phy->ops.check_polarity = e1000_check_polarity_igp;
phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_igp;
- phy->ops.get_cable_length = e1000_get_cable_length_igp_2;
- phy->ops.read_reg = e1000_read_phy_reg_igp;
- phy->ops.write_reg = e1000_write_phy_reg_igp;
- phy->ops.acquire = e1000_get_hw_semaphore_82571;
- phy->ops.release = e1000_put_hw_semaphore_82571;
-
- /* This uses above function pointers */
- ret_val = e1000_get_phy_id_82571(hw);
-
- /* Verify PHY ID */
- if (phy->id != IGP01E1000_I_PHY_ID) {
- ret_val = -E1000_ERR_PHY;
- DEBUGOUT1("PHY ID unknown: type = 0x%08x\n", phy->id);
- goto out;
- }
+ phy->ops.get_cable_length = e1000_get_cable_length_igp_2;
+ phy->ops.read_reg = e1000_read_phy_reg_igp;
+ phy->ops.write_reg = e1000_write_phy_reg_igp;
+ phy->ops.acquire = e1000_get_hw_semaphore_82571;
+ phy->ops.release = e1000_put_hw_semaphore_82571;
break;
case e1000_82573:
- phy->type = e1000_phy_m88;
- phy->ops.get_cfg_done = e1000_get_cfg_done_generic;
- phy->ops.get_info = e1000_get_phy_info_m88;
- phy->ops.check_polarity = e1000_check_polarity_m88;
- phy->ops.commit = e1000_phy_sw_reset_generic;
+ phy->type = e1000_phy_m88;
+ phy->ops.get_cfg_done = e1000_get_cfg_done_generic;
+ phy->ops.get_info = e1000_get_phy_info_m88;
+ phy->ops.check_polarity = e1000_check_polarity_m88;
+ phy->ops.commit = e1000_phy_sw_reset_generic;
+ phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
+ phy->ops.get_cable_length = e1000_get_cable_length_m88;
+ phy->ops.read_reg = e1000_read_phy_reg_m88;
+ phy->ops.write_reg = e1000_write_phy_reg_m88;
+ phy->ops.acquire = e1000_get_hw_semaphore_82571;
+ phy->ops.release = e1000_put_hw_semaphore_82571;
+ break;
+ case e1000_82574:
+ case e1000_82583:
+ E1000_MUTEX_INIT(&hw->dev_spec._82571.swflag_mutex);
+
+ phy->type = e1000_phy_bm;
+ phy->ops.get_cfg_done = e1000_get_cfg_done_generic;
+ phy->ops.get_info = e1000_get_phy_info_m88;
+ phy->ops.check_polarity = e1000_check_polarity_m88;
+ phy->ops.commit = e1000_phy_sw_reset_generic;
phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
- phy->ops.get_cable_length = e1000_get_cable_length_m88;
- phy->ops.read_reg = e1000_read_phy_reg_m88;
- phy->ops.write_reg = e1000_write_phy_reg_m88;
- phy->ops.acquire = e1000_get_hw_semaphore_82571;
- phy->ops.release = e1000_put_hw_semaphore_82571;
+ phy->ops.get_cable_length = e1000_get_cable_length_m88;
+ phy->ops.read_reg = e1000_read_phy_reg_bm2;
+ phy->ops.write_reg = e1000_write_phy_reg_bm2;
+ phy->ops.acquire = e1000_get_hw_semaphore_82574;
+ phy->ops.release = e1000_put_hw_semaphore_82574;
+ phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82574;
+ phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82574;
+ break;
+ default:
+ return -E1000_ERR_PHY;
+ break;
+ }
- /* This uses above function pointers */
- ret_val = e1000_get_phy_id_82571(hw);
+ /* This can only be done after all function pointers are setup. */
+ ret_val = e1000_get_phy_id_82571(hw);
+ if (ret_val) {
+ DEBUGOUT("Error getting PHY ID\n");
+ return ret_val;
+ }
- /* Verify PHY ID */
- if (phy->id != M88E1111_I_PHY_ID) {
+ /* Verify phy id */
+ switch (hw->mac.type) {
+ case e1000_82571:
+ case e1000_82572:
+ if (phy->id != IGP01E1000_I_PHY_ID)
+ ret_val = -E1000_ERR_PHY;
+ break;
+ case e1000_82573:
+ if (phy->id != M88E1111_I_PHY_ID)
ret_val = -E1000_ERR_PHY;
- DEBUGOUT1("PHY ID unknown: type = 0x%08x\n", phy->id);
- goto out;
- }
break;
case e1000_82574:
case e1000_82583:
- E1000_MUTEX_INIT(&dev_spec->swflag_mutex);
-
- phy->type = e1000_phy_bm;
- phy->ops.get_cfg_done = e1000_get_cfg_done_generic;
- phy->ops.get_info = e1000_get_phy_info_m88;
- phy->ops.check_polarity = e1000_check_polarity_m88;
- phy->ops.commit = e1000_phy_sw_reset_generic;
- phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
- phy->ops.get_cable_length = e1000_get_cable_length_m88;
- phy->ops.read_reg = e1000_read_phy_reg_bm2;
- phy->ops.write_reg = e1000_write_phy_reg_bm2;
- phy->ops.acquire = e1000_get_hw_semaphore_82574;
- phy->ops.release = e1000_put_hw_semaphore_82574;
-
- /* This uses above function pointers */
- ret_val = e1000_get_phy_id_82571(hw);
- /* Verify PHY ID */
- if (phy->id != BME1000_E_PHY_ID_R2) {
+ if (phy->id != BME1000_E_PHY_ID_R2)
ret_val = -E1000_ERR_PHY;
- DEBUGOUT1("PHY ID unknown: type = 0x%08x\n", phy->id);
- goto out;
- }
break;
default:
ret_val = -E1000_ERR_PHY;
- goto out;
break;
}
-out:
+ if (ret_val)
+ DEBUGOUT1("PHY ID unknown: type = 0x%08x\n", phy->id);
+
return ret_val;
}
@@ -240,8 +240,7 @@ static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
if (((eecd >> 15) & 0x3) == 0x3) {
nvm->type = e1000_nvm_flash_hw;
nvm->word_size = 2048;
- /*
- * Autonomous Flash update bit must be cleared due
+ /* Autonomous Flash update bit must be cleared due
* to Flash update issue.
*/
eecd &= ~E1000_EECD_AUPDEN;
@@ -252,9 +251,8 @@ static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
default:
nvm->type = e1000_nvm_eeprom_spi;
size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
- E1000_EECD_SIZE_EX_SHIFT);
- /*
- * Added to a constant, "size" becomes the left-shift value
+ E1000_EECD_SIZE_EX_SHIFT);
+ /* Added to a constant, "size" becomes the left-shift value
* for setting word_size.
*/
size += NVM_WORD_SIZE_BASE_SHIFT;
@@ -262,7 +260,7 @@ static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
/* EEPROM access above 16k is unsupported */
if (size > 14)
size = 14;
- nvm->word_size = 1 << size;
+ nvm->word_size = 1 << size;
break;
}
@@ -278,11 +276,11 @@ static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
nvm->ops.release = e1000_release_nvm_82571;
break;
}
- nvm->ops.read = e1000_read_nvm_eerd;
- nvm->ops.update = e1000_update_nvm_checksum_82571;
- nvm->ops.validate = e1000_validate_nvm_checksum_82571;
+ nvm->ops.read = e1000_read_nvm_eerd;
+ nvm->ops.update = e1000_update_nvm_checksum_82571;
+ nvm->ops.validate = e1000_validate_nvm_checksum_82571;
nvm->ops.valid_led_default = e1000_valid_led_default_82571;
- nvm->ops.write = e1000_write_nvm_82571;
+ nvm->ops.write = e1000_write_nvm_82571;
return E1000_SUCCESS;
}
@@ -362,8 +360,6 @@ static s32 e1000_init_mac_params_82571(struct e1000_hw *hw)
mac->ops.read_mac_addr = e1000_read_mac_addr_82571;
/* ID LED init */
mac->ops.id_led_init = e1000_id_led_init_generic;
- /* blink LED */
- mac->ops.blink_led = e1000_blink_led_generic;
/* setup LED */
mac->ops.setup_led = e1000_setup_led_generic;
/* cleanup LED */
@@ -379,16 +375,15 @@ static s32 e1000_init_mac_params_82571(struct e1000_hw *hw)
mac->ops.set_lan_id = e1000_set_lan_id_single_port;
mac->ops.check_mng_mode = e1000_check_mng_mode_generic;
mac->ops.led_on = e1000_led_on_generic;
+ mac->ops.blink_led = e1000_blink_led_generic;
/* FWSM register */
mac->has_fwsm = TRUE;
- /*
- * ARC supported; valid only if manageability features are
+ /* ARC supported; valid only if manageability features are
* enabled.
*/
- mac->arc_subsystem_valid =
- (E1000_READ_REG(hw, E1000_FWSM) & E1000_FWSM_MODE_MASK)
- ? TRUE : FALSE;
+ mac->arc_subsystem_valid = !!(E1000_READ_REG(hw, E1000_FWSM) &
+ E1000_FWSM_MODE_MASK);
break;
case e1000_82574:
case e1000_82583:
@@ -399,14 +394,14 @@ static s32 e1000_init_mac_params_82571(struct e1000_hw *hw)
default:
mac->ops.check_mng_mode = e1000_check_mng_mode_generic;
mac->ops.led_on = e1000_led_on_generic;
+ mac->ops.blink_led = e1000_blink_led_generic;
/* FWSM register */
mac->has_fwsm = TRUE;
break;
}
- /*
- * Ensure that the inter-port SWSM.SMBI lock bit is clear before
+ /* Ensure that the inter-port SWSM.SMBI lock bit is clear before
* first NVM or PHY acess. This should be done for single-port
* devices, and for one port only on dual-port devices so that
* for those devices we can still use the SMBI lock to synchronize
@@ -419,11 +414,12 @@ static s32 e1000_init_mac_params_82571(struct e1000_hw *hw)
if (!(swsm2 & E1000_SWSM2_LOCK)) {
/* Only do this for the first interface on this card */
- E1000_WRITE_REG(hw, E1000_SWSM2,
- swsm2 | E1000_SWSM2_LOCK);
+ E1000_WRITE_REG(hw, E1000_SWSM2, swsm2 |
+ E1000_SWSM2_LOCK);
force_clear_smbi = TRUE;
- } else
+ } else {
force_clear_smbi = FALSE;
+ }
break;
default:
force_clear_smbi = TRUE;
@@ -443,10 +439,7 @@ static s32 e1000_init_mac_params_82571(struct e1000_hw *hw)
E1000_WRITE_REG(hw, E1000_SWSM, swsm & ~E1000_SWSM_SMBI);
}
- /*
- * Initialze device specific counter of SMBI acquisition
- * timeouts.
- */
+ /* Initialze device specific counter of SMBI acquisition timeouts. */
hw->dev_spec._82571.smb_counter = 0;
return E1000_SUCCESS;
@@ -477,7 +470,7 @@ void e1000_init_function_pointers_82571(struct e1000_hw *hw)
static s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val = E1000_SUCCESS;
+ s32 ret_val;
u16 phy_id = 0;
DEBUGFUNC("e1000_get_phy_id_82571");
@@ -485,8 +478,7 @@ static s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
switch (hw->mac.type) {
case e1000_82571:
case e1000_82572:
- /*
- * The 82571 firmware may still be configuring the PHY.
+ /* The 82571 firmware may still be configuring the PHY.
* In this case, we cannot access the PHY until the
* configuration is done. So we explicitly set the
* PHY ID.
@@ -494,29 +486,29 @@ static s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
phy->id = IGP01E1000_I_PHY_ID;
break;
case e1000_82573:
- ret_val = e1000_get_phy_id(hw);
+ return e1000_get_phy_id(hw);
break;
case e1000_82574:
case e1000_82583:
ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id);
if (ret_val)
- goto out;
+ return ret_val;
phy->id = (u32)(phy_id << 16);
usec_delay(20);
ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id);
if (ret_val)
- goto out;
+ return ret_val;
phy->id |= (u32)(phy_id);
phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
break;
default:
- ret_val = -E1000_ERR_PHY;
+ return -E1000_ERR_PHY;
break;
}
-out:
- return ret_val;
+
+ return E1000_SUCCESS;
}
/**
@@ -528,15 +520,13 @@ out:
static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
{
u32 swsm;
- s32 ret_val = E1000_SUCCESS;
s32 sw_timeout = hw->nvm.word_size + 1;
s32 fw_timeout = hw->nvm.word_size + 1;
s32 i = 0;
DEBUGFUNC("e1000_get_hw_semaphore_82571");
- /*
- * If we have timedout 3 times on trying to acquire
+ /* If we have timedout 3 times on trying to acquire
* the inter-port SMBI semaphore, there is old code
* operating on the other port, and it is not
* releasing SMBI. Modify the number of times that
@@ -576,12 +566,10 @@ static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
/* Release semaphores */
e1000_put_hw_semaphore_82571(hw);
DEBUGOUT("Driver can't access the NVM\n");
- ret_val = -E1000_ERR_NVM;
- goto out;
+ return -E1000_ERR_NVM;
}
-out:
- return ret_val;
+ return E1000_SUCCESS;
}
/**
@@ -613,22 +601,19 @@ static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw)
static s32 e1000_get_hw_semaphore_82573(struct e1000_hw *hw)
{
u32 extcnf_ctrl;
- s32 ret_val = E1000_SUCCESS;
s32 i = 0;
DEBUGFUNC("e1000_get_hw_semaphore_82573");
extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
- extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
do {
+ extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
break;
- extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
-
msec_delay(2);
i++;
} while (i < MDIO_OWNERSHIP_TIMEOUT);
@@ -637,12 +622,10 @@ static s32 e1000_get_hw_semaphore_82573(struct e1000_hw *hw)
/* Release semaphores */
e1000_put_hw_semaphore_82573(hw);
DEBUGOUT("Driver can't access the PHY\n");
- ret_val = -E1000_ERR_PHY;
- goto out;
+ return -E1000_ERR_PHY;
}
-out:
- return ret_val;
+ return E1000_SUCCESS;
}
/**
@@ -699,6 +682,62 @@ static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw)
}
/**
+ * e1000_set_d0_lplu_state_82574 - Set Low Power Linkup D0 state
+ * @hw: pointer to the HW structure
+ * @active: TRUE to enable LPLU, FALSE to disable
+ *
+ * Sets the LPLU D0 state according to the active flag.
+ * LPLU will not be activated unless the
+ * device autonegotiation advertisement meets standards of
+ * either 10 or 10/100 or 10/100/1000 at all duplexes.
+ * This is a function pointer entry point only called by
+ * PHY setup routines.
+ **/
+static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active)
+{
+ u32 data = E1000_READ_REG(hw, E1000_POEMB);
+
+ DEBUGFUNC("e1000_set_d0_lplu_state_82574");
+
+ if (active)
+ data |= E1000_PHY_CTRL_D0A_LPLU;
+ else
+ data &= ~E1000_PHY_CTRL_D0A_LPLU;
+
+ E1000_WRITE_REG(hw, E1000_POEMB, data);
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_set_d3_lplu_state_82574 - Sets low power link up state for D3
+ * @hw: pointer to the HW structure
+ * @active: boolean used to enable/disable lplu
+ *
+ * The low power link up (lplu) state is set to the power management level D3
+ * when active is TRUE, else clear lplu for D3. LPLU
+ * is used during Dx states where the power conservation is most important.
+ * During driver activity, SmartSpeed should be enabled so performance is
+ * maintained.
+ **/
+static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active)
+{
+ u32 data = E1000_READ_REG(hw, E1000_POEMB);
+
+ DEBUGFUNC("e1000_set_d3_lplu_state_82574");
+
+ if (!active) {
+ data &= ~E1000_PHY_CTRL_NOND0A_LPLU;
+ } else if ((hw->phy.autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
+ (hw->phy.autoneg_advertised == E1000_ALL_NOT_GIG) ||
+ (hw->phy.autoneg_advertised == E1000_ALL_10_SPEED)) {
+ data |= E1000_PHY_CTRL_NOND0A_LPLU;
+ }
+
+ E1000_WRITE_REG(hw, E1000_POEMB, data);
+ return E1000_SUCCESS;
+}
+
+/**
* e1000_acquire_nvm_82571 - Request for access to the EEPROM
* @hw: pointer to the HW structure
*
@@ -715,7 +754,7 @@ static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
ret_val = e1000_get_hw_semaphore_82571(hw);
if (ret_val)
- goto out;
+ return ret_val;
switch (hw->mac.type) {
case e1000_82573:
@@ -728,7 +767,6 @@ static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
if (ret_val)
e1000_put_hw_semaphore_82571(hw);
-out:
return ret_val;
}
@@ -759,9 +797,9 @@ static void e1000_release_nvm_82571(struct e1000_hw *hw)
* EEPROM will most likely contain an invalid checksum.
**/
static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words,
- u16 *data)
+ u16 *data)
{
- s32 ret_val = E1000_SUCCESS;
+ s32 ret_val;
DEBUGFUNC("e1000_write_nvm_82571");
@@ -801,31 +839,27 @@ static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
ret_val = e1000_update_nvm_checksum_generic(hw);
if (ret_val)
- goto out;
+ return ret_val;
- /*
- * If our nvm is an EEPROM, then we're done
+ /* If our nvm is an EEPROM, then we're done
* otherwise, commit the checksum to the flash NVM.
*/
if (hw->nvm.type != e1000_nvm_flash_hw)
- goto out;
+ return E1000_SUCCESS;
/* Check for pending operations. */
for (i = 0; i < E1000_FLASH_UPDATES; i++) {
msec_delay(1);
- if ((E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_FLUPD) == 0)
+ if (!(E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_FLUPD))
break;
}
- if (i == E1000_FLASH_UPDATES) {
- ret_val = -E1000_ERR_NVM;
- goto out;
- }
+ if (i == E1000_FLASH_UPDATES)
+ return -E1000_ERR_NVM;
/* Reset the firmware if using STM opcode. */
if ((E1000_READ_REG(hw, E1000_FLOP) & 0xFF00) == E1000_STM_OPCODE) {
- /*
- * The enabling of and the actual reset must be done
+ /* The enabling of and the actual reset must be done
* in two write cycles.
*/
E1000_WRITE_REG(hw, E1000_HICR, E1000_HICR_FW_RESET_ENABLE);
@@ -839,17 +873,14 @@ static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
for (i = 0; i < E1000_FLASH_UPDATES; i++) {
msec_delay(1);
- if ((E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_FLUPD) == 0)
+ if (!(E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_FLUPD))
break;
}
- if (i == E1000_FLASH_UPDATES) {
- ret_val = -E1000_ERR_NVM;
- goto out;
- }
+ if (i == E1000_FLASH_UPDATES)
+ return -E1000_ERR_NVM;
-out:
- return ret_val;
+ return E1000_SUCCESS;
}
/**
@@ -884,23 +915,21 @@ static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw)
* EEPROM will most likely contain an invalid checksum.
**/
static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
- u16 words, u16 *data)
+ u16 words, u16 *data)
{
struct e1000_nvm_info *nvm = &hw->nvm;
u32 i, eewr = 0;
- s32 ret_val = 0;
+ s32 ret_val = E1000_SUCCESS;
DEBUGFUNC("e1000_write_nvm_eewr_82571");
- /*
- * A check for invalid values: offset too large, too many words,
+ /* A check for invalid values: offset too large, too many words,
* and not enough words.
*/
if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
(words == 0)) {
DEBUGOUT("nvm parameter(s) out of bounds\n");
- ret_val = -E1000_ERR_NVM;
- goto out;
+ return -E1000_ERR_NVM;
}
for (i = 0; i < words; i++) {
@@ -919,7 +948,6 @@ static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
break;
}
-out:
return ret_val;
}
@@ -932,7 +960,6 @@ out:
static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw)
{
s32 timeout = PHY_CFG_TIMEOUT;
- s32 ret_val = E1000_SUCCESS;
DEBUGFUNC("e1000_get_cfg_done_82571");
@@ -945,12 +972,10 @@ static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw)
}
if (!timeout) {
DEBUGOUT("MNG configuration cycle has not completed.\n");
- ret_val = -E1000_ERR_RESET;
- goto out;
+ return -E1000_ERR_RESET;
}
-out:
- return ret_val;
+ return E1000_SUCCESS;
}
/**
@@ -967,74 +992,74 @@ out:
static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
{
struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val = E1000_SUCCESS;
+ s32 ret_val;
u16 data;
DEBUGFUNC("e1000_set_d0_lplu_state_82571");
if (!(phy->ops.read_reg))
- goto out;
+ return E1000_SUCCESS;
ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
if (ret_val)
- goto out;
+ return ret_val;
if (active) {
data |= IGP02E1000_PM_D0_LPLU;
ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
- data);
+ data);
if (ret_val)
- goto out;
+ return ret_val;
/* When LPLU is enabled, we should disable SmartSpeed */
ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
- &data);
+ &data);
+ if (ret_val)
+ return ret_val;
data &= ~IGP01E1000_PSCFR_SMART_SPEED;
ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
- data);
+ data);
if (ret_val)
- goto out;
+ return ret_val;
} else {
data &= ~IGP02E1000_PM_D0_LPLU;
ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
- data);
- /*
- * LPLU and SmartSpeed are mutually exclusive. LPLU is used
+ data);
+ /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
* during Dx states where the power conservation is most
* important. During driver activity we should enable
* SmartSpeed, so performance is maintained.
*/
if (phy->smart_speed == e1000_smart_speed_on) {
ret_val = phy->ops.read_reg(hw,
- IGP01E1000_PHY_PORT_CONFIG,
- &data);
+ IGP01E1000_PHY_PORT_CONFIG,
+ &data);
if (ret_val)
- goto out;
+ return ret_val;
data |= IGP01E1000_PSCFR_SMART_SPEED;
ret_val = phy->ops.write_reg(hw,
- IGP01E1000_PHY_PORT_CONFIG,
- data);
+ IGP01E1000_PHY_PORT_CONFIG,
+ data);
if (ret_val)
- goto out;
+ return ret_val;
} else if (phy->smart_speed == e1000_smart_speed_off) {
ret_val = phy->ops.read_reg(hw,
- IGP01E1000_PHY_PORT_CONFIG,
- &data);
+ IGP01E1000_PHY_PORT_CONFIG,
+ &data);
if (ret_val)
- goto out;
+ return ret_val;
data &= ~IGP01E1000_PSCFR_SMART_SPEED;
ret_val = phy->ops.write_reg(hw,
- IGP01E1000_PHY_PORT_CONFIG,
- data);
+ IGP01E1000_PHY_PORT_CONFIG,
+ data);
if (ret_val)
- goto out;
+ return ret_val;
}
}
-out:
- return ret_val;
+ return E1000_SUCCESS;
}
/**
@@ -1045,13 +1070,12 @@ out:
**/
static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
{
- u32 ctrl, ctrl_ext, icr;
+ u32 ctrl, ctrl_ext, eecd, tctl;
s32 ret_val;
DEBUGFUNC("e1000_reset_hw_82571");
- /*
- * Prevent the PCI-E bus from sticking if there is no TLP connection
+ /* Prevent the PCI-E bus from sticking if there is no TLP connection
* on the last TLP read/write transaction when MAC is reset.
*/
ret_val = e1000_disable_pcie_master_generic(hw);
@@ -1062,13 +1086,14 @@ static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
E1000_WRITE_REG(hw, E1000_RCTL, 0);
- E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
+ tctl = E1000_READ_REG(hw, E1000_TCTL);
+ tctl &= ~E1000_TCTL_EN;
+ E1000_WRITE_REG(hw, E1000_TCTL, tctl);
E1000_WRITE_FLUSH(hw);
msec_delay(10);
- /*
- * Must acquire the MDIO ownership before MAC reset.
+ /* Must acquire the MDIO ownership before MAC reset.
* Ownership defaults to firmware after a reset.
*/
switch (hw->mac.type) {
@@ -1111,15 +1136,23 @@ static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
ret_val = e1000_get_auto_rd_done_generic(hw);
if (ret_val)
/* We don't want to continue accessing MAC registers. */
- goto out;
+ return ret_val;
- /*
- * Phy configuration from NVM just starts after EECD_AUTO_RD is set.
+ /* Phy configuration from NVM just starts after EECD_AUTO_RD is set.
* Need to wait for Phy configuration completion before accessing
* NVM and Phy.
*/
switch (hw->mac.type) {
+ case e1000_82571:
+ case e1000_82572:
+ /* REQ and GNT bits need to be cleared when using AUTO_RD
+ * to access the EEPROM.
+ */
+ eecd = E1000_READ_REG(hw, E1000_EECD);
+ eecd &= ~(E1000_EECD_REQ | E1000_EECD_GNT);
+ E1000_WRITE_REG(hw, E1000_EECD, eecd);
+ break;
case e1000_82573:
case e1000_82574:
case e1000_82583:
@@ -1131,13 +1164,13 @@ static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
/* Clear any pending interrupt events. */
E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
- icr = E1000_READ_REG(hw, E1000_ICR);
+ E1000_READ_REG(hw, E1000_ICR);
if (hw->mac.type == e1000_82571) {
/* Install any alternate MAC address into RAR0 */
ret_val = e1000_check_alt_mac_addr_generic(hw);
if (ret_val)
- goto out;
+ return ret_val;
e1000_set_laa_state_82571(hw, TRUE);
}
@@ -1146,8 +1179,7 @@ static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
if (hw->phy.media_type == e1000_media_type_internal_serdes)
hw->mac.serdes_link_state = e1000_serdes_link_down;
-out:
- return ret_val;
+ return E1000_SUCCESS;
}
/**
@@ -1169,16 +1201,15 @@ static s32 e1000_init_hw_82571(struct e1000_hw *hw)
/* Initialize identification LED */
ret_val = mac->ops.id_led_init(hw);
+ /* An error is not fatal and we should not stop init due to this */
if (ret_val)
DEBUGOUT("Error initializing identification LED\n");
- /* This is not fatal and we should not stop init due to this */
/* Disabling VLAN filtering */
DEBUGOUT("Initializing the IEEE VLAN\n");
mac->ops.clear_vfta(hw);
- /* Setup the receive address. */
- /*
+ /* Setup the receive address.
* If, however, a locally administered address was assigned to the
* 82571, we must reserve a RAR for it to work around an issue where
* resetting one port will reload the MAC on the other port.
@@ -1198,8 +1229,7 @@ static s32 e1000_init_hw_82571(struct e1000_hw *hw)
/* Set the transmit descriptor write-back policy */
reg_data = E1000_READ_REG(hw, E1000_TXDCTL(0));
reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
- E1000_TXDCTL_FULL_TX_DESC_WB |
- E1000_TXDCTL_COUNT_DESC;
+ E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC;
E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg_data);
/* ...for both queues. */
@@ -1216,14 +1246,13 @@ static s32 e1000_init_hw_82571(struct e1000_hw *hw)
default:
reg_data = E1000_READ_REG(hw, E1000_TXDCTL(1));
reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
- E1000_TXDCTL_FULL_TX_DESC_WB |
- E1000_TXDCTL_COUNT_DESC;
+ E1000_TXDCTL_FULL_TX_DESC_WB |
+ E1000_TXDCTL_COUNT_DESC;
E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg_data);
break;
}
- /*
- * Clear all of the statistics registers (clear on read). It is
+ /* Clear all of the statistics registers (clear on read). It is
* important that we do this after we have tried to establish link
* because the symbol error count will increment wildly if there
* is no link.
@@ -1263,6 +1292,10 @@ static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw)
case e1000_82572:
reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26);
break;
+ case e1000_82574:
+ case e1000_82583:
+ reg |= (1 << 26);
+ break;
default:
break;
}
@@ -1318,8 +1351,7 @@ static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw)
E1000_WRITE_REG(hw, E1000_PBA_ECC, reg);
}
- /*
- * Workaround for hardware errata.
+ /* Workaround for hardware errata.
* Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572
*/
if ((hw->mac.type == e1000_82571) ||
@@ -1329,6 +1361,15 @@ static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw)
E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
}
+ /* Disable IPv6 extension header parsing because some malformed
+ * IPv6 headers can hang the Rx.
+ */
+ if (hw->mac.type <= e1000_82573) {
+ reg = E1000_READ_REG(hw, E1000_RFCTL);
+ reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
+ E1000_WRITE_REG(hw, E1000_RFCTL, reg);
+ }
+
/* PCI-Ex Control Registers */
switch (hw->mac.type) {
case e1000_82574:
@@ -1337,12 +1378,11 @@ static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw)
reg |= (1 << 22);
E1000_WRITE_REG(hw, E1000_GCR, reg);
- /*
- * Workaround for hardware errata.
+ /* Workaround for hardware errata.
* apply workaround for hardware errata documented in errata
* docs Fixes issue where some error prone or unreliable PCIe
* completions are occurring, particularly with ASPM enabled.
- * Without fix, issue can cause tx timeouts.
+ * Without fix, issue can cause Tx timeouts.
*/
reg = E1000_READ_REG(hw, E1000_GCR2);
reg |= 1;
@@ -1376,25 +1416,25 @@ static void e1000_clear_vfta_82571(struct e1000_hw *hw)
case e1000_82574:
case e1000_82583:
if (hw->mng_cookie.vlan_id != 0) {
- /*
- * The VFTA is a 4096b bit-field, each identifying
+ /* The VFTA is a 4096b bit-field, each identifying
* a single VLAN ID. The following operations
* determine which 32b entry (i.e. offset) into the
* array we want to set the VLAN ID (i.e. bit) of
* the manageability unit.
*/
vfta_offset = (hw->mng_cookie.vlan_id >>
- E1000_VFTA_ENTRY_SHIFT) & E1000_VFTA_ENTRY_MASK;
- vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id &
- E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
+ E1000_VFTA_ENTRY_SHIFT) &
+ E1000_VFTA_ENTRY_MASK;
+ vfta_bit_in_reg =
+ 1 << (hw->mng_cookie.vlan_id &
+ E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
}
break;
default:
break;
}
for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
- /*
- * If the offset we want to clear is the same offset of the
+ /* If the offset we want to clear is the same offset of the
* manageability VLAN ID, then clear all bits except that of
* the manageability unit.
*/
@@ -1436,8 +1476,7 @@ static s32 e1000_led_on_82574(struct e1000_hw *hw)
ctrl = hw->mac.ledctl_mode2;
if (!(E1000_STATUS_LU & E1000_READ_REG(hw, E1000_STATUS))) {
- /*
- * If no link, then turn LED on by setting the invert bit
+ /* If no link, then turn LED on by setting the invert bit
* for each LED that's "on" (0x0E) in ledctl_mode2.
*/
for (i = 0; i < 4; i++)
@@ -1460,30 +1499,28 @@ bool e1000_check_phy_82574(struct e1000_hw *hw)
{
u16 status_1kbt = 0;
u16 receive_errors = 0;
- bool phy_hung = FALSE;
- s32 ret_val = E1000_SUCCESS;
+ s32 ret_val;
DEBUGFUNC("e1000_check_phy_82574");
- /*
- * Read PHY Receive Error counter first, if its is max - all F's then
+ /* Read PHY Receive Error counter first, if its is max - all F's then
* read the Base1000T status register If both are max then PHY is hung.
*/
ret_val = hw->phy.ops.read_reg(hw, E1000_RECEIVE_ERROR_COUNTER,
- &receive_errors);
+ &receive_errors);
if (ret_val)
- goto out;
- if (receive_errors == E1000_RECEIVE_ERROR_MAX) {
+ return FALSE;
+ if (receive_errors == E1000_RECEIVE_ERROR_MAX) {
ret_val = hw->phy.ops.read_reg(hw, E1000_BASE1000T_STATUS,
- &status_1kbt);
+ &status_1kbt);
if (ret_val)
- goto out;
+ return FALSE;
if ((status_1kbt & E1000_IDLE_ERROR_COUNT_MASK) ==
E1000_IDLE_ERROR_COUNT_MASK)
- phy_hung = TRUE;
+ return TRUE;
}
-out:
- return phy_hung;
+
+ return FALSE;
}
@@ -1501,8 +1538,7 @@ static s32 e1000_setup_link_82571(struct e1000_hw *hw)
{
DEBUGFUNC("e1000_setup_link_82571");
- /*
- * 82573 does not have a word in the NVM to determine
+ /* 82573 does not have a word in the NVM to determine
* the default flow control setting, so we explicitly
* set it to full.
*/
@@ -1516,6 +1552,7 @@ static s32 e1000_setup_link_82571(struct e1000_hw *hw)
default:
break;
}
+
return e1000_setup_link_generic(hw);
}
@@ -1548,17 +1585,14 @@ static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw)
ret_val = e1000_copper_link_setup_igp(hw);
break;
default:
- ret_val = -E1000_ERR_PHY;
+ return -E1000_ERR_PHY;
break;
}
if (ret_val)
- goto out;
-
- ret_val = e1000_setup_copper_link_generic(hw);
+ return ret_val;
-out:
- return ret_val;
+ return e1000_setup_copper_link_generic(hw);
}
/**
@@ -1575,14 +1609,14 @@ static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
switch (hw->mac.type) {
case e1000_82571:
case e1000_82572:
- /*
- * If SerDes loopback mode is entered, there is no form
+ /* If SerDes loopback mode is entered, there is no form
* of reset to take the adapter out of that mode. So we
* have to explicitly take the adapter out of loopback
* mode. This prevents drivers from twiddling their thumbs
* if another tool failed to take it out of loopback mode.
*/
- E1000_WRITE_REG(hw, E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
+ E1000_WRITE_REG(hw, E1000_SCTL,
+ E1000_SCTL_DISABLE_SERDES_LOOPBACK);
break;
default:
break;
@@ -1606,7 +1640,7 @@ static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
*
* 1) down
* 2) autoneg_progress
- * 3) autoneg_complete (the link sucessfully autonegotiated)
+ * 3) autoneg_complete (the link successfully autonegotiated)
* 4) forced_up (the link has been forced up, it did not autonegotiate)
*
**/
@@ -1624,16 +1658,17 @@ static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw)
ctrl = E1000_READ_REG(hw, E1000_CTRL);
status = E1000_READ_REG(hw, E1000_STATUS);
+ E1000_READ_REG(hw, E1000_RXCW);
+ /* SYNCH bit and IV bit are sticky */
+ usec_delay(10);
rxcw = E1000_READ_REG(hw, E1000_RXCW);
if ((rxcw & E1000_RXCW_SYNCH) && !(rxcw & E1000_RXCW_IV)) {
-
/* Receiver is synchronized with no invalid bits. */
switch (mac->serdes_link_state) {
case e1000_serdes_link_autoneg_complete:
if (!(status & E1000_STATUS_LU)) {
- /*
- * We have lost link, retry autoneg before
+ /* We have lost link, retry autoneg before
* reporting link failure
*/
mac->serdes_link_state =
@@ -1646,15 +1681,12 @@ static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw)
break;
case e1000_serdes_link_forced_up:
- /*
- * If we are receiving /C/ ordered sets, re-enable
+ /* If we are receiving /C/ ordered sets, re-enable
* auto-negotiation in the TXCW register and disable
* forced link in the Device Control register in an
* attempt to auto-negotiate with our link partner.
- * If the partner code word is null, stop forcing
- * and restart auto negotiation.
*/
- if ((rxcw & E1000_RXCW_C) || !(rxcw & E1000_RXCW_CW)) {
+ if (rxcw & E1000_RXCW_C) {
/* Enable autoneg, and unforce link up */
E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw);
E1000_WRITE_REG(hw, E1000_CTRL,
@@ -1670,8 +1702,7 @@ static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw)
case e1000_serdes_link_autoneg_progress:
if (rxcw & E1000_RXCW_C) {
- /*
- * We received /C/ ordered sets, meaning the
+ /* We received /C/ ordered sets, meaning the
* link partner has autonegotiated, and we can
* trust the Link Up (LU) status bit.
*/
@@ -1687,8 +1718,7 @@ static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw)
DEBUGOUT("AN_PROG -> DOWN\n");
}
} else {
- /*
- * The link partner did not autoneg.
+ /* The link partner did not autoneg.
* Force link up and full duplex, and change
* state to forced.
*/
@@ -1705,7 +1735,7 @@ static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw)
break;
}
mac->serdes_link_state =
- e1000_serdes_link_forced_up;
+ e1000_serdes_link_forced_up;
mac->serdes_has_link = TRUE;
DEBUGOUT("AN_PROG -> FORCED_UP\n");
}
@@ -1713,16 +1743,15 @@ static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw)
case e1000_serdes_link_down:
default:
- /*
- * The link was down but the receiver has now gained
+ /* The link was down but the receiver has now gained
* valid sync, so lets see if we can bring the link
* up.
*/
E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw);
- E1000_WRITE_REG(hw, E1000_CTRL,
- (ctrl & ~E1000_CTRL_SLU));
+ E1000_WRITE_REG(hw, E1000_CTRL, (ctrl &
+ ~E1000_CTRL_SLU));
mac->serdes_link_state =
- e1000_serdes_link_autoneg_progress;
+ e1000_serdes_link_autoneg_progress;
mac->serdes_has_link = FALSE;
DEBUGOUT("DOWN -> AN_PROG\n");
break;
@@ -1733,20 +1762,21 @@ static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw)
mac->serdes_link_state = e1000_serdes_link_down;
DEBUGOUT("ANYSTATE -> DOWN\n");
} else {
- /*
- * Check several times, if Sync and Config
- * both are consistently 1 then simply ignore
- * the Invalid bit and restart Autoneg
+ /* Check several times, if SYNCH bit and CONFIG
+ * bit both are consistently 1 then simply ignore
+ * the IV bit and restart Autoneg
*/
for (i = 0; i < AN_RETRY_COUNT; i++) {
usec_delay(10);
rxcw = E1000_READ_REG(hw, E1000_RXCW);
- if ((rxcw & E1000_RXCW_IV) &&
- !((rxcw & E1000_RXCW_SYNCH) &&
- (rxcw & E1000_RXCW_C))) {
+ if ((rxcw & E1000_RXCW_SYNCH) &&
+ (rxcw & E1000_RXCW_C))
+ continue;
+
+ if (rxcw & E1000_RXCW_IV) {
mac->serdes_has_link = FALSE;
mac->serdes_link_state =
- e1000_serdes_link_down;
+ e1000_serdes_link_down;
DEBUGOUT("ANYSTATE -> DOWN\n");
break;
}
@@ -1757,7 +1787,7 @@ static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw)
txcw |= E1000_TXCW_ANE;
E1000_WRITE_REG(hw, E1000_TXCW, txcw);
mac->serdes_link_state =
- e1000_serdes_link_autoneg_progress;
+ e1000_serdes_link_autoneg_progress;
mac->serdes_has_link = FALSE;
DEBUGOUT("ANYSTATE -> AN_PROG\n");
}
@@ -1784,7 +1814,7 @@ static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
if (ret_val) {
DEBUGOUT("NVM Read Error\n");
- goto out;
+ return ret_val;
}
switch (hw->mac.type) {
@@ -1801,8 +1831,7 @@ static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
break;
}
-out:
- return ret_val;
+ return E1000_SUCCESS;
}
/**
@@ -1839,15 +1868,14 @@ void e1000_set_laa_state_82571(struct e1000_hw *hw, bool state)
/* If workaround is activated... */
if (state)
- /*
- * Hold a copy of the LAA in RAR[14] This is done so that
+ /* Hold a copy of the LAA in RAR[14] This is done so that
* between the time RAR[0] gets clobbered and the time it
* gets fixed, the actual LAA is in one of the RARs and no
* incoming packets directed to this port are dropped.
* Eventually the LAA will be in RAR[0] and RAR[14].
*/
- e1000_rar_set_generic(hw, hw->mac.addr,
- hw->mac.rar_entry_count - 1);
+ hw->mac.ops.rar_set(hw, hw->mac.addr,
+ hw->mac.rar_entry_count - 1);
return;
}
@@ -1864,25 +1892,23 @@ void e1000_set_laa_state_82571(struct e1000_hw *hw, bool state)
static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
{
struct e1000_nvm_info *nvm = &hw->nvm;
- s32 ret_val = E1000_SUCCESS;
+ s32 ret_val;
u16 data;
DEBUGFUNC("e1000_fix_nvm_checksum_82571");
if (nvm->type != e1000_nvm_flash_hw)
- goto out;
+ return E1000_SUCCESS;
- /*
- * Check bit 4 of word 10h. If it is 0, firmware is done updating
+ /* Check bit 4 of word 10h. If it is 0, firmware is done updating
* 10h-12h. Checksum may need to be fixed.
*/
ret_val = nvm->ops.read(hw, 0x10, 1, &data);
if (ret_val)
- goto out;
+ return ret_val;
if (!(data & 0x10)) {
- /*
- * Read 0x23 and check bit 15. This bit is a 1
+ /* Read 0x23 and check bit 15. This bit is a 1
* when the checksum has already been fixed. If
* the checksum is still wrong and this bit is a
* 1, we need to return bad checksum. Otherwise,
@@ -1891,19 +1917,20 @@ static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
*/
ret_val = nvm->ops.read(hw, 0x23, 1, &data);
if (ret_val)
- goto out;
+ return ret_val;
if (!(data & 0x8000)) {
data |= 0x8000;
ret_val = nvm->ops.write(hw, 0x23, 1, &data);
if (ret_val)
- goto out;
+ return ret_val;
ret_val = nvm->ops.update(hw);
+ if (ret_val)
+ return ret_val;
}
}
-out:
- return ret_val;
+ return E1000_SUCCESS;
}
@@ -1913,25 +1940,21 @@ out:
**/
static s32 e1000_read_mac_addr_82571(struct e1000_hw *hw)
{
- s32 ret_val = E1000_SUCCESS;
-
DEBUGFUNC("e1000_read_mac_addr_82571");
if (hw->mac.type == e1000_82571) {
- /*
- * If there's an alternate MAC address place it in RAR0
+ s32 ret_val;
+
+ /* If there's an alternate MAC address place it in RAR0
* so that it will override the Si installed default perm
* address.
*/
ret_val = e1000_check_alt_mac_addr_generic(hw);
if (ret_val)
- goto out;
+ return ret_val;
}
- ret_val = e1000_read_mac_addr_generic(hw);
-
-out:
- return ret_val;
+ return e1000_read_mac_addr_generic(hw);
}
/**
@@ -1946,7 +1969,7 @@ static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw)
struct e1000_phy_info *phy = &hw->phy;
struct e1000_mac_info *mac = &hw->mac;
- if (!(phy->ops.check_reset_block))
+ if (!phy->ops.check_reset_block)
return;
/* If the management interface is not enabled, then power down */
diff --git a/freebsd/sys/dev/e1000/e1000_82575.c b/freebsd/sys/dev/e1000/e1000_82575.c
index 4ce9d194..c7d00b54 100644
--- a/freebsd/sys/dev/e1000/e1000_82575.c
+++ b/freebsd/sys/dev/e1000/e1000_82575.c
@@ -2,7 +2,7 @@
/******************************************************************************
- Copyright (c) 2001-2010, Intel Corporation
+ Copyright (c) 2001-2013, Intel Corporation
All rights reserved.
Redistribution and use in source and binary forms, with or without
@@ -38,19 +38,21 @@
* 82575EB Gigabit Network Connection
* 82575EB Gigabit Backplane Connection
* 82575GB Gigabit Network Connection
- * 82575GB Gigabit Network Connection
* 82576 Gigabit Network Connection
* 82576 Quad Port Gigabit Mezzanine Adapter
+ * 82580 Gigabit Network Connection
+ * I350 Gigabit Network Connection
*/
#ifdef __rtems__
#include <dev/e1000/e1000_api.h>
+#include <dev/e1000/e1000_i210.h>
#else
#include <rtems/bsd/local/e1000_api.h>
-#endif
+#include <rtems/bsd/local/e1000_i210.h>
+#endif /* __rtems__ */
static s32 e1000_init_phy_params_82575(struct e1000_hw *hw);
-static s32 e1000_init_nvm_params_82575(struct e1000_hw *hw);
static s32 e1000_init_mac_params_82575(struct e1000_hw *hw);
static s32 e1000_acquire_phy_82575(struct e1000_hw *hw);
static void e1000_release_phy_82575(struct e1000_hw *hw);
@@ -59,28 +61,34 @@ static void e1000_release_nvm_82575(struct e1000_hw *hw);
static s32 e1000_check_for_link_82575(struct e1000_hw *hw);
static s32 e1000_get_cfg_done_82575(struct e1000_hw *hw);
static s32 e1000_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed,
- u16 *duplex);
+ u16 *duplex);
static s32 e1000_init_hw_82575(struct e1000_hw *hw);
static s32 e1000_phy_hw_reset_sgmii_82575(struct e1000_hw *hw);
static s32 e1000_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
- u16 *data);
+ u16 *data);
static s32 e1000_reset_hw_82575(struct e1000_hw *hw);
static s32 e1000_reset_hw_82580(struct e1000_hw *hw);
-static s32 e1000_read_phy_reg_82580(struct e1000_hw *hw,
- u32 offset, u16 *data);
-static s32 e1000_write_phy_reg_82580(struct e1000_hw *hw,
- u32 offset, u16 data);
+static s32 e1000_read_phy_reg_82580(struct e1000_hw *hw,
+ u32 offset, u16 *data);
+static s32 e1000_write_phy_reg_82580(struct e1000_hw *hw,
+ u32 offset, u16 data);
+static s32 e1000_set_d0_lplu_state_82580(struct e1000_hw *hw,
+ bool active);
+static s32 e1000_set_d3_lplu_state_82580(struct e1000_hw *hw,
+ bool active);
static s32 e1000_set_d0_lplu_state_82575(struct e1000_hw *hw,
- bool active);
+ bool active);
static s32 e1000_setup_copper_link_82575(struct e1000_hw *hw);
static s32 e1000_setup_serdes_link_82575(struct e1000_hw *hw);
+static s32 e1000_get_media_type_82575(struct e1000_hw *hw);
+static s32 e1000_set_sfp_media_type_82575(struct e1000_hw *hw);
static s32 e1000_valid_led_default_82575(struct e1000_hw *hw, u16 *data);
static s32 e1000_write_phy_reg_sgmii_82575(struct e1000_hw *hw,
- u32 offset, u16 data);
+ u32 offset, u16 data);
static void e1000_clear_hw_cntrs_82575(struct e1000_hw *hw);
static s32 e1000_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask);
static s32 e1000_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw,
- u16 *speed, u16 *duplex);
+ u16 *speed, u16 *duplex);
static s32 e1000_get_phy_id_82575(struct e1000_hw *hw);
static void e1000_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask);
static bool e1000_sgmii_active_82575(struct e1000_hw *hw);
@@ -92,10 +100,31 @@ static void e1000_shutdown_serdes_link_82575(struct e1000_hw *hw);
static void e1000_power_up_serdes_link_82575(struct e1000_hw *hw);
static s32 e1000_set_pcie_completion_timeout(struct e1000_hw *hw);
static s32 e1000_reset_mdicnfg_82580(struct e1000_hw *hw);
-
-static const u16 e1000_82580_rxpbs_table[] =
- { 36, 72, 144, 1, 2, 4, 8, 16,
- 35, 70, 140 };
+static s32 e1000_validate_nvm_checksum_82580(struct e1000_hw *hw);
+static s32 e1000_update_nvm_checksum_82580(struct e1000_hw *hw);
+static s32 e1000_update_nvm_checksum_with_offset(struct e1000_hw *hw,
+ u16 offset);
+static s32 e1000_validate_nvm_checksum_with_offset(struct e1000_hw *hw,
+ u16 offset);
+static s32 e1000_validate_nvm_checksum_i350(struct e1000_hw *hw);
+static s32 e1000_update_nvm_checksum_i350(struct e1000_hw *hw);
+static void e1000_write_vfta_i350(struct e1000_hw *hw, u32 offset, u32 value);
+static void e1000_clear_vfta_i350(struct e1000_hw *hw);
+
+static void e1000_i2c_start(struct e1000_hw *hw);
+static void e1000_i2c_stop(struct e1000_hw *hw);
+static s32 e1000_clock_in_i2c_byte(struct e1000_hw *hw, u8 *data);
+static s32 e1000_clock_out_i2c_byte(struct e1000_hw *hw, u8 data);
+static s32 e1000_get_i2c_ack(struct e1000_hw *hw);
+static s32 e1000_clock_in_i2c_bit(struct e1000_hw *hw, bool *data);
+static s32 e1000_clock_out_i2c_bit(struct e1000_hw *hw, bool data);
+static void e1000_raise_i2c_clk(struct e1000_hw *hw, u32 *i2cctl);
+static void e1000_lower_i2c_clk(struct e1000_hw *hw, u32 *i2cctl);
+static s32 e1000_set_i2c_data(struct e1000_hw *hw, u32 *i2cctl, bool data);
+static bool e1000_get_i2c_data(u32 *i2cctl);
+
+static const u16 e1000_82580_rxpbs_table[] = {
+ 36, 72, 144, 1, 2, 4, 8, 16, 35, 70, 140 };
#define E1000_82580_RXPBS_TABLE_SIZE \
(sizeof(e1000_82580_rxpbs_table)/sizeof(u16))
@@ -121,6 +150,9 @@ static bool e1000_sgmii_uses_mdio_82575(struct e1000_hw *hw)
ext_mdio = !!(reg & E1000_MDIC_DEST);
break;
case e1000_82580:
+ case e1000_i350:
+ case e1000_i210:
+ case e1000_i211:
reg = E1000_READ_REG(hw, E1000_MDICNFG);
ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO);
break;
@@ -142,6 +174,9 @@ static s32 e1000_init_phy_params_82575(struct e1000_hw *hw)
DEBUGFUNC("e1000_init_phy_params_82575");
+ phy->ops.read_i2c_byte = e1000_read_i2c_byte_generic;
+ phy->ops.write_i2c_byte = e1000_write_i2c_byte_generic;
+
if (hw->phy.media_type != e1000_media_type_copper) {
phy->type = e1000_phy_none;
goto out;
@@ -150,37 +185,47 @@ static s32 e1000_init_phy_params_82575(struct e1000_hw *hw)
phy->ops.power_up = e1000_power_up_phy_copper;
phy->ops.power_down = e1000_power_down_phy_copper_82575;
- phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
- phy->reset_delay_us = 100;
+ phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
+ phy->reset_delay_us = 100;
- phy->ops.acquire = e1000_acquire_phy_82575;
- phy->ops.check_reset_block = e1000_check_reset_block_generic;
- phy->ops.commit = e1000_phy_sw_reset_generic;
- phy->ops.get_cfg_done = e1000_get_cfg_done_82575;
- phy->ops.release = e1000_release_phy_82575;
+ phy->ops.acquire = e1000_acquire_phy_82575;
+ phy->ops.check_reset_block = e1000_check_reset_block_generic;
+ phy->ops.commit = e1000_phy_sw_reset_generic;
+ phy->ops.get_cfg_done = e1000_get_cfg_done_82575;
+ phy->ops.release = e1000_release_phy_82575;
ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
if (e1000_sgmii_active_82575(hw)) {
- phy->ops.reset = e1000_phy_hw_reset_sgmii_82575;
+ phy->ops.reset = e1000_phy_hw_reset_sgmii_82575;
ctrl_ext |= E1000_CTRL_I2C_ENA;
} else {
- phy->ops.reset = e1000_phy_hw_reset_generic;
+ phy->ops.reset = e1000_phy_hw_reset_generic;
ctrl_ext &= ~E1000_CTRL_I2C_ENA;
}
E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
e1000_reset_mdicnfg_82580(hw);
-
+
if (e1000_sgmii_active_82575(hw) && !e1000_sgmii_uses_mdio_82575(hw)) {
- phy->ops.read_reg = e1000_read_phy_reg_sgmii_82575;
- phy->ops.write_reg = e1000_write_phy_reg_sgmii_82575;
- } else if (hw->mac.type >= e1000_82580) {
- phy->ops.read_reg = e1000_read_phy_reg_82580;
- phy->ops.write_reg = e1000_write_phy_reg_82580;
+ phy->ops.read_reg = e1000_read_phy_reg_sgmii_82575;
+ phy->ops.write_reg = e1000_write_phy_reg_sgmii_82575;
} else {
- phy->ops.read_reg = e1000_read_phy_reg_igp;
- phy->ops.write_reg = e1000_write_phy_reg_igp;
+ switch (hw->mac.type) {
+ case e1000_82580:
+ case e1000_i350:
+ phy->ops.read_reg = e1000_read_phy_reg_82580;
+ phy->ops.write_reg = e1000_write_phy_reg_82580;
+ break;
+ case e1000_i210:
+ case e1000_i211:
+ phy->ops.read_reg = e1000_read_phy_reg_gs40g;
+ phy->ops.write_reg = e1000_write_phy_reg_gs40g;
+ break;
+ default:
+ phy->ops.read_reg = e1000_read_phy_reg_igp;
+ phy->ops.write_reg = e1000_write_phy_reg_igp;
+ }
}
/* Set phy->phy_addr and phy->id. */
@@ -188,29 +233,51 @@ static s32 e1000_init_phy_params_82575(struct e1000_hw *hw)
/* Verify phy id and set remaining function pointers */
switch (phy->id) {
+ case I347AT4_E_PHY_ID:
+ case M88E1112_E_PHY_ID:
+ case M88E1340M_E_PHY_ID:
case M88E1111_I_PHY_ID:
- phy->type = e1000_phy_m88;
- phy->ops.check_polarity = e1000_check_polarity_m88;
- phy->ops.get_info = e1000_get_phy_info_m88;
- phy->ops.get_cable_length = e1000_get_cable_length_m88;
+ phy->type = e1000_phy_m88;
+ phy->ops.check_polarity = e1000_check_polarity_m88;
+ phy->ops.get_info = e1000_get_phy_info_m88;
+ if (phy->id == I347AT4_E_PHY_ID ||
+ phy->id == M88E1112_E_PHY_ID ||
+ phy->id == M88E1340M_E_PHY_ID)
+ phy->ops.get_cable_length =
+ e1000_get_cable_length_m88_gen2;
+ else
+ phy->ops.get_cable_length = e1000_get_cable_length_m88;
phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
break;
case IGP03E1000_E_PHY_ID:
case IGP04E1000_E_PHY_ID:
- phy->type = e1000_phy_igp_3;
- phy->ops.check_polarity = e1000_check_polarity_igp;
- phy->ops.get_info = e1000_get_phy_info_igp;
- phy->ops.get_cable_length = e1000_get_cable_length_igp_2;
+ phy->type = e1000_phy_igp_3;
+ phy->ops.check_polarity = e1000_check_polarity_igp;
+ phy->ops.get_info = e1000_get_phy_info_igp;
+ phy->ops.get_cable_length = e1000_get_cable_length_igp_2;
phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_igp;
- phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82575;
- phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_generic;
+ phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82575;
+ phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_generic;
break;
case I82580_I_PHY_ID:
- phy->type = e1000_phy_82580;
- phy->ops.check_polarity = e1000_check_polarity_82577;
- phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_82577;
- phy->ops.get_cable_length = e1000_get_cable_length_82577;
- phy->ops.get_info = e1000_get_phy_info_82577;
+ case I350_I_PHY_ID:
+ phy->type = e1000_phy_82580;
+ phy->ops.check_polarity = e1000_check_polarity_82577;
+ phy->ops.force_speed_duplex =
+ e1000_phy_force_speed_duplex_82577;
+ phy->ops.get_cable_length = e1000_get_cable_length_82577;
+ phy->ops.get_info = e1000_get_phy_info_82577;
+ phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82580;
+ phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82580;
+ break;
+ case I210_I_PHY_ID:
+ phy->type = e1000_phy_i210;
+ phy->ops.check_polarity = e1000_check_polarity_m88;
+ phy->ops.get_info = e1000_get_phy_info_m88;
+ phy->ops.get_cable_length = e1000_get_cable_length_m88_gen2;
+ phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82580;
+ phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82580;
+ phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
break;
default:
ret_val = -E1000_ERR_PHY;
@@ -225,7 +292,7 @@ out:
* e1000_init_nvm_params_82575 - Init NVM func ptrs.
* @hw: pointer to the HW structure
**/
-static s32 e1000_init_nvm_params_82575(struct e1000_hw *hw)
+s32 e1000_init_nvm_params_82575(struct e1000_hw *hw)
{
struct e1000_nvm_info *nvm = &hw->nvm;
u32 eecd = E1000_READ_REG(hw, E1000_EECD);
@@ -233,47 +300,74 @@ static s32 e1000_init_nvm_params_82575(struct e1000_hw *hw)
DEBUGFUNC("e1000_init_nvm_params_82575");
- nvm->opcode_bits = 8;
- nvm->delay_usec = 1;
- switch (nvm->override) {
- case e1000_nvm_override_spi_large:
- nvm->page_size = 32;
- nvm->address_bits = 16;
- break;
- case e1000_nvm_override_spi_small:
- nvm->page_size = 8;
- nvm->address_bits = 8;
- break;
- default:
- nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
- nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
- break;
- }
-
- nvm->type = e1000_nvm_eeprom_spi;
-
size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
- E1000_EECD_SIZE_EX_SHIFT);
-
+ E1000_EECD_SIZE_EX_SHIFT);
/*
* Added to a constant, "size" becomes the left-shift value
* for setting word_size.
*/
size += NVM_WORD_SIZE_BASE_SHIFT;
- /* EEPROM access above 16k is unsupported */
- if (size > 14)
- size = 14;
+ /* Just in case size is out of range, cap it to the largest
+ * EEPROM size supported
+ */
+ if (size > 15)
+ size = 15;
+
nvm->word_size = 1 << size;
+ if (hw->mac.type < e1000_i210) {
+ nvm->opcode_bits = 8;
+ nvm->delay_usec = 1;
+
+ switch (nvm->override) {
+ case e1000_nvm_override_spi_large:
+ nvm->page_size = 32;
+ nvm->address_bits = 16;
+ break;
+ case e1000_nvm_override_spi_small:
+ nvm->page_size = 8;
+ nvm->address_bits = 8;
+ break;
+ default:
+ nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
+ nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ?
+ 16 : 8;
+ break;
+ }
+ if (nvm->word_size == (1 << 15))
+ nvm->page_size = 128;
+
+ nvm->type = e1000_nvm_eeprom_spi;
+ } else {
+ nvm->type = e1000_nvm_flash_hw;
+ }
/* Function Pointers */
- nvm->ops.acquire = e1000_acquire_nvm_82575;
- nvm->ops.read = e1000_read_nvm_eerd;
- nvm->ops.release = e1000_release_nvm_82575;
- nvm->ops.update = e1000_update_nvm_checksum_generic;
+ nvm->ops.acquire = e1000_acquire_nvm_82575;
+ nvm->ops.release = e1000_release_nvm_82575;
+ if (nvm->word_size < (1 << 15))
+ nvm->ops.read = e1000_read_nvm_eerd;
+ else
+ nvm->ops.read = e1000_read_nvm_spi;
+
+ nvm->ops.write = e1000_write_nvm_spi;
+ nvm->ops.validate = e1000_validate_nvm_checksum_generic;
+ nvm->ops.update = e1000_update_nvm_checksum_generic;
nvm->ops.valid_led_default = e1000_valid_led_default_82575;
- nvm->ops.validate = e1000_validate_nvm_checksum_generic;
- nvm->ops.write = e1000_write_nvm_spi;
+
+ /* override generic family function pointers for specific descendants */
+ switch (hw->mac.type) {
+ case e1000_82580:
+ nvm->ops.validate = e1000_validate_nvm_checksum_82580;
+ nvm->ops.update = e1000_update_nvm_checksum_82580;
+ break;
+ case e1000_i350:
+ nvm->ops.validate = e1000_validate_nvm_checksum_i350;
+ nvm->ops.update = e1000_update_nvm_checksum_i350;
+ break;
+ default:
+ break;
+ }
return E1000_SUCCESS;
}
@@ -286,34 +380,11 @@ static s32 e1000_init_mac_params_82575(struct e1000_hw *hw)
{
struct e1000_mac_info *mac = &hw->mac;
struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
- u32 ctrl_ext = 0;
DEBUGFUNC("e1000_init_mac_params_82575");
- /* Set media type */
- /*
- * The 82575 uses bits 22:23 for link mode. The mode can be changed
- * based on the EEPROM. We cannot rely upon device ID. There
- * is no distinguishable difference between fiber and internal
- * SerDes mode on the 82575. There can be an external PHY attached
- * on the SGMII interface. For this, we'll set sgmii_active to TRUE.
- */
- hw->phy.media_type = e1000_media_type_copper;
- dev_spec->sgmii_active = FALSE;
-
- ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
- switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
- case E1000_CTRL_EXT_LINK_MODE_SGMII:
- dev_spec->sgmii_active = TRUE;
- break;
- case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
- case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
- hw->phy.media_type = e1000_media_type_internal_serdes;
- break;
- default:
- break;
- }
-
+ /* Derives media type */
+ e1000_get_media_type_82575(hw);
/* Set mta register count */
mac->mta_reg_count = 128;
/* Set uta register count */
@@ -324,14 +395,24 @@ static s32 e1000_init_mac_params_82575(struct e1000_hw *hw)
mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
if (mac->type == e1000_82580)
mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
+ if (mac->type == e1000_i350)
+ mac->rar_entry_count = E1000_RAR_ENTRIES_I350;
+
+ /* Enable EEE default settings for EEE supported devices */
+ if (mac->type >= e1000_i350)
+ dev_spec->eee_disable = FALSE;
+
+ /* Allow a single clear of the SW semaphore on I210 and newer */
+ if (mac->type >= e1000_i210)
+ dev_spec->clear_semaphore_once = TRUE;
+
/* Set if part includes ASF firmware */
mac->asf_firmware_present = TRUE;
/* FWSM register */
mac->has_fwsm = TRUE;
/* ARC supported; valid only if manageability features are enabled. */
mac->arc_subsystem_valid =
- (E1000_READ_REG(hw, E1000_FWSM) & E1000_FWSM_MODE_MASK)
- ? TRUE : FALSE;
+ !!(E1000_READ_REG(hw, E1000_FWSM) & E1000_FWSM_MODE_MASK);
/* Function pointers */
@@ -348,27 +429,34 @@ static s32 e1000_init_mac_params_82575(struct e1000_hw *hw)
mac->ops.setup_link = e1000_setup_link_generic;
/* physical interface link setup */
mac->ops.setup_physical_interface =
- (hw->phy.media_type == e1000_media_type_copper)
- ? e1000_setup_copper_link_82575
- : e1000_setup_serdes_link_82575;
+ (hw->phy.media_type == e1000_media_type_copper)
+ ? e1000_setup_copper_link_82575 : e1000_setup_serdes_link_82575;
/* physical interface shutdown */
mac->ops.shutdown_serdes = e1000_shutdown_serdes_link_82575;
/* physical interface power up */
mac->ops.power_up_serdes = e1000_power_up_serdes_link_82575;
/* check for link */
mac->ops.check_for_link = e1000_check_for_link_82575;
- /* receive address register setting */
- mac->ops.rar_set = e1000_rar_set_generic;
/* read mac address */
mac->ops.read_mac_addr = e1000_read_mac_addr_82575;
/* configure collision distance */
mac->ops.config_collision_dist = e1000_config_collision_dist_82575;
/* multicast address update */
mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
- /* writing VFTA */
- mac->ops.write_vfta = e1000_write_vfta_generic;
- /* clearing VFTA */
- mac->ops.clear_vfta = e1000_clear_vfta_generic;
+ if (mac->type == e1000_i350) {
+ /* writing VFTA */
+ mac->ops.write_vfta = e1000_write_vfta_i350;
+ /* clearing VFTA */
+ mac->ops.clear_vfta = e1000_clear_vfta_i350;
+ } else {
+ /* writing VFTA */
+ mac->ops.write_vfta = e1000_write_vfta_generic;
+ /* clearing VFTA */
+ mac->ops.clear_vfta = e1000_clear_vfta_generic;
+ }
+ if (hw->mac.type >= e1000_82580)
+ mac->ops.validate_mdi_setting =
+ e1000_validate_mdi_setting_crossover_generic;
/* ID LED init */
mac->ops.id_led_init = e1000_id_led_init_generic;
/* blink LED */
@@ -384,6 +472,13 @@ static s32 e1000_init_mac_params_82575(struct e1000_hw *hw)
mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82575;
/* link info */
mac->ops.get_link_up_info = e1000_get_link_up_info_82575;
+ /* acquire SW_FW sync */
+ mac->ops.acquire_swfw_sync = e1000_acquire_swfw_sync_82575;
+ mac->ops.release_swfw_sync = e1000_release_swfw_sync_82575;
+ if (mac->type >= e1000_i210) {
+ mac->ops.acquire_swfw_sync = e1000_acquire_swfw_sync_i210;
+ mac->ops.release_swfw_sync = e1000_release_swfw_sync_i210;
+ }
/* set lan id for port to determine which phy lock to use */
hw->mac.ops.set_lan_id(hw);
@@ -426,7 +521,7 @@ static s32 e1000_acquire_phy_82575(struct e1000_hw *hw)
else if (hw->bus.func == E1000_FUNC_3)
mask = E1000_SWFW_PHY3_SM;
- return e1000_acquire_swfw_sync_82575(hw, mask);
+ return hw->mac.ops.acquire_swfw_sync(hw, mask);
}
/**
@@ -448,7 +543,7 @@ static void e1000_release_phy_82575(struct e1000_hw *hw)
else if (hw->bus.func == E1000_FUNC_3)
mask = E1000_SWFW_PHY3_SM;
- e1000_release_swfw_sync_82575(hw, mask);
+ hw->mac.ops.release_swfw_sync(hw, mask);
}
/**
@@ -461,7 +556,7 @@ static void e1000_release_phy_82575(struct e1000_hw *hw)
* interface and stores the retrieved information in data.
**/
static s32 e1000_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
- u16 *data)
+ u16 *data)
{
s32 ret_val = -E1000_ERR_PARAM;
@@ -494,7 +589,7 @@ out:
* media independent interface.
**/
static s32 e1000_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
- u16 data)
+ u16 data)
{
s32 ret_val = -E1000_ERR_PARAM;
@@ -556,6 +651,9 @@ static s32 e1000_get_phy_id_82575(struct e1000_hw *hw)
phy->addr = mdic >> E1000_MDIC_PHY_SHIFT;
break;
case e1000_82580:
+ case e1000_i350:
+ case e1000_i210:
+ case e1000_i211:
mdic = E1000_READ_REG(hw, E1000_MDICNFG);
mdic &= E1000_MDICNFG_PHY_MASK;
phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT;
@@ -572,7 +670,7 @@ static s32 e1000_get_phy_id_82575(struct e1000_hw *hw)
/* Power on sgmii phy if it is disabled */
ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
E1000_WRITE_REG(hw, E1000_CTRL_EXT,
- ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
+ ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
E1000_WRITE_FLUSH(hw);
msec_delay(300);
@@ -584,8 +682,7 @@ static s32 e1000_get_phy_id_82575(struct e1000_hw *hw)
ret_val = e1000_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
if (ret_val == E1000_SUCCESS) {
DEBUGOUT2("Vendor ID 0x%08X read at address %u\n",
- phy_id,
- phy->addr);
+ phy_id, phy->addr);
/*
* At the time of this writing, The M88 part is
* the only supported SGMII PHY product.
@@ -594,7 +691,7 @@ static s32 e1000_get_phy_id_82575(struct e1000_hw *hw)
break;
} else {
DEBUGOUT1("PHY address %u was unreadable\n",
- phy->addr);
+ phy->addr);
}
}
@@ -680,22 +777,22 @@ static s32 e1000_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
if (active) {
data |= IGP02E1000_PM_D0_LPLU;
ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
- data);
+ data);
if (ret_val)
goto out;
/* When LPLU is enabled, we should disable SmartSpeed */
ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
- &data);
+ &data);
data &= ~IGP01E1000_PSCFR_SMART_SPEED;
ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
- data);
+ data);
if (ret_val)
goto out;
} else {
data &= ~IGP02E1000_PM_D0_LPLU;
ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
- data);
+ data);
/*
* LPLU and SmartSpeed are mutually exclusive. LPLU is used
* during Dx states where the power conservation is most
@@ -704,28 +801,28 @@ static s32 e1000_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
*/
if (phy->smart_speed == e1000_smart_speed_on) {
ret_val = phy->ops.read_reg(hw,
- IGP01E1000_PHY_PORT_CONFIG,
- &data);
+ IGP01E1000_PHY_PORT_CONFIG,
+ &data);
if (ret_val)
goto out;
data |= IGP01E1000_PSCFR_SMART_SPEED;
ret_val = phy->ops.write_reg(hw,
- IGP01E1000_PHY_PORT_CONFIG,
- data);
+ IGP01E1000_PHY_PORT_CONFIG,
+ data);
if (ret_val)
goto out;
} else if (phy->smart_speed == e1000_smart_speed_off) {
ret_val = phy->ops.read_reg(hw,
- IGP01E1000_PHY_PORT_CONFIG,
- &data);
+ IGP01E1000_PHY_PORT_CONFIG,
+ &data);
if (ret_val)
goto out;
data &= ~IGP01E1000_PSCFR_SMART_SPEED;
ret_val = phy->ops.write_reg(hw,
- IGP01E1000_PHY_PORT_CONFIG,
- data);
+ IGP01E1000_PHY_PORT_CONFIG,
+ data);
if (ret_val)
goto out;
}
@@ -736,6 +833,101 @@ out:
}
/**
+ * e1000_set_d0_lplu_state_82580 - Set Low Power Linkup D0 state
+ * @hw: pointer to the HW structure
+ * @active: TRUE to enable LPLU, FALSE to disable
+ *
+ * Sets the LPLU D0 state according to the active flag. When
+ * activating LPLU this function also disables smart speed
+ * and vice versa. LPLU will not be activated unless the
+ * device autonegotiation advertisement meets standards of
+ * either 10 or 10/100 or 10/100/1000 at all duplexes.
+ * This is a function pointer entry point only called by
+ * PHY setup routines.
+ **/
+static s32 e1000_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val = E1000_SUCCESS;
+ u32 data;
+
+ DEBUGFUNC("e1000_set_d0_lplu_state_82580");
+
+ data = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT);
+
+ if (active) {
+ data |= E1000_82580_PM_D0_LPLU;
+
+ /* When LPLU is enabled, we should disable SmartSpeed */
+ data &= ~E1000_82580_PM_SPD;
+ } else {
+ data &= ~E1000_82580_PM_D0_LPLU;
+
+ /*
+ * LPLU and SmartSpeed are mutually exclusive. LPLU is used
+ * during Dx states where the power conservation is most
+ * important. During driver activity we should enable
+ * SmartSpeed, so performance is maintained.
+ */
+ if (phy->smart_speed == e1000_smart_speed_on)
+ data |= E1000_82580_PM_SPD;
+ else if (phy->smart_speed == e1000_smart_speed_off)
+ data &= ~E1000_82580_PM_SPD;
+ }
+
+ E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, data);
+ return ret_val;
+}
+
+/**
+ * e1000_set_d3_lplu_state_82580 - Sets low power link up state for D3
+ * @hw: pointer to the HW structure
+ * @active: boolean used to enable/disable lplu
+ *
+ * Success returns 0, Failure returns 1
+ *
+ * The low power link up (lplu) state is set to the power management level D3
+ * and SmartSpeed is disabled when active is TRUE, else clear lplu for D3
+ * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
+ * is used during Dx states where the power conservation is most important.
+ * During driver activity, SmartSpeed should be enabled so performance is
+ * maintained.
+ **/
+s32 e1000_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val = E1000_SUCCESS;
+ u32 data;
+
+ DEBUGFUNC("e1000_set_d3_lplu_state_82580");
+
+ data = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT);
+
+ if (!active) {
+ data &= ~E1000_82580_PM_D3_LPLU;
+ /*
+ * LPLU and SmartSpeed are mutually exclusive. LPLU is used
+ * during Dx states where the power conservation is most
+ * important. During driver activity we should enable
+ * SmartSpeed, so performance is maintained.
+ */
+ if (phy->smart_speed == e1000_smart_speed_on)
+ data |= E1000_82580_PM_SPD;
+ else if (phy->smart_speed == e1000_smart_speed_off)
+ data &= ~E1000_82580_PM_SPD;
+ } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
+ (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
+ (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
+ data |= E1000_82580_PM_D3_LPLU;
+ /* When LPLU is enabled, we should disable SmartSpeed */
+ data &= ~E1000_82580_PM_SPD;
+ }
+
+ E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, data);
+ return ret_val;
+}
+
+/**
* e1000_acquire_nvm_82575 - Request for access to EEPROM
* @hw: pointer to the HW structure
*
@@ -754,8 +946,32 @@ static s32 e1000_acquire_nvm_82575(struct e1000_hw *hw)
if (ret_val)
goto out;
- ret_val = e1000_acquire_nvm_generic(hw);
+ /*
+ * Check if there is some access
+ * error this access may hook on
+ */
+ if (hw->mac.type == e1000_i350) {
+ u32 eecd = E1000_READ_REG(hw, E1000_EECD);
+ if (eecd & (E1000_EECD_BLOCKED | E1000_EECD_ABORT |
+ E1000_EECD_TIMEOUT)) {
+ /* Clear all access error flags */
+ E1000_WRITE_REG(hw, E1000_EECD, eecd |
+ E1000_EECD_ERROR_CLR);
+ DEBUGOUT("Nvm bit banging access error detected and cleared.\n");
+ }
+ }
+ if (hw->mac.type == e1000_82580) {
+ u32 eecd = E1000_READ_REG(hw, E1000_EECD);
+ if (eecd & E1000_EECD_BLOCKED) {
+ /* Clear access error flag */
+ E1000_WRITE_REG(hw, E1000_EECD, eecd |
+ E1000_EECD_BLOCKED);
+ DEBUGOUT("Nvm bit banging access error detected and cleared.\n");
+ }
+ }
+
+ ret_val = e1000_acquire_nvm_generic(hw);
if (ret_val)
e1000_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
@@ -775,6 +991,7 @@ static void e1000_release_nvm_82575(struct e1000_hw *hw)
DEBUGFUNC("e1000_release_nvm_82575");
e1000_release_nvm_generic(hw);
+
e1000_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
}
@@ -844,8 +1061,8 @@ static void e1000_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
DEBUGFUNC("e1000_release_swfw_sync_82575");
- while (e1000_get_hw_semaphore_generic(hw) != E1000_SUCCESS);
- /* Empty */
+ while (e1000_get_hw_semaphore_generic(hw) != E1000_SUCCESS)
+ ; /* Empty */
swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC);
swfw_sync &= ~mask;
@@ -888,7 +1105,7 @@ static s32 e1000_get_cfg_done_82575(struct e1000_hw *hw)
DEBUGOUT("MNG configuration cycle has not completed.\n");
/* If EEPROM is not marked present, init the PHY manually */
- if (((E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES) == 0) &&
+ if (!(E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES) &&
(hw->phy.type == e1000_phy_igp_3))
e1000_phy_init_script_igp3(hw);
@@ -906,7 +1123,7 @@ static s32 e1000_get_cfg_done_82575(struct e1000_hw *hw)
* Otherwise, use the generic function to get the link speed and duplex info.
**/
static s32 e1000_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed,
- u16 *duplex)
+ u16 *duplex)
{
s32 ret_val;
@@ -914,10 +1131,10 @@ static s32 e1000_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed,
if (hw->phy.media_type != e1000_media_type_copper)
ret_val = e1000_get_pcs_speed_and_duplex_82575(hw, speed,
- duplex);
+ duplex);
else
ret_val = e1000_get_speed_and_duplex_copper_generic(hw, speed,
- duplex);
+ duplex);
return ret_val;
}
@@ -938,13 +1155,23 @@ static s32 e1000_check_for_link_82575(struct e1000_hw *hw)
if (hw->phy.media_type != e1000_media_type_copper) {
ret_val = e1000_get_pcs_speed_and_duplex_82575(hw, &speed,
- &duplex);
+ &duplex);
/*
* Use this flag to determine if link needs to be checked or
* not. If we have link clear the flag so that we do not
* continue to check for link.
*/
hw->mac.get_link_status = !hw->mac.serdes_has_link;
+
+ /*
+ * Configure Flow Control now that Auto-Neg has completed.
+ * First, we need to restore the desired flow control
+ * settings because we may have had to re-autoneg with a
+ * different link partner.
+ */
+ ret_val = e1000_config_fc_after_link_up_generic(hw);
+ if (ret_val)
+ DEBUGOUT("Error configuring flow control\n");
} else {
ret_val = e1000_check_for_copper_link_generic(hw);
}
@@ -991,18 +1218,13 @@ static void e1000_power_up_serdes_link_82575(struct e1000_hw *hw)
* duplex, then store the values in the pointers provided.
**/
static s32 e1000_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw,
- u16 *speed, u16 *duplex)
+ u16 *speed, u16 *duplex)
{
struct e1000_mac_info *mac = &hw->mac;
u32 pcs;
DEBUGFUNC("e1000_get_pcs_speed_and_duplex_82575");
- /* Set up defaults for the return values of this function */
- mac->serdes_has_link = FALSE;
- *speed = 0;
- *duplex = 0;
-
/*
* Read the PCS Status register for link state. For non-copper mode,
* the status register is not accurate. The PCS status register is
@@ -1011,28 +1233,29 @@ static s32 e1000_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw,
pcs = E1000_READ_REG(hw, E1000_PCS_LSTAT);
/*
- * The link up bit determines when link is up on autoneg. The sync ok
- * gets set once both sides sync up and agree upon link. Stable link
- * can be determined by checking for both link up and link sync ok
+ * The link up bit determines when link is up on autoneg.
*/
- if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
+ if (pcs & E1000_PCS_LSTS_LINK_OK) {
mac->serdes_has_link = TRUE;
/* Detect and store PCS speed */
- if (pcs & E1000_PCS_LSTS_SPEED_1000) {
+ if (pcs & E1000_PCS_LSTS_SPEED_1000)
*speed = SPEED_1000;
- } else if (pcs & E1000_PCS_LSTS_SPEED_100) {
+ else if (pcs & E1000_PCS_LSTS_SPEED_100)
*speed = SPEED_100;
- } else {
+ else
*speed = SPEED_10;
- }
/* Detect and store PCS duplex */
- if (pcs & E1000_PCS_LSTS_DUPLEX_FULL) {
+ if (pcs & E1000_PCS_LSTS_DUPLEX_FULL)
*duplex = FULL_DUPLEX;
- } else {
+ else
*duplex = HALF_DUPLEX;
- }
+
+ } else {
+ mac->serdes_has_link = FALSE;
+ *speed = 0;
+ *duplex = 0;
}
return E1000_SUCCESS;
@@ -1082,7 +1305,7 @@ void e1000_shutdown_serdes_link_82575(struct e1000_hw *hw)
**/
static s32 e1000_reset_hw_82575(struct e1000_hw *hw)
{
- u32 ctrl, icr;
+ u32 ctrl;
s32 ret_val;
DEBUGFUNC("e1000_reset_hw_82575");
@@ -1092,15 +1315,13 @@ static s32 e1000_reset_hw_82575(struct e1000_hw *hw)
* on the last TLP read/write transaction when MAC is reset.
*/
ret_val = e1000_disable_pcie_master_generic(hw);
- if (ret_val) {
+ if (ret_val)
DEBUGOUT("PCI-E Master disable polling has failed.\n");
- }
/* set the completion timeout for interface */
ret_val = e1000_set_pcie_completion_timeout(hw);
- if (ret_val) {
+ if (ret_val)
DEBUGOUT("PCI-E Set completion timeout has failed.\n");
- }
DEBUGOUT("Masking off all interrupts\n");
E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
@@ -1127,12 +1348,12 @@ static s32 e1000_reset_hw_82575(struct e1000_hw *hw)
}
/* If EEPROM is not present, run manual init scripts */
- if ((E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES) == 0)
+ if (!(E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES))
e1000_reset_init_script_82575(hw);
/* Clear any pending interrupt events. */
E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
- icr = E1000_READ_REG(hw, E1000_ICR);
+ E1000_READ_REG(hw, E1000_ICR);
/* Install any alternate MAC address into RAR0 */
ret_val = e1000_check_alt_mac_addr_generic(hw);
@@ -1181,6 +1402,9 @@ static s32 e1000_init_hw_82575(struct e1000_hw *hw)
/* Setup link and flow control */
ret_val = mac->ops.setup_link(hw);
+ /* Set the default MTU size */
+ hw->dev_spec._82575.mtu = 1500;
+
/*
* Clear all of the statistics registers (clear on read). It is
* important that we do this after we have tried to establish link
@@ -1203,7 +1427,8 @@ static s32 e1000_init_hw_82575(struct e1000_hw *hw)
static s32 e1000_setup_copper_link_82575(struct e1000_hw *hw)
{
u32 ctrl;
- s32 ret_val;
+ s32 ret_val;
+ u32 phpm_reg;
DEBUGFUNC("e1000_setup_copper_link_82575");
@@ -1212,11 +1437,18 @@ static s32 e1000_setup_copper_link_82575(struct e1000_hw *hw)
ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+ /* Clear Go Link Disconnect bit */
+ if (hw->mac.type >= e1000_82580) {
+ phpm_reg = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT);
+ phpm_reg &= ~E1000_82580_PM_GO_LINKD;
+ E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, phpm_reg);
+ }
+
ret_val = e1000_setup_serdes_link_82575(hw);
if (ret_val)
goto out;
- if (e1000_sgmii_active_82575(hw) && !hw->phy.reset_disable) {
+ if (e1000_sgmii_active_82575(hw)) {
/* allow time for SFP cage time to power up phy */
msec_delay(300);
@@ -1227,8 +1459,19 @@ static s32 e1000_setup_copper_link_82575(struct e1000_hw *hw)
}
}
switch (hw->phy.type) {
+ case e1000_phy_i210:
case e1000_phy_m88:
- ret_val = e1000_copper_link_setup_m88(hw);
+ switch (hw->phy.id) {
+ case I347AT4_E_PHY_ID:
+ case M88E1112_E_PHY_ID:
+ case M88E1340M_E_PHY_ID:
+ case I210_I_PHY_ID:
+ ret_val = e1000_copper_link_setup_m88_gen2(hw);
+ break;
+ default:
+ ret_val = e1000_copper_link_setup_m88(hw);
+ break;
+ }
break;
case e1000_phy_igp_3:
ret_val = e1000_copper_link_setup_igp(hw);
@@ -1260,14 +1503,16 @@ out:
**/
static s32 e1000_setup_serdes_link_82575(struct e1000_hw *hw)
{
- u32 ctrl_ext, ctrl_reg, reg;
+ u32 ctrl_ext, ctrl_reg, reg, anadv_reg;
bool pcs_autoneg;
+ s32 ret_val = E1000_SUCCESS;
+ u16 data;
DEBUGFUNC("e1000_setup_serdes_link_82575");
if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
!e1000_sgmii_active_82575(hw))
- return E1000_SUCCESS;
+ return ret_val;
/*
* On the 82575, SerDes loopback mode persists until it is
@@ -1306,13 +1551,25 @@ static s32 e1000_setup_serdes_link_82575(struct e1000_hw *hw)
pcs_autoneg = FALSE;
/* fall through to default case */
default:
+ if (hw->mac.type == e1000_82575 ||
+ hw->mac.type == e1000_82576) {
+ ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data);
+ if (ret_val) {
+ DEBUGOUT("NVM Read Error\n");
+ return ret_val;
+ }
+
+ if (data & E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT)
+ pcs_autoneg = FALSE;
+ }
+
/*
* non-SGMII modes only supports a speed of 1000/Full for the
* link so it is best to just force the MAC and let the pcs
* link either autoneg or be forced to 1000/Full
*/
ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
- E1000_CTRL_FD | E1000_CTRL_FRCDPX;
+ E1000_CTRL_FD | E1000_CTRL_FRCDPX;
/* set speed of 1000/Full if speed/duplex is forced */
reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
@@ -1328,31 +1585,203 @@ static s32 e1000_setup_serdes_link_82575(struct e1000_hw *hw)
* However, both are supported by the hardware and some drivers/tools.
*/
reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
- E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
-
- /*
- * We force flow control to prevent the CTRL register values from being
- * overwritten by the autonegotiated flow control values
- */
- reg |= E1000_PCS_LCTL_FORCE_FCTRL;
+ E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
if (pcs_autoneg) {
/* Set PCS register for autoneg */
reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
+
+ /* Disable force flow control for autoneg */
+ reg &= ~E1000_PCS_LCTL_FORCE_FCTRL;
+
+ /* Configure flow control advertisement for autoneg */
+ anadv_reg = E1000_READ_REG(hw, E1000_PCS_ANADV);
+ anadv_reg &= ~(E1000_TXCW_ASM_DIR | E1000_TXCW_PAUSE);
+
+ switch (hw->fc.requested_mode) {
+ case e1000_fc_full:
+ case e1000_fc_rx_pause:
+ anadv_reg |= E1000_TXCW_ASM_DIR;
+ anadv_reg |= E1000_TXCW_PAUSE;
+ break;
+ case e1000_fc_tx_pause:
+ anadv_reg |= E1000_TXCW_ASM_DIR;
+ break;
+ default:
+ break;
+ }
+
+ E1000_WRITE_REG(hw, E1000_PCS_ANADV, anadv_reg);
+
DEBUGOUT1("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
} else {
/* Set PCS register for forced link */
- reg |= E1000_PCS_LCTL_FSD; /* Force Speed */
+ reg |= E1000_PCS_LCTL_FSD; /* Force Speed */
+
+ /* Force flow control for forced link */
+ reg |= E1000_PCS_LCTL_FORCE_FCTRL;
+
DEBUGOUT1("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
}
E1000_WRITE_REG(hw, E1000_PCS_LCTL, reg);
- if (!e1000_sgmii_active_82575(hw))
+ if (!pcs_autoneg && !e1000_sgmii_active_82575(hw))
e1000_force_mac_fc_generic(hw);
- return E1000_SUCCESS;
+ return ret_val;
+}
+
+/**
+ * e1000_get_media_type_82575 - derives current media type.
+ * @hw: pointer to the HW structure
+ *
+ * The media type is chosen reflecting few settings.
+ * The following are taken into account:
+ * - link mode set in the current port Init Control Word #3
+ * - current link mode settings in CSR register
+ * - MDIO vs. I2C PHY control interface chosen
+ * - SFP module media type
+ **/
+static s32 e1000_get_media_type_82575(struct e1000_hw *hw)
+{
+ struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
+ s32 ret_val = E1000_SUCCESS;
+ u32 ctrl_ext = 0;
+ u32 link_mode = 0;
+
+ /* Set internal phy as default */
+ dev_spec->sgmii_active = FALSE;
+ dev_spec->module_plugged = FALSE;
+
+ /* Get CSR setting */
+ ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
+
+ /* extract link mode setting */
+ link_mode = ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK;
+
+ switch (link_mode) {
+ case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
+ hw->phy.media_type = e1000_media_type_internal_serdes;
+ break;
+ case E1000_CTRL_EXT_LINK_MODE_GMII:
+ hw->phy.media_type = e1000_media_type_copper;
+ break;
+ case E1000_CTRL_EXT_LINK_MODE_SGMII:
+ /* Get phy control interface type set (MDIO vs. I2C)*/
+ if (e1000_sgmii_uses_mdio_82575(hw)) {
+ hw->phy.media_type = e1000_media_type_copper;
+ dev_spec->sgmii_active = TRUE;
+ break;
+ }
+ /* fall through for I2C based SGMII */
+ case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
+ /* read media type from SFP EEPROM */
+ ret_val = e1000_set_sfp_media_type_82575(hw);
+ if ((ret_val != E1000_SUCCESS) ||
+ (hw->phy.media_type == e1000_media_type_unknown)) {
+ /*
+ * If media type was not identified then return media
+ * type defined by the CTRL_EXT settings.
+ */
+ hw->phy.media_type = e1000_media_type_internal_serdes;
+
+ if (link_mode == E1000_CTRL_EXT_LINK_MODE_SGMII) {
+ hw->phy.media_type = e1000_media_type_copper;
+ dev_spec->sgmii_active = TRUE;
+ }
+
+ break;
+ }
+
+ /* do not change link mode for 100BaseFX */
+ if (dev_spec->eth_flags.e100_base_fx)
+ break;
+
+ /* change current link mode setting */
+ ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
+
+ if (hw->phy.media_type == e1000_media_type_copper)
+ ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_SGMII;
+ else
+ ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
+
+ E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
+
+ break;
+ }
+
+ return ret_val;
+}
+
+/**
+ * e1000_set_sfp_media_type_82575 - derives SFP module media type.
+ * @hw: pointer to the HW structure
+ *
+ * The media type is chosen based on SFP module.
+ * compatibility flags retrieved from SFP ID EEPROM.
+ **/
+static s32 e1000_set_sfp_media_type_82575(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_ERR_CONFIG;
+ u32 ctrl_ext = 0;
+ struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
+ struct sfp_e1000_flags *eth_flags = &dev_spec->eth_flags;
+ u8 tranceiver_type = 0;
+ s32 timeout = 3;
+
+ /* Turn I2C interface ON and power on sfp cage */
+ ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
+ ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
+ E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_I2C_ENA);
+
+ E1000_WRITE_FLUSH(hw);
+
+ /* Read SFP module data */
+ while (timeout) {
+ ret_val = e1000_read_sfp_data_byte(hw,
+ E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_IDENTIFIER_OFFSET),
+ &tranceiver_type);
+ if (ret_val == E1000_SUCCESS)
+ break;
+ msec_delay(100);
+ timeout--;
+ }
+ if (ret_val != E1000_SUCCESS)
+ goto out;
+
+ ret_val = e1000_read_sfp_data_byte(hw,
+ E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_ETH_FLAGS_OFFSET),
+ (u8 *)eth_flags);
+ if (ret_val != E1000_SUCCESS)
+ goto out;
+
+ /* Check if there is some SFP module plugged and powered */
+ if ((tranceiver_type == E1000_SFF_IDENTIFIER_SFP) ||
+ (tranceiver_type == E1000_SFF_IDENTIFIER_SFF)) {
+ dev_spec->module_plugged = TRUE;
+ if (eth_flags->e1000_base_lx || eth_flags->e1000_base_sx) {
+ hw->phy.media_type = e1000_media_type_internal_serdes;
+ } else if (eth_flags->e100_base_fx) {
+ dev_spec->sgmii_active = TRUE;
+ hw->phy.media_type = e1000_media_type_internal_serdes;
+ } else if (eth_flags->e1000_base_t) {
+ dev_spec->sgmii_active = TRUE;
+ hw->phy.media_type = e1000_media_type_copper;
+ } else {
+ hw->phy.media_type = e1000_media_type_unknown;
+ DEBUGOUT("PHY module has not been recognized\n");
+ goto out;
+ }
+ } else {
+ hw->phy.media_type = e1000_media_type_unknown;
+ }
+ ret_val = E1000_SUCCESS;
+out:
+ /* Restore I2C interface setting */
+ E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
+ return ret_val;
}
/**
@@ -1376,7 +1805,7 @@ static s32 e1000_valid_led_default_82575(struct e1000_hw *hw, u16 *data)
}
if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) {
- switch(hw->phy.media_type) {
+ switch (hw->phy.media_type) {
case e1000_media_type_internal_serdes:
*data = ID_LED_DEFAULT_82575_SERDES;
break;
@@ -1411,7 +1840,7 @@ static bool e1000_sgmii_active_82575(struct e1000_hw *hw)
* Inits recommended HW defaults after a reset when there is no EEPROM
* detected. This is only for the 82575.
**/
-static s32 e1000_reset_init_script_82575(struct e1000_hw* hw)
+static s32 e1000_reset_init_script_82575(struct e1000_hw *hw)
{
DEBUGFUNC("e1000_reset_init_script_82575");
@@ -1576,7 +2005,7 @@ static void e1000_clear_hw_cntrs_82575(struct e1000_hw *hw)
}
/**
- * e1000_rx_fifo_flush_82575 - Clean rx fifo after RX enable
+ * e1000_rx_fifo_flush_82575 - Clean rx fifo after Rx enable
* @hw: pointer to the HW structure
*
* After rx enable if managability is enabled then there is likely some
@@ -1594,11 +2023,11 @@ void e1000_rx_fifo_flush_82575(struct e1000_hw *hw)
!(E1000_READ_REG(hw, E1000_MANC) & E1000_MANC_RCV_TCO_EN))
return;
- /* Disable all RX queues */
+ /* Disable all Rx queues */
for (i = 0; i < 4; i++) {
rxdctl[i] = E1000_READ_REG(hw, E1000_RXDCTL(i));
E1000_WRITE_REG(hw, E1000_RXDCTL(i),
- rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
+ rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
}
/* Poll all queues to verify they have shut down */
for (ms_wait = 0; ms_wait < 10; ms_wait++) {
@@ -1632,7 +2061,7 @@ void e1000_rx_fifo_flush_82575(struct e1000_hw *hw)
E1000_WRITE_FLUSH(hw);
msec_delay(2);
- /* Enable RX queues that were previously enabled and restore our
+ /* Enable Rx queues that were previously enabled and restore our
* previous state
*/
for (i = 0; i < 4; i++)
@@ -1684,14 +2113,14 @@ static s32 e1000_set_pcie_completion_timeout(struct e1000_hw *hw)
* 16ms to 55ms
*/
ret_val = e1000_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
- &pcie_devctl2);
+ &pcie_devctl2);
if (ret_val)
goto out;
pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;
ret_val = e1000_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
- &pcie_devctl2);
+ &pcie_devctl2);
out:
/* disable completion timeout resend */
gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;
@@ -1700,7 +2129,6 @@ out:
return ret_val;
}
-
/**
* e1000_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing
* @hw: pointer to the hardware struct
@@ -1721,13 +2149,29 @@ void e1000_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf)
E1000_DTXSWC_VLAN_SPOOF_MASK);
/* The PF can spoof - it has to in order to
* support emulation mode NICs */
- dtxswc ^= (1 << pf | 1 << (pf + MAX_NUM_VFS));
+ dtxswc ^= (1 << pf | 1 << (pf +
+ E1000_DTXSWC_VLAN_SPOOF_SHIFT));
} else {
dtxswc &= ~(E1000_DTXSWC_MAC_SPOOF_MASK |
E1000_DTXSWC_VLAN_SPOOF_MASK);
}
E1000_WRITE_REG(hw, E1000_DTXSWC, dtxswc);
break;
+ case e1000_i350:
+ dtxswc = E1000_READ_REG(hw, E1000_TXSWC);
+ if (enable) {
+ dtxswc |= (E1000_DTXSWC_MAC_SPOOF_MASK |
+ E1000_DTXSWC_VLAN_SPOOF_MASK);
+ /* The PF can spoof - it has to in order to
+ * support emulation mode NICs
+ */
+ dtxswc ^= (1 << pf | 1 << (pf +
+ E1000_DTXSWC_VLAN_SPOOF_SHIFT));
+ } else {
+ dtxswc &= ~(E1000_DTXSWC_MAC_SPOOF_MASK |
+ E1000_DTXSWC_VLAN_SPOOF_MASK);
+ }
+ E1000_WRITE_REG(hw, E1000_TXSWC, dtxswc);
default:
break;
}
@@ -1753,6 +2197,14 @@ void e1000_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
E1000_WRITE_REG(hw, E1000_DTXSWC, dtxswc);
break;
+ case e1000_i350:
+ dtxswc = E1000_READ_REG(hw, E1000_TXSWC);
+ if (enable)
+ dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
+ else
+ dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
+ E1000_WRITE_REG(hw, E1000_TXSWC, dtxswc);
+ break;
default:
/* Currently no other hardware supports loopback */
break;
@@ -1845,7 +2297,7 @@ static s32 e1000_reset_mdicnfg_82580(struct e1000_hw *hw)
{
s32 ret_val = E1000_SUCCESS;
u32 mdicnfg;
- u16 nvm_data;
+ u16 nvm_data = 0;
DEBUGFUNC("e1000_reset_mdicnfg_82580");
@@ -1855,8 +2307,8 @@ static s32 e1000_reset_mdicnfg_82580(struct e1000_hw *hw)
goto out;
ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
- NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
- &nvm_data);
+ NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
+ &nvm_data);
if (ret_val) {
DEBUGOUT("NVM Read Error\n");
goto out;
@@ -1884,13 +2336,17 @@ static s32 e1000_reset_hw_82580(struct e1000_hw *hw)
s32 ret_val = E1000_SUCCESS;
/* BH SW mailbox bit in SW_FW_SYNC */
u16 swmbsw_mask = E1000_SW_SYNCH_MB;
- u32 ctrl, icr;
+ u32 ctrl;
bool global_device_reset = hw->dev_spec._82575.global_device_reset;
DEBUGFUNC("e1000_reset_hw_82580");
hw->dev_spec._82575.global_device_reset = FALSE;
+ /* 82580 does not reliably do global_device_reset due to hw errata */
+ if (hw->mac.type == e1000_82580)
+ global_device_reset = FALSE;
+
/* Get current control state. */
ctrl = E1000_READ_REG(hw, E1000_CTRL);
@@ -1911,17 +2367,18 @@ static s32 e1000_reset_hw_82580(struct e1000_hw *hw)
msec_delay(10);
/* Determine whether or not a global dev reset is requested */
- if (global_device_reset &&
- e1000_acquire_swfw_sync_82575(hw, swmbsw_mask))
+ if (global_device_reset && hw->mac.ops.acquire_swfw_sync(hw,
+ swmbsw_mask))
global_device_reset = FALSE;
- if (global_device_reset &&
- !(E1000_READ_REG(hw, E1000_STATUS) & E1000_STAT_DEV_RST_SET))
+ if (global_device_reset && !(E1000_READ_REG(hw, E1000_STATUS) &
+ E1000_STAT_DEV_RST_SET))
ctrl |= E1000_CTRL_DEV_RST;
else
ctrl |= E1000_CTRL_RST;
E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+ E1000_WRITE_FLUSH(hw);
/* Add delay to insure DEV_RST has time to complete */
if (global_device_reset)
@@ -1938,7 +2395,7 @@ static s32 e1000_reset_hw_82580(struct e1000_hw *hw)
}
/* If EEPROM is not present, run manual init scripts */
- if ((E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES) == 0)
+ if (!(E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES))
e1000_reset_init_script_82575(hw);
/* clear global device reset status bit */
@@ -1946,7 +2403,7 @@ static s32 e1000_reset_hw_82580(struct e1000_hw *hw)
/* Clear any pending interrupt events. */
E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
- icr = E1000_READ_REG(hw, E1000_ICR);
+ E1000_READ_REG(hw, E1000_ICR);
ret_val = e1000_reset_mdicnfg_82580(hw);
if (ret_val)
@@ -1957,13 +2414,13 @@ static s32 e1000_reset_hw_82580(struct e1000_hw *hw)
/* Release semaphore */
if (global_device_reset)
- e1000_release_swfw_sync_82575(hw, swmbsw_mask);
+ hw->mac.ops.release_swfw_sync(hw, swmbsw_mask);
return ret_val;
}
/**
- * e1000_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size
+ * e1000_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual Rx PBA size
* @data: data received by reading RXPBS register
*
* The 82580 uses a table based approach for packet buffer allocation sizes.
@@ -1981,3 +2438,859 @@ u16 e1000_rxpbs_adjust_82580(u32 data)
return ret_val;
}
+
+/**
+ * e1000_validate_nvm_checksum_with_offset - Validate EEPROM
+ * checksum
+ * @hw: pointer to the HW structure
+ * @offset: offset in words of the checksum protected region
+ *
+ * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
+ * and then verifies that the sum of the EEPROM is equal to 0xBABA.
+ **/
+s32 e1000_validate_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
+{
+ s32 ret_val = E1000_SUCCESS;
+ u16 checksum = 0;
+ u16 i, nvm_data;
+
+ DEBUGFUNC("e1000_validate_nvm_checksum_with_offset");
+
+ for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) {
+ ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
+ if (ret_val) {
+ DEBUGOUT("NVM Read Error\n");
+ goto out;
+ }
+ checksum += nvm_data;
+ }
+
+ if (checksum != (u16) NVM_SUM) {
+ DEBUGOUT("NVM Checksum Invalid\n");
+ ret_val = -E1000_ERR_NVM;
+ goto out;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_update_nvm_checksum_with_offset - Update EEPROM
+ * checksum
+ * @hw: pointer to the HW structure
+ * @offset: offset in words of the checksum protected region
+ *
+ * Updates the EEPROM checksum by reading/adding each word of the EEPROM
+ * up to the checksum. Then calculates the EEPROM checksum and writes the
+ * value to the EEPROM.
+ **/
+s32 e1000_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
+{
+ s32 ret_val;
+ u16 checksum = 0;
+ u16 i, nvm_data;
+
+ DEBUGFUNC("e1000_update_nvm_checksum_with_offset");
+
+ for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) {
+ ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
+ if (ret_val) {
+ DEBUGOUT("NVM Read Error while updating checksum.\n");
+ goto out;
+ }
+ checksum += nvm_data;
+ }
+ checksum = (u16) NVM_SUM - checksum;
+ ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1,
+ &checksum);
+ if (ret_val)
+ DEBUGOUT("NVM Write Error while updating checksum.\n");
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_validate_nvm_checksum_82580 - Validate EEPROM checksum
+ * @hw: pointer to the HW structure
+ *
+ * Calculates the EEPROM section checksum by reading/adding each word of
+ * the EEPROM and then verifies that the sum of the EEPROM is
+ * equal to 0xBABA.
+ **/
+static s32 e1000_validate_nvm_checksum_82580(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+ u16 eeprom_regions_count = 1;
+ u16 j, nvm_data;
+ u16 nvm_offset;
+
+ DEBUGFUNC("e1000_validate_nvm_checksum_82580");
+
+ ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
+ if (ret_val) {
+ DEBUGOUT("NVM Read Error\n");
+ goto out;
+ }
+
+ if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) {
+ /* if chekcsums compatibility bit is set validate checksums
+ * for all 4 ports. */
+ eeprom_regions_count = 4;
+ }
+
+ for (j = 0; j < eeprom_regions_count; j++) {
+ nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
+ ret_val = e1000_validate_nvm_checksum_with_offset(hw,
+ nvm_offset);
+ if (ret_val != E1000_SUCCESS)
+ goto out;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_update_nvm_checksum_82580 - Update EEPROM checksum
+ * @hw: pointer to the HW structure
+ *
+ * Updates the EEPROM section checksums for all 4 ports by reading/adding
+ * each word of the EEPROM up to the checksum. Then calculates the EEPROM
+ * checksum and writes the value to the EEPROM.
+ **/
+static s32 e1000_update_nvm_checksum_82580(struct e1000_hw *hw)
+{
+ s32 ret_val;
+ u16 j, nvm_data;
+ u16 nvm_offset;
+
+ DEBUGFUNC("e1000_update_nvm_checksum_82580");
+
+ ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
+ if (ret_val) {
+ DEBUGOUT("NVM Read Error while updating checksum compatibility bit.\n");
+ goto out;
+ }
+
+ if (!(nvm_data & NVM_COMPATIBILITY_BIT_MASK)) {
+ /* set compatibility bit to validate checksums appropriately */
+ nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK;
+ ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1,
+ &nvm_data);
+ if (ret_val) {
+ DEBUGOUT("NVM Write Error while updating checksum compatibility bit.\n");
+ goto out;
+ }
+ }
+
+ for (j = 0; j < 4; j++) {
+ nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
+ ret_val = e1000_update_nvm_checksum_with_offset(hw, nvm_offset);
+ if (ret_val)
+ goto out;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_validate_nvm_checksum_i350 - Validate EEPROM checksum
+ * @hw: pointer to the HW structure
+ *
+ * Calculates the EEPROM section checksum by reading/adding each word of
+ * the EEPROM and then verifies that the sum of the EEPROM is
+ * equal to 0xBABA.
+ **/
+static s32 e1000_validate_nvm_checksum_i350(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+ u16 j;
+ u16 nvm_offset;
+
+ DEBUGFUNC("e1000_validate_nvm_checksum_i350");
+
+ for (j = 0; j < 4; j++) {
+ nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
+ ret_val = e1000_validate_nvm_checksum_with_offset(hw,
+ nvm_offset);
+ if (ret_val != E1000_SUCCESS)
+ goto out;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_update_nvm_checksum_i350 - Update EEPROM checksum
+ * @hw: pointer to the HW structure
+ *
+ * Updates the EEPROM section checksums for all 4 ports by reading/adding
+ * each word of the EEPROM up to the checksum. Then calculates the EEPROM
+ * checksum and writes the value to the EEPROM.
+ **/
+static s32 e1000_update_nvm_checksum_i350(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+ u16 j;
+ u16 nvm_offset;
+
+ DEBUGFUNC("e1000_update_nvm_checksum_i350");
+
+ for (j = 0; j < 4; j++) {
+ nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
+ ret_val = e1000_update_nvm_checksum_with_offset(hw, nvm_offset);
+ if (ret_val != E1000_SUCCESS)
+ goto out;
+ }
+
+out:
+ return ret_val;
+}
+
+/**
+ * e1000_set_eee_i350 - Enable/disable EEE support
+ * @hw: pointer to the HW structure
+ *
+ * Enable/disable EEE based on setting in dev_spec structure.
+ *
+ **/
+s32 e1000_set_eee_i350(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+ u32 ipcnfg, eeer;
+
+ DEBUGFUNC("e1000_set_eee_i350");
+
+ if ((hw->mac.type < e1000_i350) ||
+ (hw->phy.media_type != e1000_media_type_copper))
+ goto out;
+ ipcnfg = E1000_READ_REG(hw, E1000_IPCNFG);
+ eeer = E1000_READ_REG(hw, E1000_EEER);
+
+ /* enable or disable per user setting */
+ if (!(hw->dev_spec._82575.eee_disable)) {
+ u32 eee_su = E1000_READ_REG(hw, E1000_EEE_SU);
+
+ ipcnfg |= (E1000_IPCNFG_EEE_1G_AN | E1000_IPCNFG_EEE_100M_AN);
+ eeer |= (E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN |
+ E1000_EEER_LPI_FC);
+
+ /* This bit should not be set in normal operation. */
+ if (eee_su & E1000_EEE_SU_LPI_CLK_STP)
+ DEBUGOUT("LPI Clock Stop Bit should not be set!\n");
+ } else {
+ ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN | E1000_IPCNFG_EEE_100M_AN);
+ eeer &= ~(E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN |
+ E1000_EEER_LPI_FC);
+ }
+ E1000_WRITE_REG(hw, E1000_IPCNFG, ipcnfg);
+ E1000_WRITE_REG(hw, E1000_EEER, eeer);
+ E1000_READ_REG(hw, E1000_IPCNFG);
+ E1000_READ_REG(hw, E1000_EEER);
+out:
+
+ return ret_val;
+}
+
+/* Due to a hw errata, if the host tries to configure the VFTA register
+ * while performing queries from the BMC or DMA, then the VFTA in some
+ * cases won't be written.
+ */
+
+/**
+ * e1000_clear_vfta_i350 - Clear VLAN filter table
+ * @hw: pointer to the HW structure
+ *
+ * Clears the register array which contains the VLAN filter table by
+ * setting all the values to 0.
+ **/
+void e1000_clear_vfta_i350(struct e1000_hw *hw)
+{
+ u32 offset;
+ int i;
+
+ DEBUGFUNC("e1000_clear_vfta_350");
+
+ for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
+ for (i = 0; i < 10; i++)
+ E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0);
+
+ E1000_WRITE_FLUSH(hw);
+ }
+}
+
+/**
+ * e1000_write_vfta_i350 - Write value to VLAN filter table
+ * @hw: pointer to the HW structure
+ * @offset: register offset in VLAN filter table
+ * @value: register value written to VLAN filter table
+ *
+ * Writes value at the given offset in the register array which stores
+ * the VLAN filter table.
+ **/
+void e1000_write_vfta_i350(struct e1000_hw *hw, u32 offset, u32 value)
+{
+ int i;
+
+ DEBUGFUNC("e1000_write_vfta_350");
+
+ for (i = 0; i < 10; i++)
+ E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
+
+ E1000_WRITE_FLUSH(hw);
+}
+
+
+/**
+ * e1000_set_i2c_bb - Enable I2C bit-bang
+ * @hw: pointer to the HW structure
+ *
+ * Enable I2C bit-bang interface
+ *
+ **/
+s32 e1000_set_i2c_bb(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+ u32 ctrl_ext, i2cparams;
+
+ DEBUGFUNC("e1000_set_i2c_bb");
+
+ ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
+ ctrl_ext |= E1000_CTRL_I2C_ENA;
+ E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
+ E1000_WRITE_FLUSH(hw);
+
+ i2cparams = E1000_READ_REG(hw, E1000_I2CPARAMS);
+ i2cparams |= E1000_I2CBB_EN;
+ i2cparams |= E1000_I2C_DATA_OE_N;
+ i2cparams |= E1000_I2C_CLK_OE_N;
+ E1000_WRITE_REG(hw, E1000_I2CPARAMS, i2cparams);
+ E1000_WRITE_FLUSH(hw);
+
+ return ret_val;
+}
+
+/**
+ * e1000_read_i2c_byte_generic - Reads 8 bit word over I2C
+ * @hw: pointer to hardware structure
+ * @byte_offset: byte offset to read
+ * @dev_addr: device address
+ * @data: value read
+ *
+ * Performs byte read operation over I2C interface at
+ * a specified device address.
+ **/
+s32 e1000_read_i2c_byte_generic(struct e1000_hw *hw, u8 byte_offset,
+ u8 dev_addr, u8 *data)
+{
+ s32 status = E1000_SUCCESS;
+ u32 max_retry = 10;
+ u32 retry = 1;
+ u16 swfw_mask = 0;
+
+ bool nack = TRUE;
+
+ DEBUGFUNC("e1000_read_i2c_byte_generic");
+
+ swfw_mask = E1000_SWFW_PHY0_SM;
+
+ do {
+ if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)
+ != E1000_SUCCESS) {
+ status = E1000_ERR_SWFW_SYNC;
+ goto read_byte_out;
+ }
+
+ e1000_i2c_start(hw);
+
+ /* Device Address and write indication */
+ status = e1000_clock_out_i2c_byte(hw, dev_addr);
+ if (status != E1000_SUCCESS)
+ goto fail;
+
+ status = e1000_get_i2c_ack(hw);
+ if (status != E1000_SUCCESS)
+ goto fail;
+
+ status = e1000_clock_out_i2c_byte(hw, byte_offset);
+ if (status != E1000_SUCCESS)
+ goto fail;
+
+ status = e1000_get_i2c_ack(hw);
+ if (status != E1000_SUCCESS)
+ goto fail;
+
+ e1000_i2c_start(hw);
+
+ /* Device Address and read indication */
+ status = e1000_clock_out_i2c_byte(hw, (dev_addr | 0x1));
+ if (status != E1000_SUCCESS)
+ goto fail;
+
+ status = e1000_get_i2c_ack(hw);
+ if (status != E1000_SUCCESS)
+ goto fail;
+
+ status = e1000_clock_in_i2c_byte(hw, data);
+ if (status != E1000_SUCCESS)
+ goto fail;
+
+ status = e1000_clock_out_i2c_bit(hw, nack);
+ if (status != E1000_SUCCESS)
+ goto fail;
+
+ e1000_i2c_stop(hw);
+ break;
+
+fail:
+ hw->mac.ops.release_swfw_sync(hw, swfw_mask);
+ msec_delay(100);
+ e1000_i2c_bus_clear(hw);
+ retry++;
+ if (retry < max_retry)
+ DEBUGOUT("I2C byte read error - Retrying.\n");
+ else
+ DEBUGOUT("I2C byte read error.\n");
+
+ } while (retry < max_retry);
+
+ hw->mac.ops.release_swfw_sync(hw, swfw_mask);
+
+read_byte_out:
+
+ return status;
+}
+
+/**
+ * e1000_write_i2c_byte_generic - Writes 8 bit word over I2C
+ * @hw: pointer to hardware structure
+ * @byte_offset: byte offset to write
+ * @dev_addr: device address
+ * @data: value to write
+ *
+ * Performs byte write operation over I2C interface at
+ * a specified device address.
+ **/
+s32 e1000_write_i2c_byte_generic(struct e1000_hw *hw, u8 byte_offset,
+ u8 dev_addr, u8 data)
+{
+ s32 status = E1000_SUCCESS;
+ u32 max_retry = 1;
+ u32 retry = 0;
+ u16 swfw_mask = 0;
+
+ DEBUGFUNC("e1000_write_i2c_byte_generic");
+
+ swfw_mask = E1000_SWFW_PHY0_SM;
+
+ if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != E1000_SUCCESS) {
+ status = E1000_ERR_SWFW_SYNC;
+ goto write_byte_out;
+ }
+
+ do {
+ e1000_i2c_start(hw);
+
+ status = e1000_clock_out_i2c_byte(hw, dev_addr);
+ if (status != E1000_SUCCESS)
+ goto fail;
+
+ status = e1000_get_i2c_ack(hw);
+ if (status != E1000_SUCCESS)
+ goto fail;
+
+ status = e1000_clock_out_i2c_byte(hw, byte_offset);
+ if (status != E1000_SUCCESS)
+ goto fail;
+
+ status = e1000_get_i2c_ack(hw);
+ if (status != E1000_SUCCESS)
+ goto fail;
+
+ status = e1000_clock_out_i2c_byte(hw, data);
+ if (status != E1000_SUCCESS)
+ goto fail;
+
+ status = e1000_get_i2c_ack(hw);
+ if (status != E1000_SUCCESS)
+ goto fail;
+
+ e1000_i2c_stop(hw);
+ break;
+
+fail:
+ e1000_i2c_bus_clear(hw);
+ retry++;
+ if (retry < max_retry)
+ DEBUGOUT("I2C byte write error - Retrying.\n");
+ else
+ DEBUGOUT("I2C byte write error.\n");
+ } while (retry < max_retry);
+
+ hw->mac.ops.release_swfw_sync(hw, swfw_mask);
+
+write_byte_out:
+
+ return status;
+}
+
+/**
+ * e1000_i2c_start - Sets I2C start condition
+ * @hw: pointer to hardware structure
+ *
+ * Sets I2C start condition (High -> Low on SDA while SCL is High)
+ **/
+static void e1000_i2c_start(struct e1000_hw *hw)
+{
+ u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
+
+ DEBUGFUNC("e1000_i2c_start");
+
+ /* Start condition must begin with data and clock high */
+ e1000_set_i2c_data(hw, &i2cctl, 1);
+ e1000_raise_i2c_clk(hw, &i2cctl);
+
+ /* Setup time for start condition (4.7us) */
+ usec_delay(E1000_I2C_T_SU_STA);
+
+ e1000_set_i2c_data(hw, &i2cctl, 0);
+
+ /* Hold time for start condition (4us) */
+ usec_delay(E1000_I2C_T_HD_STA);
+
+ e1000_lower_i2c_clk(hw, &i2cctl);
+
+ /* Minimum low period of clock is 4.7 us */
+ usec_delay(E1000_I2C_T_LOW);
+
+}
+
+/**
+ * e1000_i2c_stop - Sets I2C stop condition
+ * @hw: pointer to hardware structure
+ *
+ * Sets I2C stop condition (Low -> High on SDA while SCL is High)
+ **/
+static void e1000_i2c_stop(struct e1000_hw *hw)
+{
+ u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
+
+ DEBUGFUNC("e1000_i2c_stop");
+
+ /* Stop condition must begin with data low and clock high */
+ e1000_set_i2c_data(hw, &i2cctl, 0);
+ e1000_raise_i2c_clk(hw, &i2cctl);
+
+ /* Setup time for stop condition (4us) */
+ usec_delay(E1000_I2C_T_SU_STO);
+
+ e1000_set_i2c_data(hw, &i2cctl, 1);
+
+ /* bus free time between stop and start (4.7us)*/
+ usec_delay(E1000_I2C_T_BUF);
+}
+
+/**
+ * e1000_clock_in_i2c_byte - Clocks in one byte via I2C
+ * @hw: pointer to hardware structure
+ * @data: data byte to clock in
+ *
+ * Clocks in one byte data via I2C data/clock
+ **/
+static s32 e1000_clock_in_i2c_byte(struct e1000_hw *hw, u8 *data)
+{
+ s32 i;
+ bool bit = 0;
+
+ DEBUGFUNC("e1000_clock_in_i2c_byte");
+
+ *data = 0;
+ for (i = 7; i >= 0; i--) {
+ e1000_clock_in_i2c_bit(hw, &bit);
+ *data |= bit << i;
+ }
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_clock_out_i2c_byte - Clocks out one byte via I2C
+ * @hw: pointer to hardware structure
+ * @data: data byte clocked out
+ *
+ * Clocks out one byte data via I2C data/clock
+ **/
+static s32 e1000_clock_out_i2c_byte(struct e1000_hw *hw, u8 data)
+{
+ s32 status = E1000_SUCCESS;
+ s32 i;
+ u32 i2cctl;
+ bool bit = 0;
+
+ DEBUGFUNC("e1000_clock_out_i2c_byte");
+
+ for (i = 7; i >= 0; i--) {
+ bit = (data >> i) & 0x1;
+ status = e1000_clock_out_i2c_bit(hw, bit);
+
+ if (status != E1000_SUCCESS)
+ break;
+ }
+
+ /* Release SDA line (set high) */
+ i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
+
+ i2cctl |= E1000_I2C_DATA_OE_N;
+ E1000_WRITE_REG(hw, E1000_I2CPARAMS, i2cctl);
+ E1000_WRITE_FLUSH(hw);
+
+ return status;
+}
+
+/**
+ * e1000_get_i2c_ack - Polls for I2C ACK
+ * @hw: pointer to hardware structure
+ *
+ * Clocks in/out one bit via I2C data/clock
+ **/
+static s32 e1000_get_i2c_ack(struct e1000_hw *hw)
+{
+ s32 status = E1000_SUCCESS;
+ u32 i = 0;
+ u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
+ u32 timeout = 10;
+ bool ack = TRUE;
+
+ DEBUGFUNC("e1000_get_i2c_ack");
+
+ e1000_raise_i2c_clk(hw, &i2cctl);
+
+ /* Minimum high period of clock is 4us */
+ usec_delay(E1000_I2C_T_HIGH);
+
+ /* Wait until SCL returns high */
+ for (i = 0; i < timeout; i++) {
+ usec_delay(1);
+ i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
+ if (i2cctl & E1000_I2C_CLK_IN)
+ break;
+ }
+ if (!(i2cctl & E1000_I2C_CLK_IN))
+ return E1000_ERR_I2C;
+
+ ack = e1000_get_i2c_data(&i2cctl);
+ if (ack) {
+ DEBUGOUT("I2C ack was not received.\n");
+ status = E1000_ERR_I2C;
+ }
+
+ e1000_lower_i2c_clk(hw, &i2cctl);
+
+ /* Minimum low period of clock is 4.7 us */
+ usec_delay(E1000_I2C_T_LOW);
+
+ return status;
+}
+
+/**
+ * e1000_clock_in_i2c_bit - Clocks in one bit via I2C data/clock
+ * @hw: pointer to hardware structure
+ * @data: read data value
+ *
+ * Clocks in one bit via I2C data/clock
+ **/
+static s32 e1000_clock_in_i2c_bit(struct e1000_hw *hw, bool *data)
+{
+ u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
+
+ DEBUGFUNC("e1000_clock_in_i2c_bit");
+
+ e1000_raise_i2c_clk(hw, &i2cctl);
+
+ /* Minimum high period of clock is 4us */
+ usec_delay(E1000_I2C_T_HIGH);
+
+ i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
+ *data = e1000_get_i2c_data(&i2cctl);
+
+ e1000_lower_i2c_clk(hw, &i2cctl);
+
+ /* Minimum low period of clock is 4.7 us */
+ usec_delay(E1000_I2C_T_LOW);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_clock_out_i2c_bit - Clocks in/out one bit via I2C data/clock
+ * @hw: pointer to hardware structure
+ * @data: data value to write
+ *
+ * Clocks out one bit via I2C data/clock
+ **/
+static s32 e1000_clock_out_i2c_bit(struct e1000_hw *hw, bool data)
+{
+ s32 status;
+ u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
+
+ DEBUGFUNC("e1000_clock_out_i2c_bit");
+
+ status = e1000_set_i2c_data(hw, &i2cctl, data);
+ if (status == E1000_SUCCESS) {
+ e1000_raise_i2c_clk(hw, &i2cctl);
+
+ /* Minimum high period of clock is 4us */
+ usec_delay(E1000_I2C_T_HIGH);
+
+ e1000_lower_i2c_clk(hw, &i2cctl);
+
+ /* Minimum low period of clock is 4.7 us.
+ * This also takes care of the data hold time.
+ */
+ usec_delay(E1000_I2C_T_LOW);
+ } else {
+ status = E1000_ERR_I2C;
+ DEBUGOUT1("I2C data was not set to %X\n", data);
+ }
+
+ return status;
+}
+/**
+ * e1000_raise_i2c_clk - Raises the I2C SCL clock
+ * @hw: pointer to hardware structure
+ * @i2cctl: Current value of I2CCTL register
+ *
+ * Raises the I2C clock line '0'->'1'
+ **/
+static void e1000_raise_i2c_clk(struct e1000_hw *hw, u32 *i2cctl)
+{
+ DEBUGFUNC("e1000_raise_i2c_clk");
+
+ *i2cctl |= E1000_I2C_CLK_OUT;
+ *i2cctl &= ~E1000_I2C_CLK_OE_N;
+ E1000_WRITE_REG(hw, E1000_I2CPARAMS, *i2cctl);
+ E1000_WRITE_FLUSH(hw);
+
+ /* SCL rise time (1000ns) */
+ usec_delay(E1000_I2C_T_RISE);
+}
+
+/**
+ * e1000_lower_i2c_clk - Lowers the I2C SCL clock
+ * @hw: pointer to hardware structure
+ * @i2cctl: Current value of I2CCTL register
+ *
+ * Lowers the I2C clock line '1'->'0'
+ **/
+static void e1000_lower_i2c_clk(struct e1000_hw *hw, u32 *i2cctl)
+{
+
+ DEBUGFUNC("e1000_lower_i2c_clk");
+
+ *i2cctl &= ~E1000_I2C_CLK_OUT;
+ *i2cctl &= ~E1000_I2C_CLK_OE_N;
+ E1000_WRITE_REG(hw, E1000_I2CPARAMS, *i2cctl);
+ E1000_WRITE_FLUSH(hw);
+
+ /* SCL fall time (300ns) */
+ usec_delay(E1000_I2C_T_FALL);
+}
+
+/**
+ * e1000_set_i2c_data - Sets the I2C data bit
+ * @hw: pointer to hardware structure
+ * @i2cctl: Current value of I2CCTL register
+ * @data: I2C data value (0 or 1) to set
+ *
+ * Sets the I2C data bit
+ **/
+static s32 e1000_set_i2c_data(struct e1000_hw *hw, u32 *i2cctl, bool data)
+{
+ s32 status = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_set_i2c_data");
+
+ if (data)
+ *i2cctl |= E1000_I2C_DATA_OUT;
+ else
+ *i2cctl &= ~E1000_I2C_DATA_OUT;
+
+ *i2cctl &= ~E1000_I2C_DATA_OE_N;
+ *i2cctl |= E1000_I2C_CLK_OE_N;
+ E1000_WRITE_REG(hw, E1000_I2CPARAMS, *i2cctl);
+ E1000_WRITE_FLUSH(hw);
+
+ /* Data rise/fall (1000ns/300ns) and set-up time (250ns) */
+ usec_delay(E1000_I2C_T_RISE + E1000_I2C_T_FALL + E1000_I2C_T_SU_DATA);
+
+ *i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
+ if (data != e1000_get_i2c_data(i2cctl)) {
+ status = E1000_ERR_I2C;
+ DEBUGOUT1("Error - I2C data was not set to %X.\n", data);
+ }
+
+ return status;
+}
+
+/**
+ * e1000_get_i2c_data - Reads the I2C SDA data bit
+ * @hw: pointer to hardware structure
+ * @i2cctl: Current value of I2CCTL register
+ *
+ * Returns the I2C data bit value
+ **/
+static bool e1000_get_i2c_data(u32 *i2cctl)
+{
+ bool data;
+
+ DEBUGFUNC("e1000_get_i2c_data");
+
+ if (*i2cctl & E1000_I2C_DATA_IN)
+ data = 1;
+ else
+ data = 0;
+
+ return data;
+}
+
+/**
+ * e1000_i2c_bus_clear - Clears the I2C bus
+ * @hw: pointer to hardware structure
+ *
+ * Clears the I2C bus by sending nine clock pulses.
+ * Used when data line is stuck low.
+ **/
+void e1000_i2c_bus_clear(struct e1000_hw *hw)
+{
+ u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
+ u32 i;
+
+ DEBUGFUNC("e1000_i2c_bus_clear");
+
+ e1000_i2c_start(hw);
+
+ e1000_set_i2c_data(hw, &i2cctl, 1);
+
+ for (i = 0; i < 9; i++) {
+ e1000_raise_i2c_clk(hw, &i2cctl);
+
+ /* Min high period of clock is 4us */
+ usec_delay(E1000_I2C_T_HIGH);
+
+ e1000_lower_i2c_clk(hw, &i2cctl);
+
+ /* Min low period of clock is 4.7us*/
+ usec_delay(E1000_I2C_T_LOW);
+ }
+
+ e1000_i2c_start(hw);
+
+ /* Put the i2c bus back to default state */
+ e1000_i2c_stop(hw);
+}
+
+
diff --git a/freebsd/sys/dev/e1000/e1000_82575.h b/freebsd/sys/dev/e1000/e1000_82575.h
index eb05262d..c6bbe186 100644
--- a/freebsd/sys/dev/e1000/e1000_82575.h
+++ b/freebsd/sys/dev/e1000/e1000_82575.h
@@ -1,6 +1,6 @@
/******************************************************************************
- Copyright (c) 2001-2010, Intel Corporation
+ Copyright (c) 2001-2013, Intel Corporation
All rights reserved.
Redistribution and use in source and binary forms, with or without
@@ -35,10 +35,10 @@
#ifndef _E1000_82575_H_
#define _E1000_82575_H_
-#define ID_LED_DEFAULT_82575_SERDES ((ID_LED_DEF1_DEF2 << 12) | \
- (ID_LED_DEF1_DEF2 << 8) | \
- (ID_LED_DEF1_DEF2 << 4) | \
- (ID_LED_OFF1_ON2))
+#define ID_LED_DEFAULT_82575_SERDES ((ID_LED_DEF1_DEF2 << 12) | \
+ (ID_LED_DEF1_DEF2 << 8) | \
+ (ID_LED_DEF1_DEF2 << 4) | \
+ (ID_LED_OFF1_ON2))
/*
* Receive Address Register Count
* Number of high/low register pairs in the RAR. The RAR (Receive Address
@@ -49,12 +49,13 @@
* For 82576, there are an additional set of RARs that begin at an offset
* separate from the first set of RARs.
*/
-#define E1000_RAR_ENTRIES_82575 16
-#define E1000_RAR_ENTRIES_82576 24
-#define E1000_RAR_ENTRIES_82580 24
-#define E1000_SW_SYNCH_MB 0x00000100
-#define E1000_STAT_DEV_RST_SET 0x00100000
-#define E1000_CTRL_DEV_RST 0x20000000
+#define E1000_RAR_ENTRIES_82575 16
+#define E1000_RAR_ENTRIES_82576 24
+#define E1000_RAR_ENTRIES_82580 24
+#define E1000_RAR_ENTRIES_I350 32
+#define E1000_SW_SYNCH_MB 0x00000100
+#define E1000_STAT_DEV_RST_SET 0x00100000
+#define E1000_CTRL_DEV_RST 0x20000000
#ifdef E1000_BIT_FIELDS
struct e1000_adv_data_desc {
@@ -62,137 +63,138 @@ struct e1000_adv_data_desc {
union {
u32 data;
struct {
- u32 datalen :16; /* Data buffer length */
- u32 rsvd :4;
- u32 dtyp :4; /* Descriptor type */
- u32 dcmd :8; /* Descriptor command */
+ u32 datalen:16; /* Data buffer length */
+ u32 rsvd:4;
+ u32 dtyp:4; /* Descriptor type */
+ u32 dcmd:8; /* Descriptor command */
} config;
} lower;
union {
u32 data;
struct {
- u32 status :4; /* Descriptor status */
- u32 idx :4;
- u32 popts :6; /* Packet Options */
- u32 paylen :18; /* Payload length */
+ u32 status:4; /* Descriptor status */
+ u32 idx:4;
+ u32 popts:6; /* Packet Options */
+ u32 paylen:18; /* Payload length */
} options;
} upper;
};
-#define E1000_TXD_DTYP_ADV_C 0x2 /* Advanced Context Descriptor */
-#define E1000_TXD_DTYP_ADV_D 0x3 /* Advanced Data Descriptor */
-#define E1000_ADV_TXD_CMD_DEXT 0x20 /* Descriptor extension (0 = legacy) */
-#define E1000_ADV_TUCMD_IPV4 0x2 /* IP Packet Type: 1=IPv4 */
-#define E1000_ADV_TUCMD_IPV6 0x0 /* IP Packet Type: 0=IPv6 */
-#define E1000_ADV_TUCMD_L4T_UDP 0x0 /* L4 Packet TYPE of UDP */
-#define E1000_ADV_TUCMD_L4T_TCP 0x4 /* L4 Packet TYPE of TCP */
-#define E1000_ADV_TUCMD_MKRREQ 0x10 /* Indicates markers are required */
-#define E1000_ADV_DCMD_EOP 0x1 /* End of Packet */
-#define E1000_ADV_DCMD_IFCS 0x2 /* Insert FCS (Ethernet CRC) */
-#define E1000_ADV_DCMD_RS 0x8 /* Report Status */
-#define E1000_ADV_DCMD_VLE 0x40 /* Add VLAN tag */
-#define E1000_ADV_DCMD_TSE 0x80 /* TCP Seg enable */
+#define E1000_TXD_DTYP_ADV_C 0x2 /* Advanced Context Descriptor */
+#define E1000_TXD_DTYP_ADV_D 0x3 /* Advanced Data Descriptor */
+#define E1000_ADV_TXD_CMD_DEXT 0x20 /* Descriptor extension (0 = legacy) */
+#define E1000_ADV_TUCMD_IPV4 0x2 /* IP Packet Type: 1=IPv4 */
+#define E1000_ADV_TUCMD_IPV6 0x0 /* IP Packet Type: 0=IPv6 */
+#define E1000_ADV_TUCMD_L4T_UDP 0x0 /* L4 Packet TYPE of UDP */
+#define E1000_ADV_TUCMD_L4T_TCP 0x4 /* L4 Packet TYPE of TCP */
+#define E1000_ADV_TUCMD_MKRREQ 0x10 /* Indicates markers are required */
+#define E1000_ADV_DCMD_EOP 0x1 /* End of Packet */
+#define E1000_ADV_DCMD_IFCS 0x2 /* Insert FCS (Ethernet CRC) */
+#define E1000_ADV_DCMD_RS 0x8 /* Report Status */
+#define E1000_ADV_DCMD_VLE 0x40 /* Add VLAN tag */
+#define E1000_ADV_DCMD_TSE 0x80 /* TCP Seg enable */
/* Extended Device Control */
-#define E1000_CTRL_EXT_NSICR 0x00000001 /* Disable Intr Clear all on read */
+#define E1000_CTRL_EXT_NSICR 0x00000001 /* Disable Intr Clear all on read */
struct e1000_adv_context_desc {
union {
u32 ip_config;
struct {
- u32 iplen :9;
- u32 maclen :7;
- u32 vlan_tag :16;
+ u32 iplen:9;
+ u32 maclen:7;
+ u32 vlan_tag:16;
} fields;
} ip_setup;
u32 seq_num;
union {
u64 l4_config;
struct {
- u32 mkrloc :9;
- u32 tucmd :11;
- u32 dtyp :4;
- u32 adv :8;
- u32 rsvd :4;
- u32 idx :4;
- u32 l4len :8;
- u32 mss :16;
+ u32 mkrloc:9;
+ u32 tucmd:11;
+ u32 dtyp:4;
+ u32 adv:8;
+ u32 rsvd:4;
+ u32 idx:4;
+ u32 l4len:8;
+ u32 mss:16;
} fields;
} l4_setup;
};
#endif
/* SRRCTL bit definitions */
-#define E1000_SRRCTL_BSIZEPKT_SHIFT 10 /* Shift _right_ */
-#define E1000_SRRCTL_BSIZEHDRSIZE_MASK 0x00000F00
-#define E1000_SRRCTL_BSIZEHDRSIZE_SHIFT 2 /* Shift _left_ */
-#define E1000_SRRCTL_DESCTYPE_LEGACY 0x00000000
-#define E1000_SRRCTL_DESCTYPE_ADV_ONEBUF 0x02000000
-#define E1000_SRRCTL_DESCTYPE_HDR_SPLIT 0x04000000
-#define E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS 0x0A000000
-#define E1000_SRRCTL_DESCTYPE_HDR_REPLICATION 0x06000000
+#define E1000_SRRCTL_BSIZEPKT_SHIFT 10 /* Shift _right_ */
+#define E1000_SRRCTL_BSIZEHDRSIZE_MASK 0x00000F00
+#define E1000_SRRCTL_BSIZEHDRSIZE_SHIFT 2 /* Shift _left_ */
+#define E1000_SRRCTL_DESCTYPE_LEGACY 0x00000000
+#define E1000_SRRCTL_DESCTYPE_ADV_ONEBUF 0x02000000
+#define E1000_SRRCTL_DESCTYPE_HDR_SPLIT 0x04000000
+#define E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS 0x0A000000
+#define E1000_SRRCTL_DESCTYPE_HDR_REPLICATION 0x06000000
#define E1000_SRRCTL_DESCTYPE_HDR_REPLICATION_LARGE_PKT 0x08000000
-#define E1000_SRRCTL_DESCTYPE_MASK 0x0E000000
-#define E1000_SRRCTL_TIMESTAMP 0x40000000
-#define E1000_SRRCTL_DROP_EN 0x80000000
-
-#define E1000_SRRCTL_BSIZEPKT_MASK 0x0000007F
-#define E1000_SRRCTL_BSIZEHDR_MASK 0x00003F00
-
-#define E1000_TX_HEAD_WB_ENABLE 0x1
-#define E1000_TX_SEQNUM_WB_ENABLE 0x2
-
-#define E1000_MRQC_ENABLE_RSS_4Q 0x00000002
-#define E1000_MRQC_ENABLE_VMDQ 0x00000003
-#define E1000_MRQC_ENABLE_VMDQ_RSS_2Q 0x00000005
-#define E1000_MRQC_RSS_FIELD_IPV4_UDP 0x00400000
-#define E1000_MRQC_RSS_FIELD_IPV6_UDP 0x00800000
-#define E1000_MRQC_RSS_FIELD_IPV6_UDP_EX 0x01000000
-#define E1000_MRQC_ENABLE_RSS_8Q 0x00000002
-
-#define E1000_VMRCTL_MIRROR_PORT_SHIFT 8
-#define E1000_VMRCTL_MIRROR_DSTPORT_MASK (7 << E1000_VMRCTL_MIRROR_PORT_SHIFT)
-#define E1000_VMRCTL_POOL_MIRROR_ENABLE (1 << 0)
-#define E1000_VMRCTL_UPLINK_MIRROR_ENABLE (1 << 1)
-#define E1000_VMRCTL_DOWNLINK_MIRROR_ENABLE (1 << 2)
+#define E1000_SRRCTL_DESCTYPE_MASK 0x0E000000
+#define E1000_SRRCTL_TIMESTAMP 0x40000000
+#define E1000_SRRCTL_DROP_EN 0x80000000
+
+#define E1000_SRRCTL_BSIZEPKT_MASK 0x0000007F
+#define E1000_SRRCTL_BSIZEHDR_MASK 0x00003F00
+
+#define E1000_TX_HEAD_WB_ENABLE 0x1
+#define E1000_TX_SEQNUM_WB_ENABLE 0x2
+
+#define E1000_MRQC_ENABLE_RSS_4Q 0x00000002
+#define E1000_MRQC_ENABLE_VMDQ 0x00000003
+#define E1000_MRQC_ENABLE_VMDQ_RSS_2Q 0x00000005
+#define E1000_MRQC_RSS_FIELD_IPV4_UDP 0x00400000
+#define E1000_MRQC_RSS_FIELD_IPV6_UDP 0x00800000
+#define E1000_MRQC_RSS_FIELD_IPV6_UDP_EX 0x01000000
+#define E1000_MRQC_ENABLE_RSS_8Q 0x00000002
+
+#define E1000_VMRCTL_MIRROR_PORT_SHIFT 8
+#define E1000_VMRCTL_MIRROR_DSTPORT_MASK (7 << \
+ E1000_VMRCTL_MIRROR_PORT_SHIFT)
+#define E1000_VMRCTL_POOL_MIRROR_ENABLE (1 << 0)
+#define E1000_VMRCTL_UPLINK_MIRROR_ENABLE (1 << 1)
+#define E1000_VMRCTL_DOWNLINK_MIRROR_ENABLE (1 << 2)
#define E1000_EICR_TX_QUEUE ( \
- E1000_EICR_TX_QUEUE0 | \
- E1000_EICR_TX_QUEUE1 | \
- E1000_EICR_TX_QUEUE2 | \
- E1000_EICR_TX_QUEUE3)
+ E1000_EICR_TX_QUEUE0 | \
+ E1000_EICR_TX_QUEUE1 | \
+ E1000_EICR_TX_QUEUE2 | \
+ E1000_EICR_TX_QUEUE3)
#define E1000_EICR_RX_QUEUE ( \
- E1000_EICR_RX_QUEUE0 | \
- E1000_EICR_RX_QUEUE1 | \
- E1000_EICR_RX_QUEUE2 | \
- E1000_EICR_RX_QUEUE3)
+ E1000_EICR_RX_QUEUE0 | \
+ E1000_EICR_RX_QUEUE1 | \
+ E1000_EICR_RX_QUEUE2 | \
+ E1000_EICR_RX_QUEUE3)
-#define E1000_EIMS_RX_QUEUE E1000_EICR_RX_QUEUE
-#define E1000_EIMS_TX_QUEUE E1000_EICR_TX_QUEUE
+#define E1000_EIMS_RX_QUEUE E1000_EICR_RX_QUEUE
+#define E1000_EIMS_TX_QUEUE E1000_EICR_TX_QUEUE
#define EIMS_ENABLE_MASK ( \
- E1000_EIMS_RX_QUEUE | \
- E1000_EIMS_TX_QUEUE | \
- E1000_EIMS_TCP_TIMER | \
- E1000_EIMS_OTHER)
+ E1000_EIMS_RX_QUEUE | \
+ E1000_EIMS_TX_QUEUE | \
+ E1000_EIMS_TCP_TIMER | \
+ E1000_EIMS_OTHER)
/* Immediate Interrupt Rx (A.K.A. Low Latency Interrupt) */
-#define E1000_IMIR_PORT_IM_EN 0x00010000 /* TCP port enable */
-#define E1000_IMIR_PORT_BP 0x00020000 /* TCP port check bypass */
-#define E1000_IMIREXT_SIZE_BP 0x00001000 /* Packet size bypass */
-#define E1000_IMIREXT_CTRL_URG 0x00002000 /* Check URG bit in header */
-#define E1000_IMIREXT_CTRL_ACK 0x00004000 /* Check ACK bit in header */
-#define E1000_IMIREXT_CTRL_PSH 0x00008000 /* Check PSH bit in header */
-#define E1000_IMIREXT_CTRL_RST 0x00010000 /* Check RST bit in header */
-#define E1000_IMIREXT_CTRL_SYN 0x00020000 /* Check SYN bit in header */
-#define E1000_IMIREXT_CTRL_FIN 0x00040000 /* Check FIN bit in header */
-#define E1000_IMIREXT_CTRL_BP 0x00080000 /* Bypass check of ctrl bits */
+#define E1000_IMIR_PORT_IM_EN 0x00010000 /* TCP port enable */
+#define E1000_IMIR_PORT_BP 0x00020000 /* TCP port check bypass */
+#define E1000_IMIREXT_SIZE_BP 0x00001000 /* Packet size bypass */
+#define E1000_IMIREXT_CTRL_URG 0x00002000 /* Check URG bit in header */
+#define E1000_IMIREXT_CTRL_ACK 0x00004000 /* Check ACK bit in header */
+#define E1000_IMIREXT_CTRL_PSH 0x00008000 /* Check PSH bit in header */
+#define E1000_IMIREXT_CTRL_RST 0x00010000 /* Check RST bit in header */
+#define E1000_IMIREXT_CTRL_SYN 0x00020000 /* Check SYN bit in header */
+#define E1000_IMIREXT_CTRL_FIN 0x00040000 /* Check FIN bit in header */
+#define E1000_IMIREXT_CTRL_BP 0x00080000 /* Bypass check of ctrl bits */
/* Receive Descriptor - Advanced */
union e1000_adv_rx_desc {
struct {
- __le64 pkt_addr; /* Packet buffer address */
- __le64 hdr_addr; /* Header buffer address */
+ __le64 pkt_addr; /* Packet buffer address */
+ __le64 hdr_addr; /* Header buffer address */
} read;
struct {
struct {
@@ -200,79 +202,79 @@ union e1000_adv_rx_desc {
__le32 data;
struct {
__le16 pkt_info; /*RSS type, Pkt type*/
- __le16 hdr_info; /* Split Header,
- * header buffer len*/
+ /* Split Header, header buffer len */
+ __le16 hdr_info;
} hs_rss;
} lo_dword;
union {
- __le32 rss; /* RSS Hash */
+ __le32 rss; /* RSS Hash */
struct {
- __le16 ip_id; /* IP id */
- __le16 csum; /* Packet Checksum */
+ __le16 ip_id; /* IP id */
+ __le16 csum; /* Packet Checksum */
} csum_ip;
} hi_dword;
} lower;
struct {
- __le32 status_error; /* ext status/error */
- __le16 length; /* Packet length */
- __le16 vlan; /* VLAN tag */
+ __le32 status_error; /* ext status/error */
+ __le16 length; /* Packet length */
+ __le16 vlan; /* VLAN tag */
} upper;
} wb; /* writeback */
};
-#define E1000_RXDADV_RSSTYPE_MASK 0x0000000F
-#define E1000_RXDADV_RSSTYPE_SHIFT 12
-#define E1000_RXDADV_HDRBUFLEN_MASK 0x7FE0
-#define E1000_RXDADV_HDRBUFLEN_SHIFT 5
-#define E1000_RXDADV_SPLITHEADER_EN 0x00001000
-#define E1000_RXDADV_SPH 0x8000
-#define E1000_RXDADV_STAT_TS 0x10000 /* Pkt was time stamped */
-#define E1000_RXDADV_STAT_TSIP 0x08000 /* timestamp in packet */
-#define E1000_RXDADV_ERR_HBO 0x00800000
+#define E1000_RXDADV_RSSTYPE_MASK 0x0000000F
+#define E1000_RXDADV_RSSTYPE_SHIFT 12
+#define E1000_RXDADV_HDRBUFLEN_MASK 0x7FE0
+#define E1000_RXDADV_HDRBUFLEN_SHIFT 5
+#define E1000_RXDADV_SPLITHEADER_EN 0x00001000
+#define E1000_RXDADV_SPH 0x8000
+#define E1000_RXDADV_STAT_TS 0x10000 /* Pkt was time stamped */
+#define E1000_RXDADV_STAT_TSIP 0x08000 /* timestamp in packet */
+#define E1000_RXDADV_ERR_HBO 0x00800000
/* RSS Hash results */
-#define E1000_RXDADV_RSSTYPE_NONE 0x00000000
-#define E1000_RXDADV_RSSTYPE_IPV4_TCP 0x00000001
-#define E1000_RXDADV_RSSTYPE_IPV4 0x00000002
-#define E1000_RXDADV_RSSTYPE_IPV6_TCP 0x00000003
-#define E1000_RXDADV_RSSTYPE_IPV6_EX 0x00000004
-#define E1000_RXDADV_RSSTYPE_IPV6 0x00000005
+#define E1000_RXDADV_RSSTYPE_NONE 0x00000000
+#define E1000_RXDADV_RSSTYPE_IPV4_TCP 0x00000001
+#define E1000_RXDADV_RSSTYPE_IPV4 0x00000002
+#define E1000_RXDADV_RSSTYPE_IPV6_TCP 0x00000003
+#define E1000_RXDADV_RSSTYPE_IPV6_EX 0x00000004
+#define E1000_RXDADV_RSSTYPE_IPV6 0x00000005
#define E1000_RXDADV_RSSTYPE_IPV6_TCP_EX 0x00000006
-#define E1000_RXDADV_RSSTYPE_IPV4_UDP 0x00000007
-#define E1000_RXDADV_RSSTYPE_IPV6_UDP 0x00000008
+#define E1000_RXDADV_RSSTYPE_IPV4_UDP 0x00000007
+#define E1000_RXDADV_RSSTYPE_IPV6_UDP 0x00000008
#define E1000_RXDADV_RSSTYPE_IPV6_UDP_EX 0x00000009
/* RSS Packet Types as indicated in the receive descriptor */
-#define E1000_RXDADV_PKTTYPE_NONE 0x00000000
-#define E1000_RXDADV_PKTTYPE_IPV4 0x00000010 /* IPV4 hdr present */
-#define E1000_RXDADV_PKTTYPE_IPV4_EX 0x00000020 /* IPV4 hdr + extensions */
-#define E1000_RXDADV_PKTTYPE_IPV6 0x00000040 /* IPV6 hdr present */
-#define E1000_RXDADV_PKTTYPE_IPV6_EX 0x00000080 /* IPV6 hdr + extensions */
-#define E1000_RXDADV_PKTTYPE_TCP 0x00000100 /* TCP hdr present */
-#define E1000_RXDADV_PKTTYPE_UDP 0x00000200 /* UDP hdr present */
-#define E1000_RXDADV_PKTTYPE_SCTP 0x00000400 /* SCTP hdr present */
-#define E1000_RXDADV_PKTTYPE_NFS 0x00000800 /* NFS hdr present */
-
-#define E1000_RXDADV_PKTTYPE_IPSEC_ESP 0x00001000 /* IPSec ESP */
-#define E1000_RXDADV_PKTTYPE_IPSEC_AH 0x00002000 /* IPSec AH */
-#define E1000_RXDADV_PKTTYPE_LINKSEC 0x00004000 /* LinkSec Encap */
-#define E1000_RXDADV_PKTTYPE_ETQF 0x00008000 /* PKTTYPE is ETQF index */
-#define E1000_RXDADV_PKTTYPE_ETQF_MASK 0x00000070 /* ETQF has 8 indices */
-#define E1000_RXDADV_PKTTYPE_ETQF_SHIFT 4 /* Right-shift 4 bits */
+#define E1000_RXDADV_PKTTYPE_NONE 0x00000000
+#define E1000_RXDADV_PKTTYPE_IPV4 0x00000010 /* IPV4 hdr present */
+#define E1000_RXDADV_PKTTYPE_IPV4_EX 0x00000020 /* IPV4 hdr + extensions */
+#define E1000_RXDADV_PKTTYPE_IPV6 0x00000040 /* IPV6 hdr present */
+#define E1000_RXDADV_PKTTYPE_IPV6_EX 0x00000080 /* IPV6 hdr + extensions */
+#define E1000_RXDADV_PKTTYPE_TCP 0x00000100 /* TCP hdr present */
+#define E1000_RXDADV_PKTTYPE_UDP 0x00000200 /* UDP hdr present */
+#define E1000_RXDADV_PKTTYPE_SCTP 0x00000400 /* SCTP hdr present */
+#define E1000_RXDADV_PKTTYPE_NFS 0x00000800 /* NFS hdr present */
+
+#define E1000_RXDADV_PKTTYPE_IPSEC_ESP 0x00001000 /* IPSec ESP */
+#define E1000_RXDADV_PKTTYPE_IPSEC_AH 0x00002000 /* IPSec AH */
+#define E1000_RXDADV_PKTTYPE_LINKSEC 0x00004000 /* LinkSec Encap */
+#define E1000_RXDADV_PKTTYPE_ETQF 0x00008000 /* PKTTYPE is ETQF index */
+#define E1000_RXDADV_PKTTYPE_ETQF_MASK 0x00000070 /* ETQF has 8 indices */
+#define E1000_RXDADV_PKTTYPE_ETQF_SHIFT 4 /* Right-shift 4 bits */
/* LinkSec results */
/* Security Processing bit Indication */
-#define E1000_RXDADV_LNKSEC_STATUS_SECP 0x00020000
-#define E1000_RXDADV_LNKSEC_ERROR_BIT_MASK 0x18000000
-#define E1000_RXDADV_LNKSEC_ERROR_NO_SA_MATCH 0x08000000
-#define E1000_RXDADV_LNKSEC_ERROR_REPLAY_ERROR 0x10000000
-#define E1000_RXDADV_LNKSEC_ERROR_BAD_SIG 0x18000000
-
-#define E1000_RXDADV_IPSEC_STATUS_SECP 0x00020000
-#define E1000_RXDADV_IPSEC_ERROR_BIT_MASK 0x18000000
-#define E1000_RXDADV_IPSEC_ERROR_INVALID_PROTOCOL 0x08000000
-#define E1000_RXDADV_IPSEC_ERROR_INVALID_LENGTH 0x10000000
-#define E1000_RXDADV_IPSEC_ERROR_AUTHENTICATION_FAILED 0x18000000
+#define E1000_RXDADV_LNKSEC_STATUS_SECP 0x00020000
+#define E1000_RXDADV_LNKSEC_ERROR_BIT_MASK 0x18000000
+#define E1000_RXDADV_LNKSEC_ERROR_NO_SA_MATCH 0x08000000
+#define E1000_RXDADV_LNKSEC_ERROR_REPLAY_ERROR 0x10000000
+#define E1000_RXDADV_LNKSEC_ERROR_BAD_SIG 0x18000000
+
+#define E1000_RXDADV_IPSEC_STATUS_SECP 0x00020000
+#define E1000_RXDADV_IPSEC_ERROR_BIT_MASK 0x18000000
+#define E1000_RXDADV_IPSEC_ERROR_INVALID_PROTOCOL 0x08000000
+#define E1000_RXDADV_IPSEC_ERROR_INVALID_LENGTH 0x10000000
+#define E1000_RXDADV_IPSEC_ERROR_AUTHENTICATION_FAILED 0x18000000
/* Transmit Descriptor - Advanced */
union e1000_adv_tx_desc {
@@ -289,25 +291,26 @@ union e1000_adv_tx_desc {
};
/* Adv Transmit Descriptor Config Masks */
-#define E1000_ADVTXD_DTYP_CTXT 0x00200000 /* Advanced Context Descriptor */
-#define E1000_ADVTXD_DTYP_DATA 0x00300000 /* Advanced Data Descriptor */
-#define E1000_ADVTXD_DCMD_EOP 0x01000000 /* End of Packet */
-#define E1000_ADVTXD_DCMD_IFCS 0x02000000 /* Insert FCS (Ethernet CRC) */
-#define E1000_ADVTXD_DCMD_RS 0x08000000 /* Report Status */
-#define E1000_ADVTXD_DCMD_DDTYP_ISCSI 0x10000000 /* DDP hdr type or iSCSI */
-#define E1000_ADVTXD_DCMD_DEXT 0x20000000 /* Descriptor extension (1=Adv) */
-#define E1000_ADVTXD_DCMD_VLE 0x40000000 /* VLAN pkt enable */
-#define E1000_ADVTXD_DCMD_TSE 0x80000000 /* TCP Seg enable */
-#define E1000_ADVTXD_MAC_LINKSEC 0x00040000 /* Apply LinkSec on packet */
-#define E1000_ADVTXD_MAC_TSTAMP 0x00080000 /* IEEE1588 Timestamp packet */
-#define E1000_ADVTXD_STAT_SN_CRC 0x00000002 /* NXTSEQ/SEED present in WB */
-#define E1000_ADVTXD_IDX_SHIFT 4 /* Adv desc Index shift */
-#define E1000_ADVTXD_POPTS_ISCO_1ST 0x00000000 /* 1st TSO of iSCSI PDU */
-#define E1000_ADVTXD_POPTS_ISCO_MDL 0x00000800 /* Middle TSO of iSCSI PDU */
-#define E1000_ADVTXD_POPTS_ISCO_LAST 0x00001000 /* Last TSO of iSCSI PDU */
-#define E1000_ADVTXD_POPTS_ISCO_FULL 0x00001800 /* 1st&Last TSO-full iSCSI PDU*/
-#define E1000_ADVTXD_POPTS_IPSEC 0x00000400 /* IPSec offload request */
-#define E1000_ADVTXD_PAYLEN_SHIFT 14 /* Adv desc PAYLEN shift */
+#define E1000_ADVTXD_DTYP_CTXT 0x00200000 /* Advanced Context Descriptor */
+#define E1000_ADVTXD_DTYP_DATA 0x00300000 /* Advanced Data Descriptor */
+#define E1000_ADVTXD_DCMD_EOP 0x01000000 /* End of Packet */
+#define E1000_ADVTXD_DCMD_IFCS 0x02000000 /* Insert FCS (Ethernet CRC) */
+#define E1000_ADVTXD_DCMD_RS 0x08000000 /* Report Status */
+#define E1000_ADVTXD_DCMD_DDTYP_ISCSI 0x10000000 /* DDP hdr type or iSCSI */
+#define E1000_ADVTXD_DCMD_DEXT 0x20000000 /* Descriptor extension (1=Adv) */
+#define E1000_ADVTXD_DCMD_VLE 0x40000000 /* VLAN pkt enable */
+#define E1000_ADVTXD_DCMD_TSE 0x80000000 /* TCP Seg enable */
+#define E1000_ADVTXD_MAC_LINKSEC 0x00040000 /* Apply LinkSec on pkt */
+#define E1000_ADVTXD_MAC_TSTAMP 0x00080000 /* IEEE1588 Timestamp pkt */
+#define E1000_ADVTXD_STAT_SN_CRC 0x00000002 /* NXTSEQ/SEED prsnt in WB */
+#define E1000_ADVTXD_IDX_SHIFT 4 /* Adv desc Index shift */
+#define E1000_ADVTXD_POPTS_ISCO_1ST 0x00000000 /* 1st TSO of iSCSI PDU */
+#define E1000_ADVTXD_POPTS_ISCO_MDL 0x00000800 /* Middle TSO of iSCSI PDU */
+#define E1000_ADVTXD_POPTS_ISCO_LAST 0x00001000 /* Last TSO of iSCSI PDU */
+/* 1st & Last TSO-full iSCSI PDU*/
+#define E1000_ADVTXD_POPTS_ISCO_FULL 0x00001800
+#define E1000_ADVTXD_POPTS_IPSEC 0x00000400 /* IPSec offload request */
+#define E1000_ADVTXD_PAYLEN_SHIFT 14 /* Adv desc PAYLEN shift */
/* Context descriptors */
struct e1000_adv_tx_context_desc {
@@ -317,65 +320,69 @@ struct e1000_adv_tx_context_desc {
__le32 mss_l4len_idx;
};
-#define E1000_ADVTXD_MACLEN_SHIFT 9 /* Adv ctxt desc mac len shift */
-#define E1000_ADVTXD_VLAN_SHIFT 16 /* Adv ctxt vlan tag shift */
-#define E1000_ADVTXD_TUCMD_IPV4 0x00000400 /* IP Packet Type: 1=IPv4 */
-#define E1000_ADVTXD_TUCMD_IPV6 0x00000000 /* IP Packet Type: 0=IPv6 */
-#define E1000_ADVTXD_TUCMD_L4T_UDP 0x00000000 /* L4 Packet TYPE of UDP */
-#define E1000_ADVTXD_TUCMD_L4T_TCP 0x00000800 /* L4 Packet TYPE of TCP */
-#define E1000_ADVTXD_TUCMD_L4T_SCTP 0x00001000 /* L4 Packet TYPE of SCTP */
-#define E1000_ADVTXD_TUCMD_IPSEC_TYPE_ESP 0x00002000 /* IPSec Type ESP */
+#define E1000_ADVTXD_MACLEN_SHIFT 9 /* Adv ctxt desc mac len shift */
+#define E1000_ADVTXD_VLAN_SHIFT 16 /* Adv ctxt vlan tag shift */
+#define E1000_ADVTXD_TUCMD_IPV4 0x00000400 /* IP Packet Type: 1=IPv4 */
+#define E1000_ADVTXD_TUCMD_IPV6 0x00000000 /* IP Packet Type: 0=IPv6 */
+#define E1000_ADVTXD_TUCMD_L4T_UDP 0x00000000 /* L4 Packet TYPE of UDP */
+#define E1000_ADVTXD_TUCMD_L4T_TCP 0x00000800 /* L4 Packet TYPE of TCP */
+#define E1000_ADVTXD_TUCMD_L4T_SCTP 0x00001000 /* L4 Packet TYPE of SCTP */
+#define E1000_ADVTXD_TUCMD_IPSEC_TYPE_ESP 0x00002000 /* IPSec Type ESP */
/* IPSec Encrypt Enable for ESP */
-#define E1000_ADVTXD_TUCMD_IPSEC_ENCRYPT_EN 0x00004000
-#define E1000_ADVTXD_TUCMD_MKRREQ 0x00002000 /* Req requires Markers and CRC */
-#define E1000_ADVTXD_L4LEN_SHIFT 8 /* Adv ctxt L4LEN shift */
-#define E1000_ADVTXD_MSS_SHIFT 16 /* Adv ctxt MSS shift */
+#define E1000_ADVTXD_TUCMD_IPSEC_ENCRYPT_EN 0x00004000
+/* Req requires Markers and CRC */
+#define E1000_ADVTXD_TUCMD_MKRREQ 0x00002000
+#define E1000_ADVTXD_L4LEN_SHIFT 8 /* Adv ctxt L4LEN shift */
+#define E1000_ADVTXD_MSS_SHIFT 16 /* Adv ctxt MSS shift */
/* Adv ctxt IPSec SA IDX mask */
-#define E1000_ADVTXD_IPSEC_SA_INDEX_MASK 0x000000FF
+#define E1000_ADVTXD_IPSEC_SA_INDEX_MASK 0x000000FF
/* Adv ctxt IPSec ESP len mask */
-#define E1000_ADVTXD_IPSEC_ESP_LEN_MASK 0x000000FF
+#define E1000_ADVTXD_IPSEC_ESP_LEN_MASK 0x000000FF
/* Additional Transmit Descriptor Control definitions */
-#define E1000_TXDCTL_QUEUE_ENABLE 0x02000000 /* Enable specific Tx Queue */
-#define E1000_TXDCTL_SWFLSH 0x04000000 /* Tx Desc. write-back flushing */
+#define E1000_TXDCTL_QUEUE_ENABLE 0x02000000 /* Ena specific Tx Queue */
+#define E1000_TXDCTL_SWFLSH 0x04000000 /* Tx Desc. wbk flushing */
/* Tx Queue Arbitration Priority 0=low, 1=high */
-#define E1000_TXDCTL_PRIORITY 0x08000000
+#define E1000_TXDCTL_PRIORITY 0x08000000
/* Additional Receive Descriptor Control definitions */
-#define E1000_RXDCTL_QUEUE_ENABLE 0x02000000 /* Enable specific Rx Queue */
-#define E1000_RXDCTL_SWFLSH 0x04000000 /* Rx Desc. write-back flushing */
+#define E1000_RXDCTL_QUEUE_ENABLE 0x02000000 /* Ena specific Rx Queue */
+#define E1000_RXDCTL_SWFLSH 0x04000000 /* Rx Desc. wbk flushing */
/* Direct Cache Access (DCA) definitions */
-#define E1000_DCA_CTRL_DCA_ENABLE 0x00000000 /* DCA Enable */
-#define E1000_DCA_CTRL_DCA_DISABLE 0x00000001 /* DCA Disable */
+#define E1000_DCA_CTRL_DCA_ENABLE 0x00000000 /* DCA Enable */
+#define E1000_DCA_CTRL_DCA_DISABLE 0x00000001 /* DCA Disable */
-#define E1000_DCA_CTRL_DCA_MODE_CB1 0x00 /* DCA Mode CB1 */
-#define E1000_DCA_CTRL_DCA_MODE_CB2 0x02 /* DCA Mode CB2 */
+#define E1000_DCA_CTRL_DCA_MODE_CB1 0x00 /* DCA Mode CB1 */
+#define E1000_DCA_CTRL_DCA_MODE_CB2 0x02 /* DCA Mode CB2 */
-#define E1000_DCA_RXCTRL_CPUID_MASK 0x0000001F /* Rx CPUID Mask */
-#define E1000_DCA_RXCTRL_DESC_DCA_EN (1 << 5) /* DCA Rx Desc enable */
-#define E1000_DCA_RXCTRL_HEAD_DCA_EN (1 << 6) /* DCA Rx Desc header enable */
-#define E1000_DCA_RXCTRL_DATA_DCA_EN (1 << 7) /* DCA Rx Desc payload enable */
+#define E1000_DCA_RXCTRL_CPUID_MASK 0x0000001F /* Rx CPUID Mask */
+#define E1000_DCA_RXCTRL_DESC_DCA_EN (1 << 5) /* DCA Rx Desc enable */
+#define E1000_DCA_RXCTRL_HEAD_DCA_EN (1 << 6) /* DCA Rx Desc header ena */
+#define E1000_DCA_RXCTRL_DATA_DCA_EN (1 << 7) /* DCA Rx Desc payload ena */
+#define E1000_DCA_RXCTRL_DESC_RRO_EN (1 << 9) /* DCA Rx Desc Relax Order */
-#define E1000_DCA_TXCTRL_CPUID_MASK 0x0000001F /* Tx CPUID Mask */
-#define E1000_DCA_TXCTRL_DESC_DCA_EN (1 << 5) /* DCA Tx Desc enable */
-#define E1000_DCA_TXCTRL_TX_WB_RO_EN (1 << 11) /* Tx Desc writeback RO bit */
+#define E1000_DCA_TXCTRL_CPUID_MASK 0x0000001F /* Tx CPUID Mask */
+#define E1000_DCA_TXCTRL_DESC_DCA_EN (1 << 5) /* DCA Tx Desc enable */
+#define E1000_DCA_TXCTRL_DESC_RRO_EN (1 << 9) /* Tx rd Desc Relax Order */
+#define E1000_DCA_TXCTRL_TX_WB_RO_EN (1 << 11) /* Tx Desc writeback RO bit */
+#define E1000_DCA_TXCTRL_DATA_RRO_EN (1 << 13) /* Tx rd data Relax Order */
-#define E1000_DCA_TXCTRL_CPUID_MASK_82576 0xFF000000 /* Tx CPUID Mask */
-#define E1000_DCA_RXCTRL_CPUID_MASK_82576 0xFF000000 /* Rx CPUID Mask */
-#define E1000_DCA_TXCTRL_CPUID_SHIFT_82576 24 /* Tx CPUID */
-#define E1000_DCA_RXCTRL_CPUID_SHIFT_82576 24 /* Rx CPUID */
+#define E1000_DCA_TXCTRL_CPUID_MASK_82576 0xFF000000 /* Tx CPUID Mask */
+#define E1000_DCA_RXCTRL_CPUID_MASK_82576 0xFF000000 /* Rx CPUID Mask */
+#define E1000_DCA_TXCTRL_CPUID_SHIFT_82576 24 /* Tx CPUID */
+#define E1000_DCA_RXCTRL_CPUID_SHIFT_82576 24 /* Rx CPUID */
/* Additional interrupt register bit definitions */
-#define E1000_ICR_LSECPNS 0x00000020 /* PN threshold - server */
-#define E1000_IMS_LSECPNS E1000_ICR_LSECPNS /* PN threshold - server */
-#define E1000_ICS_LSECPNS E1000_ICR_LSECPNS /* PN threshold - server */
+#define E1000_ICR_LSECPNS 0x00000020 /* PN threshold - server */
+#define E1000_IMS_LSECPNS E1000_ICR_LSECPNS /* PN threshold - server */
+#define E1000_ICS_LSECPNS E1000_ICR_LSECPNS /* PN threshold - server */
/* ETQF register bit definitions */
-#define E1000_ETQF_FILTER_ENABLE (1 << 26)
-#define E1000_ETQF_IMM_INT (1 << 29)
-#define E1000_ETQF_1588 (1 << 30)
-#define E1000_ETQF_QUEUE_ENABLE (1 << 31)
+#define E1000_ETQF_FILTER_ENABLE (1 << 26)
+#define E1000_ETQF_IMM_INT (1 << 29)
+#define E1000_ETQF_1588 (1 << 30)
+#define E1000_ETQF_QUEUE_ENABLE (1 << 31)
/*
* ETQF filter list: one static filter per filter consumer. This is
* to avoid filter collisions later. Add new filters
@@ -384,82 +391,94 @@ struct e1000_adv_tx_context_desc {
* Current filters:
* EAPOL 802.1x (0x888e): Filter 0
*/
-#define E1000_ETQF_FILTER_EAPOL 0
-
-#define E1000_FTQF_VF_BP 0x00008000
-#define E1000_FTQF_1588_TIME_STAMP 0x08000000
-#define E1000_FTQF_MASK 0xF0000000
-#define E1000_FTQF_MASK_PROTO_BP 0x10000000
-#define E1000_FTQF_MASK_SOURCE_ADDR_BP 0x20000000
-#define E1000_FTQF_MASK_DEST_ADDR_BP 0x40000000
-#define E1000_FTQF_MASK_SOURCE_PORT_BP 0x80000000
-
-#define E1000_NVM_APME_82575 0x0400
-#define MAX_NUM_VFS 8
-
-#define E1000_DTXSWC_MAC_SPOOF_MASK 0x000000FF /* Per VF MAC spoof control */
-#define E1000_DTXSWC_VLAN_SPOOF_MASK 0x0000FF00 /* Per VF VLAN spoof control */
-#define E1000_DTXSWC_LLE_MASK 0x00FF0000 /* Per VF Local LB enables */
-#define E1000_DTXSWC_VLAN_SPOOF_SHIFT 8
-#define E1000_DTXSWC_LLE_SHIFT 16
-#define E1000_DTXSWC_VMDQ_LOOPBACK_EN (1 << 31) /* global VF LB enable */
+#define E1000_ETQF_FILTER_EAPOL 0
+
+#define E1000_FTQF_VF_BP 0x00008000
+#define E1000_FTQF_1588_TIME_STAMP 0x08000000
+#define E1000_FTQF_MASK 0xF0000000
+#define E1000_FTQF_MASK_PROTO_BP 0x10000000
+#define E1000_FTQF_MASK_SOURCE_ADDR_BP 0x20000000
+#define E1000_FTQF_MASK_DEST_ADDR_BP 0x40000000
+#define E1000_FTQF_MASK_SOURCE_PORT_BP 0x80000000
+
+#define E1000_NVM_APME_82575 0x0400
+#define MAX_NUM_VFS 7
+
+#define E1000_DTXSWC_MAC_SPOOF_MASK 0x000000FF /* Per VF MAC spoof cntrl */
+#define E1000_DTXSWC_VLAN_SPOOF_MASK 0x0000FF00 /* Per VF VLAN spoof cntrl */
+#define E1000_DTXSWC_LLE_MASK 0x00FF0000 /* Per VF Local LB enables */
+#define E1000_DTXSWC_VLAN_SPOOF_SHIFT 8
+#define E1000_DTXSWC_LLE_SHIFT 16
+#define E1000_DTXSWC_VMDQ_LOOPBACK_EN (1 << 31) /* global VF LB enable */
/* Easy defines for setting default pool, would normally be left a zero */
-#define E1000_VT_CTL_DEFAULT_POOL_SHIFT 7
-#define E1000_VT_CTL_DEFAULT_POOL_MASK (0x7 << E1000_VT_CTL_DEFAULT_POOL_SHIFT)
+#define E1000_VT_CTL_DEFAULT_POOL_SHIFT 7
+#define E1000_VT_CTL_DEFAULT_POOL_MASK (0x7 << E1000_VT_CTL_DEFAULT_POOL_SHIFT)
/* Other useful VMD_CTL register defines */
-#define E1000_VT_CTL_IGNORE_MAC (1 << 28)
-#define E1000_VT_CTL_DISABLE_DEF_POOL (1 << 29)
-#define E1000_VT_CTL_VM_REPL_EN (1 << 30)
+#define E1000_VT_CTL_IGNORE_MAC (1 << 28)
+#define E1000_VT_CTL_DISABLE_DEF_POOL (1 << 29)
+#define E1000_VT_CTL_VM_REPL_EN (1 << 30)
/* Per VM Offload register setup */
-#define E1000_VMOLR_RLPML_MASK 0x00003FFF /* Long Packet Maximum Length mask */
-#define E1000_VMOLR_LPE 0x00010000 /* Accept Long packet */
-#define E1000_VMOLR_RSSE 0x00020000 /* Enable RSS */
-#define E1000_VMOLR_AUPE 0x01000000 /* Accept untagged packets */
-#define E1000_VMOLR_ROMPE 0x02000000 /* Accept overflow multicast */
-#define E1000_VMOLR_ROPE 0x04000000 /* Accept overflow unicast */
-#define E1000_VMOLR_BAM 0x08000000 /* Accept Broadcast packets */
-#define E1000_VMOLR_MPME 0x10000000 /* Multicast promiscuous mode */
-#define E1000_VMOLR_STRVLAN 0x40000000 /* Vlan stripping enable */
-#define E1000_VMOLR_STRCRC 0x80000000 /* CRC stripping enable */
-
-
-#define E1000_VLVF_ARRAY_SIZE 32
-#define E1000_VLVF_VLANID_MASK 0x00000FFF
-#define E1000_VLVF_POOLSEL_SHIFT 12
-#define E1000_VLVF_POOLSEL_MASK (0xFF << E1000_VLVF_POOLSEL_SHIFT)
-#define E1000_VLVF_LVLAN 0x00100000
-#define E1000_VLVF_VLANID_ENABLE 0x80000000
-
-#define E1000_VMVIR_VLANA_DEFAULT 0x40000000 /* Always use default VLAN */
-#define E1000_VMVIR_VLANA_NEVER 0x80000000 /* Never insert VLAN tag */
-
-#define E1000_VF_INIT_TIMEOUT 200 /* Number of retries to clear RSTI */
-
-#define E1000_IOVCTL 0x05BBC
-#define E1000_IOVCTL_REUSE_VFQ 0x00000001
-
-#define E1000_RPLOLR_STRVLAN 0x40000000
-#define E1000_RPLOLR_STRCRC 0x80000000
-
-#define E1000_TCTL_EXT_COLD 0x000FFC00
-#define E1000_TCTL_EXT_COLD_SHIFT 10
-
-#define E1000_DTXCTL_8023LL 0x0004
-#define E1000_DTXCTL_VLAN_ADDED 0x0008
-#define E1000_DTXCTL_OOS_ENABLE 0x0010
-#define E1000_DTXCTL_MDP_EN 0x0020
-#define E1000_DTXCTL_SPOOF_INT 0x0040
-
-#define ALL_QUEUES 0xFFFF
-
-/* RX packet buffer size defines */
-#define E1000_RXPBS_SIZE_MASK_82576 0x0000007F
+#define E1000_VMOLR_RLPML_MASK 0x00003FFF /* Long Packet Maximum Length mask */
+#define E1000_VMOLR_LPE 0x00010000 /* Accept Long packet */
+#define E1000_VMOLR_RSSE 0x00020000 /* Enable RSS */
+#define E1000_VMOLR_AUPE 0x01000000 /* Accept untagged packets */
+#define E1000_VMOLR_ROMPE 0x02000000 /* Accept overflow multicast */
+#define E1000_VMOLR_ROPE 0x04000000 /* Accept overflow unicast */
+#define E1000_VMOLR_BAM 0x08000000 /* Accept Broadcast packets */
+#define E1000_VMOLR_MPME 0x10000000 /* Multicast promiscuous mode */
+#define E1000_VMOLR_STRVLAN 0x40000000 /* Vlan stripping enable */
+#define E1000_VMOLR_STRCRC 0x80000000 /* CRC stripping enable */
+
+#define E1000_VMOLR_VPE 0x00800000 /* VLAN promiscuous enable */
+#define E1000_VMOLR_UPE 0x20000000 /* Unicast promisuous enable */
+#define E1000_DVMOLR_HIDVLAN 0x20000000 /* Vlan hiding enable */
+#define E1000_DVMOLR_STRVLAN 0x40000000 /* Vlan stripping enable */
+#define E1000_DVMOLR_STRCRC 0x80000000 /* CRC stripping enable */
+
+#define E1000_PBRWAC_WALPB 0x00000007 /* Wrap around event on LAN Rx PB */
+#define E1000_PBRWAC_PBE 0x00000008 /* Rx packet buffer empty */
+
+#define E1000_VLVF_ARRAY_SIZE 32
+#define E1000_VLVF_VLANID_MASK 0x00000FFF
+#define E1000_VLVF_POOLSEL_SHIFT 12
+#define E1000_VLVF_POOLSEL_MASK (0xFF << E1000_VLVF_POOLSEL_SHIFT)
+#define E1000_VLVF_LVLAN 0x00100000
+#define E1000_VLVF_VLANID_ENABLE 0x80000000
+
+#define E1000_VMVIR_VLANA_DEFAULT 0x40000000 /* Always use default VLAN */
+#define E1000_VMVIR_VLANA_NEVER 0x80000000 /* Never insert VLAN tag */
+
+#define E1000_VF_INIT_TIMEOUT 200 /* Number of retries to clear RSTI */
+
+#define E1000_IOVCTL 0x05BBC
+#define E1000_IOVCTL_REUSE_VFQ 0x00000001
+
+#define E1000_RPLOLR_STRVLAN 0x40000000
+#define E1000_RPLOLR_STRCRC 0x80000000
+
+#define E1000_TCTL_EXT_COLD 0x000FFC00
+#define E1000_TCTL_EXT_COLD_SHIFT 10
+
+#define E1000_DTXCTL_8023LL 0x0004
+#define E1000_DTXCTL_VLAN_ADDED 0x0008
+#define E1000_DTXCTL_OOS_ENABLE 0x0010
+#define E1000_DTXCTL_MDP_EN 0x0020
+#define E1000_DTXCTL_SPOOF_INT 0x0040
+
+#define E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT (1 << 14)
+
+#define ALL_QUEUES 0xFFFF
+
+/* Rx packet buffer size defines */
+#define E1000_RXPBS_SIZE_MASK_82576 0x0000007F
void e1000_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable);
void e1000_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf);
void e1000_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable);
+s32 e1000_init_nvm_params_82575(struct e1000_hw *hw);
+
enum e1000_promisc_type {
e1000_promisc_disabled = 0, /* all promisc modes disabled */
e1000_promisc_unicast = 1, /* unicast promiscuous enabled */
@@ -472,4 +491,24 @@ void e1000_vfta_set_vf(struct e1000_hw *, u16, bool);
void e1000_rlpml_set_vf(struct e1000_hw *, u16);
s32 e1000_promisc_set_vf(struct e1000_hw *, enum e1000_promisc_type type);
u16 e1000_rxpbs_adjust_82580(u32 data);
+s32 e1000_set_eee_i350(struct e1000_hw *);
+
+/* I2C SDA and SCL timing parameters for standard mode */
+#define E1000_I2C_T_HD_STA 4
+#define E1000_I2C_T_LOW 5
+#define E1000_I2C_T_HIGH 4
+#define E1000_I2C_T_SU_STA 5
+#define E1000_I2C_T_HD_DATA 5
+#define E1000_I2C_T_SU_DATA 1
+#define E1000_I2C_T_RISE 1
+#define E1000_I2C_T_FALL 1
+#define E1000_I2C_T_SU_STO 4
+#define E1000_I2C_T_BUF 5
+
+s32 e1000_set_i2c_bb(struct e1000_hw *hw);
+s32 e1000_read_i2c_byte_generic(struct e1000_hw *hw, u8 byte_offset,
+ u8 dev_addr, u8 *data);
+s32 e1000_write_i2c_byte_generic(struct e1000_hw *hw, u8 byte_offset,
+ u8 dev_addr, u8 data);
+void e1000_i2c_bus_clear(struct e1000_hw *hw);
#endif /* _E1000_82575_H_ */
diff --git a/freebsd/sys/dev/e1000/e1000_api.c b/freebsd/sys/dev/e1000/e1000_api.c
index 17b4c817..5fec9941 100644
--- a/freebsd/sys/dev/e1000/e1000_api.c
+++ b/freebsd/sys/dev/e1000/e1000_api.c
@@ -2,7 +2,7 @@
/******************************************************************************
- Copyright (c) 2001-2010, Intel Corporation
+ Copyright (c) 2001-2013, Intel Corporation
All rights reserved.
Redistribution and use in source and binary forms, with or without
@@ -283,7 +283,6 @@ s32 e1000_set_mac_type(struct e1000_hw *hw)
case E1000_DEV_ID_ICH10_D_BM_LM:
case E1000_DEV_ID_ICH10_D_BM_LF:
case E1000_DEV_ID_ICH10_D_BM_V:
- case E1000_DEV_ID_ICH10_HANKSVILLE:
mac->type = e1000_ich10lan;
break;
case E1000_DEV_ID_PCH_D_HV_DM:
@@ -296,10 +295,15 @@ s32 e1000_set_mac_type(struct e1000_hw *hw)
case E1000_DEV_ID_PCH2_LV_V:
mac->type = e1000_pch2lan;
break;
+ case E1000_DEV_ID_PCH_LPT_I217_LM:
+ case E1000_DEV_ID_PCH_LPT_I217_V:
+ case E1000_DEV_ID_PCH_LPTLP_I218_LM:
+ case E1000_DEV_ID_PCH_LPTLP_I218_V:
+ mac->type = e1000_pch_lpt;
+ break;
case E1000_DEV_ID_82575EB_COPPER:
case E1000_DEV_ID_82575EB_FIBER_SERDES:
case E1000_DEV_ID_82575GB_QUAD_COPPER:
- case E1000_DEV_ID_82575GB_QUAD_COPPER_PM:
mac->type = e1000_82575;
break;
case E1000_DEV_ID_82576:
@@ -320,11 +324,37 @@ s32 e1000_set_mac_type(struct e1000_hw *hw)
case E1000_DEV_ID_82580_QUAD_FIBER:
case E1000_DEV_ID_DH89XXCC_SGMII:
case E1000_DEV_ID_DH89XXCC_SERDES:
+ case E1000_DEV_ID_DH89XXCC_BACKPLANE:
+ case E1000_DEV_ID_DH89XXCC_SFP:
mac->type = e1000_82580;
break;
+ case E1000_DEV_ID_I350_COPPER:
+ case E1000_DEV_ID_I350_FIBER:
+ case E1000_DEV_ID_I350_SERDES:
+ case E1000_DEV_ID_I350_SGMII:
+ case E1000_DEV_ID_I350_DA4:
+ mac->type = e1000_i350;
+ break;
+ case E1000_DEV_ID_I210_COPPER:
+ case E1000_DEV_ID_I210_COPPER_OEM1:
+ case E1000_DEV_ID_I210_COPPER_IT:
+ case E1000_DEV_ID_I210_FIBER:
+ case E1000_DEV_ID_I210_SERDES:
+ case E1000_DEV_ID_I210_SGMII:
+ mac->type = e1000_i210;
+ break;
+ case E1000_DEV_ID_I211_COPPER:
+ mac->type = e1000_i211;
+ break;
case E1000_DEV_ID_82576_VF:
+ case E1000_DEV_ID_82576_VF_HV:
mac->type = e1000_vfadapt;
break;
+ case E1000_DEV_ID_I350_VF:
+ case E1000_DEV_ID_I350_VF_HV:
+ mac->type = e1000_vfadapt_i350;
+ break;
+
default:
/* Should never have loaded on this device */
ret_val = -E1000_ERR_MAC_INIT;
@@ -338,10 +368,10 @@ s32 e1000_set_mac_type(struct e1000_hw *hw)
* e1000_setup_init_funcs - Initializes function pointers
* @hw: pointer to the HW structure
* @init_device: TRUE will initialize the rest of the function pointers
- * getting the device ready for use. FALSE will only set
- * MAC type and the function pointers for the other init
- * functions. Passing FALSE will not generate any hardware
- * reads or writes.
+ * getting the device ready for use. FALSE will only set
+ * MAC type and the function pointers for the other init
+ * functions. Passing FALSE will not generate any hardware
+ * reads or writes.
*
* This function must be called by a driver in order to use the rest
* of the 'shared' code files. Called by drivers only.
@@ -413,16 +443,25 @@ s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device)
case e1000_ich10lan:
case e1000_pchlan:
case e1000_pch2lan:
+ case e1000_pch_lpt:
e1000_init_function_pointers_ich8lan(hw);
break;
case e1000_82575:
case e1000_82576:
case e1000_82580:
+ case e1000_i350:
e1000_init_function_pointers_82575(hw);
break;
+ case e1000_i210:
+ case e1000_i211:
+ e1000_init_function_pointers_i210(hw);
+ break;
case e1000_vfadapt:
e1000_init_function_pointers_vf(hw);
break;
+ case e1000_vfadapt_i350:
+ e1000_init_function_pointers_vf(hw);
+ break;
default:
DEBUGOUT("Hardware not supported\n");
ret_val = -E1000_ERR_CONFIG;
@@ -509,11 +548,11 @@ void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
* The caller must have a packed mc_addr_list of multicast addresses.
**/
void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
- u32 mc_addr_count)
+ u32 mc_addr_count)
{
if (hw->mac.ops.update_mc_addr_list)
hw->mac.ops.update_mc_addr_list(hw, mc_addr_list,
- mc_addr_count);
+ mc_addr_count);
}
/**
@@ -847,14 +886,10 @@ bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw)
* It also does alignment considerations to do the writes in most efficient
* way. Also fills up the sum of the buffer in *buffer parameter.
**/
-s32 e1000_mng_host_if_write(struct e1000_hw * hw, u8 *buffer, u16 length,
- u16 offset, u8 *sum)
+s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length,
+ u16 offset, u8 *sum)
{
- if (hw->mac.ops.mng_host_if_write)
- return hw->mac.ops.mng_host_if_write(hw, buffer, length,
- offset, sum);
-
- return E1000_NOT_IMPLEMENTED;
+ return e1000_mng_host_if_write_generic(hw, buffer, length, offset, sum);
}
/**
@@ -865,12 +900,9 @@ s32 e1000_mng_host_if_write(struct e1000_hw * hw, u8 *buffer, u16 length,
* Writes the command header after does the checksum calculation.
**/
s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
- struct e1000_host_mng_command_header *hdr)
+ struct e1000_host_mng_command_header *hdr)
{
- if (hw->mac.ops.mng_write_cmd_header)
- return hw->mac.ops.mng_write_cmd_header(hw, hdr);
-
- return E1000_NOT_IMPLEMENTED;
+ return e1000_mng_write_cmd_header_generic(hw, hdr);
}
/**
@@ -883,25 +915,22 @@ s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
* and also checks whether the previous command is completed. It busy waits
* in case of previous command is not completed.
**/
-s32 e1000_mng_enable_host_if(struct e1000_hw * hw)
+s32 e1000_mng_enable_host_if(struct e1000_hw *hw)
{
- if (hw->mac.ops.mng_enable_host_if)
- return hw->mac.ops.mng_enable_host_if(hw);
-
- return E1000_NOT_IMPLEMENTED;
+ return e1000_mng_enable_host_if_generic(hw);
}
/**
- * e1000_wait_autoneg - Waits for autonegotiation completion
+ * e1000_set_obff_timer - Set Optimized Buffer Flush/Fill timer
* @hw: pointer to the HW structure
+ * @itr: u32 indicating itr value
*
- * Waits for autoneg to complete. Currently no func pointer exists and all
- * implementations are handled in the generic version of this function.
+ * Set the OBFF timer based on the given interrupt rate.
**/
-s32 e1000_wait_autoneg(struct e1000_hw *hw)
+s32 e1000_set_obff_timer(struct e1000_hw *hw, u32 itr)
{
- if (hw->mac.ops.wait_autoneg)
- return hw->mac.ops.wait_autoneg(hw);
+ if (hw->mac.ops.set_obff_timer)
+ return hw->mac.ops.set_obff_timer(hw, itr);
return E1000_SUCCESS;
}
@@ -1179,21 +1208,6 @@ s32 e1000_read_pba_length(struct e1000_hw *hw, u32 *pba_num_size)
}
/**
- * e1000_read_pba_num - Read device part number
- * @hw: pointer to the HW structure
- * @pba_num: pointer to device part number
- *
- * Reads the product board assembly (PBA) number from the EEPROM and stores
- * the value in pba_num.
- * Currently no func pointer exists and all implementations are handled in the
- * generic version of this function.
- **/
-s32 e1000_read_pba_num(struct e1000_hw *hw, u32 *pba_num)
-{
- return e1000_read_pba_num_generic(hw, pba_num);
-}
-
-/**
* e1000_validate_nvm_checksum - Verifies NVM (EEPROM) checksum
* @hw: pointer to the HW structure
*
@@ -1283,7 +1297,7 @@ s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
* This is a function pointer entry point called by drivers.
**/
s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset,
- u8 data)
+ u8 data)
{
return e1000_write_8bit_ctrl_reg_generic(hw, reg, offset, data);
}
diff --git a/freebsd/sys/dev/e1000/e1000_api.h b/freebsd/sys/dev/e1000/e1000_api.h
index c28fc2de..3dc5a3fd 100644
--- a/freebsd/sys/dev/e1000/e1000_api.h
+++ b/freebsd/sys/dev/e1000/e1000_api.h
@@ -1,6 +1,6 @@
/******************************************************************************
- Copyright (c) 2001-2010, Intel Corporation
+ Copyright (c) 2001-2013, Intel Corporation
All rights reserved.
Redistribution and use in source and binary forms, with or without
@@ -41,91 +41,89 @@
#include <rtems/bsd/local/e1000_hw.h>
#endif
-extern void e1000_init_function_pointers_82542(struct e1000_hw *hw);
-extern void e1000_init_function_pointers_82543(struct e1000_hw *hw);
-extern void e1000_init_function_pointers_82540(struct e1000_hw *hw);
-extern void e1000_init_function_pointers_82571(struct e1000_hw *hw);
-extern void e1000_init_function_pointers_82541(struct e1000_hw *hw);
-extern void e1000_init_function_pointers_80003es2lan(struct e1000_hw *hw);
-extern void e1000_init_function_pointers_ich8lan(struct e1000_hw *hw);
-extern void e1000_init_function_pointers_82575(struct e1000_hw *hw);
-extern void e1000_rx_fifo_flush_82575(struct e1000_hw *hw);
-extern void e1000_init_function_pointers_vf(struct e1000_hw *hw);
-extern void e1000_power_up_fiber_serdes_link(struct e1000_hw *hw);
-extern void e1000_shutdown_fiber_serdes_link(struct e1000_hw *hw);
+extern void e1000_init_function_pointers_82542(struct e1000_hw *hw);
+extern void e1000_init_function_pointers_82543(struct e1000_hw *hw);
+extern void e1000_init_function_pointers_82540(struct e1000_hw *hw);
+extern void e1000_init_function_pointers_82571(struct e1000_hw *hw);
+extern void e1000_init_function_pointers_82541(struct e1000_hw *hw);
+extern void e1000_init_function_pointers_80003es2lan(struct e1000_hw *hw);
+extern void e1000_init_function_pointers_ich8lan(struct e1000_hw *hw);
+extern void e1000_init_function_pointers_82575(struct e1000_hw *hw);
+extern void e1000_rx_fifo_flush_82575(struct e1000_hw *hw);
+extern void e1000_init_function_pointers_vf(struct e1000_hw *hw);
+extern void e1000_power_up_fiber_serdes_link(struct e1000_hw *hw);
+extern void e1000_shutdown_fiber_serdes_link(struct e1000_hw *hw);
+extern void e1000_init_function_pointers_i210(struct e1000_hw *hw);
-s32 e1000_set_mac_type(struct e1000_hw *hw);
-s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device);
-s32 e1000_init_mac_params(struct e1000_hw *hw);
-s32 e1000_init_nvm_params(struct e1000_hw *hw);
-s32 e1000_init_phy_params(struct e1000_hw *hw);
-s32 e1000_init_mbx_params(struct e1000_hw *hw);
-s32 e1000_get_bus_info(struct e1000_hw *hw);
+s32 e1000_set_obff_timer(struct e1000_hw *hw, u32 itr);
+s32 e1000_set_mac_type(struct e1000_hw *hw);
+s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device);
+s32 e1000_init_mac_params(struct e1000_hw *hw);
+s32 e1000_init_nvm_params(struct e1000_hw *hw);
+s32 e1000_init_phy_params(struct e1000_hw *hw);
+s32 e1000_init_mbx_params(struct e1000_hw *hw);
+s32 e1000_get_bus_info(struct e1000_hw *hw);
void e1000_clear_vfta(struct e1000_hw *hw);
void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value);
-s32 e1000_force_mac_fc(struct e1000_hw *hw);
-s32 e1000_check_for_link(struct e1000_hw *hw);
-s32 e1000_reset_hw(struct e1000_hw *hw);
-s32 e1000_init_hw(struct e1000_hw *hw);
-s32 e1000_setup_link(struct e1000_hw *hw);
-s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed,
- u16 *duplex);
-s32 e1000_disable_pcie_master(struct e1000_hw *hw);
+s32 e1000_force_mac_fc(struct e1000_hw *hw);
+s32 e1000_check_for_link(struct e1000_hw *hw);
+s32 e1000_reset_hw(struct e1000_hw *hw);
+s32 e1000_init_hw(struct e1000_hw *hw);
+s32 e1000_setup_link(struct e1000_hw *hw);
+s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex);
+s32 e1000_disable_pcie_master(struct e1000_hw *hw);
void e1000_config_collision_dist(struct e1000_hw *hw);
void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index);
-u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr);
-void e1000_update_mc_addr_list(struct e1000_hw *hw,
- u8 *mc_addr_list, u32 mc_addr_count);
-s32 e1000_setup_led(struct e1000_hw *hw);
-s32 e1000_cleanup_led(struct e1000_hw *hw);
-s32 e1000_check_reset_block(struct e1000_hw *hw);
-s32 e1000_blink_led(struct e1000_hw *hw);
-s32 e1000_led_on(struct e1000_hw *hw);
-s32 e1000_led_off(struct e1000_hw *hw);
+u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr);
+void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
+ u32 mc_addr_count);
+s32 e1000_setup_led(struct e1000_hw *hw);
+s32 e1000_cleanup_led(struct e1000_hw *hw);
+s32 e1000_check_reset_block(struct e1000_hw *hw);
+s32 e1000_blink_led(struct e1000_hw *hw);
+s32 e1000_led_on(struct e1000_hw *hw);
+s32 e1000_led_off(struct e1000_hw *hw);
s32 e1000_id_led_init(struct e1000_hw *hw);
void e1000_reset_adaptive(struct e1000_hw *hw);
void e1000_update_adaptive(struct e1000_hw *hw);
-s32 e1000_get_cable_length(struct e1000_hw *hw);
-s32 e1000_validate_mdi_setting(struct e1000_hw *hw);
-s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data);
-s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data);
-s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg,
- u32 offset, u8 data);
-s32 e1000_get_phy_info(struct e1000_hw *hw);
+s32 e1000_get_cable_length(struct e1000_hw *hw);
+s32 e1000_validate_mdi_setting(struct e1000_hw *hw);
+s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data);
+s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data);
+s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset,
+ u8 data);
+s32 e1000_get_phy_info(struct e1000_hw *hw);
void e1000_release_phy(struct e1000_hw *hw);
-s32 e1000_acquire_phy(struct e1000_hw *hw);
-s32 e1000_cfg_on_link_up(struct e1000_hw *hw);
-s32 e1000_phy_hw_reset(struct e1000_hw *hw);
-s32 e1000_phy_commit(struct e1000_hw *hw);
+s32 e1000_acquire_phy(struct e1000_hw *hw);
+s32 e1000_cfg_on_link_up(struct e1000_hw *hw);
+s32 e1000_phy_hw_reset(struct e1000_hw *hw);
+s32 e1000_phy_commit(struct e1000_hw *hw);
void e1000_power_up_phy(struct e1000_hw *hw);
void e1000_power_down_phy(struct e1000_hw *hw);
-s32 e1000_read_mac_addr(struct e1000_hw *hw);
-s32 e1000_read_pba_num(struct e1000_hw *hw, u32 *part_num);
-s32 e1000_read_pba_string(struct e1000_hw *hw, u8 *pba_num,
- u32 pba_num_size);
-s32 e1000_read_pba_length(struct e1000_hw *hw, u32 *pba_num_size);
+s32 e1000_read_mac_addr(struct e1000_hw *hw);
+s32 e1000_read_pba_string(struct e1000_hw *hw, u8 *pba_num, u32 pba_num_size);
+s32 e1000_read_pba_length(struct e1000_hw *hw, u32 *pba_num_size);
void e1000_reload_nvm(struct e1000_hw *hw);
-s32 e1000_update_nvm_checksum(struct e1000_hw *hw);
-s32 e1000_validate_nvm_checksum(struct e1000_hw *hw);
-s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data);
-s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data);
-s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data);
-s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words,
- u16 *data);
-s32 e1000_wait_autoneg(struct e1000_hw *hw);
-s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active);
-s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active);
+s32 e1000_update_nvm_checksum(struct e1000_hw *hw);
+s32 e1000_validate_nvm_checksum(struct e1000_hw *hw);
+s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data);
+s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data);
+s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data);
+s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data);
+s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active);
+s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active);
bool e1000_check_mng_mode(struct e1000_hw *hw);
bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw);
-s32 e1000_mng_enable_host_if(struct e1000_hw *hw);
-s32 e1000_mng_host_if_write(struct e1000_hw *hw,
- u8 *buffer, u16 length, u16 offset, u8 *sum);
-s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
- struct e1000_host_mng_command_header *hdr);
-s32 e1000_mng_write_dhcp_info(struct e1000_hw * hw,
- u8 *buffer, u16 length);
+s32 e1000_mng_enable_host_if(struct e1000_hw *hw);
+s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length,
+ u16 offset, u8 *sum);
+s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
+ struct e1000_host_mng_command_header *hdr);
+s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length);
u32 e1000_translate_register_82542(u32 reg);
+
+
/*
* TBI_ACCEPT macro definition:
*
@@ -157,14 +155,17 @@ u32 e1000_translate_register_82542(u32 reg);
/* The carrier extension symbol, as received by the NIC. */
#define CARRIER_EXTENSION 0x0F
-#define TBI_ACCEPT(a, status, errors, length, last_byte, min_frame_size, max_frame_size) \
- (e1000_tbi_sbp_enabled_82543(a) && \
- (((errors) & E1000_RXD_ERR_FRAME_ERR_MASK) == E1000_RXD_ERR_CE) && \
- ((last_byte) == CARRIER_EXTENSION) && \
- (((status) & E1000_RXD_STAT_VP) ? \
- (((length) > (min_frame_size - VLAN_TAG_SIZE)) && \
- ((length) <= (max_frame_size + 1))) : \
- (((length) > min_frame_size) && \
- ((length) <= (max_frame_size + VLAN_TAG_SIZE + 1)))))
+#define TBI_ACCEPT(a, status, errors, length, last_byte, \
+ min_frame_size, max_frame_size) \
+ (e1000_tbi_sbp_enabled_82543(a) && \
+ (((errors) & E1000_RXD_ERR_FRAME_ERR_MASK) == E1000_RXD_ERR_CE) && \
+ ((last_byte) == CARRIER_EXTENSION) && \
+ (((status) & E1000_RXD_STAT_VP) ? \
+ (((length) > (min_frame_size - VLAN_TAG_SIZE)) && \
+ ((length) <= (max_frame_size + 1))) : \
+ (((length) > min_frame_size) && \
+ ((length) <= (max_frame_size + VLAN_TAG_SIZE + 1)))))
-#endif
+#define E1000_MAX(a, b) ((a) > (b) ? (a) : (b))
+#define E1000_DIVIDE_ROUND_UP(a, b) (((a) + (b) - 1) / (b)) /* ceil(a/b) */
+#endif /* _E1000_API_H_ */
diff --git a/freebsd/sys/dev/e1000/e1000_defines.h b/freebsd/sys/dev/e1000/e1000_defines.h
index 5d09ad92..48c04b01 100644
--- a/freebsd/sys/dev/e1000/e1000_defines.h
+++ b/freebsd/sys/dev/e1000/e1000_defines.h
@@ -1,6 +1,6 @@
/******************************************************************************
- Copyright (c) 2001-2010, Intel Corporation
+ Copyright (c) 2001-2013, Intel Corporation
All rights reserved.
Redistribution and use in source and binary forms, with or without
@@ -41,820 +41,546 @@
/* Definitions for power management and wakeup registers */
/* Wake Up Control */
-#define E1000_WUC_APME 0x00000001 /* APM Enable */
-#define E1000_WUC_PME_EN 0x00000002 /* PME Enable */
-#define E1000_WUC_PME_STATUS 0x00000004 /* PME Status */
-#define E1000_WUC_APMPME 0x00000008 /* Assert PME on APM Wakeup */
-#define E1000_WUC_LSCWE 0x00000010 /* Link Status wake up enable */
-#define E1000_WUC_LSCWO 0x00000020 /* Link Status wake up override */
-#define E1000_WUC_SPM 0x80000000 /* Enable SPM */
-#define E1000_WUC_PHY_WAKE 0x00000100 /* if PHY supports wakeup */
-#define E1000_WUC_FLX6_PHY 0x4000 /* Flexible Filter 6 Enable */
-#define E1000_WUC_FLX7_PHY 0x8000 /* Flexible Filter 7 Enable */
+#define E1000_WUC_APME 0x00000001 /* APM Enable */
+#define E1000_WUC_PME_EN 0x00000002 /* PME Enable */
+#define E1000_WUC_PHY_WAKE 0x00000100 /* if PHY supports wakeup */
/* Wake Up Filter Control */
-#define E1000_WUFC_LNKC 0x00000001 /* Link Status Change Wakeup Enable */
-#define E1000_WUFC_MAG 0x00000002 /* Magic Packet Wakeup Enable */
-#define E1000_WUFC_EX 0x00000004 /* Directed Exact Wakeup Enable */
-#define E1000_WUFC_MC 0x00000008 /* Directed Multicast Wakeup Enable */
-#define E1000_WUFC_BC 0x00000010 /* Broadcast Wakeup Enable */
-#define E1000_WUFC_ARP 0x00000020 /* ARP Request Packet Wakeup Enable */
-#define E1000_WUFC_IPV4 0x00000040 /* Directed IPv4 Packet Wakeup Enable */
-#define E1000_WUFC_IPV6 0x00000080 /* Directed IPv6 Packet Wakeup Enable */
-#define E1000_WUFC_IGNORE_TCO_PHY 0x00000800 /* Ignore WakeOn TCO packets */
-#define E1000_WUFC_FLX0_PHY 0x00001000 /* Flexible Filter 0 Enable */
-#define E1000_WUFC_FLX1_PHY 0x00002000 /* Flexible Filter 1 Enable */
-#define E1000_WUFC_FLX2_PHY 0x00004000 /* Flexible Filter 2 Enable */
-#define E1000_WUFC_FLX3_PHY 0x00008000 /* Flexible Filter 3 Enable */
-#define E1000_WUFC_FLX4_PHY 0x00000200 /* Flexible Filter 4 Enable */
-#define E1000_WUFC_FLX5_PHY 0x00000400 /* Flexible Filter 5 Enable */
-#define E1000_WUFC_IGNORE_TCO 0x00008000 /* Ignore WakeOn TCO packets */
-#define E1000_WUFC_FLX0 0x00010000 /* Flexible Filter 0 Enable */
-#define E1000_WUFC_FLX1 0x00020000 /* Flexible Filter 1 Enable */
-#define E1000_WUFC_FLX2 0x00040000 /* Flexible Filter 2 Enable */
-#define E1000_WUFC_FLX3 0x00080000 /* Flexible Filter 3 Enable */
-#define E1000_WUFC_FLX4 0x00100000 /* Flexible Filter 4 Enable */
-#define E1000_WUFC_FLX5 0x00200000 /* Flexible Filter 5 Enable */
-#define E1000_WUFC_FLX6 0x00400000 /* Flexible Filter 6 Enable */
-#define E1000_WUFC_FLX7 0x00800000 /* Flexible Filter 7 Enable */
-#define E1000_WUFC_ALL_FILTERS_PHY_4 0x0000F0FF /*Mask for all wakeup filters*/
-#define E1000_WUFC_FLX_OFFSET_PHY 12 /* Offset to the Flexible Filters bits */
-#define E1000_WUFC_FLX_FILTERS_PHY_4 0x0000F000 /*Mask for 4 flexible filters*/
-#define E1000_WUFC_ALL_FILTERS_PHY_6 0x0000F6FF /*Mask for 6 wakeup filters */
-#define E1000_WUFC_FLX_FILTERS_PHY_6 0x0000F600 /*Mask for 6 flexible filters*/
-#define E1000_WUFC_ALL_FILTERS 0x000F00FF /* Mask for all wakeup filters */
-#define E1000_WUFC_ALL_FILTERS_6 0x003F00FF /* Mask for all 6 wakeup filters*/
-#define E1000_WUFC_ALL_FILTERS_8 0x00FF00FF /* Mask for all 8 wakeup filters*/
-#define E1000_WUFC_FLX_OFFSET 16 /* Offset to the Flexible Filters bits */
-#define E1000_WUFC_FLX_FILTERS 0x000F0000 /*Mask for the 4 flexible filters */
-#define E1000_WUFC_FLX_FILTERS_6 0x003F0000 /* Mask for 6 flexible filters */
-#define E1000_WUFC_FLX_FILTERS_8 0x00FF0000 /* Mask for 8 flexible filters */
-/*
- * For 82576 to utilize Extended filter masks in addition to
- * existing (filter) masks
- */
-#define E1000_WUFC_EXT_FLX_FILTERS 0x00300000 /* Ext. FLX filter mask */
+#define E1000_WUFC_LNKC 0x00000001 /* Link Status Change Wakeup Enable */
+#define E1000_WUFC_MAG 0x00000002 /* Magic Packet Wakeup Enable */
+#define E1000_WUFC_EX 0x00000004 /* Directed Exact Wakeup Enable */
+#define E1000_WUFC_MC 0x00000008 /* Directed Multicast Wakeup Enable */
+#define E1000_WUFC_BC 0x00000010 /* Broadcast Wakeup Enable */
+#define E1000_WUFC_ARP 0x00000020 /* ARP Request Packet Wakeup Enable */
+#define E1000_WUFC_IPV4 0x00000040 /* Directed IPv4 Packet Wakeup Enable */
+#define E1000_WUFC_FLX0 0x00010000 /* Flexible Filter 0 Enable */
/* Wake Up Status */
-#define E1000_WUS_LNKC E1000_WUFC_LNKC
-#define E1000_WUS_MAG E1000_WUFC_MAG
-#define E1000_WUS_EX E1000_WUFC_EX
-#define E1000_WUS_MC E1000_WUFC_MC
-#define E1000_WUS_BC E1000_WUFC_BC
-#define E1000_WUS_ARP E1000_WUFC_ARP
-#define E1000_WUS_IPV4 E1000_WUFC_IPV4
-#define E1000_WUS_IPV6 E1000_WUFC_IPV6
-#define E1000_WUS_FLX0_PHY E1000_WUFC_FLX0_PHY
-#define E1000_WUS_FLX1_PHY E1000_WUFC_FLX1_PHY
-#define E1000_WUS_FLX2_PHY E1000_WUFC_FLX2_PHY
-#define E1000_WUS_FLX3_PHY E1000_WUFC_FLX3_PHY
-#define E1000_WUS_FLX_FILTERS_PHY_4 E1000_WUFC_FLX_FILTERS_PHY_4
-#define E1000_WUS_FLX0 E1000_WUFC_FLX0
-#define E1000_WUS_FLX1 E1000_WUFC_FLX1
-#define E1000_WUS_FLX2 E1000_WUFC_FLX2
-#define E1000_WUS_FLX3 E1000_WUFC_FLX3
-#define E1000_WUS_FLX4 E1000_WUFC_FLX4
-#define E1000_WUS_FLX5 E1000_WUFC_FLX5
-#define E1000_WUS_FLX6 E1000_WUFC_FLX6
-#define E1000_WUS_FLX7 E1000_WUFC_FLX7
-#define E1000_WUS_FLX4_PHY E1000_WUFC_FLX4_PHY
-#define E1000_WUS_FLX5_PHY E1000_WUFC_FLX5_PHY
-#define E1000_WUS_FLX6_PHY 0x0400
-#define E1000_WUS_FLX7_PHY 0x0800
-#define E1000_WUS_FLX_FILTERS E1000_WUFC_FLX_FILTERS
-#define E1000_WUS_FLX_FILTERS_6 E1000_WUFC_FLX_FILTERS_6
-#define E1000_WUS_FLX_FILTERS_8 E1000_WUFC_FLX_FILTERS_8
-#define E1000_WUS_FLX_FILTERS_PHY_6 E1000_WUFC_FLX_FILTERS_PHY_6
-
-/* Wake Up Packet Length */
-#define E1000_WUPL_LENGTH_MASK 0x0FFF /* Only the lower 12 bits are valid */
-
-/* Four Flexible Filters are supported */
-#define E1000_FLEXIBLE_FILTER_COUNT_MAX 4
-/* Six Flexible Filters are supported */
-#define E1000_FLEXIBLE_FILTER_COUNT_MAX_6 6
-/* Eight Flexible Filters are supported */
-#define E1000_FLEXIBLE_FILTER_COUNT_MAX_8 8
-/* Two Extended Flexible Filters are supported (82576) */
-#define E1000_EXT_FLEXIBLE_FILTER_COUNT_MAX 2
-#define E1000_FHFT_LENGTH_OFFSET 0xFC /* Length byte in FHFT */
-#define E1000_FHFT_LENGTH_MASK 0x0FF /* Length in lower byte */
-
-/* Each Flexible Filter is at most 128 (0x80) bytes in length */
-#define E1000_FLEXIBLE_FILTER_SIZE_MAX 128
-
-#define E1000_FFLT_SIZE E1000_FLEXIBLE_FILTER_COUNT_MAX
-#define E1000_FFLT_SIZE_6 E1000_FLEXIBLE_FILTER_COUNT_MAX_6
-#define E1000_FFLT_SIZE_8 E1000_FLEXIBLE_FILTER_COUNT_MAX_8
-#define E1000_FFMT_SIZE E1000_FLEXIBLE_FILTER_SIZE_MAX
-#define E1000_FFVT_SIZE E1000_FLEXIBLE_FILTER_SIZE_MAX
+#define E1000_WUS_LNKC E1000_WUFC_LNKC
+#define E1000_WUS_MAG E1000_WUFC_MAG
+#define E1000_WUS_EX E1000_WUFC_EX
+#define E1000_WUS_MC E1000_WUFC_MC
+#define E1000_WUS_BC E1000_WUFC_BC
/* Extended Device Control */
-#define E1000_CTRL_EXT_GPI0_EN 0x00000001 /* Maps SDP4 to GPI0 */
-#define E1000_CTRL_EXT_GPI1_EN 0x00000002 /* Maps SDP5 to GPI1 */
-#define E1000_CTRL_EXT_PHYINT_EN E1000_CTRL_EXT_GPI1_EN
-#define E1000_CTRL_EXT_GPI2_EN 0x00000004 /* Maps SDP6 to GPI2 */
-#define E1000_CTRL_EXT_GPI3_EN 0x00000008 /* Maps SDP7 to GPI3 */
-/* Reserved (bits 4,5) in >= 82575 */
-#define E1000_CTRL_EXT_SDP4_DATA 0x00000010 /* Value of SW Definable Pin 4 */
-#define E1000_CTRL_EXT_SDP5_DATA 0x00000020 /* Value of SW Definable Pin 5 */
-#define E1000_CTRL_EXT_PHY_INT E1000_CTRL_EXT_SDP5_DATA
-#define E1000_CTRL_EXT_SDP6_DATA 0x00000040 /* Value of SW Definable Pin 6 */
-#define E1000_CTRL_EXT_SDP3_DATA 0x00000080 /* Value of SW Definable Pin 3 */
+#define E1000_CTRL_EXT_LPCD 0x00000004 /* LCD Power Cycle Done */
+#define E1000_CTRL_EXT_SDP4_DATA 0x00000010 /* SW Definable Pin 4 data */
+#define E1000_CTRL_EXT_SDP6_DATA 0x00000040 /* SW Definable Pin 6 data */
+#define E1000_CTRL_EXT_SDP3_DATA 0x00000080 /* SW Definable Pin 3 data */
/* SDP 4/5 (bits 8,9) are reserved in >= 82575 */
-#define E1000_CTRL_EXT_SDP4_DIR 0x00000100 /* Direction of SDP4 0=in 1=out */
-#define E1000_CTRL_EXT_SDP5_DIR 0x00000200 /* Direction of SDP5 0=in 1=out */
-#define E1000_CTRL_EXT_SDP6_DIR 0x00000400 /* Direction of SDP6 0=in 1=out */
-#define E1000_CTRL_EXT_SDP3_DIR 0x00000800 /* Direction of SDP3 0=in 1=out */
-#define E1000_CTRL_EXT_ASDCHK 0x00001000 /* Initiate an ASD sequence */
-#define E1000_CTRL_EXT_EE_RST 0x00002000 /* Reinitialize from EEPROM */
-#define E1000_CTRL_EXT_IPS 0x00004000 /* Invert Power State */
+#define E1000_CTRL_EXT_SDP4_DIR 0x00000100 /* Direction of SDP4 0=in 1=out */
+#define E1000_CTRL_EXT_SDP6_DIR 0x00000400 /* Direction of SDP6 0=in 1=out */
+#define E1000_CTRL_EXT_SDP3_DIR 0x00000800 /* Direction of SDP3 0=in 1=out */
+#define E1000_CTRL_EXT_FORCE_SMBUS 0x00000800 /* Force SMBus mode */
+#define E1000_CTRL_EXT_EE_RST 0x00002000 /* Reinitialize from EEPROM */
/* Physical Func Reset Done Indication */
-#define E1000_CTRL_EXT_PFRSTD 0x00004000
-#define E1000_CTRL_EXT_SPD_BYPS 0x00008000 /* Speed Select Bypass */
-#define E1000_CTRL_EXT_RO_DIS 0x00020000 /* Relaxed Ordering disable */
-#define E1000_CTRL_EXT_DMA_DYN_CLK_EN 0x00080000 /* DMA Dynamic Clock Gating */
-#define E1000_CTRL_EXT_LINK_MODE_MASK 0x00C00000
-#define E1000_CTRL_EXT_LINK_MODE_82580_MASK 0x01C00000 /*82580 bit 24:22*/
-#define E1000_CTRL_EXT_LINK_MODE_1000BASE_KX 0x00400000
-#define E1000_CTRL_EXT_LINK_MODE_GMII 0x00000000
-#define E1000_CTRL_EXT_LINK_MODE_TBI 0x00C00000
-#define E1000_CTRL_EXT_LINK_MODE_KMRN 0x00000000
-#define E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES 0x00C00000
-#define E1000_CTRL_EXT_LINK_MODE_PCIX_SERDES 0x00800000
-#define E1000_CTRL_EXT_LINK_MODE_SGMII 0x00800000
-#define E1000_CTRL_EXT_EIAME 0x01000000
-#define E1000_CTRL_EXT_IRCA 0x00000001
-#define E1000_CTRL_EXT_WR_WMARK_MASK 0x03000000
-#define E1000_CTRL_EXT_WR_WMARK_256 0x00000000
-#define E1000_CTRL_EXT_WR_WMARK_320 0x01000000
-#define E1000_CTRL_EXT_WR_WMARK_384 0x02000000
-#define E1000_CTRL_EXT_WR_WMARK_448 0x03000000
-#define E1000_CTRL_EXT_CANC 0x04000000 /* Int delay cancellation */
-#define E1000_CTRL_EXT_DRV_LOAD 0x10000000 /* Driver loaded bit for FW */
-/* IAME enable bit (27) was removed in >= 82575 */
-#define E1000_CTRL_EXT_IAME 0x08000000 /* Int acknowledge Auto-mask */
-#define E1000_CRTL_EXT_PB_PAREN 0x01000000 /* packet buffer parity error
- * detection enabled */
-#define E1000_CTRL_EXT_DF_PAREN 0x02000000 /* descriptor FIFO parity
- * error detection enable */
-#define E1000_CTRL_EXT_GHOST_PAREN 0x40000000
-#define E1000_CTRL_EXT_PBA_CLR 0x80000000 /* PBA Clear */
-#define E1000_CTRL_EXT_LSECCK 0x00001000
-#define E1000_CTRL_EXT_PHYPDEN 0x00100000
-#define E1000_I2CCMD_REG_ADDR_SHIFT 16
-#define E1000_I2CCMD_REG_ADDR 0x00FF0000
-#define E1000_I2CCMD_PHY_ADDR_SHIFT 24
-#define E1000_I2CCMD_PHY_ADDR 0x07000000
-#define E1000_I2CCMD_OPCODE_READ 0x08000000
-#define E1000_I2CCMD_OPCODE_WRITE 0x00000000
-#define E1000_I2CCMD_RESET 0x10000000
-#define E1000_I2CCMD_READY 0x20000000
-#define E1000_I2CCMD_INTERRUPT_ENA 0x40000000
-#define E1000_I2CCMD_ERROR 0x80000000
-#define E1000_MAX_SGMII_PHY_REG_ADDR 255
-#define E1000_I2CCMD_PHY_TIMEOUT 200
-#define E1000_IVAR_VALID 0x80
-#define E1000_GPIE_NSICR 0x00000001
-#define E1000_GPIE_MSIX_MODE 0x00000010
-#define E1000_GPIE_EIAME 0x40000000
-#define E1000_GPIE_PBA 0x80000000
+#define E1000_CTRL_EXT_PFRSTD 0x00004000
+#define E1000_CTRL_EXT_SPD_BYPS 0x00008000 /* Speed Select Bypass */
+#define E1000_CTRL_EXT_RO_DIS 0x00020000 /* Relaxed Ordering disable */
+#define E1000_CTRL_EXT_DMA_DYN_CLK_EN 0x00080000 /* DMA Dynamic Clk Gating */
+#define E1000_CTRL_EXT_LINK_MODE_MASK 0x00C00000
+/* Offset of the link mode field in Ctrl Ext register */
+#define E1000_CTRL_EXT_LINK_MODE_OFFSET 22
+#define E1000_CTRL_EXT_LINK_MODE_1000BASE_KX 0x00400000
+#define E1000_CTRL_EXT_LINK_MODE_GMII 0x00000000
+#define E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES 0x00C00000
+#define E1000_CTRL_EXT_LINK_MODE_SGMII 0x00800000
+#define E1000_CTRL_EXT_EIAME 0x01000000
+#define E1000_CTRL_EXT_IRCA 0x00000001
+#define E1000_CTRL_EXT_DRV_LOAD 0x10000000 /* Drv loaded bit for FW */
+#define E1000_CTRL_EXT_IAME 0x08000000 /* Int ACK Auto-mask */
+#define E1000_CTRL_EXT_PBA_CLR 0x80000000 /* PBA Clear */
+#define E1000_CTRL_EXT_LSECCK 0x00001000
+#define E1000_CTRL_EXT_PHYPDEN 0x00100000
+#define E1000_I2CCMD_REG_ADDR_SHIFT 16
+#define E1000_I2CCMD_PHY_ADDR_SHIFT 24
+#define E1000_I2CCMD_OPCODE_READ 0x08000000
+#define E1000_I2CCMD_OPCODE_WRITE 0x00000000
+#define E1000_I2CCMD_READY 0x20000000
+#define E1000_I2CCMD_ERROR 0x80000000
+#define E1000_I2CCMD_SFP_DATA_ADDR(a) (0x0000 + (a))
+#define E1000_I2CCMD_SFP_DIAG_ADDR(a) (0x0100 + (a))
+#define E1000_MAX_SGMII_PHY_REG_ADDR 255
+#define E1000_I2CCMD_PHY_TIMEOUT 200
+#define E1000_IVAR_VALID 0x80
+#define E1000_GPIE_NSICR 0x00000001
+#define E1000_GPIE_MSIX_MODE 0x00000010
+#define E1000_GPIE_EIAME 0x40000000
+#define E1000_GPIE_PBA 0x80000000
/* Receive Descriptor bit definitions */
-#define E1000_RXD_STAT_DD 0x01 /* Descriptor Done */
-#define E1000_RXD_STAT_EOP 0x02 /* End of Packet */
-#define E1000_RXD_STAT_IXSM 0x04 /* Ignore checksum */
-#define E1000_RXD_STAT_VP 0x08 /* IEEE VLAN Packet */
-#define E1000_RXD_STAT_UDPCS 0x10 /* UDP xsum calculated */
-#define E1000_RXD_STAT_TCPCS 0x20 /* TCP xsum calculated */
-#define E1000_RXD_STAT_IPCS 0x40 /* IP xsum calculated */
-#define E1000_RXD_STAT_PIF 0x80 /* passed in-exact filter */
-#define E1000_RXD_STAT_CRCV 0x100 /* Speculative CRC Valid */
-#define E1000_RXD_STAT_IPIDV 0x200 /* IP identification valid */
-#define E1000_RXD_STAT_UDPV 0x400 /* Valid UDP checksum */
-#define E1000_RXD_STAT_DYNINT 0x800 /* Pkt caused INT via DYNINT */
-#define E1000_RXD_STAT_ACK 0x8000 /* ACK Packet indication */
-#define E1000_RXD_ERR_CE 0x01 /* CRC Error */
-#define E1000_RXD_ERR_SE 0x02 /* Symbol Error */
-#define E1000_RXD_ERR_SEQ 0x04 /* Sequence Error */
-#define E1000_RXD_ERR_CXE 0x10 /* Carrier Extension Error */
-#define E1000_RXD_ERR_TCPE 0x20 /* TCP/UDP Checksum Error */
-#define E1000_RXD_ERR_IPE 0x40 /* IP Checksum Error */
-#define E1000_RXD_ERR_RXE 0x80 /* Rx Data Error */
-#define E1000_RXD_SPC_VLAN_MASK 0x0FFF /* VLAN ID is in lower 12 bits */
-#define E1000_RXD_SPC_PRI_MASK 0xE000 /* Priority is in upper 3 bits */
-#define E1000_RXD_SPC_PRI_SHIFT 13
-#define E1000_RXD_SPC_CFI_MASK 0x1000 /* CFI is bit 12 */
-#define E1000_RXD_SPC_CFI_SHIFT 12
-
-#define E1000_RXDEXT_STATERR_CE 0x01000000
-#define E1000_RXDEXT_STATERR_SE 0x02000000
-#define E1000_RXDEXT_STATERR_SEQ 0x04000000
-#define E1000_RXDEXT_STATERR_CXE 0x10000000
-#define E1000_RXDEXT_STATERR_TCPE 0x20000000
-#define E1000_RXDEXT_STATERR_IPE 0x40000000
-#define E1000_RXDEXT_STATERR_RXE 0x80000000
-
-#define E1000_RXDEXT_LSECH 0x01000000
-#define E1000_RXDEXT_LSECE_MASK 0x60000000
-#define E1000_RXDEXT_LSECE_NO_ERROR 0x00000000
-#define E1000_RXDEXT_LSECE_NO_SA_MATCH 0x20000000
-#define E1000_RXDEXT_LSECE_REPLAY_DETECT 0x40000000
-#define E1000_RXDEXT_LSECE_BAD_SIG 0x60000000
+#define E1000_RXD_STAT_DD 0x01 /* Descriptor Done */
+#define E1000_RXD_STAT_EOP 0x02 /* End of Packet */
+#define E1000_RXD_STAT_IXSM 0x04 /* Ignore checksum */
+#define E1000_RXD_STAT_VP 0x08 /* IEEE VLAN Packet */
+#define E1000_RXD_STAT_UDPCS 0x10 /* UDP xsum calculated */
+#define E1000_RXD_STAT_TCPCS 0x20 /* TCP xsum calculated */
+#define E1000_RXD_STAT_IPCS 0x40 /* IP xsum calculated */
+#define E1000_RXD_STAT_PIF 0x80 /* passed in-exact filter */
+#define E1000_RXD_STAT_IPIDV 0x200 /* IP identification valid */
+#define E1000_RXD_STAT_UDPV 0x400 /* Valid UDP checksum */
+#define E1000_RXD_STAT_DYNINT 0x800 /* Pkt caused INT via DYNINT */
+#define E1000_RXD_ERR_CE 0x01 /* CRC Error */
+#define E1000_RXD_ERR_SE 0x02 /* Symbol Error */
+#define E1000_RXD_ERR_SEQ 0x04 /* Sequence Error */
+#define E1000_RXD_ERR_CXE 0x10 /* Carrier Extension Error */
+#define E1000_RXD_ERR_TCPE 0x20 /* TCP/UDP Checksum Error */
+#define E1000_RXD_ERR_IPE 0x40 /* IP Checksum Error */
+#define E1000_RXD_ERR_RXE 0x80 /* Rx Data Error */
+#define E1000_RXD_SPC_VLAN_MASK 0x0FFF /* VLAN ID is in lower 12 bits */
+
+#define E1000_RXDEXT_STATERR_TST 0x00000100 /* Time Stamp taken */
+#define E1000_RXDEXT_STATERR_LB 0x00040000
+#define E1000_RXDEXT_STATERR_CE 0x01000000
+#define E1000_RXDEXT_STATERR_SE 0x02000000
+#define E1000_RXDEXT_STATERR_SEQ 0x04000000
+#define E1000_RXDEXT_STATERR_CXE 0x10000000
+#define E1000_RXDEXT_STATERR_TCPE 0x20000000
+#define E1000_RXDEXT_STATERR_IPE 0x40000000
+#define E1000_RXDEXT_STATERR_RXE 0x80000000
/* mask to determine if packets should be dropped due to frame errors */
#define E1000_RXD_ERR_FRAME_ERR_MASK ( \
- E1000_RXD_ERR_CE | \
- E1000_RXD_ERR_SE | \
- E1000_RXD_ERR_SEQ | \
- E1000_RXD_ERR_CXE | \
- E1000_RXD_ERR_RXE)
+ E1000_RXD_ERR_CE | \
+ E1000_RXD_ERR_SE | \
+ E1000_RXD_ERR_SEQ | \
+ E1000_RXD_ERR_CXE | \
+ E1000_RXD_ERR_RXE)
/* Same mask, but for extended and packet split descriptors */
#define E1000_RXDEXT_ERR_FRAME_ERR_MASK ( \
- E1000_RXDEXT_STATERR_CE | \
- E1000_RXDEXT_STATERR_SE | \
- E1000_RXDEXT_STATERR_SEQ | \
- E1000_RXDEXT_STATERR_CXE | \
- E1000_RXDEXT_STATERR_RXE)
-
-#define E1000_MRQC_ENABLE_MASK 0x00000007
-#define E1000_MRQC_ENABLE_RSS_2Q 0x00000001
-#define E1000_MRQC_ENABLE_RSS_INT 0x00000004
-#define E1000_MRQC_RSS_FIELD_MASK 0xFFFF0000
-#define E1000_MRQC_RSS_FIELD_IPV4_TCP 0x00010000
-#define E1000_MRQC_RSS_FIELD_IPV4 0x00020000
-#define E1000_MRQC_RSS_FIELD_IPV6_TCP_EX 0x00040000
-#define E1000_MRQC_RSS_FIELD_IPV6_EX 0x00080000
-#define E1000_MRQC_RSS_FIELD_IPV6 0x00100000
-#define E1000_MRQC_RSS_FIELD_IPV6_TCP 0x00200000
-
-#define E1000_RXDPS_HDRSTAT_HDRSP 0x00008000
-#define E1000_RXDPS_HDRSTAT_HDRLEN_MASK 0x000003FF
+ E1000_RXDEXT_STATERR_CE | \
+ E1000_RXDEXT_STATERR_SE | \
+ E1000_RXDEXT_STATERR_SEQ | \
+ E1000_RXDEXT_STATERR_CXE | \
+ E1000_RXDEXT_STATERR_RXE)
+
+#define E1000_MRQC_RSS_FIELD_MASK 0xFFFF0000
+#define E1000_MRQC_RSS_FIELD_IPV4_TCP 0x00010000
+#define E1000_MRQC_RSS_FIELD_IPV4 0x00020000
+#define E1000_MRQC_RSS_FIELD_IPV6_TCP_EX 0x00040000
+#define E1000_MRQC_RSS_FIELD_IPV6 0x00100000
+#define E1000_MRQC_RSS_FIELD_IPV6_TCP 0x00200000
+
+#define E1000_RXDPS_HDRSTAT_HDRSP 0x00008000
/* Management Control */
-#define E1000_MANC_SMBUS_EN 0x00000001 /* SMBus Enabled - RO */
-#define E1000_MANC_ASF_EN 0x00000002 /* ASF Enabled - RO */
-#define E1000_MANC_R_ON_FORCE 0x00000004 /* Reset on Force TCO - RO */
-#define E1000_MANC_RMCP_EN 0x00000100 /* Enable RCMP 026Fh Filtering */
-#define E1000_MANC_0298_EN 0x00000200 /* Enable RCMP 0298h Filtering */
-#define E1000_MANC_IPV4_EN 0x00000400 /* Enable IPv4 */
-#define E1000_MANC_IPV6_EN 0x00000800 /* Enable IPv6 */
-#define E1000_MANC_SNAP_EN 0x00001000 /* Accept LLC/SNAP */
-#define E1000_MANC_ARP_EN 0x00002000 /* Enable ARP Request Filtering */
-/* Enable Neighbor Discovery Filtering */
-#define E1000_MANC_NEIGHBOR_EN 0x00004000
-#define E1000_MANC_ARP_RES_EN 0x00008000 /* Enable ARP response Filtering */
-#define E1000_MANC_TCO_RESET 0x00010000 /* TCO Reset Occurred */
-#define E1000_MANC_RCV_TCO_EN 0x00020000 /* Receive TCO Packets Enabled */
-#define E1000_MANC_REPORT_STATUS 0x00040000 /* Status Reporting Enabled */
-#define E1000_MANC_RCV_ALL 0x00080000 /* Receive All Enabled */
-#define E1000_MANC_BLK_PHY_RST_ON_IDE 0x00040000 /* Block phy resets */
+#define E1000_MANC_SMBUS_EN 0x00000001 /* SMBus Enabled - RO */
+#define E1000_MANC_ASF_EN 0x00000002 /* ASF Enabled - RO */
+#define E1000_MANC_ARP_EN 0x00002000 /* Enable ARP Request Filtering */
+#define E1000_MANC_RCV_TCO_EN 0x00020000 /* Receive TCO Packets Enabled */
+#define E1000_MANC_BLK_PHY_RST_ON_IDE 0x00040000 /* Block phy resets */
/* Enable MAC address filtering */
-#define E1000_MANC_EN_MAC_ADDR_FILTER 0x00100000
+#define E1000_MANC_EN_MAC_ADDR_FILTER 0x00100000
/* Enable MNG packets to host memory */
-#define E1000_MANC_EN_MNG2HOST 0x00200000
-/* Enable IP address filtering */
-#define E1000_MANC_EN_IP_ADDR_FILTER 0x00400000
-#define E1000_MANC_EN_XSUM_FILTER 0x00800000 /* Enable checksum filtering */
-#define E1000_MANC_BR_EN 0x01000000 /* Enable broadcast filtering */
-#define E1000_MANC_SMB_REQ 0x01000000 /* SMBus Request */
-#define E1000_MANC_SMB_GNT 0x02000000 /* SMBus Grant */
-#define E1000_MANC_SMB_CLK_IN 0x04000000 /* SMBus Clock In */
-#define E1000_MANC_SMB_DATA_IN 0x08000000 /* SMBus Data In */
-#define E1000_MANC_SMB_DATA_OUT 0x10000000 /* SMBus Data Out */
-#define E1000_MANC_SMB_CLK_OUT 0x20000000 /* SMBus Clock Out */
-
-#define E1000_MANC_SMB_DATA_OUT_SHIFT 28 /* SMBus Data Out Shift */
-#define E1000_MANC_SMB_CLK_OUT_SHIFT 29 /* SMBus Clock Out Shift */
-
-#define E1000_MANC2H_PORT_623 0x00000020 /* Port 0x26f */
-#define E1000_MANC2H_PORT_664 0x00000040 /* Port 0x298 */
-#define E1000_MDEF_PORT_623 0x00000800 /* Port 0x26f */
-#define E1000_MDEF_PORT_664 0x00000400 /* Port 0x298 */
+#define E1000_MANC_EN_MNG2HOST 0x00200000
+
+#define E1000_MANC2H_PORT_623 0x00000020 /* Port 0x26f */
+#define E1000_MANC2H_PORT_664 0x00000040 /* Port 0x298 */
+#define E1000_MDEF_PORT_623 0x00000800 /* Port 0x26f */
+#define E1000_MDEF_PORT_664 0x00000400 /* Port 0x298 */
/* Receive Control */
-#define E1000_RCTL_RST 0x00000001 /* Software reset */
-#define E1000_RCTL_EN 0x00000002 /* enable */
-#define E1000_RCTL_SBP 0x00000004 /* store bad packet */
-#define E1000_RCTL_UPE 0x00000008 /* unicast promisc enable */
-#define E1000_RCTL_MPE 0x00000010 /* multicast promisc enable */
-#define E1000_RCTL_LPE 0x00000020 /* long packet enable */
-#define E1000_RCTL_LBM_NO 0x00000000 /* no loopback mode */
-#define E1000_RCTL_LBM_MAC 0x00000040 /* MAC loopback mode */
-#define E1000_RCTL_LBM_SLP 0x00000080 /* serial link loopback mode */
-#define E1000_RCTL_LBM_TCVR 0x000000C0 /* tcvr loopback mode */
-#define E1000_RCTL_DTYP_MASK 0x00000C00 /* Descriptor type mask */
-#define E1000_RCTL_DTYP_PS 0x00000400 /* Packet Split descriptor */
-#define E1000_RCTL_RDMTS_HALF 0x00000000 /* rx desc min thresh size */
-#define E1000_RCTL_RDMTS_QUAT 0x00000100 /* rx desc min thresh size */
-#define E1000_RCTL_RDMTS_EIGTH 0x00000200 /* rx desc min thresh size */
-#define E1000_RCTL_MO_SHIFT 12 /* multicast offset shift */
-#define E1000_RCTL_MO_0 0x00000000 /* multicast offset 11:0 */
-#define E1000_RCTL_MO_1 0x00001000 /* multicast offset 12:1 */
-#define E1000_RCTL_MO_2 0x00002000 /* multicast offset 13:2 */
-#define E1000_RCTL_MO_3 0x00003000 /* multicast offset 15:4 */
-#define E1000_RCTL_MDR 0x00004000 /* multicast desc ring 0 */
-#define E1000_RCTL_BAM 0x00008000 /* broadcast enable */
+#define E1000_RCTL_RST 0x00000001 /* Software reset */
+#define E1000_RCTL_EN 0x00000002 /* enable */
+#define E1000_RCTL_SBP 0x00000004 /* store bad packet */
+#define E1000_RCTL_UPE 0x00000008 /* unicast promisc enable */
+#define E1000_RCTL_MPE 0x00000010 /* multicast promisc enable */
+#define E1000_RCTL_LPE 0x00000020 /* long packet enable */
+#define E1000_RCTL_LBM_NO 0x00000000 /* no loopback mode */
+#define E1000_RCTL_LBM_MAC 0x00000040 /* MAC loopback mode */
+#define E1000_RCTL_LBM_TCVR 0x000000C0 /* tcvr loopback mode */
+#define E1000_RCTL_DTYP_PS 0x00000400 /* Packet Split descriptor */
+#define E1000_RCTL_RDMTS_HALF 0x00000000 /* Rx desc min thresh size */
+#define E1000_RCTL_MO_SHIFT 12 /* multicast offset shift */
+#define E1000_RCTL_MO_3 0x00003000 /* multicast offset 15:4 */
+#define E1000_RCTL_BAM 0x00008000 /* broadcast enable */
/* these buffer sizes are valid if E1000_RCTL_BSEX is 0 */
-#define E1000_RCTL_SZ_2048 0x00000000 /* rx buffer size 2048 */
-#define E1000_RCTL_SZ_1024 0x00010000 /* rx buffer size 1024 */
-#define E1000_RCTL_SZ_512 0x00020000 /* rx buffer size 512 */
-#define E1000_RCTL_SZ_256 0x00030000 /* rx buffer size 256 */
+#define E1000_RCTL_SZ_2048 0x00000000 /* Rx buffer size 2048 */
+#define E1000_RCTL_SZ_1024 0x00010000 /* Rx buffer size 1024 */
+#define E1000_RCTL_SZ_512 0x00020000 /* Rx buffer size 512 */
+#define E1000_RCTL_SZ_256 0x00030000 /* Rx buffer size 256 */
/* these buffer sizes are valid if E1000_RCTL_BSEX is 1 */
-#define E1000_RCTL_SZ_16384 0x00010000 /* rx buffer size 16384 */
-#define E1000_RCTL_SZ_8192 0x00020000 /* rx buffer size 8192 */
-#define E1000_RCTL_SZ_4096 0x00030000 /* rx buffer size 4096 */
-#define E1000_RCTL_VFE 0x00040000 /* vlan filter enable */
-#define E1000_RCTL_CFIEN 0x00080000 /* canonical form enable */
-#define E1000_RCTL_CFI 0x00100000 /* canonical form indicator */
-#define E1000_RCTL_DPF 0x00400000 /* discard pause frames */
-#define E1000_RCTL_PMCF 0x00800000 /* pass MAC control frames */
-#define E1000_RCTL_BSEX 0x02000000 /* Buffer size extension */
-#define E1000_RCTL_SECRC 0x04000000 /* Strip Ethernet CRC */
-#define E1000_RCTL_FLXBUF_MASK 0x78000000 /* Flexible buffer size */
-#define E1000_RCTL_FLXBUF_SHIFT 27 /* Flexible buffer shift */
-
-/*
- * Use byte values for the following shift parameters
+#define E1000_RCTL_SZ_16384 0x00010000 /* Rx buffer size 16384 */
+#define E1000_RCTL_SZ_8192 0x00020000 /* Rx buffer size 8192 */
+#define E1000_RCTL_SZ_4096 0x00030000 /* Rx buffer size 4096 */
+#define E1000_RCTL_VFE 0x00040000 /* vlan filter enable */
+#define E1000_RCTL_CFIEN 0x00080000 /* canonical form enable */
+#define E1000_RCTL_CFI 0x00100000 /* canonical form indicator */
+#define E1000_RCTL_DPF 0x00400000 /* discard pause frames */
+#define E1000_RCTL_PMCF 0x00800000 /* pass MAC control frames */
+#define E1000_RCTL_BSEX 0x02000000 /* Buffer size extension */
+#define E1000_RCTL_SECRC 0x04000000 /* Strip Ethernet CRC */
+
+/* Use byte values for the following shift parameters
* Usage:
* psrctl |= (((ROUNDUP(value0, 128) >> E1000_PSRCTL_BSIZE0_SHIFT) &
- * E1000_PSRCTL_BSIZE0_MASK) |
- * ((ROUNDUP(value1, 1024) >> E1000_PSRCTL_BSIZE1_SHIFT) &
- * E1000_PSRCTL_BSIZE1_MASK) |
- * ((ROUNDUP(value2, 1024) << E1000_PSRCTL_BSIZE2_SHIFT) &
- * E1000_PSRCTL_BSIZE2_MASK) |
- * ((ROUNDUP(value3, 1024) << E1000_PSRCTL_BSIZE3_SHIFT) |;
- * E1000_PSRCTL_BSIZE3_MASK))
+ * E1000_PSRCTL_BSIZE0_MASK) |
+ * ((ROUNDUP(value1, 1024) >> E1000_PSRCTL_BSIZE1_SHIFT) &
+ * E1000_PSRCTL_BSIZE1_MASK) |
+ * ((ROUNDUP(value2, 1024) << E1000_PSRCTL_BSIZE2_SHIFT) &
+ * E1000_PSRCTL_BSIZE2_MASK) |
+ * ((ROUNDUP(value3, 1024) << E1000_PSRCTL_BSIZE3_SHIFT) |;
+ * E1000_PSRCTL_BSIZE3_MASK))
* where value0 = [128..16256], default=256
* value1 = [1024..64512], default=4096
* value2 = [0..64512], default=4096
* value3 = [0..64512], default=0
*/
-#define E1000_PSRCTL_BSIZE0_MASK 0x0000007F
-#define E1000_PSRCTL_BSIZE1_MASK 0x00003F00
-#define E1000_PSRCTL_BSIZE2_MASK 0x003F0000
-#define E1000_PSRCTL_BSIZE3_MASK 0x3F000000
+#define E1000_PSRCTL_BSIZE0_MASK 0x0000007F
+#define E1000_PSRCTL_BSIZE1_MASK 0x00003F00
+#define E1000_PSRCTL_BSIZE2_MASK 0x003F0000
+#define E1000_PSRCTL_BSIZE3_MASK 0x3F000000
-#define E1000_PSRCTL_BSIZE0_SHIFT 7 /* Shift _right_ 7 */
-#define E1000_PSRCTL_BSIZE1_SHIFT 2 /* Shift _right_ 2 */
-#define E1000_PSRCTL_BSIZE2_SHIFT 6 /* Shift _left_ 6 */
-#define E1000_PSRCTL_BSIZE3_SHIFT 14 /* Shift _left_ 14 */
+#define E1000_PSRCTL_BSIZE0_SHIFT 7 /* Shift _right_ 7 */
+#define E1000_PSRCTL_BSIZE1_SHIFT 2 /* Shift _right_ 2 */
+#define E1000_PSRCTL_BSIZE2_SHIFT 6 /* Shift _left_ 6 */
+#define E1000_PSRCTL_BSIZE3_SHIFT 14 /* Shift _left_ 14 */
/* SWFW_SYNC Definitions */
-#define E1000_SWFW_EEP_SM 0x01
-#define E1000_SWFW_PHY0_SM 0x02
-#define E1000_SWFW_PHY1_SM 0x04
-#define E1000_SWFW_CSR_SM 0x08
-#define E1000_SWFW_PHY2_SM 0x20
-#define E1000_SWFW_PHY3_SM 0x40
-
-/* FACTPS Definitions */
-#define E1000_FACTPS_LFS 0x40000000 /* LAN Function Select */
+#define E1000_SWFW_EEP_SM 0x01
+#define E1000_SWFW_PHY0_SM 0x02
+#define E1000_SWFW_PHY1_SM 0x04
+#define E1000_SWFW_CSR_SM 0x08
+#define E1000_SWFW_PHY2_SM 0x20
+#define E1000_SWFW_PHY3_SM 0x40
+#define E1000_SWFW_SW_MNG_SM 0x400
+
/* Device Control */
-#define E1000_CTRL_FD 0x00000001 /* Full duplex.0=half; 1=full */
-#define E1000_CTRL_BEM 0x00000002 /* Endian Mode.0=little,1=big */
-#define E1000_CTRL_PRIOR 0x00000004 /* Priority on PCI. 0=rx,1=fair */
+#define E1000_CTRL_FD 0x00000001 /* Full duplex.0=half; 1=full */
+#define E1000_CTRL_PRIOR 0x00000004 /* Priority on PCI. 0=rx,1=fair */
#define E1000_CTRL_GIO_MASTER_DISABLE 0x00000004 /*Blocks new Master reqs */
-#define E1000_CTRL_LRST 0x00000008 /* Link reset. 0=normal,1=reset */
-#define E1000_CTRL_TME 0x00000010 /* Test mode. 0=normal,1=test */
-#define E1000_CTRL_SLE 0x00000020 /* Serial Link on 0=dis,1=en */
-#define E1000_CTRL_ASDE 0x00000020 /* Auto-speed detect enable */
-#define E1000_CTRL_SLU 0x00000040 /* Set link up (Force Link) */
-#define E1000_CTRL_ILOS 0x00000080 /* Invert Loss-Of Signal */
-#define E1000_CTRL_SPD_SEL 0x00000300 /* Speed Select Mask */
-#define E1000_CTRL_SPD_10 0x00000000 /* Force 10Mb */
-#define E1000_CTRL_SPD_100 0x00000100 /* Force 100Mb */
-#define E1000_CTRL_SPD_1000 0x00000200 /* Force 1Gb */
-#define E1000_CTRL_BEM32 0x00000400 /* Big Endian 32 mode */
-#define E1000_CTRL_FRCSPD 0x00000800 /* Force Speed */
-#define E1000_CTRL_FRCDPX 0x00001000 /* Force Duplex */
-#define E1000_CTRL_D_UD_EN 0x00002000 /* Dock/Undock enable */
-#define E1000_CTRL_D_UD_POLARITY 0x00004000 /* Defined polarity of Dock/Undock
- * indication in SDP[0] */
-#define E1000_CTRL_FORCE_PHY_RESET 0x00008000 /* Reset both PHY ports, through
- * PHYRST_N pin */
-#define E1000_CTRL_EXT_LINK_EN 0x00010000 /* enable link status from external
- * LINK_0 and LINK_1 pins */
-#define E1000_CTRL_LANPHYPC_OVERRIDE 0x00010000 /* SW control of LANPHYPC */
-#define E1000_CTRL_LANPHYPC_VALUE 0x00020000 /* SW value of LANPHYPC */
-#define E1000_CTRL_SWDPIN0 0x00040000 /* SWDPIN 0 value */
-#define E1000_CTRL_SWDPIN1 0x00080000 /* SWDPIN 1 value */
-#define E1000_CTRL_SWDPIN2 0x00100000 /* SWDPIN 2 value */
-#define E1000_CTRL_ADVD3WUC 0x00100000 /* D3 WUC */
-#define E1000_CTRL_SWDPIN3 0x00200000 /* SWDPIN 3 value */
-#define E1000_CTRL_SWDPIO0 0x00400000 /* SWDPIN 0 Input or output */
-#define E1000_CTRL_SWDPIO1 0x00800000 /* SWDPIN 1 input or output */
-#define E1000_CTRL_SWDPIO2 0x01000000 /* SWDPIN 2 input or output */
-#define E1000_CTRL_SWDPIO3 0x02000000 /* SWDPIN 3 input or output */
-#define E1000_CTRL_RST 0x04000000 /* Global reset */
-#define E1000_CTRL_RFCE 0x08000000 /* Receive Flow Control enable */
-#define E1000_CTRL_TFCE 0x10000000 /* Transmit flow control enable */
-#define E1000_CTRL_RTE 0x20000000 /* Routing tag enable */
-#define E1000_CTRL_VME 0x40000000 /* IEEE VLAN mode enable */
-#define E1000_CTRL_PHY_RST 0x80000000 /* PHY Reset */
-#define E1000_CTRL_SW2FW_INT 0x02000000 /* Initiate an interrupt to ME */
-#define E1000_CTRL_I2C_ENA 0x02000000 /* I2C enable */
-
-/*
- * Bit definitions for the Management Data IO (MDIO) and Management Data
- * Clock (MDC) pins in the Device Control Register.
- */
-#define E1000_CTRL_PHY_RESET_DIR E1000_CTRL_SWDPIO0
-#define E1000_CTRL_PHY_RESET E1000_CTRL_SWDPIN0
-#define E1000_CTRL_MDIO_DIR E1000_CTRL_SWDPIO2
-#define E1000_CTRL_MDIO E1000_CTRL_SWDPIN2
-#define E1000_CTRL_MDC_DIR E1000_CTRL_SWDPIO3
-#define E1000_CTRL_MDC E1000_CTRL_SWDPIN3
-#define E1000_CTRL_PHY_RESET_DIR4 E1000_CTRL_EXT_SDP4_DIR
-#define E1000_CTRL_PHY_RESET4 E1000_CTRL_EXT_SDP4_DATA
-
-#define E1000_CONNSW_ENRGSRC 0x4
-#define E1000_PCS_CFG_PCS_EN 8
-#define E1000_PCS_LCTL_FLV_LINK_UP 1
-#define E1000_PCS_LCTL_FSV_10 0
-#define E1000_PCS_LCTL_FSV_100 2
-#define E1000_PCS_LCTL_FSV_1000 4
-#define E1000_PCS_LCTL_FDV_FULL 8
-#define E1000_PCS_LCTL_FSD 0x10
-#define E1000_PCS_LCTL_FORCE_LINK 0x20
-#define E1000_PCS_LCTL_LOW_LINK_LATCH 0x40
-#define E1000_PCS_LCTL_FORCE_FCTRL 0x80
-#define E1000_PCS_LCTL_AN_ENABLE 0x10000
-#define E1000_PCS_LCTL_AN_RESTART 0x20000
-#define E1000_PCS_LCTL_AN_TIMEOUT 0x40000
-#define E1000_PCS_LCTL_AN_SGMII_BYPASS 0x80000
-#define E1000_PCS_LCTL_AN_SGMII_TRIGGER 0x100000
-#define E1000_PCS_LCTL_FAST_LINK_TIMER 0x1000000
-#define E1000_PCS_LCTL_LINK_OK_FIX 0x2000000
-#define E1000_PCS_LCTL_CRS_ON_NI 0x4000000
-#define E1000_ENABLE_SERDES_LOOPBACK 0x0410
-
-#define E1000_PCS_LSTS_LINK_OK 1
-#define E1000_PCS_LSTS_SPEED_10 0
-#define E1000_PCS_LSTS_SPEED_100 2
-#define E1000_PCS_LSTS_SPEED_1000 4
-#define E1000_PCS_LSTS_DUPLEX_FULL 8
-#define E1000_PCS_LSTS_SYNK_OK 0x10
-#define E1000_PCS_LSTS_AN_COMPLETE 0x10000
-#define E1000_PCS_LSTS_AN_PAGE_RX 0x20000
-#define E1000_PCS_LSTS_AN_TIMED_OUT 0x40000
-#define E1000_PCS_LSTS_AN_REMOTE_FAULT 0x80000
-#define E1000_PCS_LSTS_AN_ERROR_RWS 0x100000
+#define E1000_CTRL_LRST 0x00000008 /* Link reset. 0=normal,1=reset */
+#define E1000_CTRL_ASDE 0x00000020 /* Auto-speed detect enable */
+#define E1000_CTRL_SLU 0x00000040 /* Set link up (Force Link) */
+#define E1000_CTRL_ILOS 0x00000080 /* Invert Loss-Of Signal */
+#define E1000_CTRL_SPD_SEL 0x00000300 /* Speed Select Mask */
+#define E1000_CTRL_SPD_10 0x00000000 /* Force 10Mb */
+#define E1000_CTRL_SPD_100 0x00000100 /* Force 100Mb */
+#define E1000_CTRL_SPD_1000 0x00000200 /* Force 1Gb */
+#define E1000_CTRL_FRCSPD 0x00000800 /* Force Speed */
+#define E1000_CTRL_FRCDPX 0x00001000 /* Force Duplex */
+#define E1000_CTRL_LANPHYPC_OVERRIDE 0x00010000 /* SW control of LANPHYPC */
+#define E1000_CTRL_LANPHYPC_VALUE 0x00020000 /* SW value of LANPHYPC */
+#define E1000_CTRL_MEHE 0x00080000 /* Memory Error Handling Enable */
+#define E1000_CTRL_SWDPIN0 0x00040000 /* SWDPIN 0 value */
+#define E1000_CTRL_SWDPIN1 0x00080000 /* SWDPIN 1 value */
+#define E1000_CTRL_SWDPIN2 0x00100000 /* SWDPIN 2 value */
+#define E1000_CTRL_ADVD3WUC 0x00100000 /* D3 WUC */
+#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000 /* PHY PM enable */
+#define E1000_CTRL_SWDPIN3 0x00200000 /* SWDPIN 3 value */
+#define E1000_CTRL_SWDPIO0 0x00400000 /* SWDPIN 0 Input or output */
+#define E1000_CTRL_SWDPIO2 0x01000000 /* SWDPIN 2 input or output */
+#define E1000_CTRL_SWDPIO3 0x02000000 /* SWDPIN 3 input or output */
+#define E1000_CTRL_RST 0x04000000 /* Global reset */
+#define E1000_CTRL_RFCE 0x08000000 /* Receive Flow Control enable */
+#define E1000_CTRL_TFCE 0x10000000 /* Transmit flow control enable */
+#define E1000_CTRL_VME 0x40000000 /* IEEE VLAN mode enable */
+#define E1000_CTRL_PHY_RST 0x80000000 /* PHY Reset */
+#define E1000_CTRL_I2C_ENA 0x02000000 /* I2C enable */
+
+#define E1000_CTRL_MDIO_DIR E1000_CTRL_SWDPIO2
+#define E1000_CTRL_MDIO E1000_CTRL_SWDPIN2
+#define E1000_CTRL_MDC_DIR E1000_CTRL_SWDPIO3
+#define E1000_CTRL_MDC E1000_CTRL_SWDPIN3
+
+#define E1000_CONNSW_ENRGSRC 0x4
+#define E1000_CONNSW_PHYSD 0x400
+#define E1000_CONNSW_SERDESD 0x200
+#define E1000_PCS_CFG_PCS_EN 8
+#define E1000_PCS_LCTL_FLV_LINK_UP 1
+#define E1000_PCS_LCTL_FSV_10 0
+#define E1000_PCS_LCTL_FSV_100 2
+#define E1000_PCS_LCTL_FSV_1000 4
+#define E1000_PCS_LCTL_FDV_FULL 8
+#define E1000_PCS_LCTL_FSD 0x10
+#define E1000_PCS_LCTL_FORCE_LINK 0x20
+#define E1000_PCS_LCTL_FORCE_FCTRL 0x80
+#define E1000_PCS_LCTL_AN_ENABLE 0x10000
+#define E1000_PCS_LCTL_AN_RESTART 0x20000
+#define E1000_PCS_LCTL_AN_TIMEOUT 0x40000
+#define E1000_ENABLE_SERDES_LOOPBACK 0x0410
+
+#define E1000_PCS_LSTS_LINK_OK 1
+#define E1000_PCS_LSTS_SPEED_100 2
+#define E1000_PCS_LSTS_SPEED_1000 4
+#define E1000_PCS_LSTS_DUPLEX_FULL 8
+#define E1000_PCS_LSTS_SYNK_OK 0x10
+#define E1000_PCS_LSTS_AN_COMPLETE 0x10000
/* Device Status */
-#define E1000_STATUS_FD 0x00000001 /* Full duplex.0=half,1=full */
-#define E1000_STATUS_LU 0x00000002 /* Link up.0=no,1=link */
-#define E1000_STATUS_FUNC_MASK 0x0000000C /* PCI Function Mask */
-#define E1000_STATUS_FUNC_SHIFT 2
-#define E1000_STATUS_FUNC_0 0x00000000 /* Function 0 */
-#define E1000_STATUS_FUNC_1 0x00000004 /* Function 1 */
-#define E1000_STATUS_TXOFF 0x00000010 /* transmission paused */
-#define E1000_STATUS_TBIMODE 0x00000020 /* TBI mode */
-#define E1000_STATUS_SPEED_MASK 0x000000C0
-#define E1000_STATUS_SPEED_10 0x00000000 /* Speed 10Mb/s */
-#define E1000_STATUS_SPEED_100 0x00000040 /* Speed 100Mb/s */
-#define E1000_STATUS_SPEED_1000 0x00000080 /* Speed 1000Mb/s */
-#define E1000_STATUS_LAN_INIT_DONE 0x00000200 /* Lan Init Completion by NVM */
-#define E1000_STATUS_ASDV 0x00000300 /* Auto speed detect value */
-#define E1000_STATUS_PHYRA 0x00000400 /* PHY Reset Asserted */
-#define E1000_STATUS_DOCK_CI 0x00000800 /* Change in Dock/Undock state.
- * Clear on write '0'. */
-#define E1000_STATUS_GIO_MASTER_ENABLE 0x00080000 /* Master request status */
-#define E1000_STATUS_MTXCKOK 0x00000400 /* MTX clock running OK */
-#define E1000_STATUS_PCI66 0x00000800 /* In 66Mhz slot */
-#define E1000_STATUS_BUS64 0x00001000 /* In 64 bit slot */
-#define E1000_STATUS_PCIX_MODE 0x00002000 /* PCI-X mode */
-#define E1000_STATUS_PCIX_SPEED 0x0000C000 /* PCI-X bus speed */
-#define E1000_STATUS_BMC_SKU_0 0x00100000 /* BMC USB redirect disabled */
-#define E1000_STATUS_BMC_SKU_1 0x00200000 /* BMC SRAM disabled */
-#define E1000_STATUS_BMC_SKU_2 0x00400000 /* BMC SDRAM disabled */
-#define E1000_STATUS_BMC_CRYPTO 0x00800000 /* BMC crypto disabled */
-#define E1000_STATUS_BMC_LITE 0x01000000 /* BMC external code execution
- * disabled */
-#define E1000_STATUS_RGMII_ENABLE 0x02000000 /* RGMII disabled */
-#define E1000_STATUS_FUSE_8 0x04000000
-#define E1000_STATUS_FUSE_9 0x08000000
-#define E1000_STATUS_SERDES0_DIS 0x10000000 /* SERDES disabled on port 0 */
-#define E1000_STATUS_SERDES1_DIS 0x20000000 /* SERDES disabled on port 1 */
+#define E1000_STATUS_FD 0x00000001 /* Duplex 0=half 1=full */
+#define E1000_STATUS_LU 0x00000002 /* Link up.0=no,1=link */
+#define E1000_STATUS_FUNC_MASK 0x0000000C /* PCI Function Mask */
+#define E1000_STATUS_FUNC_SHIFT 2
+#define E1000_STATUS_FUNC_1 0x00000004 /* Function 1 */
+#define E1000_STATUS_TXOFF 0x00000010 /* transmission paused */
+#define E1000_STATUS_SPEED_MASK 0x000000C0
+#define E1000_STATUS_SPEED_10 0x00000000 /* Speed 10Mb/s */
+#define E1000_STATUS_SPEED_100 0x00000040 /* Speed 100Mb/s */
+#define E1000_STATUS_SPEED_1000 0x00000080 /* Speed 1000Mb/s */
+#define E1000_STATUS_LAN_INIT_DONE 0x00000200 /* Lan Init Compltn by NVM */
+#define E1000_STATUS_PHYRA 0x00000400 /* PHY Reset Asserted */
+#define E1000_STATUS_GIO_MASTER_ENABLE 0x00080000 /* Master request status */
+#define E1000_STATUS_PCI66 0x00000800 /* In 66Mhz slot */
+#define E1000_STATUS_BUS64 0x00001000 /* In 64 bit slot */
+#define E1000_STATUS_PCIX_MODE 0x00002000 /* PCI-X mode */
+#define E1000_STATUS_PCIX_SPEED 0x0000C000 /* PCI-X bus speed */
/* Constants used to interpret the masked PCI-X bus speed. */
-#define E1000_STATUS_PCIX_SPEED_66 0x00000000 /* PCI-X bus speed 50-66 MHz */
-#define E1000_STATUS_PCIX_SPEED_100 0x00004000 /* PCI-X bus speed 66-100 MHz */
-#define E1000_STATUS_PCIX_SPEED_133 0x00008000 /*PCI-X bus speed 100-133 MHz*/
+#define E1000_STATUS_PCIX_SPEED_66 0x00000000 /* PCI-X bus spd 50-66MHz */
+#define E1000_STATUS_PCIX_SPEED_100 0x00004000 /* PCI-X bus spd 66-100MHz */
+#define E1000_STATUS_PCIX_SPEED_133 0x00008000 /* PCI-X bus spd 100-133MHz*/
-#define SPEED_10 10
-#define SPEED_100 100
-#define SPEED_1000 1000
-#define HALF_DUPLEX 1
-#define FULL_DUPLEX 2
+#define SPEED_10 10
+#define SPEED_100 100
+#define SPEED_1000 1000
+#define HALF_DUPLEX 1
+#define FULL_DUPLEX 2
-#define PHY_FORCE_TIME 20
+#define PHY_FORCE_TIME 20
-#define ADVERTISE_10_HALF 0x0001
-#define ADVERTISE_10_FULL 0x0002
-#define ADVERTISE_100_HALF 0x0004
-#define ADVERTISE_100_FULL 0x0008
-#define ADVERTISE_1000_HALF 0x0010 /* Not used, just FYI */
-#define ADVERTISE_1000_FULL 0x0020
+#define ADVERTISE_10_HALF 0x0001
+#define ADVERTISE_10_FULL 0x0002
+#define ADVERTISE_100_HALF 0x0004
+#define ADVERTISE_100_FULL 0x0008
+#define ADVERTISE_1000_HALF 0x0010 /* Not used, just FYI */
+#define ADVERTISE_1000_FULL 0x0020
/* 1000/H is not supported, nor spec-compliant. */
-#define E1000_ALL_SPEED_DUPLEX (ADVERTISE_10_HALF | ADVERTISE_10_FULL | \
- ADVERTISE_100_HALF | ADVERTISE_100_FULL | \
- ADVERTISE_1000_FULL)
-#define E1000_ALL_NOT_GIG (ADVERTISE_10_HALF | ADVERTISE_10_FULL | \
- ADVERTISE_100_HALF | ADVERTISE_100_FULL)
-#define E1000_ALL_100_SPEED (ADVERTISE_100_HALF | ADVERTISE_100_FULL)
-#define E1000_ALL_10_SPEED (ADVERTISE_10_HALF | ADVERTISE_10_FULL)
-#define E1000_ALL_FULL_DUPLEX (ADVERTISE_10_FULL | ADVERTISE_100_FULL | \
- ADVERTISE_1000_FULL)
-#define E1000_ALL_HALF_DUPLEX (ADVERTISE_10_HALF | ADVERTISE_100_HALF)
-
-#define AUTONEG_ADVERTISE_SPEED_DEFAULT E1000_ALL_SPEED_DUPLEX
+#define E1000_ALL_SPEED_DUPLEX ( \
+ ADVERTISE_10_HALF | ADVERTISE_10_FULL | ADVERTISE_100_HALF | \
+ ADVERTISE_100_FULL | ADVERTISE_1000_FULL)
+#define E1000_ALL_NOT_GIG ( \
+ ADVERTISE_10_HALF | ADVERTISE_10_FULL | ADVERTISE_100_HALF | \
+ ADVERTISE_100_FULL)
+#define E1000_ALL_100_SPEED (ADVERTISE_100_HALF | ADVERTISE_100_FULL)
+#define E1000_ALL_10_SPEED (ADVERTISE_10_HALF | ADVERTISE_10_FULL)
+#define E1000_ALL_HALF_DUPLEX (ADVERTISE_10_HALF | ADVERTISE_100_HALF)
+
+#define AUTONEG_ADVERTISE_SPEED_DEFAULT E1000_ALL_SPEED_DUPLEX
/* LED Control */
-#define E1000_PHY_LED0_MODE_MASK 0x00000007
-#define E1000_PHY_LED0_IVRT 0x00000008
-#define E1000_PHY_LED0_BLINK 0x00000010
-#define E1000_PHY_LED0_MASK 0x0000001F
-
-#define E1000_LEDCTL_LED0_MODE_MASK 0x0000000F
-#define E1000_LEDCTL_LED0_MODE_SHIFT 0
-#define E1000_LEDCTL_LED0_BLINK_RATE 0x00000020
-#define E1000_LEDCTL_LED0_IVRT 0x00000040
-#define E1000_LEDCTL_LED0_BLINK 0x00000080
-#define E1000_LEDCTL_LED1_MODE_MASK 0x00000F00
-#define E1000_LEDCTL_LED1_MODE_SHIFT 8
-#define E1000_LEDCTL_LED1_BLINK_RATE 0x00002000
-#define E1000_LEDCTL_LED1_IVRT 0x00004000
-#define E1000_LEDCTL_LED1_BLINK 0x00008000
-#define E1000_LEDCTL_LED2_MODE_MASK 0x000F0000
-#define E1000_LEDCTL_LED2_MODE_SHIFT 16
-#define E1000_LEDCTL_LED2_BLINK_RATE 0x00200000
-#define E1000_LEDCTL_LED2_IVRT 0x00400000
-#define E1000_LEDCTL_LED2_BLINK 0x00800000
-#define E1000_LEDCTL_LED3_MODE_MASK 0x0F000000
-#define E1000_LEDCTL_LED3_MODE_SHIFT 24
-#define E1000_LEDCTL_LED3_BLINK_RATE 0x20000000
-#define E1000_LEDCTL_LED3_IVRT 0x40000000
-#define E1000_LEDCTL_LED3_BLINK 0x80000000
-
-#define E1000_LEDCTL_MODE_LINK_10_1000 0x0
-#define E1000_LEDCTL_MODE_LINK_100_1000 0x1
-#define E1000_LEDCTL_MODE_LINK_UP 0x2
-#define E1000_LEDCTL_MODE_ACTIVITY 0x3
-#define E1000_LEDCTL_MODE_LINK_ACTIVITY 0x4
-#define E1000_LEDCTL_MODE_LINK_10 0x5
-#define E1000_LEDCTL_MODE_LINK_100 0x6
-#define E1000_LEDCTL_MODE_LINK_1000 0x7
-#define E1000_LEDCTL_MODE_PCIX_MODE 0x8
-#define E1000_LEDCTL_MODE_FULL_DUPLEX 0x9
-#define E1000_LEDCTL_MODE_COLLISION 0xA
-#define E1000_LEDCTL_MODE_BUS_SPEED 0xB
-#define E1000_LEDCTL_MODE_BUS_SIZE 0xC
-#define E1000_LEDCTL_MODE_PAUSED 0xD
-#define E1000_LEDCTL_MODE_LED_ON 0xE
-#define E1000_LEDCTL_MODE_LED_OFF 0xF
+#define E1000_PHY_LED0_MODE_MASK 0x00000007
+#define E1000_PHY_LED0_IVRT 0x00000008
+#define E1000_PHY_LED0_MASK 0x0000001F
+
+#define E1000_LEDCTL_LED0_MODE_MASK 0x0000000F
+#define E1000_LEDCTL_LED0_MODE_SHIFT 0
+#define E1000_LEDCTL_LED0_IVRT 0x00000040
+#define E1000_LEDCTL_LED0_BLINK 0x00000080
+
+#define E1000_LEDCTL_MODE_LINK_UP 0x2
+#define E1000_LEDCTL_MODE_LED_ON 0xE
+#define E1000_LEDCTL_MODE_LED_OFF 0xF
/* Transmit Descriptor bit definitions */
-#define E1000_TXD_DTYP_D 0x00100000 /* Data Descriptor */
-#define E1000_TXD_DTYP_C 0x00000000 /* Context Descriptor */
-#define E1000_TXD_POPTS_SHIFT 8 /* POPTS shift */
-#define E1000_TXD_POPTS_IXSM 0x01 /* Insert IP checksum */
-#define E1000_TXD_POPTS_TXSM 0x02 /* Insert TCP/UDP checksum */
-#define E1000_TXD_CMD_EOP 0x01000000 /* End of Packet */
-#define E1000_TXD_CMD_IFCS 0x02000000 /* Insert FCS (Ethernet CRC) */
-#define E1000_TXD_CMD_IC 0x04000000 /* Insert Checksum */
-#define E1000_TXD_CMD_RS 0x08000000 /* Report Status */
-#define E1000_TXD_CMD_RPS 0x10000000 /* Report Packet Sent */
-#define E1000_TXD_CMD_DEXT 0x20000000 /* Descriptor extension (0 = legacy) */
-#define E1000_TXD_CMD_VLE 0x40000000 /* Add VLAN tag */
-#define E1000_TXD_CMD_IDE 0x80000000 /* Enable Tidv register */
-#define E1000_TXD_STAT_DD 0x00000001 /* Descriptor Done */
-#define E1000_TXD_STAT_EC 0x00000002 /* Excess Collisions */
-#define E1000_TXD_STAT_LC 0x00000004 /* Late Collisions */
-#define E1000_TXD_STAT_TU 0x00000008 /* Transmit underrun */
-#define E1000_TXD_CMD_TCP 0x01000000 /* TCP packet */
-#define E1000_TXD_CMD_IP 0x02000000 /* IP packet */
-#define E1000_TXD_CMD_TSE 0x04000000 /* TCP Seg enable */
-#define E1000_TXD_STAT_TC 0x00000004 /* Tx Underrun */
-/* Extended desc bits for Linksec and timesync */
-#define E1000_TXD_CMD_LINKSEC 0x10000000 /* Apply LinkSec on packet */
-#define E1000_TXD_EXTCMD_TSTAMP 0x00000010 /* IEEE1588 Timestamp packet */
+#define E1000_TXD_DTYP_D 0x00100000 /* Data Descriptor */
+#define E1000_TXD_DTYP_C 0x00000000 /* Context Descriptor */
+#define E1000_TXD_POPTS_IXSM 0x01 /* Insert IP checksum */
+#define E1000_TXD_POPTS_TXSM 0x02 /* Insert TCP/UDP checksum */
+#define E1000_TXD_CMD_EOP 0x01000000 /* End of Packet */
+#define E1000_TXD_CMD_IFCS 0x02000000 /* Insert FCS (Ethernet CRC) */
+#define E1000_TXD_CMD_IC 0x04000000 /* Insert Checksum */
+#define E1000_TXD_CMD_RS 0x08000000 /* Report Status */
+#define E1000_TXD_CMD_RPS 0x10000000 /* Report Packet Sent */
+#define E1000_TXD_CMD_DEXT 0x20000000 /* Desc extension (0 = legacy) */
+#define E1000_TXD_CMD_VLE 0x40000000 /* Add VLAN tag */
+#define E1000_TXD_CMD_IDE 0x80000000 /* Enable Tidv register */
+#define E1000_TXD_STAT_DD 0x00000001 /* Descriptor Done */
+#define E1000_TXD_STAT_EC 0x00000002 /* Excess Collisions */
+#define E1000_TXD_STAT_LC 0x00000004 /* Late Collisions */
+#define E1000_TXD_STAT_TU 0x00000008 /* Transmit underrun */
+#define E1000_TXD_CMD_TCP 0x01000000 /* TCP packet */
+#define E1000_TXD_CMD_IP 0x02000000 /* IP packet */
+#define E1000_TXD_CMD_TSE 0x04000000 /* TCP Seg enable */
+#define E1000_TXD_STAT_TC 0x00000004 /* Tx Underrun */
+#define E1000_TXD_EXTCMD_TSTAMP 0x00000010 /* IEEE1588 Timestamp packet */
/* Transmit Control */
-#define E1000_TCTL_RST 0x00000001 /* software reset */
-#define E1000_TCTL_EN 0x00000002 /* enable tx */
-#define E1000_TCTL_BCE 0x00000004 /* busy check enable */
-#define E1000_TCTL_PSP 0x00000008 /* pad short packets */
-#define E1000_TCTL_CT 0x00000ff0 /* collision threshold */
-#define E1000_TCTL_COLD 0x003ff000 /* collision distance */
-#define E1000_TCTL_SWXOFF 0x00400000 /* SW Xoff transmission */
-#define E1000_TCTL_PBE 0x00800000 /* Packet Burst Enable */
-#define E1000_TCTL_RTLC 0x01000000 /* Re-transmit on late collision */
-#define E1000_TCTL_NRTU 0x02000000 /* No Re-transmit on underrun */
-#define E1000_TCTL_MULR 0x10000000 /* Multiple request support */
+#define E1000_TCTL_EN 0x00000002 /* enable Tx */
+#define E1000_TCTL_PSP 0x00000008 /* pad short packets */
+#define E1000_TCTL_CT 0x00000ff0 /* collision threshold */
+#define E1000_TCTL_COLD 0x003ff000 /* collision distance */
+#define E1000_TCTL_RTLC 0x01000000 /* Re-transmit on late collision */
+#define E1000_TCTL_MULR 0x10000000 /* Multiple request support */
/* Transmit Arbitration Count */
-#define E1000_TARC0_ENABLE 0x00000400 /* Enable Tx Queue 0 */
+#define E1000_TARC0_ENABLE 0x00000400 /* Enable Tx Queue 0 */
/* SerDes Control */
-#define E1000_SCTL_DISABLE_SERDES_LOOPBACK 0x0400
+#define E1000_SCTL_DISABLE_SERDES_LOOPBACK 0x0400
+#define E1000_SCTL_ENABLE_SERDES_LOOPBACK 0x0410
/* Receive Checksum Control */
-#define E1000_RXCSUM_PCSS_MASK 0x000000FF /* Packet Checksum Start */
-#define E1000_RXCSUM_IPOFL 0x00000100 /* IPv4 checksum offload */
-#define E1000_RXCSUM_TUOFL 0x00000200 /* TCP / UDP checksum offload */
-#define E1000_RXCSUM_IPV6OFL 0x00000400 /* IPv6 checksum offload */
-#define E1000_RXCSUM_CRCOFL 0x00000800 /* CRC32 offload enable */
-#define E1000_RXCSUM_IPPCSE 0x00001000 /* IP payload checksum enable */
-#define E1000_RXCSUM_PCSD 0x00002000 /* packet checksum disabled */
+#define E1000_RXCSUM_IPOFL 0x00000100 /* IPv4 checksum offload */
+#define E1000_RXCSUM_TUOFL 0x00000200 /* TCP / UDP checksum offload */
+#define E1000_RXCSUM_CRCOFL 0x00000800 /* CRC32 offload enable */
+#define E1000_RXCSUM_IPPCSE 0x00001000 /* IP payload checksum enable */
+#define E1000_RXCSUM_PCSD 0x00002000 /* packet checksum disabled */
/* Header split receive */
-#define E1000_RFCTL_ISCSI_DIS 0x00000001
-#define E1000_RFCTL_ISCSI_DWC_MASK 0x0000003E
-#define E1000_RFCTL_ISCSI_DWC_SHIFT 1
-#define E1000_RFCTL_NFSW_DIS 0x00000040
-#define E1000_RFCTL_NFSR_DIS 0x00000080
-#define E1000_RFCTL_NFS_VER_MASK 0x00000300
-#define E1000_RFCTL_NFS_VER_SHIFT 8
-#define E1000_RFCTL_IPV6_DIS 0x00000400
-#define E1000_RFCTL_IPV6_XSUM_DIS 0x00000800
-#define E1000_RFCTL_ACK_DIS 0x00001000
-#define E1000_RFCTL_ACKD_DIS 0x00002000
-#define E1000_RFCTL_IPFRSP_DIS 0x00004000
-#define E1000_RFCTL_EXTEN 0x00008000
-#define E1000_RFCTL_IPV6_EX_DIS 0x00010000
-#define E1000_RFCTL_NEW_IPV6_EXT_DIS 0x00020000
-#define E1000_RFCTL_LEF 0x00040000
+#define E1000_RFCTL_NFSW_DIS 0x00000040
+#define E1000_RFCTL_NFSR_DIS 0x00000080
+#define E1000_RFCTL_ACK_DIS 0x00001000
+#define E1000_RFCTL_EXTEN 0x00008000
+#define E1000_RFCTL_IPV6_EX_DIS 0x00010000
+#define E1000_RFCTL_NEW_IPV6_EXT_DIS 0x00020000
+#define E1000_RFCTL_LEF 0x00040000
/* Collision related configuration parameters */
-#define E1000_COLLISION_THRESHOLD 15
-#define E1000_CT_SHIFT 4
-#define E1000_COLLISION_DISTANCE 63
-#define E1000_COLD_SHIFT 12
+#define E1000_COLLISION_THRESHOLD 15
+#define E1000_CT_SHIFT 4
+#define E1000_COLLISION_DISTANCE 63
+#define E1000_COLD_SHIFT 12
/* Default values for the transmit IPG register */
-#define DEFAULT_82542_TIPG_IPGT 10
-#define DEFAULT_82543_TIPG_IPGT_FIBER 9
-#define DEFAULT_82543_TIPG_IPGT_COPPER 8
+#define DEFAULT_82542_TIPG_IPGT 10
+#define DEFAULT_82543_TIPG_IPGT_FIBER 9
+#define DEFAULT_82543_TIPG_IPGT_COPPER 8
-#define E1000_TIPG_IPGT_MASK 0x000003FF
-#define E1000_TIPG_IPGR1_MASK 0x000FFC00
-#define E1000_TIPG_IPGR2_MASK 0x3FF00000
+#define E1000_TIPG_IPGT_MASK 0x000003FF
-#define DEFAULT_82542_TIPG_IPGR1 2
-#define DEFAULT_82543_TIPG_IPGR1 8
-#define E1000_TIPG_IPGR1_SHIFT 10
+#define DEFAULT_82542_TIPG_IPGR1 2
+#define DEFAULT_82543_TIPG_IPGR1 8
+#define E1000_TIPG_IPGR1_SHIFT 10
-#define DEFAULT_82542_TIPG_IPGR2 10
-#define DEFAULT_82543_TIPG_IPGR2 6
-#define DEFAULT_80003ES2LAN_TIPG_IPGR2 7
-#define E1000_TIPG_IPGR2_SHIFT 20
+#define DEFAULT_82542_TIPG_IPGR2 10
+#define DEFAULT_82543_TIPG_IPGR2 6
+#define DEFAULT_80003ES2LAN_TIPG_IPGR2 7
+#define E1000_TIPG_IPGR2_SHIFT 20
/* Ethertype field values */
-#define ETHERNET_IEEE_VLAN_TYPE 0x8100 /* 802.3ac packet */
+#define ETHERNET_IEEE_VLAN_TYPE 0x8100 /* 802.3ac packet */
-#define ETHERNET_FCS_SIZE 4
-#define MAX_JUMBO_FRAME_SIZE 0x3F00
+#define ETHERNET_FCS_SIZE 4
+#define MAX_JUMBO_FRAME_SIZE 0x3F00
/* Extended Configuration Control and Size */
-#define E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP 0x00000020
-#define E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE 0x00000001
-#define E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE 0x00000008
-#define E1000_EXTCNF_CTRL_SWFLAG 0x00000020
-#define E1000_EXTCNF_CTRL_GATE_PHY_CFG 0x00000080
-#define E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK 0x00FF0000
-#define E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT 16
-#define E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK 0x0FFF0000
-#define E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT 16
-
-#define E1000_PHY_CTRL_SPD_EN 0x00000001
-#define E1000_PHY_CTRL_D0A_LPLU 0x00000002
-#define E1000_PHY_CTRL_NOND0A_LPLU 0x00000004
-#define E1000_PHY_CTRL_NOND0A_GBE_DISABLE 0x00000008
-#define E1000_PHY_CTRL_GBE_DISABLE 0x00000040
-
-#define E1000_KABGTXD_BGSQLBIAS 0x00050000
+#define E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP 0x00000020
+#define E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE 0x00000001
+#define E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE 0x00000008
+#define E1000_EXTCNF_CTRL_SWFLAG 0x00000020
+#define E1000_EXTCNF_CTRL_GATE_PHY_CFG 0x00000080
+#define E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK 0x00FF0000
+#define E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT 16
+#define E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK 0x0FFF0000
+#define E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT 16
+
+#define E1000_PHY_CTRL_D0A_LPLU 0x00000002
+#define E1000_PHY_CTRL_NOND0A_LPLU 0x00000004
+#define E1000_PHY_CTRL_NOND0A_GBE_DISABLE 0x00000008
+#define E1000_PHY_CTRL_GBE_DISABLE 0x00000040
+
+#define E1000_KABGTXD_BGSQLBIAS 0x00050000
+
+/* Low Power IDLE Control */
+#define E1000_LPIC_LPIET_SHIFT 24 /* Low Power Idle Entry Time */
/* PBA constants */
-#define E1000_PBA_6K 0x0006 /* 6KB */
-#define E1000_PBA_8K 0x0008 /* 8KB */
-#define E1000_PBA_10K 0x000A /* 10KB */
-#define E1000_PBA_12K 0x000C /* 12KB */
-#define E1000_PBA_14K 0x000E /* 14KB */
-#define E1000_PBA_16K 0x0010 /* 16KB */
-#define E1000_PBA_18K 0x0012
-#define E1000_PBA_20K 0x0014
-#define E1000_PBA_22K 0x0016
-#define E1000_PBA_24K 0x0018
-#define E1000_PBA_26K 0x001A
-#define E1000_PBA_30K 0x001E
-#define E1000_PBA_32K 0x0020
-#define E1000_PBA_34K 0x0022
-#define E1000_PBA_35K 0x0023
-#define E1000_PBA_38K 0x0026
-#define E1000_PBA_40K 0x0028
-#define E1000_PBA_48K 0x0030 /* 48KB */
-#define E1000_PBA_64K 0x0040 /* 64KB */
-
-#define E1000_PBS_16K E1000_PBA_16K
-#define E1000_PBS_24K E1000_PBA_24K
-
-#define IFS_MAX 80
-#define IFS_MIN 40
-#define IFS_RATIO 4
-#define IFS_STEP 10
-#define MIN_NUM_XMITS 1000
+#define E1000_PBA_8K 0x0008 /* 8KB */
+#define E1000_PBA_10K 0x000A /* 10KB */
+#define E1000_PBA_12K 0x000C /* 12KB */
+#define E1000_PBA_14K 0x000E /* 14KB */
+#define E1000_PBA_16K 0x0010 /* 16KB */
+#define E1000_PBA_18K 0x0012
+#define E1000_PBA_20K 0x0014
+#define E1000_PBA_22K 0x0016
+#define E1000_PBA_24K 0x0018
+#define E1000_PBA_26K 0x001A
+#define E1000_PBA_30K 0x001E
+#define E1000_PBA_32K 0x0020
+#define E1000_PBA_34K 0x0022
+#define E1000_PBA_35K 0x0023
+#define E1000_PBA_38K 0x0026
+#define E1000_PBA_40K 0x0028
+#define E1000_PBA_48K 0x0030 /* 48KB */
+#define E1000_PBA_64K 0x0040 /* 64KB */
+
+#define E1000_PBA_RXA_MASK 0xFFFF
+
+#define E1000_PBS_16K E1000_PBA_16K
+
+/* Uncorrectable/correctable ECC Error counts and enable bits */
+#define E1000_PBECCSTS_CORR_ERR_CNT_MASK 0x000000FF
+#define E1000_PBECCSTS_UNCORR_ERR_CNT_MASK 0x0000FF00
+#define E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT 8
+#define E1000_PBECCSTS_ECC_ENABLE 0x00010000
+
+#define IFS_MAX 80
+#define IFS_MIN 40
+#define IFS_RATIO 4
+#define IFS_STEP 10
+#define MIN_NUM_XMITS 1000
/* SW Semaphore Register */
-#define E1000_SWSM_SMBI 0x00000001 /* Driver Semaphore bit */
-#define E1000_SWSM_SWESMBI 0x00000002 /* FW Semaphore bit */
-#define E1000_SWSM_WMNG 0x00000004 /* Wake MNG Clock */
-#define E1000_SWSM_DRV_LOAD 0x00000008 /* Driver Loaded Bit */
+#define E1000_SWSM_SMBI 0x00000001 /* Driver Semaphore bit */
+#define E1000_SWSM_SWESMBI 0x00000002 /* FW Semaphore bit */
+#define E1000_SWSM_DRV_LOAD 0x00000008 /* Driver Loaded Bit */
-#define E1000_SWSM2_LOCK 0x00000002 /* Secondary driver semaphore bit */
+#define E1000_SWSM2_LOCK 0x00000002 /* Secondary driver semaphore bit */
/* Interrupt Cause Read */
-#define E1000_ICR_TXDW 0x00000001 /* Transmit desc written back */
-#define E1000_ICR_TXQE 0x00000002 /* Transmit Queue empty */
-#define E1000_ICR_LSC 0x00000004 /* Link Status Change */
-#define E1000_ICR_RXSEQ 0x00000008 /* rx sequence error */
-#define E1000_ICR_RXDMT0 0x00000010 /* rx desc min. threshold (0) */
-#define E1000_ICR_RXO 0x00000040 /* rx overrun */
-#define E1000_ICR_RXT0 0x00000080 /* rx timer intr (ring 0) */
-#define E1000_ICR_VMMB 0x00000100 /* VM MB event */
-#define E1000_ICR_MDAC 0x00000200 /* MDIO access complete */
-#define E1000_ICR_RXCFG 0x00000400 /* Rx /c/ ordered set */
-#define E1000_ICR_GPI_EN0 0x00000800 /* GP Int 0 */
-#define E1000_ICR_GPI_EN1 0x00001000 /* GP Int 1 */
-#define E1000_ICR_GPI_EN2 0x00002000 /* GP Int 2 */
-#define E1000_ICR_GPI_EN3 0x00004000 /* GP Int 3 */
-#define E1000_ICR_TXD_LOW 0x00008000
-#define E1000_ICR_SRPD 0x00010000
-#define E1000_ICR_ACK 0x00020000 /* Receive Ack frame */
-#define E1000_ICR_MNG 0x00040000 /* Manageability event */
-#define E1000_ICR_DOCK 0x00080000 /* Dock/Undock */
-#define E1000_ICR_DRSTA 0x40000000 /* Device Reset Asserted */
-#define E1000_ICR_INT_ASSERTED 0x80000000 /* If this bit asserted, the driver
- * should claim the interrupt */
-#define E1000_ICR_RXD_FIFO_PAR0 0x00100000 /* Q0 Rx desc FIFO parity error */
-#define E1000_ICR_TXD_FIFO_PAR0 0x00200000 /* Q0 Tx desc FIFO parity error */
-#define E1000_ICR_HOST_ARB_PAR 0x00400000 /* host arb read buffer parity err */
-#define E1000_ICR_PB_PAR 0x00800000 /* packet buffer parity error */
-#define E1000_ICR_RXD_FIFO_PAR1 0x01000000 /* Q1 Rx desc FIFO parity error */
-#define E1000_ICR_TXD_FIFO_PAR1 0x02000000 /* Q1 Tx desc FIFO parity error */
-#define E1000_ICR_ALL_PARITY 0x03F00000 /* all parity error bits */
-#define E1000_ICR_DSW 0x00000020 /* FW changed the status of DISSW
- * bit in the FWSM */
-#define E1000_ICR_PHYINT 0x00001000 /* LAN connected device generates
- * an interrupt */
-#define E1000_ICR_DOUTSYNC 0x10000000 /* NIC DMA out of sync */
-#define E1000_ICR_EPRST 0x00100000 /* ME hardware reset occurs */
-#define E1000_ICR_RXQ0 0x00100000 /* Rx Queue 0 Interrupt */
-#define E1000_ICR_RXQ1 0x00200000 /* Rx Queue 1 Interrupt */
-#define E1000_ICR_TXQ0 0x00400000 /* Tx Queue 0 Interrupt */
-#define E1000_ICR_TXQ1 0x00800000 /* Tx Queue 1 Interrupt */
-#define E1000_ICR_OTHER 0x01000000 /* Other Interrupts */
-#define E1000_ICR_FER 0x00400000 /* Fatal Error */
+#define E1000_ICR_TXDW 0x00000001 /* Transmit desc written back */
+#define E1000_ICR_TXQE 0x00000002 /* Transmit Queue empty */
+#define E1000_ICR_LSC 0x00000004 /* Link Status Change */
+#define E1000_ICR_RXSEQ 0x00000008 /* Rx sequence error */
+#define E1000_ICR_RXDMT0 0x00000010 /* Rx desc min. threshold (0) */
+#define E1000_ICR_RXO 0x00000040 /* Rx overrun */
+#define E1000_ICR_RXT0 0x00000080 /* Rx timer intr (ring 0) */
+#define E1000_ICR_VMMB 0x00000100 /* VM MB event */
+#define E1000_ICR_RXCFG 0x00000400 /* Rx /c/ ordered set */
+#define E1000_ICR_GPI_EN0 0x00000800 /* GP Int 0 */
+#define E1000_ICR_GPI_EN1 0x00001000 /* GP Int 1 */
+#define E1000_ICR_GPI_EN2 0x00002000 /* GP Int 2 */
+#define E1000_ICR_GPI_EN3 0x00004000 /* GP Int 3 */
+#define E1000_ICR_TXD_LOW 0x00008000
+#define E1000_ICR_MNG 0x00040000 /* Manageability event */
+#define E1000_ICR_ECCER 0x00400000 /* Uncorrectable ECC Error */
+#define E1000_ICR_TS 0x00080000 /* Time Sync Interrupt */
+#define E1000_ICR_DRSTA 0x40000000 /* Device Reset Asserted */
+/* If this bit asserted, the driver should claim the interrupt */
+#define E1000_ICR_INT_ASSERTED 0x80000000
+#define E1000_ICR_DOUTSYNC 0x10000000 /* NIC DMA out of sync */
+#define E1000_ICR_RXQ0 0x00100000 /* Rx Queue 0 Interrupt */
+#define E1000_ICR_RXQ1 0x00200000 /* Rx Queue 1 Interrupt */
+#define E1000_ICR_TXQ0 0x00400000 /* Tx Queue 0 Interrupt */
+#define E1000_ICR_TXQ1 0x00800000 /* Tx Queue 1 Interrupt */
+#define E1000_ICR_OTHER 0x01000000 /* Other Interrupts */
+#define E1000_ICR_FER 0x00400000 /* Fatal Error */
+
+#define E1000_ICR_THS 0x00800000 /* ICR.THS: Thermal Sensor Event*/
+#define E1000_ICR_MDDET 0x10000000 /* Malicious Driver Detect */
+
+#define E1000_ITR_MASK 0x000FFFFF /* ITR value bitfield */
+#define E1000_ITR_MULT 256 /* ITR mulitplier in nsec */
/* PBA ECC Register */
-#define E1000_PBA_ECC_COUNTER_MASK 0xFFF00000 /* ECC counter mask */
-#define E1000_PBA_ECC_COUNTER_SHIFT 20 /* ECC counter shift value */
-#define E1000_PBA_ECC_CORR_EN 0x00000001 /* Enable ECC error correction */
-#define E1000_PBA_ECC_STAT_CLR 0x00000002 /* Clear ECC error counter */
-#define E1000_PBA_ECC_INT_EN 0x00000004 /* Enable ICR bit 5 on ECC error */
+#define E1000_PBA_ECC_COUNTER_MASK 0xFFF00000 /* ECC counter mask */
+#define E1000_PBA_ECC_COUNTER_SHIFT 20 /* ECC counter shift value */
+#define E1000_PBA_ECC_CORR_EN 0x00000001 /* Enable ECC error correction */
+#define E1000_PBA_ECC_STAT_CLR 0x00000002 /* Clear ECC error counter */
+#define E1000_PBA_ECC_INT_EN 0x00000004 /* Enable ICR bit 5 on ECC error */
/* Extended Interrupt Cause Read */
-#define E1000_EICR_RX_QUEUE0 0x00000001 /* Rx Queue 0 Interrupt */
-#define E1000_EICR_RX_QUEUE1 0x00000002 /* Rx Queue 1 Interrupt */
-#define E1000_EICR_RX_QUEUE2 0x00000004 /* Rx Queue 2 Interrupt */
-#define E1000_EICR_RX_QUEUE3 0x00000008 /* Rx Queue 3 Interrupt */
-#define E1000_EICR_TX_QUEUE0 0x00000100 /* Tx Queue 0 Interrupt */
-#define E1000_EICR_TX_QUEUE1 0x00000200 /* Tx Queue 1 Interrupt */
-#define E1000_EICR_TX_QUEUE2 0x00000400 /* Tx Queue 2 Interrupt */
-#define E1000_EICR_TX_QUEUE3 0x00000800 /* Tx Queue 3 Interrupt */
-#define E1000_EICR_TCP_TIMER 0x40000000 /* TCP Timer */
-#define E1000_EICR_OTHER 0x80000000 /* Interrupt Cause Active */
+#define E1000_EICR_RX_QUEUE0 0x00000001 /* Rx Queue 0 Interrupt */
+#define E1000_EICR_RX_QUEUE1 0x00000002 /* Rx Queue 1 Interrupt */
+#define E1000_EICR_RX_QUEUE2 0x00000004 /* Rx Queue 2 Interrupt */
+#define E1000_EICR_RX_QUEUE3 0x00000008 /* Rx Queue 3 Interrupt */
+#define E1000_EICR_TX_QUEUE0 0x00000100 /* Tx Queue 0 Interrupt */
+#define E1000_EICR_TX_QUEUE1 0x00000200 /* Tx Queue 1 Interrupt */
+#define E1000_EICR_TX_QUEUE2 0x00000400 /* Tx Queue 2 Interrupt */
+#define E1000_EICR_TX_QUEUE3 0x00000800 /* Tx Queue 3 Interrupt */
+#define E1000_EICR_TCP_TIMER 0x40000000 /* TCP Timer */
+#define E1000_EICR_OTHER 0x80000000 /* Interrupt Cause Active */
/* TCP Timer */
-#define E1000_TCPTIMER_KS 0x00000100 /* KickStart */
-#define E1000_TCPTIMER_COUNT_ENABLE 0x00000200 /* Count Enable */
-#define E1000_TCPTIMER_COUNT_FINISH 0x00000400 /* Count finish */
-#define E1000_TCPTIMER_LOOP 0x00000800 /* Loop */
-
-/*
- * This defines the bits that are set in the Interrupt Mask
- * Set/Read Register. Each bit is documented below:
- * o RXDMT0 = Receive Descriptor Minimum Threshold hit (ring 0)
- * o RXSEQ = Receive Sequence Error
- */
-#define POLL_IMS_ENABLE_MASK ( \
- E1000_IMS_RXDMT0 | \
- E1000_IMS_RXSEQ)
+#define E1000_TCPTIMER_KS 0x00000100 /* KickStart */
+#define E1000_TCPTIMER_COUNT_ENABLE 0x00000200 /* Count Enable */
+#define E1000_TCPTIMER_COUNT_FINISH 0x00000400 /* Count finish */
+#define E1000_TCPTIMER_LOOP 0x00000800 /* Loop */
-/*
- * This defines the bits that are set in the Interrupt Mask
+/* This defines the bits that are set in the Interrupt Mask
* Set/Read Register. Each bit is documented below:
* o RXT0 = Receiver Timer Interrupt (ring 0)
* o TXDW = Transmit Descriptor Written Back
@@ -863,861 +589,831 @@
* o LSC = Link Status Change
*/
#define IMS_ENABLE_MASK ( \
- E1000_IMS_RXT0 | \
- E1000_IMS_TXDW | \
- E1000_IMS_RXDMT0 | \
- E1000_IMS_RXSEQ | \
- E1000_IMS_LSC)
+ E1000_IMS_RXT0 | \
+ E1000_IMS_TXDW | \
+ E1000_IMS_RXDMT0 | \
+ E1000_IMS_RXSEQ | \
+ E1000_IMS_LSC)
/* Interrupt Mask Set */
-#define E1000_IMS_TXDW E1000_ICR_TXDW /* Tx desc written back */
-#define E1000_IMS_TXQE E1000_ICR_TXQE /* Transmit Queue empty */
-#define E1000_IMS_LSC E1000_ICR_LSC /* Link Status Change */
-#define E1000_IMS_VMMB E1000_ICR_VMMB /* Mail box activity */
-#define E1000_IMS_RXSEQ E1000_ICR_RXSEQ /* rx sequence error */
-#define E1000_IMS_RXDMT0 E1000_ICR_RXDMT0 /* rx desc min. threshold */
-#define E1000_IMS_RXO E1000_ICR_RXO /* rx overrun */
-#define E1000_IMS_RXT0 E1000_ICR_RXT0 /* rx timer intr */
-#define E1000_IMS_MDAC E1000_ICR_MDAC /* MDIO access complete */
-#define E1000_IMS_RXCFG E1000_ICR_RXCFG /* Rx /c/ ordered set */
-#define E1000_IMS_GPI_EN0 E1000_ICR_GPI_EN0 /* GP Int 0 */
-#define E1000_IMS_GPI_EN1 E1000_ICR_GPI_EN1 /* GP Int 1 */
-#define E1000_IMS_GPI_EN2 E1000_ICR_GPI_EN2 /* GP Int 2 */
-#define E1000_IMS_GPI_EN3 E1000_ICR_GPI_EN3 /* GP Int 3 */
-#define E1000_IMS_TXD_LOW E1000_ICR_TXD_LOW
-#define E1000_IMS_SRPD E1000_ICR_SRPD
-#define E1000_IMS_ACK E1000_ICR_ACK /* Receive Ack frame */
-#define E1000_IMS_MNG E1000_ICR_MNG /* Manageability event */
-#define E1000_IMS_DOCK E1000_ICR_DOCK /* Dock/Undock */
-#define E1000_IMS_DRSTA E1000_ICR_DRSTA /* Device Reset Asserted */
-#define E1000_IMS_RXD_FIFO_PAR0 E1000_ICR_RXD_FIFO_PAR0 /* Q0 Rx desc FIFO
- * parity error */
-#define E1000_IMS_TXD_FIFO_PAR0 E1000_ICR_TXD_FIFO_PAR0 /* Q0 Tx desc FIFO
- * parity error */
-#define E1000_IMS_HOST_ARB_PAR E1000_ICR_HOST_ARB_PAR /* host arb read buffer
- * parity error */
-#define E1000_IMS_PB_PAR E1000_ICR_PB_PAR /* packet buffer parity
- * error */
-#define E1000_IMS_RXD_FIFO_PAR1 E1000_ICR_RXD_FIFO_PAR1 /* Q1 Rx desc FIFO
- * parity error */
-#define E1000_IMS_TXD_FIFO_PAR1 E1000_ICR_TXD_FIFO_PAR1 /* Q1 Tx desc FIFO
- * parity error */
-#define E1000_IMS_DSW E1000_ICR_DSW
-#define E1000_IMS_PHYINT E1000_ICR_PHYINT
-#define E1000_IMS_DOUTSYNC E1000_ICR_DOUTSYNC /* NIC DMA out of sync */
-#define E1000_IMS_EPRST E1000_ICR_EPRST
-#define E1000_IMS_RXQ0 E1000_ICR_RXQ0 /* Rx Queue 0 Interrupt */
-#define E1000_IMS_RXQ1 E1000_ICR_RXQ1 /* Rx Queue 1 Interrupt */
-#define E1000_IMS_TXQ0 E1000_ICR_TXQ0 /* Tx Queue 0 Interrupt */
-#define E1000_IMS_TXQ1 E1000_ICR_TXQ1 /* Tx Queue 1 Interrupt */
-#define E1000_IMS_OTHER E1000_ICR_OTHER /* Other Interrupts */
-#define E1000_IMS_FER E1000_ICR_FER /* Fatal Error */
-
+#define E1000_IMS_TXDW E1000_ICR_TXDW /* Tx desc written back */
+#define E1000_IMS_TXQE E1000_ICR_TXQE /* Transmit Queue empty */
+#define E1000_IMS_LSC E1000_ICR_LSC /* Link Status Change */
+#define E1000_IMS_VMMB E1000_ICR_VMMB /* Mail box activity */
+#define E1000_IMS_RXSEQ E1000_ICR_RXSEQ /* Rx sequence error */
+#define E1000_IMS_RXDMT0 E1000_ICR_RXDMT0 /* Rx desc min. threshold */
+#define E1000_IMS_RXO E1000_ICR_RXO /* Rx overrun */
+#define E1000_IMS_RXT0 E1000_ICR_RXT0 /* Rx timer intr */
+#define E1000_IMS_TXD_LOW E1000_ICR_TXD_LOW
+#define E1000_IMS_ECCER E1000_ICR_ECCER /* Uncorrectable ECC Error */
+#define E1000_IMS_TS E1000_ICR_TS /* Time Sync Interrupt */
+#define E1000_IMS_DRSTA E1000_ICR_DRSTA /* Device Reset Asserted */
+#define E1000_IMS_DOUTSYNC E1000_ICR_DOUTSYNC /* NIC DMA out of sync */
+#define E1000_IMS_RXQ0 E1000_ICR_RXQ0 /* Rx Queue 0 Interrupt */
+#define E1000_IMS_RXQ1 E1000_ICR_RXQ1 /* Rx Queue 1 Interrupt */
+#define E1000_IMS_TXQ0 E1000_ICR_TXQ0 /* Tx Queue 0 Interrupt */
+#define E1000_IMS_TXQ1 E1000_ICR_TXQ1 /* Tx Queue 1 Interrupt */
+#define E1000_IMS_OTHER E1000_ICR_OTHER /* Other Interrupts */
+#define E1000_IMS_FER E1000_ICR_FER /* Fatal Error */
+
+#define E1000_IMS_THS E1000_ICR_THS /* ICR.TS: Thermal Sensor Event*/
+#define E1000_IMS_MDDET E1000_ICR_MDDET /* Malicious Driver Detect */
/* Extended Interrupt Mask Set */
-#define E1000_EIMS_RX_QUEUE0 E1000_EICR_RX_QUEUE0 /* Rx Queue 0 Interrupt */
-#define E1000_EIMS_RX_QUEUE1 E1000_EICR_RX_QUEUE1 /* Rx Queue 1 Interrupt */
-#define E1000_EIMS_RX_QUEUE2 E1000_EICR_RX_QUEUE2 /* Rx Queue 2 Interrupt */
-#define E1000_EIMS_RX_QUEUE3 E1000_EICR_RX_QUEUE3 /* Rx Queue 3 Interrupt */
-#define E1000_EIMS_TX_QUEUE0 E1000_EICR_TX_QUEUE0 /* Tx Queue 0 Interrupt */
-#define E1000_EIMS_TX_QUEUE1 E1000_EICR_TX_QUEUE1 /* Tx Queue 1 Interrupt */
-#define E1000_EIMS_TX_QUEUE2 E1000_EICR_TX_QUEUE2 /* Tx Queue 2 Interrupt */
-#define E1000_EIMS_TX_QUEUE3 E1000_EICR_TX_QUEUE3 /* Tx Queue 3 Interrupt */
-#define E1000_EIMS_TCP_TIMER E1000_EICR_TCP_TIMER /* TCP Timer */
-#define E1000_EIMS_OTHER E1000_EICR_OTHER /* Interrupt Cause Active */
+#define E1000_EIMS_RX_QUEUE0 E1000_EICR_RX_QUEUE0 /* Rx Queue 0 Interrupt */
+#define E1000_EIMS_RX_QUEUE1 E1000_EICR_RX_QUEUE1 /* Rx Queue 1 Interrupt */
+#define E1000_EIMS_RX_QUEUE2 E1000_EICR_RX_QUEUE2 /* Rx Queue 2 Interrupt */
+#define E1000_EIMS_RX_QUEUE3 E1000_EICR_RX_QUEUE3 /* Rx Queue 3 Interrupt */
+#define E1000_EIMS_TX_QUEUE0 E1000_EICR_TX_QUEUE0 /* Tx Queue 0 Interrupt */
+#define E1000_EIMS_TX_QUEUE1 E1000_EICR_TX_QUEUE1 /* Tx Queue 1 Interrupt */
+#define E1000_EIMS_TX_QUEUE2 E1000_EICR_TX_QUEUE2 /* Tx Queue 2 Interrupt */
+#define E1000_EIMS_TX_QUEUE3 E1000_EICR_TX_QUEUE3 /* Tx Queue 3 Interrupt */
+#define E1000_EIMS_TCP_TIMER E1000_EICR_TCP_TIMER /* TCP Timer */
+#define E1000_EIMS_OTHER E1000_EICR_OTHER /* Interrupt Cause Active */
/* Interrupt Cause Set */
-#define E1000_ICS_TXDW E1000_ICR_TXDW /* Tx desc written back */
-#define E1000_ICS_TXQE E1000_ICR_TXQE /* Transmit Queue empty */
-#define E1000_ICS_LSC E1000_ICR_LSC /* Link Status Change */
-#define E1000_ICS_RXSEQ E1000_ICR_RXSEQ /* rx sequence error */
-#define E1000_ICS_RXDMT0 E1000_ICR_RXDMT0 /* rx desc min. threshold */
-#define E1000_ICS_RXO E1000_ICR_RXO /* rx overrun */
-#define E1000_ICS_RXT0 E1000_ICR_RXT0 /* rx timer intr */
-#define E1000_ICS_MDAC E1000_ICR_MDAC /* MDIO access complete */
-#define E1000_ICS_RXCFG E1000_ICR_RXCFG /* Rx /c/ ordered set */
-#define E1000_ICS_GPI_EN0 E1000_ICR_GPI_EN0 /* GP Int 0 */
-#define E1000_ICS_GPI_EN1 E1000_ICR_GPI_EN1 /* GP Int 1 */
-#define E1000_ICS_GPI_EN2 E1000_ICR_GPI_EN2 /* GP Int 2 */
-#define E1000_ICS_GPI_EN3 E1000_ICR_GPI_EN3 /* GP Int 3 */
-#define E1000_ICS_TXD_LOW E1000_ICR_TXD_LOW
-#define E1000_ICS_SRPD E1000_ICR_SRPD
-#define E1000_ICS_ACK E1000_ICR_ACK /* Receive Ack frame */
-#define E1000_ICS_MNG E1000_ICR_MNG /* Manageability event */
-#define E1000_ICS_DOCK E1000_ICR_DOCK /* Dock/Undock */
-#define E1000_ICS_DRSTA E1000_ICR_DRSTA /* Device Reset Aserted */
-#define E1000_ICS_RXD_FIFO_PAR0 E1000_ICR_RXD_FIFO_PAR0 /* Q0 Rx desc FIFO
- * parity error */
-#define E1000_ICS_TXD_FIFO_PAR0 E1000_ICR_TXD_FIFO_PAR0 /* Q0 Tx desc FIFO
- * parity error */
-#define E1000_ICS_HOST_ARB_PAR E1000_ICR_HOST_ARB_PAR /* host arb read buffer
- * parity error */
-#define E1000_ICS_PB_PAR E1000_ICR_PB_PAR /* packet buffer parity
- * error */
-#define E1000_ICS_RXD_FIFO_PAR1 E1000_ICR_RXD_FIFO_PAR1 /* Q1 Rx desc FIFO
- * parity error */
-#define E1000_ICS_TXD_FIFO_PAR1 E1000_ICR_TXD_FIFO_PAR1 /* Q1 Tx desc FIFO
- * parity error */
-#define E1000_ICS_DSW E1000_ICR_DSW
-#define E1000_ICS_DOUTSYNC E1000_ICR_DOUTSYNC /* NIC DMA out of sync */
-#define E1000_ICS_PHYINT E1000_ICR_PHYINT
-#define E1000_ICS_EPRST E1000_ICR_EPRST
+#define E1000_ICS_LSC E1000_ICR_LSC /* Link Status Change */
+#define E1000_ICS_RXSEQ E1000_ICR_RXSEQ /* Rx sequence error */
+#define E1000_ICS_RXDMT0 E1000_ICR_RXDMT0 /* Rx desc min. threshold */
/* Extended Interrupt Cause Set */
-#define E1000_EICS_RX_QUEUE0 E1000_EICR_RX_QUEUE0 /* Rx Queue 0 Interrupt */
-#define E1000_EICS_RX_QUEUE1 E1000_EICR_RX_QUEUE1 /* Rx Queue 1 Interrupt */
-#define E1000_EICS_RX_QUEUE2 E1000_EICR_RX_QUEUE2 /* Rx Queue 2 Interrupt */
-#define E1000_EICS_RX_QUEUE3 E1000_EICR_RX_QUEUE3 /* Rx Queue 3 Interrupt */
-#define E1000_EICS_TX_QUEUE0 E1000_EICR_TX_QUEUE0 /* Tx Queue 0 Interrupt */
-#define E1000_EICS_TX_QUEUE1 E1000_EICR_TX_QUEUE1 /* Tx Queue 1 Interrupt */
-#define E1000_EICS_TX_QUEUE2 E1000_EICR_TX_QUEUE2 /* Tx Queue 2 Interrupt */
-#define E1000_EICS_TX_QUEUE3 E1000_EICR_TX_QUEUE3 /* Tx Queue 3 Interrupt */
-#define E1000_EICS_TCP_TIMER E1000_EICR_TCP_TIMER /* TCP Timer */
-#define E1000_EICS_OTHER E1000_EICR_OTHER /* Interrupt Cause Active */
-
-#define E1000_EITR_ITR_INT_MASK 0x0000FFFF
+#define E1000_EICS_RX_QUEUE0 E1000_EICR_RX_QUEUE0 /* Rx Queue 0 Interrupt */
+#define E1000_EICS_RX_QUEUE1 E1000_EICR_RX_QUEUE1 /* Rx Queue 1 Interrupt */
+#define E1000_EICS_RX_QUEUE2 E1000_EICR_RX_QUEUE2 /* Rx Queue 2 Interrupt */
+#define E1000_EICS_RX_QUEUE3 E1000_EICR_RX_QUEUE3 /* Rx Queue 3 Interrupt */
+#define E1000_EICS_TX_QUEUE0 E1000_EICR_TX_QUEUE0 /* Tx Queue 0 Interrupt */
+#define E1000_EICS_TX_QUEUE1 E1000_EICR_TX_QUEUE1 /* Tx Queue 1 Interrupt */
+#define E1000_EICS_TX_QUEUE2 E1000_EICR_TX_QUEUE2 /* Tx Queue 2 Interrupt */
+#define E1000_EICS_TX_QUEUE3 E1000_EICR_TX_QUEUE3 /* Tx Queue 3 Interrupt */
+#define E1000_EICS_TCP_TIMER E1000_EICR_TCP_TIMER /* TCP Timer */
+#define E1000_EICS_OTHER E1000_EICR_OTHER /* Interrupt Cause Active */
+
+#define E1000_EITR_ITR_INT_MASK 0x0000FFFF
/* E1000_EITR_CNT_IGNR is only for 82576 and newer */
#define E1000_EITR_CNT_IGNR 0x80000000 /* Don't reset counters on write */
/* Transmit Descriptor Control */
-#define E1000_TXDCTL_PTHRESH 0x0000003F /* TXDCTL Prefetch Threshold */
-#define E1000_TXDCTL_HTHRESH 0x00003F00 /* TXDCTL Host Threshold */
-#define E1000_TXDCTL_WTHRESH 0x003F0000 /* TXDCTL Writeback Threshold */
-#define E1000_TXDCTL_GRAN 0x01000000 /* TXDCTL Granularity */
-#define E1000_TXDCTL_LWTHRESH 0xFE000000 /* TXDCTL Low Threshold */
-#define E1000_TXDCTL_FULL_TX_DESC_WB 0x01010000 /* GRAN=1, WTHRESH=1 */
+#define E1000_TXDCTL_PTHRESH 0x0000003F /* TXDCTL Prefetch Threshold */
+#define E1000_TXDCTL_HTHRESH 0x00003F00 /* TXDCTL Host Threshold */
+#define E1000_TXDCTL_WTHRESH 0x003F0000 /* TXDCTL Writeback Threshold */
+#define E1000_TXDCTL_GRAN 0x01000000 /* TXDCTL Granularity */
+#define E1000_TXDCTL_FULL_TX_DESC_WB 0x01010000 /* GRAN=1, WTHRESH=1 */
#define E1000_TXDCTL_MAX_TX_DESC_PREFETCH 0x0100001F /* GRAN=1, PTHRESH=31 */
/* Enable the counting of descriptors still to be processed. */
-#define E1000_TXDCTL_COUNT_DESC 0x00400000
+#define E1000_TXDCTL_COUNT_DESC 0x00400000
/* Flow Control Constants */
-#define FLOW_CONTROL_ADDRESS_LOW 0x00C28001
-#define FLOW_CONTROL_ADDRESS_HIGH 0x00000100
-#define FLOW_CONTROL_TYPE 0x8808
+#define FLOW_CONTROL_ADDRESS_LOW 0x00C28001
+#define FLOW_CONTROL_ADDRESS_HIGH 0x00000100
+#define FLOW_CONTROL_TYPE 0x8808
/* 802.1q VLAN Packet Size */
-#define VLAN_TAG_SIZE 4 /* 802.3ac tag (not DMA'd) */
-#define E1000_VLAN_FILTER_TBL_SIZE 128 /* VLAN Filter Table (4096 bits) */
+#define VLAN_TAG_SIZE 4 /* 802.3ac tag (not DMA'd) */
+#define E1000_VLAN_FILTER_TBL_SIZE 128 /* VLAN Filter Table (4096 bits) */
-/* Receive Address */
-/*
+/* Receive Address
* Number of high/low register pairs in the RAR. The RAR (Receive Address
* Registers) holds the directed and multicast addresses that we monitor.
* Technically, we have 16 spots. However, we reserve one of these spots
* (RAR[15]) for our directed address used by controllers with
* manageability enabled, allowing us room for 15 multicast addresses.
*/
-#define E1000_RAR_ENTRIES 15
-#define E1000_RAH_AV 0x80000000 /* Receive descriptor valid */
-#define E1000_RAL_MAC_ADDR_LEN 4
-#define E1000_RAH_MAC_ADDR_LEN 2
-#define E1000_RAH_POOL_MASK 0x03FC0000
-#define E1000_RAH_POOL_1 0x00040000
+#define E1000_RAR_ENTRIES 15
+#define E1000_RAH_AV 0x80000000 /* Receive descriptor valid */
+#define E1000_RAL_MAC_ADDR_LEN 4
+#define E1000_RAH_MAC_ADDR_LEN 2
+#define E1000_RAH_QUEUE_MASK_82575 0x000C0000
+#define E1000_RAH_POOL_1 0x00040000
/* Error Codes */
-#define E1000_SUCCESS 0
-#define E1000_ERR_NVM 1
-#define E1000_ERR_PHY 2
-#define E1000_ERR_CONFIG 3
-#define E1000_ERR_PARAM 4
-#define E1000_ERR_MAC_INIT 5
-#define E1000_ERR_PHY_TYPE 6
-#define E1000_ERR_RESET 9
-#define E1000_ERR_MASTER_REQUESTS_PENDING 10
-#define E1000_ERR_HOST_INTERFACE_COMMAND 11
-#define E1000_BLK_PHY_RESET 12
-#define E1000_ERR_SWFW_SYNC 13
-#define E1000_NOT_IMPLEMENTED 14
-#define E1000_ERR_MBX 15
-#define E1000_ERR_INVALID_ARGUMENT 16
-#define E1000_ERR_NO_SPACE 17
-#define E1000_ERR_NVM_PBA_SECTION 18
+#define E1000_SUCCESS 0
+#define E1000_ERR_NVM 1
+#define E1000_ERR_PHY 2
+#define E1000_ERR_CONFIG 3
+#define E1000_ERR_PARAM 4
+#define E1000_ERR_MAC_INIT 5
+#define E1000_ERR_PHY_TYPE 6
+#define E1000_ERR_RESET 9
+#define E1000_ERR_MASTER_REQUESTS_PENDING 10
+#define E1000_ERR_HOST_INTERFACE_COMMAND 11
+#define E1000_BLK_PHY_RESET 12
+#define E1000_ERR_SWFW_SYNC 13
+#define E1000_NOT_IMPLEMENTED 14
+#define E1000_ERR_MBX 15
+#define E1000_ERR_INVALID_ARGUMENT 16
+#define E1000_ERR_NO_SPACE 17
+#define E1000_ERR_NVM_PBA_SECTION 18
+#define E1000_ERR_I2C 19
+#define E1000_ERR_INVM_VALUE_NOT_FOUND 20
/* Loop limit on how long we wait for auto-negotiation to complete */
-#define FIBER_LINK_UP_LIMIT 50
-#define COPPER_LINK_UP_LIMIT 10
-#define PHY_AUTO_NEG_LIMIT 45
-#define PHY_FORCE_LIMIT 20
+#define FIBER_LINK_UP_LIMIT 50
+#define COPPER_LINK_UP_LIMIT 10
+#define PHY_AUTO_NEG_LIMIT 45
+#define PHY_FORCE_LIMIT 20
/* Number of 100 microseconds we wait for PCI Express master disable */
-#define MASTER_DISABLE_TIMEOUT 800
+#define MASTER_DISABLE_TIMEOUT 800
/* Number of milliseconds we wait for PHY configuration done after MAC reset */
-#define PHY_CFG_TIMEOUT 100
+#define PHY_CFG_TIMEOUT 100
/* Number of 2 milliseconds we wait for acquiring MDIO ownership. */
-#define MDIO_OWNERSHIP_TIMEOUT 10
+#define MDIO_OWNERSHIP_TIMEOUT 10
/* Number of milliseconds for NVM auto read done after MAC reset. */
-#define AUTO_READ_DONE_TIMEOUT 10
+#define AUTO_READ_DONE_TIMEOUT 10
/* Flow Control */
-#define E1000_FCRTH_RTH 0x0000FFF8 /* Mask Bits[15:3] for RTH */
-#define E1000_FCRTH_XFCE 0x80000000 /* External Flow Control Enable */
-#define E1000_FCRTL_RTL 0x0000FFF8 /* Mask Bits[15:3] for RTL */
-#define E1000_FCRTL_XONE 0x80000000 /* Enable XON frame transmission */
+#define E1000_FCRTH_RTH 0x0000FFF8 /* Mask Bits[15:3] for RTH */
+#define E1000_FCRTL_RTL 0x0000FFF8 /* Mask Bits[15:3] for RTL */
+#define E1000_FCRTL_XONE 0x80000000 /* Enable XON frame transmission */
/* Transmit Configuration Word */
-#define E1000_TXCW_FD 0x00000020 /* TXCW full duplex */
-#define E1000_TXCW_HD 0x00000040 /* TXCW half duplex */
-#define E1000_TXCW_PAUSE 0x00000080 /* TXCW sym pause request */
-#define E1000_TXCW_ASM_DIR 0x00000100 /* TXCW astm pause direction */
-#define E1000_TXCW_PAUSE_MASK 0x00000180 /* TXCW pause request mask */
-#define E1000_TXCW_RF 0x00003000 /* TXCW remote fault */
-#define E1000_TXCW_NP 0x00008000 /* TXCW next page */
-#define E1000_TXCW_CW 0x0000ffff /* TxConfigWord mask */
-#define E1000_TXCW_TXC 0x40000000 /* Transmit Config control */
-#define E1000_TXCW_ANE 0x80000000 /* Auto-neg enable */
+#define E1000_TXCW_FD 0x00000020 /* TXCW full duplex */
+#define E1000_TXCW_PAUSE 0x00000080 /* TXCW sym pause request */
+#define E1000_TXCW_ASM_DIR 0x00000100 /* TXCW astm pause direction */
+#define E1000_TXCW_PAUSE_MASK 0x00000180 /* TXCW pause request mask */
+#define E1000_TXCW_ANE 0x80000000 /* Auto-neg enable */
/* Receive Configuration Word */
-#define E1000_RXCW_CW 0x0000ffff /* RxConfigWord mask */
-#define E1000_RXCW_NC 0x04000000 /* Receive config no carrier */
-#define E1000_RXCW_IV 0x08000000 /* Receive config invalid */
-#define E1000_RXCW_CC 0x10000000 /* Receive config change */
-#define E1000_RXCW_C 0x20000000 /* Receive config */
-#define E1000_RXCW_SYNCH 0x40000000 /* Receive config synch */
-#define E1000_RXCW_ANC 0x80000000 /* Auto-neg complete */
-
-#define E1000_TSYNCTXCTL_VALID 0x00000001 /* tx timestamp valid */
-#define E1000_TSYNCTXCTL_ENABLED 0x00000010 /* enable tx timestampping */
-
-#define E1000_TSYNCRXCTL_VALID 0x00000001 /* rx timestamp valid */
-#define E1000_TSYNCRXCTL_TYPE_MASK 0x0000000E /* rx type mask */
-#define E1000_TSYNCRXCTL_TYPE_L2_V2 0x00
-#define E1000_TSYNCRXCTL_TYPE_L4_V1 0x02
-#define E1000_TSYNCRXCTL_TYPE_L2_L4_V2 0x04
-#define E1000_TSYNCRXCTL_TYPE_ALL 0x08
-#define E1000_TSYNCRXCTL_TYPE_EVENT_V2 0x0A
-#define E1000_TSYNCRXCTL_ENABLED 0x00000010 /* enable rx timestampping */
-
-#define E1000_TSYNCRXCFG_PTP_V1_CTRLT_MASK 0x000000FF
-#define E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE 0x00
-#define E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE 0x01
-#define E1000_TSYNCRXCFG_PTP_V1_FOLLOWUP_MESSAGE 0x02
-#define E1000_TSYNCRXCFG_PTP_V1_DELAY_RESP_MESSAGE 0x03
-#define E1000_TSYNCRXCFG_PTP_V1_MANAGEMENT_MESSAGE 0x04
-
-#define E1000_TSYNCRXCFG_PTP_V2_MSGID_MASK 0x00000F00
-#define E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE 0x0000
-#define E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE 0x0100
-#define E1000_TSYNCRXCFG_PTP_V2_PATH_DELAY_REQ_MESSAGE 0x0200
-#define E1000_TSYNCRXCFG_PTP_V2_PATH_DELAY_RESP_MESSAGE 0x0300
-#define E1000_TSYNCRXCFG_PTP_V2_FOLLOWUP_MESSAGE 0x0800
-#define E1000_TSYNCRXCFG_PTP_V2_DELAY_RESP_MESSAGE 0x0900
-#define E1000_TSYNCRXCFG_PTP_V2_PATH_DELAY_FOLLOWUP_MESSAGE 0x0A00
-#define E1000_TSYNCRXCFG_PTP_V2_ANNOUNCE_MESSAGE 0x0B00
-#define E1000_TSYNCRXCFG_PTP_V2_SIGNALLING_MESSAGE 0x0C00
-#define E1000_TSYNCRXCFG_PTP_V2_MANAGEMENT_MESSAGE 0x0D00
-
-#define E1000_TIMINCA_16NS_SHIFT 24
+#define E1000_RXCW_CW 0x0000ffff /* RxConfigWord mask */
+#define E1000_RXCW_IV 0x08000000 /* Receive config invalid */
+#define E1000_RXCW_C 0x20000000 /* Receive config */
+#define E1000_RXCW_SYNCH 0x40000000 /* Receive config synch */
+
+#define E1000_TSYNCTXCTL_VALID 0x00000001 /* Tx timestamp valid */
+#define E1000_TSYNCTXCTL_ENABLED 0x00000010 /* enable Tx timestamping */
+
+#define E1000_TSYNCRXCTL_VALID 0x00000001 /* Rx timestamp valid */
+#define E1000_TSYNCRXCTL_TYPE_MASK 0x0000000E /* Rx type mask */
+#define E1000_TSYNCRXCTL_TYPE_L2_V2 0x00
+#define E1000_TSYNCRXCTL_TYPE_L4_V1 0x02
+#define E1000_TSYNCRXCTL_TYPE_L2_L4_V2 0x04
+#define E1000_TSYNCRXCTL_TYPE_ALL 0x08
+#define E1000_TSYNCRXCTL_TYPE_EVENT_V2 0x0A
+#define E1000_TSYNCRXCTL_ENABLED 0x00000010 /* enable Rx timestamping */
+#define E1000_TSYNCRXCTL_SYSCFI 0x00000020 /* Sys clock frequency */
+
+#define E1000_RXMTRL_PTP_V1_SYNC_MESSAGE 0x00000000
+#define E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE 0x00010000
+
+#define E1000_RXMTRL_PTP_V2_SYNC_MESSAGE 0x00000000
+#define E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE 0x01000000
+
+#define E1000_TSYNCRXCFG_PTP_V1_CTRLT_MASK 0x000000FF
+#define E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE 0x00
+#define E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE 0x01
+#define E1000_TSYNCRXCFG_PTP_V1_FOLLOWUP_MESSAGE 0x02
+#define E1000_TSYNCRXCFG_PTP_V1_DELAY_RESP_MESSAGE 0x03
+#define E1000_TSYNCRXCFG_PTP_V1_MANAGEMENT_MESSAGE 0x04
+
+#define E1000_TSYNCRXCFG_PTP_V2_MSGID_MASK 0x00000F00
+#define E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE 0x0000
+#define E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE 0x0100
+#define E1000_TSYNCRXCFG_PTP_V2_PATH_DELAY_REQ_MESSAGE 0x0200
+#define E1000_TSYNCRXCFG_PTP_V2_PATH_DELAY_RESP_MESSAGE 0x0300
+#define E1000_TSYNCRXCFG_PTP_V2_FOLLOWUP_MESSAGE 0x0800
+#define E1000_TSYNCRXCFG_PTP_V2_DELAY_RESP_MESSAGE 0x0900
+#define E1000_TSYNCRXCFG_PTP_V2_PATH_DELAY_FOLLOWUP_MESSAGE 0x0A00
+#define E1000_TSYNCRXCFG_PTP_V2_ANNOUNCE_MESSAGE 0x0B00
+#define E1000_TSYNCRXCFG_PTP_V2_SIGNALLING_MESSAGE 0x0C00
+#define E1000_TSYNCRXCFG_PTP_V2_MANAGEMENT_MESSAGE 0x0D00
+
+#define E1000_TIMINCA_16NS_SHIFT 24
+#define E1000_TIMINCA_INCPERIOD_SHIFT 24
+#define E1000_TIMINCA_INCVALUE_MASK 0x00FFFFFF
+
+#define E1000_TSICR_TXTS 0x00000002
+#define E1000_TSIM_TXTS 0x00000002
/* TUPLE Filtering Configuration */
-#define E1000_TTQF_DISABLE_MASK 0xF0008000 /* TTQF Disable Mask */
-#define E1000_TTQF_QUEUE_ENABLE 0x100 /* TTQF Queue Enable Bit */
-#define E1000_TTQF_PROTOCOL_MASK 0xFF /* TTQF Protocol Mask */
+#define E1000_TTQF_DISABLE_MASK 0xF0008000 /* TTQF Disable Mask */
+#define E1000_TTQF_QUEUE_ENABLE 0x100 /* TTQF Queue Enable Bit */
+#define E1000_TTQF_PROTOCOL_MASK 0xFF /* TTQF Protocol Mask */
/* TTQF TCP Bit, shift with E1000_TTQF_PROTOCOL SHIFT */
-#define E1000_TTQF_PROTOCOL_TCP 0x0
+#define E1000_TTQF_PROTOCOL_TCP 0x0
/* TTQF UDP Bit, shift with E1000_TTQF_PROTOCOL_SHIFT */
-#define E1000_TTQF_PROTOCOL_UDP 0x1
+#define E1000_TTQF_PROTOCOL_UDP 0x1
/* TTQF SCTP Bit, shift with E1000_TTQF_PROTOCOL_SHIFT */
-#define E1000_TTQF_PROTOCOL_SCTP 0x2
-#define E1000_TTQF_PROTOCOL_SHIFT 5 /* TTQF Protocol Shift */
-#define E1000_TTQF_QUEUE_SHIFT 16 /* TTQF Queue Shfit */
-#define E1000_TTQF_RX_QUEUE_MASK 0x70000 /* TTQF Queue Mask */
-#define E1000_TTQF_MASK_ENABLE 0x10000000 /* TTQF Mask Enable Bit */
-#define E1000_IMIR_CLEAR_MASK 0xF001FFFF /* IMIR Reg Clear Mask */
-#define E1000_IMIR_PORT_BYPASS 0x20000 /* IMIR Port Bypass Bit */
-#define E1000_IMIR_PRIORITY_SHIFT 29 /* IMIR Priority Shift */
-#define E1000_IMIREXT_CLEAR_MASK 0x7FFFF /* IMIREXT Reg Clear Mask */
-
-#define E1000_MDICNFG_EXT_MDIO 0x80000000 /* MDI ext/int destination */
-#define E1000_MDICNFG_COM_MDIO 0x40000000 /* MDI shared w/ lan 0 */
-#define E1000_MDICNFG_PHY_MASK 0x03E00000
-#define E1000_MDICNFG_PHY_SHIFT 21
-
+#define E1000_TTQF_PROTOCOL_SCTP 0x2
+#define E1000_TTQF_PROTOCOL_SHIFT 5 /* TTQF Protocol Shift */
+#define E1000_TTQF_QUEUE_SHIFT 16 /* TTQF Queue Shfit */
+#define E1000_TTQF_RX_QUEUE_MASK 0x70000 /* TTQF Queue Mask */
+#define E1000_TTQF_MASK_ENABLE 0x10000000 /* TTQF Mask Enable Bit */
+#define E1000_IMIR_CLEAR_MASK 0xF001FFFF /* IMIR Reg Clear Mask */
+#define E1000_IMIR_PORT_BYPASS 0x20000 /* IMIR Port Bypass Bit */
+#define E1000_IMIR_PRIORITY_SHIFT 29 /* IMIR Priority Shift */
+#define E1000_IMIREXT_CLEAR_MASK 0x7FFFF /* IMIREXT Reg Clear Mask */
+
+#define E1000_MDICNFG_EXT_MDIO 0x80000000 /* MDI ext/int destination */
+#define E1000_MDICNFG_COM_MDIO 0x40000000 /* MDI shared w/ lan 0 */
+#define E1000_MDICNFG_PHY_MASK 0x03E00000
+#define E1000_MDICNFG_PHY_SHIFT 21
+
+#define E1000_THSTAT_LOW_EVENT 0x20000000 /* Low thermal threshold */
+#define E1000_THSTAT_MID_EVENT 0x00200000 /* Mid thermal threshold */
+#define E1000_THSTAT_HIGH_EVENT 0x00002000 /* High thermal threshold */
+#define E1000_THSTAT_PWR_DOWN 0x00000001 /* Power Down Event */
+#define E1000_THSTAT_LINK_THROTTLE 0x00000002 /* Link Spd Throttle Event */
+
+/* I350 EEE defines */
+#define E1000_IPCNFG_EEE_1G_AN 0x00000008 /* IPCNFG EEE Ena 1G AN */
+#define E1000_IPCNFG_EEE_100M_AN 0x00000004 /* IPCNFG EEE Ena 100M AN */
+#define E1000_EEER_TX_LPI_EN 0x00010000 /* EEER Tx LPI Enable */
+#define E1000_EEER_RX_LPI_EN 0x00020000 /* EEER Rx LPI Enable */
+#define E1000_EEER_LPI_FC 0x00040000 /* EEER Ena on Flow Cntrl */
+/* EEE status */
+#define E1000_EEER_EEE_NEG 0x20000000 /* EEE capability nego */
+#define E1000_EEER_RX_LPI_STATUS 0x40000000 /* Rx in LPI state */
+#define E1000_EEER_TX_LPI_STATUS 0x80000000 /* Tx in LPI state */
+#define E1000_EEE_SU_LPI_CLK_STP 0x00800000 /* EEE LPI Clock Stop */
/* PCI Express Control */
-#define E1000_GCR_RXD_NO_SNOOP 0x00000001
-#define E1000_GCR_RXDSCW_NO_SNOOP 0x00000002
-#define E1000_GCR_RXDSCR_NO_SNOOP 0x00000004
-#define E1000_GCR_TXD_NO_SNOOP 0x00000008
-#define E1000_GCR_TXDSCW_NO_SNOOP 0x00000010
-#define E1000_GCR_TXDSCR_NO_SNOOP 0x00000020
-#define E1000_GCR_CMPL_TMOUT_MASK 0x0000F000
-#define E1000_GCR_CMPL_TMOUT_10ms 0x00001000
-#define E1000_GCR_CMPL_TMOUT_RESEND 0x00010000
-#define E1000_GCR_CAP_VER2 0x00040000
-
-#define PCIE_NO_SNOOP_ALL (E1000_GCR_RXD_NO_SNOOP | \
- E1000_GCR_RXDSCW_NO_SNOOP | \
- E1000_GCR_RXDSCR_NO_SNOOP | \
- E1000_GCR_TXD_NO_SNOOP | \
- E1000_GCR_TXDSCW_NO_SNOOP | \
- E1000_GCR_TXDSCR_NO_SNOOP)
+#define E1000_GCR_RXD_NO_SNOOP 0x00000001
+#define E1000_GCR_RXDSCW_NO_SNOOP 0x00000002
+#define E1000_GCR_RXDSCR_NO_SNOOP 0x00000004
+#define E1000_GCR_TXD_NO_SNOOP 0x00000008
+#define E1000_GCR_TXDSCW_NO_SNOOP 0x00000010
+#define E1000_GCR_TXDSCR_NO_SNOOP 0x00000020
+#define E1000_GCR_CMPL_TMOUT_MASK 0x0000F000
+#define E1000_GCR_CMPL_TMOUT_10ms 0x00001000
+#define E1000_GCR_CMPL_TMOUT_RESEND 0x00010000
+#define E1000_GCR_CAP_VER2 0x00040000
+
+#define PCIE_NO_SNOOP_ALL (E1000_GCR_RXD_NO_SNOOP | \
+ E1000_GCR_RXDSCW_NO_SNOOP | \
+ E1000_GCR_RXDSCR_NO_SNOOP | \
+ E1000_GCR_TXD_NO_SNOOP | \
+ E1000_GCR_TXDSCW_NO_SNOOP | \
+ E1000_GCR_TXDSCR_NO_SNOOP)
+
+/* mPHY address control and data registers */
+#define E1000_MPHY_ADDR_CTL 0x0024 /* Address Control Reg */
+#define E1000_MPHY_ADDR_CTL_OFFSET_MASK 0xFFFF0000
+#define E1000_MPHY_DATA 0x0E10 /* Data Register */
+
+/* AFE CSR Offset for PCS CLK */
+#define E1000_MPHY_PCS_CLK_REG_OFFSET 0x0004
+/* Override for near end digital loopback. */
+#define E1000_MPHY_PCS_CLK_REG_DIGINELBEN 0x10
/* PHY Control Register */
-#define MII_CR_SPEED_SELECT_MSB 0x0040 /* bits 6,13: 10=1000, 01=100, 00=10 */
-#define MII_CR_COLL_TEST_ENABLE 0x0080 /* Collision test enable */
-#define MII_CR_FULL_DUPLEX 0x0100 /* FDX =1, half duplex =0 */
-#define MII_CR_RESTART_AUTO_NEG 0x0200 /* Restart auto negotiation */
-#define MII_CR_ISOLATE 0x0400 /* Isolate PHY from MII */
-#define MII_CR_POWER_DOWN 0x0800 /* Power down */
-#define MII_CR_AUTO_NEG_EN 0x1000 /* Auto Neg Enable */
-#define MII_CR_SPEED_SELECT_LSB 0x2000 /* bits 6,13: 10=1000, 01=100, 00=10 */
-#define MII_CR_LOOPBACK 0x4000 /* 0 = normal, 1 = loopback */
-#define MII_CR_RESET 0x8000 /* 0 = normal, 1 = PHY reset */
-#define MII_CR_SPEED_1000 0x0040
-#define MII_CR_SPEED_100 0x2000
-#define MII_CR_SPEED_10 0x0000
+#define MII_CR_SPEED_SELECT_MSB 0x0040 /* bits 6,13: 10=1000, 01=100, 00=10 */
+#define MII_CR_COLL_TEST_ENABLE 0x0080 /* Collision test enable */
+#define MII_CR_FULL_DUPLEX 0x0100 /* FDX =1, half duplex =0 */
+#define MII_CR_RESTART_AUTO_NEG 0x0200 /* Restart auto negotiation */
+#define MII_CR_ISOLATE 0x0400 /* Isolate PHY from MII */
+#define MII_CR_POWER_DOWN 0x0800 /* Power down */
+#define MII_CR_AUTO_NEG_EN 0x1000 /* Auto Neg Enable */
+#define MII_CR_SPEED_SELECT_LSB 0x2000 /* bits 6,13: 10=1000, 01=100, 00=10 */
+#define MII_CR_LOOPBACK 0x4000 /* 0 = normal, 1 = loopback */
+#define MII_CR_RESET 0x8000 /* 0 = normal, 1 = PHY reset */
+#define MII_CR_SPEED_1000 0x0040
+#define MII_CR_SPEED_100 0x2000
+#define MII_CR_SPEED_10 0x0000
/* PHY Status Register */
-#define MII_SR_EXTENDED_CAPS 0x0001 /* Extended register capabilities */
-#define MII_SR_JABBER_DETECT 0x0002 /* Jabber Detected */
-#define MII_SR_LINK_STATUS 0x0004 /* Link Status 1 = link */
-#define MII_SR_AUTONEG_CAPS 0x0008 /* Auto Neg Capable */
-#define MII_SR_REMOTE_FAULT 0x0010 /* Remote Fault Detect */
-#define MII_SR_AUTONEG_COMPLETE 0x0020 /* Auto Neg Complete */
+#define MII_SR_EXTENDED_CAPS 0x0001 /* Extended register capabilities */
+#define MII_SR_JABBER_DETECT 0x0002 /* Jabber Detected */
+#define MII_SR_LINK_STATUS 0x0004 /* Link Status 1 = link */
+#define MII_SR_AUTONEG_CAPS 0x0008 /* Auto Neg Capable */
+#define MII_SR_REMOTE_FAULT 0x0010 /* Remote Fault Detect */
+#define MII_SR_AUTONEG_COMPLETE 0x0020 /* Auto Neg Complete */
#define MII_SR_PREAMBLE_SUPPRESS 0x0040 /* Preamble may be suppressed */
-#define MII_SR_EXTENDED_STATUS 0x0100 /* Ext. status info in Reg 0x0F */
-#define MII_SR_100T2_HD_CAPS 0x0200 /* 100T2 Half Duplex Capable */
-#define MII_SR_100T2_FD_CAPS 0x0400 /* 100T2 Full Duplex Capable */
-#define MII_SR_10T_HD_CAPS 0x0800 /* 10T Half Duplex Capable */
-#define MII_SR_10T_FD_CAPS 0x1000 /* 10T Full Duplex Capable */
-#define MII_SR_100X_HD_CAPS 0x2000 /* 100X Half Duplex Capable */
-#define MII_SR_100X_FD_CAPS 0x4000 /* 100X Full Duplex Capable */
-#define MII_SR_100T4_CAPS 0x8000 /* 100T4 Capable */
+#define MII_SR_EXTENDED_STATUS 0x0100 /* Ext. status info in Reg 0x0F */
+#define MII_SR_100T2_HD_CAPS 0x0200 /* 100T2 Half Duplex Capable */
+#define MII_SR_100T2_FD_CAPS 0x0400 /* 100T2 Full Duplex Capable */
+#define MII_SR_10T_HD_CAPS 0x0800 /* 10T Half Duplex Capable */
+#define MII_SR_10T_FD_CAPS 0x1000 /* 10T Full Duplex Capable */
+#define MII_SR_100X_HD_CAPS 0x2000 /* 100X Half Duplex Capable */
+#define MII_SR_100X_FD_CAPS 0x4000 /* 100X Full Duplex Capable */
+#define MII_SR_100T4_CAPS 0x8000 /* 100T4 Capable */
/* Autoneg Advertisement Register */
-#define NWAY_AR_SELECTOR_FIELD 0x0001 /* indicates IEEE 802.3 CSMA/CD */
-#define NWAY_AR_10T_HD_CAPS 0x0020 /* 10T Half Duplex Capable */
-#define NWAY_AR_10T_FD_CAPS 0x0040 /* 10T Full Duplex Capable */
-#define NWAY_AR_100TX_HD_CAPS 0x0080 /* 100TX Half Duplex Capable */
-#define NWAY_AR_100TX_FD_CAPS 0x0100 /* 100TX Full Duplex Capable */
-#define NWAY_AR_100T4_CAPS 0x0200 /* 100T4 Capable */
-#define NWAY_AR_PAUSE 0x0400 /* Pause operation desired */
-#define NWAY_AR_ASM_DIR 0x0800 /* Asymmetric Pause Direction bit */
-#define NWAY_AR_REMOTE_FAULT 0x2000 /* Remote Fault detected */
-#define NWAY_AR_NEXT_PAGE 0x8000 /* Next Page ability supported */
+#define NWAY_AR_SELECTOR_FIELD 0x0001 /* indicates IEEE 802.3 CSMA/CD */
+#define NWAY_AR_10T_HD_CAPS 0x0020 /* 10T Half Duplex Capable */
+#define NWAY_AR_10T_FD_CAPS 0x0040 /* 10T Full Duplex Capable */
+#define NWAY_AR_100TX_HD_CAPS 0x0080 /* 100TX Half Duplex Capable */
+#define NWAY_AR_100TX_FD_CAPS 0x0100 /* 100TX Full Duplex Capable */
+#define NWAY_AR_100T4_CAPS 0x0200 /* 100T4 Capable */
+#define NWAY_AR_PAUSE 0x0400 /* Pause operation desired */
+#define NWAY_AR_ASM_DIR 0x0800 /* Asymmetric Pause Direction bit */
+#define NWAY_AR_REMOTE_FAULT 0x2000 /* Remote Fault detected */
+#define NWAY_AR_NEXT_PAGE 0x8000 /* Next Page ability supported */
/* Link Partner Ability Register (Base Page) */
-#define NWAY_LPAR_SELECTOR_FIELD 0x0000 /* LP protocol selector field */
-#define NWAY_LPAR_10T_HD_CAPS 0x0020 /* LP is 10T Half Duplex Capable */
-#define NWAY_LPAR_10T_FD_CAPS 0x0040 /* LP is 10T Full Duplex Capable */
-#define NWAY_LPAR_100TX_HD_CAPS 0x0080 /* LP is 100TX Half Duplex Capable */
-#define NWAY_LPAR_100TX_FD_CAPS 0x0100 /* LP is 100TX Full Duplex Capable */
-#define NWAY_LPAR_100T4_CAPS 0x0200 /* LP is 100T4 Capable */
-#define NWAY_LPAR_PAUSE 0x0400 /* LP Pause operation desired */
-#define NWAY_LPAR_ASM_DIR 0x0800 /* LP Asymmetric Pause Direction bit */
-#define NWAY_LPAR_REMOTE_FAULT 0x2000 /* LP has detected Remote Fault */
-#define NWAY_LPAR_ACKNOWLEDGE 0x4000 /* LP has rx'd link code word */
-#define NWAY_LPAR_NEXT_PAGE 0x8000 /* Next Page ability supported */
+#define NWAY_LPAR_SELECTOR_FIELD 0x0000 /* LP protocol selector field */
+#define NWAY_LPAR_10T_HD_CAPS 0x0020 /* LP 10T Half Dplx Capable */
+#define NWAY_LPAR_10T_FD_CAPS 0x0040 /* LP 10T Full Dplx Capable */
+#define NWAY_LPAR_100TX_HD_CAPS 0x0080 /* LP 100TX Half Dplx Capable */
+#define NWAY_LPAR_100TX_FD_CAPS 0x0100 /* LP 100TX Full Dplx Capable */
+#define NWAY_LPAR_100T4_CAPS 0x0200 /* LP is 100T4 Capable */
+#define NWAY_LPAR_PAUSE 0x0400 /* LP Pause operation desired */
+#define NWAY_LPAR_ASM_DIR 0x0800 /* LP Asym Pause Direction bit */
+#define NWAY_LPAR_REMOTE_FAULT 0x2000 /* LP detected Remote Fault */
+#define NWAY_LPAR_ACKNOWLEDGE 0x4000 /* LP rx'd link code word */
+#define NWAY_LPAR_NEXT_PAGE 0x8000 /* Next Page ability supported */
/* Autoneg Expansion Register */
-#define NWAY_ER_LP_NWAY_CAPS 0x0001 /* LP has Auto Neg Capability */
-#define NWAY_ER_PAGE_RXD 0x0002 /* LP is 10T Half Duplex Capable */
-#define NWAY_ER_NEXT_PAGE_CAPS 0x0004 /* LP is 10T Full Duplex Capable */
-#define NWAY_ER_LP_NEXT_PAGE_CAPS 0x0008 /* LP is 100TX Half Duplex Capable */
-#define NWAY_ER_PAR_DETECT_FAULT 0x0010 /* LP is 100TX Full Duplex Capable */
+#define NWAY_ER_LP_NWAY_CAPS 0x0001 /* LP has Auto Neg Capability */
+#define NWAY_ER_PAGE_RXD 0x0002 /* LP 10T Half Dplx Capable */
+#define NWAY_ER_NEXT_PAGE_CAPS 0x0004 /* LP 10T Full Dplx Capable */
+#define NWAY_ER_LP_NEXT_PAGE_CAPS 0x0008 /* LP 100TX Half Dplx Capable */
+#define NWAY_ER_PAR_DETECT_FAULT 0x0010 /* LP 100TX Full Dplx Capable */
/* 1000BASE-T Control Register */
-#define CR_1000T_ASYM_PAUSE 0x0080 /* Advertise asymmetric pause bit */
-#define CR_1000T_HD_CAPS 0x0100 /* Advertise 1000T HD capability */
-#define CR_1000T_FD_CAPS 0x0200 /* Advertise 1000T FD capability */
-#define CR_1000T_REPEATER_DTE 0x0400 /* 1=Repeater/switch device port */
- /* 0=DTE device */
-#define CR_1000T_MS_VALUE 0x0800 /* 1=Configure PHY as Master */
- /* 0=Configure PHY as Slave */
-#define CR_1000T_MS_ENABLE 0x1000 /* 1=Master/Slave manual config value */
- /* 0=Automatic Master/Slave config */
+#define CR_1000T_ASYM_PAUSE 0x0080 /* Advertise asymmetric pause bit */
+#define CR_1000T_HD_CAPS 0x0100 /* Advertise 1000T HD capability */
+#define CR_1000T_FD_CAPS 0x0200 /* Advertise 1000T FD capability */
+/* 1=Repeater/switch device port 0=DTE device */
+#define CR_1000T_REPEATER_DTE 0x0400
+/* 1=Configure PHY as Master 0=Configure PHY as Slave */
+#define CR_1000T_MS_VALUE 0x0800
+/* 1=Master/Slave manual config value 0=Automatic Master/Slave config */
+#define CR_1000T_MS_ENABLE 0x1000
#define CR_1000T_TEST_MODE_NORMAL 0x0000 /* Normal Operation */
-#define CR_1000T_TEST_MODE_1 0x2000 /* Transmit Waveform test */
-#define CR_1000T_TEST_MODE_2 0x4000 /* Master Transmit Jitter test */
-#define CR_1000T_TEST_MODE_3 0x6000 /* Slave Transmit Jitter test */
-#define CR_1000T_TEST_MODE_4 0x8000 /* Transmitter Distortion test */
+#define CR_1000T_TEST_MODE_1 0x2000 /* Transmit Waveform test */
+#define CR_1000T_TEST_MODE_2 0x4000 /* Master Transmit Jitter test */
+#define CR_1000T_TEST_MODE_3 0x6000 /* Slave Transmit Jitter test */
+#define CR_1000T_TEST_MODE_4 0x8000 /* Transmitter Distortion test */
/* 1000BASE-T Status Register */
-#define SR_1000T_IDLE_ERROR_CNT 0x00FF /* Num idle errors since last read */
-#define SR_1000T_ASYM_PAUSE_DIR 0x0100 /* LP asymmetric pause direction bit */
-#define SR_1000T_LP_HD_CAPS 0x0400 /* LP is 1000T HD capable */
-#define SR_1000T_LP_FD_CAPS 0x0800 /* LP is 1000T FD capable */
-#define SR_1000T_REMOTE_RX_STATUS 0x1000 /* Remote receiver OK */
-#define SR_1000T_LOCAL_RX_STATUS 0x2000 /* Local receiver OK */
-#define SR_1000T_MS_CONFIG_RES 0x4000 /* 1=Local Tx is Master, 0=Slave */
-#define SR_1000T_MS_CONFIG_FAULT 0x8000 /* Master/Slave config fault */
+#define SR_1000T_IDLE_ERROR_CNT 0x00FF /* Num idle err since last rd */
+#define SR_1000T_ASYM_PAUSE_DIR 0x0100 /* LP asym pause direction bit */
+#define SR_1000T_LP_HD_CAPS 0x0400 /* LP is 1000T HD capable */
+#define SR_1000T_LP_FD_CAPS 0x0800 /* LP is 1000T FD capable */
+#define SR_1000T_REMOTE_RX_STATUS 0x1000 /* Remote receiver OK */
+#define SR_1000T_LOCAL_RX_STATUS 0x2000 /* Local receiver OK */
+#define SR_1000T_MS_CONFIG_RES 0x4000 /* 1=Local Tx Master, 0=Slave */
+#define SR_1000T_MS_CONFIG_FAULT 0x8000 /* Master/Slave config fault */
-#define SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT 5
+#define SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT 5
/* PHY 1000 MII Register/Bit Definitions */
/* PHY Registers defined by IEEE */
-#define PHY_CONTROL 0x00 /* Control Register */
-#define PHY_STATUS 0x01 /* Status Register */
-#define PHY_ID1 0x02 /* Phy Id Reg (word 1) */
-#define PHY_ID2 0x03 /* Phy Id Reg (word 2) */
-#define PHY_AUTONEG_ADV 0x04 /* Autoneg Advertisement */
-#define PHY_LP_ABILITY 0x05 /* Link Partner Ability (Base Page) */
-#define PHY_AUTONEG_EXP 0x06 /* Autoneg Expansion Reg */
-#define PHY_NEXT_PAGE_TX 0x07 /* Next Page Tx */
-#define PHY_LP_NEXT_PAGE 0x08 /* Link Partner Next Page */
-#define PHY_1000T_CTRL 0x09 /* 1000Base-T Control Reg */
-#define PHY_1000T_STATUS 0x0A /* 1000Base-T Status Reg */
-#define PHY_EXT_STATUS 0x0F /* Extended Status Reg */
-
-#define PHY_CONTROL_LB 0x4000 /* PHY Loopback bit */
+#define PHY_CONTROL 0x00 /* Control Register */
+#define PHY_STATUS 0x01 /* Status Register */
+#define PHY_ID1 0x02 /* Phy Id Reg (word 1) */
+#define PHY_ID2 0x03 /* Phy Id Reg (word 2) */
+#define PHY_AUTONEG_ADV 0x04 /* Autoneg Advertisement */
+#define PHY_LP_ABILITY 0x05 /* Link Partner Ability (Base Page) */
+#define PHY_AUTONEG_EXP 0x06 /* Autoneg Expansion Reg */
+#define PHY_NEXT_PAGE_TX 0x07 /* Next Page Tx */
+#define PHY_LP_NEXT_PAGE 0x08 /* Link Partner Next Page */
+#define PHY_1000T_CTRL 0x09 /* 1000Base-T Control Reg */
+#define PHY_1000T_STATUS 0x0A /* 1000Base-T Status Reg */
+#define PHY_EXT_STATUS 0x0F /* Extended Status Reg */
+
+#define PHY_CONTROL_LB 0x4000 /* PHY Loopback bit */
/* NVM Control */
-#define E1000_EECD_SK 0x00000001 /* NVM Clock */
-#define E1000_EECD_CS 0x00000002 /* NVM Chip Select */
-#define E1000_EECD_DI 0x00000004 /* NVM Data In */
-#define E1000_EECD_DO 0x00000008 /* NVM Data Out */
-#define E1000_EECD_FWE_MASK 0x00000030
-#define E1000_EECD_FWE_DIS 0x00000010 /* Disable FLASH writes */
-#define E1000_EECD_FWE_EN 0x00000020 /* Enable FLASH writes */
-#define E1000_EECD_FWE_SHIFT 4
-#define E1000_EECD_REQ 0x00000040 /* NVM Access Request */
-#define E1000_EECD_GNT 0x00000080 /* NVM Access Grant */
-#define E1000_EECD_PRES 0x00000100 /* NVM Present */
-#define E1000_EECD_SIZE 0x00000200 /* NVM Size (0=64 word 1=256 word) */
+#define E1000_EECD_SK 0x00000001 /* NVM Clock */
+#define E1000_EECD_CS 0x00000002 /* NVM Chip Select */
+#define E1000_EECD_DI 0x00000004 /* NVM Data In */
+#define E1000_EECD_DO 0x00000008 /* NVM Data Out */
+#define E1000_EECD_REQ 0x00000040 /* NVM Access Request */
+#define E1000_EECD_GNT 0x00000080 /* NVM Access Grant */
+#define E1000_EECD_PRES 0x00000100 /* NVM Present */
+#define E1000_EECD_SIZE 0x00000200 /* NVM Size (0=64 word 1=256 word) */
+#define E1000_EECD_BLOCKED 0x00008000 /* Bit banging access blocked flag */
+#define E1000_EECD_ABORT 0x00010000 /* NVM operation aborted flag */
+#define E1000_EECD_TIMEOUT 0x00020000 /* NVM read operation timeout flag */
+#define E1000_EECD_ERROR_CLR 0x00040000 /* NVM error status clear bit */
/* NVM Addressing bits based on type 0=small, 1=large */
-#define E1000_EECD_ADDR_BITS 0x00000400
-#define E1000_EECD_TYPE 0x00002000 /* NVM Type (1-SPI, 0-Microwire) */
+#define E1000_EECD_ADDR_BITS 0x00000400
+#define E1000_EECD_TYPE 0x00002000 /* NVM Type (1-SPI, 0-Microwire) */
#ifndef E1000_NVM_GRANT_ATTEMPTS
-#define E1000_NVM_GRANT_ATTEMPTS 1000 /* NVM # attempts to gain grant */
+#define E1000_NVM_GRANT_ATTEMPTS 1000 /* NVM # attempts to gain grant */
#endif
-#define E1000_EECD_AUTO_RD 0x00000200 /* NVM Auto Read done */
-#define E1000_EECD_SIZE_EX_MASK 0x00007800 /* NVM Size */
-#define E1000_EECD_SIZE_EX_SHIFT 11
-#define E1000_EECD_NVADDS 0x00018000 /* NVM Address Size */
-#define E1000_EECD_SELSHAD 0x00020000 /* Select Shadow RAM */
-#define E1000_EECD_INITSRAM 0x00040000 /* Initialize Shadow RAM */
-#define E1000_EECD_FLUPD 0x00080000 /* Update FLASH */
-#define E1000_EECD_AUPDEN 0x00100000 /* Enable Autonomous FLASH update */
-#define E1000_EECD_SHADV 0x00200000 /* Shadow RAM Data Valid */
-#define E1000_EECD_SEC1VAL 0x00400000 /* Sector One Valid */
-#define E1000_EECD_SECVAL_SHIFT 22
-#define E1000_EECD_SEC1VAL_VALID_MASK (E1000_EECD_AUTO_RD | E1000_EECD_PRES)
-
-#define E1000_NVM_SWDPIN0 0x0001 /* SWDPIN 0 NVM Value */
-#define E1000_NVM_LED_LOGIC 0x0020 /* Led Logic Word */
-#define E1000_NVM_RW_REG_DATA 16 /* Offset to data in NVM read/write regs */
-#define E1000_NVM_RW_REG_DONE 2 /* Offset to READ/WRITE done bit */
-#define E1000_NVM_RW_REG_START 1 /* Start operation */
-#define E1000_NVM_RW_ADDR_SHIFT 2 /* Shift to the address bits */
-#define E1000_NVM_POLL_WRITE 1 /* Flag for polling for write complete */
-#define E1000_NVM_POLL_READ 0 /* Flag for polling for read complete */
-#define E1000_FLASH_UPDATES 2000
+#define E1000_EECD_AUTO_RD 0x00000200 /* NVM Auto Read done */
+#define E1000_EECD_SIZE_EX_MASK 0x00007800 /* NVM Size */
+#define E1000_EECD_SIZE_EX_SHIFT 11
+#define E1000_EECD_FLUPD 0x00080000 /* Update FLASH */
+#define E1000_EECD_AUPDEN 0x00100000 /* Ena Auto FLASH update */
+#define E1000_EECD_SEC1VAL 0x00400000 /* Sector One Valid */
+#define E1000_EECD_SEC1VAL_VALID_MASK (E1000_EECD_AUTO_RD | E1000_EECD_PRES)
+#define E1000_EECD_FLUPD_I210 0x00800000 /* Update FLASH */
+#define E1000_EECD_FLUDONE_I210 0x04000000 /* Update FLASH done */
+#define E1000_EECD_FLASH_DETECTED_I210 0x00080000 /* FLASH detected */
+#define E1000_EECD_SEC1VAL_I210 0x02000000 /* Sector One Valid */
+#define E1000_FLUDONE_ATTEMPTS 20000
+#define E1000_EERD_EEWR_MAX_COUNT 512 /* buffered EEPROM words rw */
+#define E1000_I210_FIFO_SEL_RX 0x00
+#define E1000_I210_FIFO_SEL_TX_QAV(_i) (0x02 + (_i))
+#define E1000_I210_FIFO_SEL_TX_LEGACY E1000_I210_FIFO_SEL_TX_QAV(0)
+#define E1000_I210_FIFO_SEL_BMC2OS_TX 0x06
+#define E1000_I210_FIFO_SEL_BMC2OS_RX 0x01
+
+#define E1000_I210_FLASH_SECTOR_SIZE 0x1000 /* 4KB FLASH sector unit size */
+/* Secure FLASH mode requires removing MSb */
+#define E1000_I210_FW_PTR_MASK 0x7FFF
+/* Firmware code revision field word offset*/
+#define E1000_I210_FW_VER_OFFSET 328
+
+#define E1000_NVM_RW_REG_DATA 16 /* Offset to data in NVM read/write regs */
+#define E1000_NVM_RW_REG_DONE 2 /* Offset to READ/WRITE done bit */
+#define E1000_NVM_RW_REG_START 1 /* Start operation */
+#define E1000_NVM_RW_ADDR_SHIFT 2 /* Shift to the address bits */
+#define E1000_NVM_POLL_WRITE 1 /* Flag for polling for write complete */
+#define E1000_NVM_POLL_READ 0 /* Flag for polling for read complete */
+#define E1000_FLASH_UPDATES 2000
/* NVM Word Offsets */
-#define NVM_COMPAT 0x0003
-#define NVM_ID_LED_SETTINGS 0x0004
-#define NVM_VERSION 0x0005
-#define NVM_SERDES_AMPLITUDE 0x0006 /* SERDES output amplitude */
-#define NVM_PHY_CLASS_WORD 0x0007
-#define NVM_INIT_CONTROL1_REG 0x000A
-#define NVM_INIT_CONTROL2_REG 0x000F
-#define NVM_SWDEF_PINS_CTRL_PORT_1 0x0010
-#define NVM_INIT_CONTROL3_PORT_B 0x0014
-#define NVM_INIT_3GIO_3 0x001A
-#define NVM_SWDEF_PINS_CTRL_PORT_0 0x0020
-#define NVM_INIT_CONTROL3_PORT_A 0x0024
-#define NVM_CFG 0x0012
-#define NVM_FLASH_VERSION 0x0032
-#define NVM_ALT_MAC_ADDR_PTR 0x0037
-#define NVM_CHECKSUM_REG 0x003F
-
-#define E1000_NVM_CFG_DONE_PORT_0 0x040000 /* MNG config cycle done */
-#define E1000_NVM_CFG_DONE_PORT_1 0x080000 /* ...for second port */
-#define E1000_NVM_CFG_DONE_PORT_2 0x100000 /* ...for third port */
-#define E1000_NVM_CFG_DONE_PORT_3 0x200000 /* ...for fourth port */
-
-#define NVM_82580_LAN_FUNC_OFFSET(a) (a ? (0x40 + (0x40 * a)) : 0)
+#define NVM_COMPAT 0x0003
+#define NVM_ID_LED_SETTINGS 0x0004
+#define NVM_SERDES_AMPLITUDE 0x0006 /* SERDES output amplitude */
+#define NVM_PHY_CLASS_WORD 0x0007
+#define E1000_I210_NVM_FW_MODULE_PTR 0x0010
+#define E1000_I350_NVM_FW_MODULE_PTR 0x0051
+#define NVM_FUTURE_INIT_WORD1 0x0019
+#define NVM_MAC_ADDR 0x0000
+#define NVM_SUB_DEV_ID 0x000B
+#define NVM_SUB_VEN_ID 0x000C
+#define NVM_DEV_ID 0x000D
+#define NVM_VEN_ID 0x000E
+#define NVM_INIT_CTRL_2 0x000F
+#define NVM_INIT_CTRL_4 0x0013
+#define NVM_LED_1_CFG 0x001C
+#define NVM_LED_0_2_CFG 0x001F
+
+#define NVM_COMPAT_VALID_CSUM 0x0001
+#define NVM_FUTURE_INIT_WORD1_VALID_CSUM 0x0040
+
+#define NVM_INIT_CONTROL2_REG 0x000F
+#define NVM_INIT_CONTROL3_PORT_B 0x0014
+#define NVM_INIT_3GIO_3 0x001A
+#define NVM_SWDEF_PINS_CTRL_PORT_0 0x0020
+#define NVM_INIT_CONTROL3_PORT_A 0x0024
+#define NVM_CFG 0x0012
+#define NVM_ALT_MAC_ADDR_PTR 0x0037
+#define NVM_CHECKSUM_REG 0x003F
+#define NVM_COMPATIBILITY_REG_3 0x0003
+#define NVM_COMPATIBILITY_BIT_MASK 0x8000
+
+#define E1000_NVM_CFG_DONE_PORT_0 0x040000 /* MNG config cycle done */
+#define E1000_NVM_CFG_DONE_PORT_1 0x080000 /* ...for second port */
+#define E1000_NVM_CFG_DONE_PORT_2 0x100000 /* ...for third port */
+#define E1000_NVM_CFG_DONE_PORT_3 0x200000 /* ...for fourth port */
+
+#define NVM_82580_LAN_FUNC_OFFSET(a) ((a) ? (0x40 + (0x40 * (a))) : 0)
/* Mask bits for fields in Word 0x24 of the NVM */
-#define NVM_WORD24_COM_MDIO 0x0008 /* MDIO interface shared */
-#define NVM_WORD24_EXT_MDIO 0x0004 /* MDIO accesses routed external */
+#define NVM_WORD24_COM_MDIO 0x0008 /* MDIO interface shared */
+#define NVM_WORD24_EXT_MDIO 0x0004 /* MDIO accesses routed extrnl */
+/* Offset of Link Mode bits for 82575/82576 */
+#define NVM_WORD24_LNK_MODE_OFFSET 8
+/* Offset of Link Mode bits for 82580 up */
+#define NVM_WORD24_82580_LNK_MODE_OFFSET 4
+
/* Mask bits for fields in Word 0x0f of the NVM */
-#define NVM_WORD0F_PAUSE_MASK 0x3000
-#define NVM_WORD0F_PAUSE 0x1000
-#define NVM_WORD0F_ASM_DIR 0x2000
-#define NVM_WORD0F_ANE 0x0800
-#define NVM_WORD0F_SWPDIO_EXT_MASK 0x00F0
-#define NVM_WORD0F_LPLU 0x0001
+#define NVM_WORD0F_PAUSE_MASK 0x3000
+#define NVM_WORD0F_PAUSE 0x1000
+#define NVM_WORD0F_ASM_DIR 0x2000
+#define NVM_WORD0F_SWPDIO_EXT_MASK 0x00F0
/* Mask bits for fields in Word 0x1a of the NVM */
-#define NVM_WORD1A_ASPM_MASK 0x000C
+#define NVM_WORD1A_ASPM_MASK 0x000C
/* Mask bits for fields in Word 0x03 of the EEPROM */
-#define NVM_COMPAT_LOM 0x0800
+#define NVM_COMPAT_LOM 0x0800
/* length of string needed to store PBA number */
-#define E1000_PBANUM_LENGTH 11
+#define E1000_PBANUM_LENGTH 11
/* For checksumming, the sum of all words in the NVM should equal 0xBABA. */
-#define NVM_SUM 0xBABA
-
-#define NVM_MAC_ADDR_OFFSET 0
-#define NVM_PBA_OFFSET_0 8
-#define NVM_PBA_OFFSET_1 9
-#define NVM_PBA_PTR_GUARD 0xFAFA
-#define NVM_RESERVED_WORD 0xFFFF
-#define NVM_PHY_CLASS_A 0x8000
-#define NVM_SERDES_AMPLITUDE_MASK 0x000F
-#define NVM_SIZE_MASK 0x1C00
-#define NVM_SIZE_SHIFT 10
-#define NVM_WORD_SIZE_BASE_SHIFT 6
-#define NVM_SWDPIO_EXT_SHIFT 4
+#define NVM_SUM 0xBABA
+
+/* PBA (printed board assembly) number words */
+#define NVM_PBA_OFFSET_0 8
+#define NVM_PBA_OFFSET_1 9
+#define NVM_PBA_PTR_GUARD 0xFAFA
+#define NVM_RESERVED_WORD 0xFFFF
+#define NVM_PHY_CLASS_A 0x8000
+#define NVM_SERDES_AMPLITUDE_MASK 0x000F
+#define NVM_SIZE_MASK 0x1C00
+#define NVM_SIZE_SHIFT 10
+#define NVM_WORD_SIZE_BASE_SHIFT 6
+#define NVM_SWDPIO_EXT_SHIFT 4
/* NVM Commands - Microwire */
-#define NVM_READ_OPCODE_MICROWIRE 0x6 /* NVM read opcode */
-#define NVM_WRITE_OPCODE_MICROWIRE 0x5 /* NVM write opcode */
-#define NVM_ERASE_OPCODE_MICROWIRE 0x7 /* NVM erase opcode */
-#define NVM_EWEN_OPCODE_MICROWIRE 0x13 /* NVM erase/write enable */
-#define NVM_EWDS_OPCODE_MICROWIRE 0x10 /* NVM erase/write disable */
+#define NVM_READ_OPCODE_MICROWIRE 0x6 /* NVM read opcode */
+#define NVM_WRITE_OPCODE_MICROWIRE 0x5 /* NVM write opcode */
+#define NVM_ERASE_OPCODE_MICROWIRE 0x7 /* NVM erase opcode */
+#define NVM_EWEN_OPCODE_MICROWIRE 0x13 /* NVM erase/write enable */
+#define NVM_EWDS_OPCODE_MICROWIRE 0x10 /* NVM erase/write disable */
/* NVM Commands - SPI */
-#define NVM_MAX_RETRY_SPI 5000 /* Max wait of 5ms, for RDY signal */
-#define NVM_READ_OPCODE_SPI 0x03 /* NVM read opcode */
-#define NVM_WRITE_OPCODE_SPI 0x02 /* NVM write opcode */
-#define NVM_A8_OPCODE_SPI 0x08 /* opcode bit-3 = address bit-8 */
-#define NVM_WREN_OPCODE_SPI 0x06 /* NVM set Write Enable latch */
-#define NVM_WRDI_OPCODE_SPI 0x04 /* NVM reset Write Enable latch */
-#define NVM_RDSR_OPCODE_SPI 0x05 /* NVM read Status register */
-#define NVM_WRSR_OPCODE_SPI 0x01 /* NVM write Status register */
+#define NVM_MAX_RETRY_SPI 5000 /* Max wait of 5ms, for RDY signal */
+#define NVM_READ_OPCODE_SPI 0x03 /* NVM read opcode */
+#define NVM_WRITE_OPCODE_SPI 0x02 /* NVM write opcode */
+#define NVM_A8_OPCODE_SPI 0x08 /* opcode bit-3 = address bit-8 */
+#define NVM_WREN_OPCODE_SPI 0x06 /* NVM set Write Enable latch */
+#define NVM_RDSR_OPCODE_SPI 0x05 /* NVM read Status register */
/* SPI NVM Status Register */
-#define NVM_STATUS_RDY_SPI 0x01
-#define NVM_STATUS_WEN_SPI 0x02
-#define NVM_STATUS_BP0_SPI 0x04
-#define NVM_STATUS_BP1_SPI 0x08
-#define NVM_STATUS_WPEN_SPI 0x80
+#define NVM_STATUS_RDY_SPI 0x01
/* Word definitions for ID LED Settings */
-#define ID_LED_RESERVED_0000 0x0000
-#define ID_LED_RESERVED_FFFF 0xFFFF
-#define ID_LED_DEFAULT ((ID_LED_OFF1_ON2 << 12) | \
- (ID_LED_OFF1_OFF2 << 8) | \
- (ID_LED_DEF1_DEF2 << 4) | \
- (ID_LED_DEF1_DEF2))
-#define ID_LED_DEF1_DEF2 0x1
-#define ID_LED_DEF1_ON2 0x2
-#define ID_LED_DEF1_OFF2 0x3
-#define ID_LED_ON1_DEF2 0x4
-#define ID_LED_ON1_ON2 0x5
-#define ID_LED_ON1_OFF2 0x6
-#define ID_LED_OFF1_DEF2 0x7
-#define ID_LED_OFF1_ON2 0x8
-#define ID_LED_OFF1_OFF2 0x9
-
-#define IGP_ACTIVITY_LED_MASK 0xFFFFF0FF
-#define IGP_ACTIVITY_LED_ENABLE 0x0300
-#define IGP_LED3_MODE 0x07000000
+#define ID_LED_RESERVED_0000 0x0000
+#define ID_LED_RESERVED_FFFF 0xFFFF
+#define ID_LED_DEFAULT ((ID_LED_OFF1_ON2 << 12) | \
+ (ID_LED_OFF1_OFF2 << 8) | \
+ (ID_LED_DEF1_DEF2 << 4) | \
+ (ID_LED_DEF1_DEF2))
+#define ID_LED_DEF1_DEF2 0x1
+#define ID_LED_DEF1_ON2 0x2
+#define ID_LED_DEF1_OFF2 0x3
+#define ID_LED_ON1_DEF2 0x4
+#define ID_LED_ON1_ON2 0x5
+#define ID_LED_ON1_OFF2 0x6
+#define ID_LED_OFF1_DEF2 0x7
+#define ID_LED_OFF1_ON2 0x8
+#define ID_LED_OFF1_OFF2 0x9
+
+#define IGP_ACTIVITY_LED_MASK 0xFFFFF0FF
+#define IGP_ACTIVITY_LED_ENABLE 0x0300
+#define IGP_LED3_MODE 0x07000000
/* PCI/PCI-X/PCI-EX Config space */
-#define PCIX_COMMAND_REGISTER 0xE6
-#define PCIX_STATUS_REGISTER_LO 0xE8
-#define PCIX_STATUS_REGISTER_HI 0xEA
-#define PCI_HEADER_TYPE_REGISTER 0x0E
-#define PCIE_LINK_STATUS 0x12
-#define PCIE_DEVICE_CONTROL2 0x28
-
-#define PCIX_COMMAND_MMRBC_MASK 0x000C
-#define PCIX_COMMAND_MMRBC_SHIFT 0x2
-#define PCIX_STATUS_HI_MMRBC_MASK 0x0060
-#define PCIX_STATUS_HI_MMRBC_SHIFT 0x5
-#define PCIX_STATUS_HI_MMRBC_4K 0x3
-#define PCIX_STATUS_HI_MMRBC_2K 0x2
-#define PCIX_STATUS_LO_FUNC_MASK 0x7
-#define PCI_HEADER_TYPE_MULTIFUNC 0x80
-#define PCIE_LINK_WIDTH_MASK 0x3F0
-#define PCIE_LINK_WIDTH_SHIFT 4
-#define PCIE_LINK_SPEED_MASK 0x0F
-#define PCIE_LINK_SPEED_2500 0x01
-#define PCIE_LINK_SPEED_5000 0x02
-#define PCIE_DEVICE_CONTROL2_16ms 0x0005
+#define PCIX_COMMAND_REGISTER 0xE6
+#define PCIX_STATUS_REGISTER_LO 0xE8
+#define PCIX_STATUS_REGISTER_HI 0xEA
+#define PCI_HEADER_TYPE_REGISTER 0x0E
+#define PCIE_LINK_STATUS 0x12
+#define PCIE_DEVICE_CONTROL2 0x28
+
+#define PCIX_COMMAND_MMRBC_MASK 0x000C
+#define PCIX_COMMAND_MMRBC_SHIFT 0x2
+#define PCIX_STATUS_HI_MMRBC_MASK 0x0060
+#define PCIX_STATUS_HI_MMRBC_SHIFT 0x5
+#define PCIX_STATUS_HI_MMRBC_4K 0x3
+#define PCIX_STATUS_HI_MMRBC_2K 0x2
+#define PCIX_STATUS_LO_FUNC_MASK 0x7
+#define PCI_HEADER_TYPE_MULTIFUNC 0x80
+#define PCIE_LINK_WIDTH_MASK 0x3F0
+#define PCIE_LINK_WIDTH_SHIFT 4
+#define PCIE_LINK_SPEED_MASK 0x0F
+#define PCIE_LINK_SPEED_2500 0x01
+#define PCIE_LINK_SPEED_5000 0x02
+#define PCIE_DEVICE_CONTROL2_16ms 0x0005
#ifndef ETH_ADDR_LEN
-#define ETH_ADDR_LEN 6
+#define ETH_ADDR_LEN 6
#endif
-#define PHY_REVISION_MASK 0xFFFFFFF0
-#define MAX_PHY_REG_ADDRESS 0x1F /* 5 bit address bus (0-0x1F) */
-#define MAX_PHY_MULTI_PAGE_REG 0xF
+#define PHY_REVISION_MASK 0xFFFFFFF0
+#define MAX_PHY_REG_ADDRESS 0x1F /* 5 bit address bus (0-0x1F) */
+#define MAX_PHY_MULTI_PAGE_REG 0xF
-/* Bit definitions for valid PHY IDs. */
-/*
+/* Bit definitions for valid PHY IDs.
* I = Integrated
* E = External
*/
-#define M88E1000_E_PHY_ID 0x01410C50
-#define M88E1000_I_PHY_ID 0x01410C30
-#define M88E1011_I_PHY_ID 0x01410C20
-#define IGP01E1000_I_PHY_ID 0x02A80380
-#define M88E1011_I_REV_4 0x04
-#define M88E1111_I_PHY_ID 0x01410CC0
-#define GG82563_E_PHY_ID 0x01410CA0
-#define IGP03E1000_E_PHY_ID 0x02A80390
-#define IFE_E_PHY_ID 0x02A80330
-#define IFE_PLUS_E_PHY_ID 0x02A80320
-#define IFE_C_E_PHY_ID 0x02A80310
-#define BME1000_E_PHY_ID 0x01410CB0
-#define BME1000_E_PHY_ID_R2 0x01410CB1
-#define I82577_E_PHY_ID 0x01540050
-#define I82578_E_PHY_ID 0x004DD040
-#define I82579_E_PHY_ID 0x01540090
-#define I82580_I_PHY_ID 0x015403A0
-#define IGP04E1000_E_PHY_ID 0x02A80391
-#define M88_VENDOR 0x0141
+#define M88E1000_E_PHY_ID 0x01410C50
+#define M88E1000_I_PHY_ID 0x01410C30
+#define M88E1011_I_PHY_ID 0x01410C20
+#define IGP01E1000_I_PHY_ID 0x02A80380
+#define M88E1111_I_PHY_ID 0x01410CC0
+#define M88E1112_E_PHY_ID 0x01410C90
+#define I347AT4_E_PHY_ID 0x01410DC0
+#define M88E1340M_E_PHY_ID 0x01410DF0
+#define GG82563_E_PHY_ID 0x01410CA0
+#define IGP03E1000_E_PHY_ID 0x02A80390
+#define IFE_E_PHY_ID 0x02A80330
+#define IFE_PLUS_E_PHY_ID 0x02A80320
+#define IFE_C_E_PHY_ID 0x02A80310
+#define BME1000_E_PHY_ID 0x01410CB0
+#define BME1000_E_PHY_ID_R2 0x01410CB1
+#define I82577_E_PHY_ID 0x01540050
+#define I82578_E_PHY_ID 0x004DD040
+#define I82579_E_PHY_ID 0x01540090
+#define I217_E_PHY_ID 0x015400A0
+#define I82580_I_PHY_ID 0x015403A0
+#define I350_I_PHY_ID 0x015403B0
+#define I210_I_PHY_ID 0x01410C00
+#define IGP04E1000_E_PHY_ID 0x02A80391
+#define M88_VENDOR 0x0141
/* M88E1000 Specific Registers */
-#define M88E1000_PHY_SPEC_CTRL 0x10 /* PHY Specific Control Register */
-#define M88E1000_PHY_SPEC_STATUS 0x11 /* PHY Specific Status Register */
-#define M88E1000_INT_ENABLE 0x12 /* Interrupt Enable Register */
-#define M88E1000_INT_STATUS 0x13 /* Interrupt Status Register */
-#define M88E1000_EXT_PHY_SPEC_CTRL 0x14 /* Extended PHY Specific Control */
-#define M88E1000_RX_ERR_CNTR 0x15 /* Receive Error Counter */
-
-#define M88E1000_PHY_EXT_CTRL 0x1A /* PHY extend control register */
-#define M88E1000_PHY_PAGE_SELECT 0x1D /* Reg 29 for page number setting */
-#define M88E1000_PHY_GEN_CONTROL 0x1E /* Its meaning depends on reg 29 */
-#define M88E1000_PHY_VCO_REG_BIT8 0x100 /* Bits 8 & 11 are adjusted for */
-#define M88E1000_PHY_VCO_REG_BIT11 0x800 /* improved BER performance */
+#define M88E1000_PHY_SPEC_CTRL 0x10 /* PHY Specific Control Reg */
+#define M88E1000_PHY_SPEC_STATUS 0x11 /* PHY Specific Status Reg */
+#define M88E1000_EXT_PHY_SPEC_CTRL 0x14 /* Extended PHY Specific Cntrl */
+#define M88E1000_RX_ERR_CNTR 0x15 /* Receive Error Counter */
+
+#define M88E1000_PHY_EXT_CTRL 0x1A /* PHY extend control register */
+#define M88E1000_PHY_PAGE_SELECT 0x1D /* Reg 29 for pg number setting */
+#define M88E1000_PHY_GEN_CONTROL 0x1E /* meaning depends on reg 29 */
+#define M88E1000_PHY_VCO_REG_BIT8 0x100 /* Bits 8 & 11 are adjusted for */
+#define M88E1000_PHY_VCO_REG_BIT11 0x800 /* improved BER performance */
/* M88E1000 PHY Specific Control Register */
-#define M88E1000_PSCR_JABBER_DISABLE 0x0001 /* 1=Jabber Function disabled */
-#define M88E1000_PSCR_POLARITY_REVERSAL 0x0002 /* 1=Polarity Reverse enabled */
-#define M88E1000_PSCR_SQE_TEST 0x0004 /* 1=SQE Test enabled */
-/* 1=CLK125 low, 0=CLK125 toggling */
-#define M88E1000_PSCR_CLK125_DISABLE 0x0010
-#define M88E1000_PSCR_MDI_MANUAL_MODE 0x0000 /* MDI Crossover Mode bits 6:5 */
- /* Manual MDI configuration */
-#define M88E1000_PSCR_MDIX_MANUAL_MODE 0x0020 /* Manual MDIX configuration */
+#define M88E1000_PSCR_POLARITY_REVERSAL 0x0002 /* 1=Polarity Reverse enabled */
+/* MDI Crossover Mode bits 6:5 Manual MDI configuration */
+#define M88E1000_PSCR_MDI_MANUAL_MODE 0x0000
+#define M88E1000_PSCR_MDIX_MANUAL_MODE 0x0020 /* Manual MDIX configuration */
/* 1000BASE-T: Auto crossover, 100BASE-TX/10BASE-T: MDI Mode */
-#define M88E1000_PSCR_AUTO_X_1000T 0x0040
+#define M88E1000_PSCR_AUTO_X_1000T 0x0040
/* Auto crossover enabled all speeds */
-#define M88E1000_PSCR_AUTO_X_MODE 0x0060
-/*
- * 1=Enable Extended 10BASE-T distance (Lower 10BASE-T Rx Threshold
- * 0=Normal 10BASE-T Rx Threshold
- */
-#define M88E1000_PSCR_EN_10BT_EXT_DIST 0x0080
-/* 1=5-bit interface in 100BASE-TX, 0=MII interface in 100BASE-TX */
-#define M88E1000_PSCR_MII_5BIT_ENABLE 0x0100
-#define M88E1000_PSCR_SCRAMBLER_DISABLE 0x0200 /* 1=Scrambler disable */
-#define M88E1000_PSCR_FORCE_LINK_GOOD 0x0400 /* 1=Force link good */
-#define M88E1000_PSCR_ASSERT_CRS_ON_TX 0x0800 /* 1=Assert CRS on Tx */
+#define M88E1000_PSCR_AUTO_X_MODE 0x0060
+#define M88E1000_PSCR_ASSERT_CRS_ON_TX 0x0800 /* 1=Assert CRS on Tx */
/* M88E1000 PHY Specific Status Register */
-#define M88E1000_PSSR_JABBER 0x0001 /* 1=Jabber */
-#define M88E1000_PSSR_REV_POLARITY 0x0002 /* 1=Polarity reversed */
-#define M88E1000_PSSR_DOWNSHIFT 0x0020 /* 1=Downshifted */
-#define M88E1000_PSSR_MDIX 0x0040 /* 1=MDIX; 0=MDI */
-/*
- * 0 = <50M
+#define M88E1000_PSSR_REV_POLARITY 0x0002 /* 1=Polarity reversed */
+#define M88E1000_PSSR_DOWNSHIFT 0x0020 /* 1=Downshifted */
+#define M88E1000_PSSR_MDIX 0x0040 /* 1=MDIX; 0=MDI */
+/* 0 = <50M
* 1 = 50-80M
* 2 = 80-110M
* 3 = 110-140M
* 4 = >140M
*/
-#define M88E1000_PSSR_CABLE_LENGTH 0x0380
-#define M88E1000_PSSR_LINK 0x0400 /* 1=Link up, 0=Link down */
-#define M88E1000_PSSR_SPD_DPLX_RESOLVED 0x0800 /* 1=Speed & Duplex resolved */
-#define M88E1000_PSSR_PAGE_RCVD 0x1000 /* 1=Page received */
-#define M88E1000_PSSR_DPLX 0x2000 /* 1=Duplex 0=Half Duplex */
-#define M88E1000_PSSR_SPEED 0xC000 /* Speed, bits 14:15 */
-#define M88E1000_PSSR_10MBS 0x0000 /* 00=10Mbs */
-#define M88E1000_PSSR_100MBS 0x4000 /* 01=100Mbs */
-#define M88E1000_PSSR_1000MBS 0x8000 /* 10=1000Mbs */
-
-#define M88E1000_PSSR_CABLE_LENGTH_SHIFT 7
-
-/* M88E1000 Extended PHY Specific Control Register */
-#define M88E1000_EPSCR_FIBER_LOOPBACK 0x4000 /* 1=Fiber loopback */
-/*
- * 1 = Lost lock detect enabled.
- * Will assert lost lock and bring
- * link down if idle not seen
- * within 1ms in 1000BASE-T
- */
-#define M88E1000_EPSCR_DOWN_NO_IDLE 0x8000
-/*
- * Number of times we will attempt to autonegotiate before downshifting if we
+#define M88E1000_PSSR_CABLE_LENGTH 0x0380
+#define M88E1000_PSSR_LINK 0x0400 /* 1=Link up, 0=Link down */
+#define M88E1000_PSSR_SPD_DPLX_RESOLVED 0x0800 /* 1=Speed & Duplex resolved */
+#define M88E1000_PSSR_DPLX 0x2000 /* 1=Duplex 0=Half Duplex */
+#define M88E1000_PSSR_SPEED 0xC000 /* Speed, bits 14:15 */
+#define M88E1000_PSSR_100MBS 0x4000 /* 01=100Mbs */
+#define M88E1000_PSSR_1000MBS 0x8000 /* 10=1000Mbs */
+
+#define M88E1000_PSSR_CABLE_LENGTH_SHIFT 7
+
+/* Number of times we will attempt to autonegotiate before downshifting if we
* are the master
*/
-#define M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK 0x0C00
-#define M88E1000_EPSCR_MASTER_DOWNSHIFT_1X 0x0000
-#define M88E1000_EPSCR_MASTER_DOWNSHIFT_2X 0x0400
-#define M88E1000_EPSCR_MASTER_DOWNSHIFT_3X 0x0800
-#define M88E1000_EPSCR_MASTER_DOWNSHIFT_4X 0x0C00
-/*
- * Number of times we will attempt to autonegotiate before downshifting if we
+#define M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK 0x0C00
+#define M88E1000_EPSCR_MASTER_DOWNSHIFT_1X 0x0000
+/* Number of times we will attempt to autonegotiate before downshifting if we
* are the slave
*/
-#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK 0x0300
-#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_DIS 0x0000
-#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X 0x0100
-#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_2X 0x0200
-#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_3X 0x0300
-#define M88E1000_EPSCR_TX_CLK_2_5 0x0060 /* 2.5 MHz TX_CLK */
-#define M88E1000_EPSCR_TX_CLK_25 0x0070 /* 25 MHz TX_CLK */
-#define M88E1000_EPSCR_TX_CLK_0 0x0000 /* NO TX_CLK */
+#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK 0x0300
+#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X 0x0100
+#define M88E1000_EPSCR_TX_CLK_25 0x0070 /* 25 MHz TX_CLK */
+/* Intel I347AT4 Registers */
+#define I347AT4_PCDL 0x10 /* PHY Cable Diagnostics Length */
+#define I347AT4_PCDC 0x15 /* PHY Cable Diagnostics Control */
+#define I347AT4_PAGE_SELECT 0x16
+
+/* I347AT4 Extended PHY Specific Control Register */
+
+/* Number of times we will attempt to autonegotiate before downshifting if we
+ * are the master
+ */
+#define I347AT4_PSCR_DOWNSHIFT_ENABLE 0x0800
+#define I347AT4_PSCR_DOWNSHIFT_MASK 0x7000
+#define I347AT4_PSCR_DOWNSHIFT_1X 0x0000
+#define I347AT4_PSCR_DOWNSHIFT_2X 0x1000
+#define I347AT4_PSCR_DOWNSHIFT_3X 0x2000
+#define I347AT4_PSCR_DOWNSHIFT_4X 0x3000
+#define I347AT4_PSCR_DOWNSHIFT_5X 0x4000
+#define I347AT4_PSCR_DOWNSHIFT_6X 0x5000
+#define I347AT4_PSCR_DOWNSHIFT_7X 0x6000
+#define I347AT4_PSCR_DOWNSHIFT_8X 0x7000
+
+/* I347AT4 PHY Cable Diagnostics Control */
+#define I347AT4_PCDC_CABLE_LENGTH_UNIT 0x0400 /* 0=cm 1=meters */
+
+/* M88E1112 only registers */
+#define M88E1112_VCT_DSP_DISTANCE 0x001A
/* M88EC018 Rev 2 specific DownShift settings */
-#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK 0x0E00
-#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_1X 0x0000
-#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_2X 0x0200
-#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_3X 0x0400
-#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_4X 0x0600
-#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X 0x0800
-#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_6X 0x0A00
-#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_7X 0x0C00
-#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_8X 0x0E00
-
-#define I82578_EPSCR_DOWNSHIFT_ENABLE 0x0020
-#define I82578_EPSCR_DOWNSHIFT_COUNTER_MASK 0x001C
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK 0x0E00
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X 0x0800
+
+#define I82578_EPSCR_DOWNSHIFT_ENABLE 0x0020
+#define I82578_EPSCR_DOWNSHIFT_COUNTER_MASK 0x001C
/* BME1000 PHY Specific Control Register */
-#define BME1000_PSCR_ENABLE_DOWNSHIFT 0x0800 /* 1 = enable downshift */
+#define BME1000_PSCR_ENABLE_DOWNSHIFT 0x0800 /* 1 = enable downshift */
-/*
- * Bits...
+/* Bits...
* 15-5: page
* 4-0: register offset
*/
-#define GG82563_PAGE_SHIFT 5
-#define GG82563_REG(page, reg) \
- (((page) << GG82563_PAGE_SHIFT) | ((reg) & MAX_PHY_REG_ADDRESS))
-#define GG82563_MIN_ALT_REG 30
+#define GG82563_PAGE_SHIFT 5
+#define GG82563_REG(page, reg) \
+ (((page) << GG82563_PAGE_SHIFT) | ((reg) & MAX_PHY_REG_ADDRESS))
+#define GG82563_MIN_ALT_REG 30
/* GG82563 Specific Registers */
-#define GG82563_PHY_SPEC_CTRL \
- GG82563_REG(0, 16) /* PHY Specific Control */
-#define GG82563_PHY_SPEC_STATUS \
- GG82563_REG(0, 17) /* PHY Specific Status */
-#define GG82563_PHY_INT_ENABLE \
- GG82563_REG(0, 18) /* Interrupt Enable */
-#define GG82563_PHY_SPEC_STATUS_2 \
- GG82563_REG(0, 19) /* PHY Specific Status 2 */
-#define GG82563_PHY_RX_ERR_CNTR \
- GG82563_REG(0, 21) /* Receive Error Counter */
-#define GG82563_PHY_PAGE_SELECT \
- GG82563_REG(0, 22) /* Page Select */
-#define GG82563_PHY_SPEC_CTRL_2 \
- GG82563_REG(0, 26) /* PHY Specific Control 2 */
-#define GG82563_PHY_PAGE_SELECT_ALT \
- GG82563_REG(0, 29) /* Alternate Page Select */
-#define GG82563_PHY_TEST_CLK_CTRL \
- GG82563_REG(0, 30) /* Test Clock Control (use reg. 29 to select) */
-
-#define GG82563_PHY_MAC_SPEC_CTRL \
- GG82563_REG(2, 21) /* MAC Specific Control Register */
-#define GG82563_PHY_MAC_SPEC_CTRL_2 \
- GG82563_REG(2, 26) /* MAC Specific Control 2 */
-
-#define GG82563_PHY_DSP_DISTANCE \
- GG82563_REG(5, 26) /* DSP Distance */
+#define GG82563_PHY_SPEC_CTRL GG82563_REG(0, 16) /* PHY Spec Cntrl */
+#define GG82563_PHY_PAGE_SELECT GG82563_REG(0, 22) /* Page Select */
+#define GG82563_PHY_SPEC_CTRL_2 GG82563_REG(0, 26) /* PHY Spec Cntrl2 */
+#define GG82563_PHY_PAGE_SELECT_ALT GG82563_REG(0, 29) /* Alt Page Select */
+
+/* MAC Specific Control Register */
+#define GG82563_PHY_MAC_SPEC_CTRL GG82563_REG(2, 21)
+
+#define GG82563_PHY_DSP_DISTANCE GG82563_REG(5, 26) /* DSP Distance */
/* Page 193 - Port Control Registers */
-#define GG82563_PHY_KMRN_MODE_CTRL \
- GG82563_REG(193, 16) /* Kumeran Mode Control */
-#define GG82563_PHY_PORT_RESET \
- GG82563_REG(193, 17) /* Port Reset */
-#define GG82563_PHY_REVISION_ID \
- GG82563_REG(193, 18) /* Revision ID */
-#define GG82563_PHY_DEVICE_ID \
- GG82563_REG(193, 19) /* Device ID */
-#define GG82563_PHY_PWR_MGMT_CTRL \
- GG82563_REG(193, 20) /* Power Management Control */
-#define GG82563_PHY_RATE_ADAPT_CTRL \
- GG82563_REG(193, 25) /* Rate Adaptation Control */
+/* Kumeran Mode Control */
+#define GG82563_PHY_KMRN_MODE_CTRL GG82563_REG(193, 16)
+#define GG82563_PHY_PWR_MGMT_CTRL GG82563_REG(193, 20) /* Pwr Mgt Ctrl */
/* Page 194 - KMRN Registers */
-#define GG82563_PHY_KMRN_FIFO_CTRL_STAT \
- GG82563_REG(194, 16) /* FIFO's Control/Status */
-#define GG82563_PHY_KMRN_CTRL \
- GG82563_REG(194, 17) /* Control */
-#define GG82563_PHY_INBAND_CTRL \
- GG82563_REG(194, 18) /* Inband Control */
-#define GG82563_PHY_KMRN_DIAGNOSTIC \
- GG82563_REG(194, 19) /* Diagnostic */
-#define GG82563_PHY_ACK_TIMEOUTS \
- GG82563_REG(194, 20) /* Acknowledge Timeouts */
-#define GG82563_PHY_ADV_ABILITY \
- GG82563_REG(194, 21) /* Advertised Ability */
-#define GG82563_PHY_LINK_PARTNER_ADV_ABILITY \
- GG82563_REG(194, 23) /* Link Partner Advertised Ability */
-#define GG82563_PHY_ADV_NEXT_PAGE \
- GG82563_REG(194, 24) /* Advertised Next Page */
-#define GG82563_PHY_LINK_PARTNER_ADV_NEXT_PAGE \
- GG82563_REG(194, 25) /* Link Partner Advertised Next page */
-#define GG82563_PHY_KMRN_MISC \
- GG82563_REG(194, 26) /* Misc. */
+#define GG82563_PHY_INBAND_CTRL GG82563_REG(194, 18) /* Inband Ctrl */
/* MDI Control */
-#define E1000_MDIC_DATA_MASK 0x0000FFFF
-#define E1000_MDIC_REG_MASK 0x001F0000
-#define E1000_MDIC_REG_SHIFT 16
-#define E1000_MDIC_PHY_MASK 0x03E00000
-#define E1000_MDIC_PHY_SHIFT 21
-#define E1000_MDIC_OP_WRITE 0x04000000
-#define E1000_MDIC_OP_READ 0x08000000
-#define E1000_MDIC_READY 0x10000000
-#define E1000_MDIC_INT_EN 0x20000000
-#define E1000_MDIC_ERROR 0x40000000
-#define E1000_MDIC_DEST 0x80000000
+#define E1000_MDIC_REG_MASK 0x001F0000
+#define E1000_MDIC_REG_SHIFT 16
+#define E1000_MDIC_PHY_MASK 0x03E00000
+#define E1000_MDIC_PHY_SHIFT 21
+#define E1000_MDIC_OP_WRITE 0x04000000
+#define E1000_MDIC_OP_READ 0x08000000
+#define E1000_MDIC_READY 0x10000000
+#define E1000_MDIC_ERROR 0x40000000
+#define E1000_MDIC_DEST 0x80000000
/* SerDes Control */
-#define E1000_GEN_CTL_READY 0x80000000
-#define E1000_GEN_CTL_ADDRESS_SHIFT 8
-#define E1000_GEN_POLL_TIMEOUT 640
+#define E1000_GEN_CTL_READY 0x80000000
+#define E1000_GEN_CTL_ADDRESS_SHIFT 8
+#define E1000_GEN_POLL_TIMEOUT 640
/* LinkSec register fields */
-#define E1000_LSECTXCAP_SUM_MASK 0x00FF0000
-#define E1000_LSECTXCAP_SUM_SHIFT 16
-#define E1000_LSECRXCAP_SUM_MASK 0x00FF0000
-#define E1000_LSECRXCAP_SUM_SHIFT 16
-
-#define E1000_LSECTXCTRL_EN_MASK 0x00000003
-#define E1000_LSECTXCTRL_DISABLE 0x0
-#define E1000_LSECTXCTRL_AUTH 0x1
-#define E1000_LSECTXCTRL_AUTH_ENCRYPT 0x2
-#define E1000_LSECTXCTRL_AISCI 0x00000020
-#define E1000_LSECTXCTRL_PNTHRSH_MASK 0xFFFFFF00
-#define E1000_LSECTXCTRL_RSV_MASK 0x000000D8
-
-#define E1000_LSECRXCTRL_EN_MASK 0x0000000C
-#define E1000_LSECRXCTRL_EN_SHIFT 2
-#define E1000_LSECRXCTRL_DISABLE 0x0
-#define E1000_LSECRXCTRL_CHECK 0x1
-#define E1000_LSECRXCTRL_STRICT 0x2
-#define E1000_LSECRXCTRL_DROP 0x3
-#define E1000_LSECRXCTRL_PLSH 0x00000040
-#define E1000_LSECRXCTRL_RP 0x00000080
-#define E1000_LSECRXCTRL_RSV_MASK 0xFFFFFF33
-
+#define E1000_LSECTXCAP_SUM_MASK 0x00FF0000
+#define E1000_LSECTXCAP_SUM_SHIFT 16
+#define E1000_LSECRXCAP_SUM_MASK 0x00FF0000
+#define E1000_LSECRXCAP_SUM_SHIFT 16
+
+#define E1000_LSECTXCTRL_EN_MASK 0x00000003
+#define E1000_LSECTXCTRL_DISABLE 0x0
+#define E1000_LSECTXCTRL_AUTH 0x1
+#define E1000_LSECTXCTRL_AUTH_ENCRYPT 0x2
+#define E1000_LSECTXCTRL_AISCI 0x00000020
+#define E1000_LSECTXCTRL_PNTHRSH_MASK 0xFFFFFF00
+#define E1000_LSECTXCTRL_RSV_MASK 0x000000D8
+
+#define E1000_LSECRXCTRL_EN_MASK 0x0000000C
+#define E1000_LSECRXCTRL_EN_SHIFT 2
+#define E1000_LSECRXCTRL_DISABLE 0x0
+#define E1000_LSECRXCTRL_CHECK 0x1
+#define E1000_LSECRXCTRL_STRICT 0x2
+#define E1000_LSECRXCTRL_DROP 0x3
+#define E1000_LSECRXCTRL_PLSH 0x00000040
+#define E1000_LSECRXCTRL_RP 0x00000080
+#define E1000_LSECRXCTRL_RSV_MASK 0xFFFFFF33
+
+/* Tx Rate-Scheduler Config fields */
+#define E1000_RTTBCNRC_RS_ENA 0x80000000
+#define E1000_RTTBCNRC_RF_DEC_MASK 0x00003FFF
+#define E1000_RTTBCNRC_RF_INT_SHIFT 14
+#define E1000_RTTBCNRC_RF_INT_MASK \
+ (E1000_RTTBCNRC_RF_DEC_MASK << E1000_RTTBCNRC_RF_INT_SHIFT)
/* DMA Coalescing register fields */
-#define E1000_DMACR_DMACWT_MASK 0x00003FFF /* DMA Coalescing
- * Watchdog Timer */
-#define E1000_DMACR_DMACTHR_MASK 0x00FF0000 /* DMA Coalescing Receive
- * Threshold */
-#define E1000_DMACR_DMACTHR_SHIFT 16
-#define E1000_DMACR_DMAC_LX_MASK 0x30000000 /* Lx when no PCIe
- * transactions */
-#define E1000_DMACR_DMAC_LX_SHIFT 28
-#define E1000_DMACR_DMAC_EN 0x80000000 /* Enable DMA Coalescing */
-
-#define E1000_DMCTXTH_DMCTTHR_MASK 0x00000FFF /* DMA Coalescing Transmit
- * Threshold */
-
-#define E1000_DMCTLX_TTLX_MASK 0x00000FFF /* Time to LX request */
-
-#define E1000_DMCRTRH_UTRESH_MASK 0x0007FFFF /* Receive Traffic Rate
- * Threshold */
-#define E1000_DMCRTRH_LRPRCW 0x80000000 /* Rcv packet rate in
- * current window */
-
-#define E1000_DMCCNT_CCOUNT_MASK 0x01FFFFFF /* DMA Coal Rcv Traffic
- * Current Cnt */
-
-#define E1000_FCRTC_RTH_COAL_MASK 0x0003FFF0 /* Flow ctrl Rcv Threshold
- * High val */
-#define E1000_FCRTC_RTH_COAL_SHIFT 4
-#define E1000_PCIEMISC_LX_DECISION 0x00000080 /* Lx power decision based
- on DMA coal */
-
-
+/* DMA Coalescing Watchdog Timer */
+#define E1000_DMACR_DMACWT_MASK 0x00003FFF
+/* DMA Coalescing Rx Threshold */
+#define E1000_DMACR_DMACTHR_MASK 0x00FF0000
+#define E1000_DMACR_DMACTHR_SHIFT 16
+/* Lx when no PCIe transactions */
+#define E1000_DMACR_DMAC_LX_MASK 0x30000000
+#define E1000_DMACR_DMAC_LX_SHIFT 28
+#define E1000_DMACR_DMAC_EN 0x80000000 /* Enable DMA Coalescing */
+/* DMA Coalescing BMC-to-OS Watchdog Enable */
+#define E1000_DMACR_DC_BMC2OSW_EN 0x00008000
+
+/* DMA Coalescing Transmit Threshold */
+#define E1000_DMCTXTH_DMCTTHR_MASK 0x00000FFF
+
+#define E1000_DMCTLX_TTLX_MASK 0x00000FFF /* Time to LX request */
+
+/* Rx Traffic Rate Threshold */
+#define E1000_DMCRTRH_UTRESH_MASK 0x0007FFFF
+/* Rx packet rate in current window */
+#define E1000_DMCRTRH_LRPRCW 0x80000000
+
+/* DMA Coal Rx Traffic Current Count */
+#define E1000_DMCCNT_CCOUNT_MASK 0x01FFFFFF
+
+/* Flow ctrl Rx Threshold High val */
+#define E1000_FCRTC_RTH_COAL_MASK 0x0003FFF0
+#define E1000_FCRTC_RTH_COAL_SHIFT 4
+/* Lx power decision based on DMA coal */
+#define E1000_PCIEMISC_LX_DECISION 0x00000080
+
+#define E1000_RXPBS_CFG_TS_EN 0x80000000 /* Timestamp in Rx buffer */
+#define E1000_RXPBS_SIZE_I210_MASK 0x0000003F /* Rx packet buffer size */
+#define E1000_TXPB0S_SIZE_I210_MASK 0x0000003F /* Tx packet buffer 0 size */
+#define E1000_DOBFFCTL_OBFFTHR_MASK 0x000000FF /* OBFF threshold */
+#define E1000_DOBFFCTL_EXIT_ACT_MASK 0x01000000 /* Exit active CB */
+
+/* Proxy Filter Control */
+#define E1000_PROXYFC_D0 0x00000001 /* Enable offload in D0 */
+#define E1000_PROXYFC_EX 0x00000004 /* Directed exact proxy */
+#define E1000_PROXYFC_MC 0x00000008 /* Directed MC Proxy */
+#define E1000_PROXYFC_BC 0x00000010 /* Broadcast Proxy Enable */
+#define E1000_PROXYFC_ARP_DIRECTED 0x00000020 /* Directed ARP Proxy Ena */
+#define E1000_PROXYFC_IPV4 0x00000040 /* Directed IPv4 Enable */
+#define E1000_PROXYFC_IPV6 0x00000080 /* Directed IPv6 Enable */
+#define E1000_PROXYFC_NS 0x00000200 /* IPv6 Neighbor Solicitation */
+#define E1000_PROXYFC_ARP 0x00000800 /* ARP Request Proxy Ena */
+/* Proxy Status */
+#define E1000_PROXYS_CLEAR 0xFFFFFFFF /* Clear */
+
+/* Firmware Status */
+#define E1000_FWSTS_FWRI 0x80000000 /* FW Reset Indication */
+/* VF Control */
+#define E1000_VTCTRL_RST 0x04000000 /* Reset VF */
+
+#define E1000_STATUS_LAN_ID_MASK 0x00000000C /* Mask for Lan ID field */
+/* Lan ID bit field offset in status register */
+#define E1000_STATUS_LAN_ID_OFFSET 2
+#define E1000_VFTA_ENTRIES 128
#endif /* _E1000_DEFINES_H_ */
diff --git a/freebsd/sys/dev/e1000/e1000_hw.h b/freebsd/sys/dev/e1000/e1000_hw.h
index e5dfe84d..e47a7593 100644
--- a/freebsd/sys/dev/e1000/e1000_hw.h
+++ b/freebsd/sys/dev/e1000/e1000_hw.h
@@ -1,6 +1,6 @@
/******************************************************************************
- Copyright (c) 2001-2010, Intel Corporation
+ Copyright (c) 2001-2013, Intel Corporation
All rights reserved.
Redistribution and use in source and binary forms, with or without
@@ -47,132 +47,151 @@
struct e1000_hw;
-#define E1000_DEV_ID_82542 0x1000
-#define E1000_DEV_ID_82543GC_FIBER 0x1001
-#define E1000_DEV_ID_82543GC_COPPER 0x1004
-#define E1000_DEV_ID_82544EI_COPPER 0x1008
-#define E1000_DEV_ID_82544EI_FIBER 0x1009
-#define E1000_DEV_ID_82544GC_COPPER 0x100C
-#define E1000_DEV_ID_82544GC_LOM 0x100D
-#define E1000_DEV_ID_82540EM 0x100E
-#define E1000_DEV_ID_82540EM_LOM 0x1015
-#define E1000_DEV_ID_82540EP_LOM 0x1016
-#define E1000_DEV_ID_82540EP 0x1017
-#define E1000_DEV_ID_82540EP_LP 0x101E
-#define E1000_DEV_ID_82545EM_COPPER 0x100F
-#define E1000_DEV_ID_82545EM_FIBER 0x1011
-#define E1000_DEV_ID_82545GM_COPPER 0x1026
-#define E1000_DEV_ID_82545GM_FIBER 0x1027
-#define E1000_DEV_ID_82545GM_SERDES 0x1028
-#define E1000_DEV_ID_82546EB_COPPER 0x1010
-#define E1000_DEV_ID_82546EB_FIBER 0x1012
-#define E1000_DEV_ID_82546EB_QUAD_COPPER 0x101D
-#define E1000_DEV_ID_82546GB_COPPER 0x1079
-#define E1000_DEV_ID_82546GB_FIBER 0x107A
-#define E1000_DEV_ID_82546GB_SERDES 0x107B
-#define E1000_DEV_ID_82546GB_PCIE 0x108A
-#define E1000_DEV_ID_82546GB_QUAD_COPPER 0x1099
-#define E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3 0x10B5
-#define E1000_DEV_ID_82541EI 0x1013
-#define E1000_DEV_ID_82541EI_MOBILE 0x1018
-#define E1000_DEV_ID_82541ER_LOM 0x1014
-#define E1000_DEV_ID_82541ER 0x1078
-#define E1000_DEV_ID_82541GI 0x1076
-#define E1000_DEV_ID_82541GI_LF 0x107C
-#define E1000_DEV_ID_82541GI_MOBILE 0x1077
-#define E1000_DEV_ID_82547EI 0x1019
-#define E1000_DEV_ID_82547EI_MOBILE 0x101A
-#define E1000_DEV_ID_82547GI 0x1075
-#define E1000_DEV_ID_82571EB_COPPER 0x105E
-#define E1000_DEV_ID_82571EB_FIBER 0x105F
-#define E1000_DEV_ID_82571EB_SERDES 0x1060
-#define E1000_DEV_ID_82571EB_SERDES_DUAL 0x10D9
-#define E1000_DEV_ID_82571EB_SERDES_QUAD 0x10DA
-#define E1000_DEV_ID_82571EB_QUAD_COPPER 0x10A4
-#define E1000_DEV_ID_82571PT_QUAD_COPPER 0x10D5
-#define E1000_DEV_ID_82571EB_QUAD_FIBER 0x10A5
-#define E1000_DEV_ID_82571EB_QUAD_COPPER_LP 0x10BC
-#define E1000_DEV_ID_82572EI_COPPER 0x107D
-#define E1000_DEV_ID_82572EI_FIBER 0x107E
-#define E1000_DEV_ID_82572EI_SERDES 0x107F
-#define E1000_DEV_ID_82572EI 0x10B9
-#define E1000_DEV_ID_82573E 0x108B
-#define E1000_DEV_ID_82573E_IAMT 0x108C
-#define E1000_DEV_ID_82573L 0x109A
-#define E1000_DEV_ID_82574L 0x10D3
-#define E1000_DEV_ID_82574LA 0x10F6
-#define E1000_DEV_ID_82583V 0x150C
-#define E1000_DEV_ID_80003ES2LAN_COPPER_DPT 0x1096
-#define E1000_DEV_ID_80003ES2LAN_SERDES_DPT 0x1098
-#define E1000_DEV_ID_80003ES2LAN_COPPER_SPT 0x10BA
-#define E1000_DEV_ID_80003ES2LAN_SERDES_SPT 0x10BB
-#define E1000_DEV_ID_ICH8_82567V_3 0x1501
-#define E1000_DEV_ID_ICH8_IGP_M_AMT 0x1049
-#define E1000_DEV_ID_ICH8_IGP_AMT 0x104A
-#define E1000_DEV_ID_ICH8_IGP_C 0x104B
-#define E1000_DEV_ID_ICH8_IFE 0x104C
-#define E1000_DEV_ID_ICH8_IFE_GT 0x10C4
-#define E1000_DEV_ID_ICH8_IFE_G 0x10C5
-#define E1000_DEV_ID_ICH8_IGP_M 0x104D
-#define E1000_DEV_ID_ICH9_IGP_M 0x10BF
-#define E1000_DEV_ID_ICH9_IGP_M_AMT 0x10F5
-#define E1000_DEV_ID_ICH9_IGP_M_V 0x10CB
-#define E1000_DEV_ID_ICH9_IGP_AMT 0x10BD
-#define E1000_DEV_ID_ICH9_BM 0x10E5
-#define E1000_DEV_ID_ICH9_IGP_C 0x294C
-#define E1000_DEV_ID_ICH9_IFE 0x10C0
-#define E1000_DEV_ID_ICH9_IFE_GT 0x10C3
-#define E1000_DEV_ID_ICH9_IFE_G 0x10C2
-#define E1000_DEV_ID_ICH10_R_BM_LM 0x10CC
-#define E1000_DEV_ID_ICH10_R_BM_LF 0x10CD
-#define E1000_DEV_ID_ICH10_R_BM_V 0x10CE
-#define E1000_DEV_ID_ICH10_HANKSVILLE 0xF0FE
-#define E1000_DEV_ID_ICH10_D_BM_LM 0x10DE
-#define E1000_DEV_ID_ICH10_D_BM_LF 0x10DF
-#define E1000_DEV_ID_ICH10_D_BM_V 0x1525
-
-#define E1000_DEV_ID_PCH_M_HV_LM 0x10EA
-#define E1000_DEV_ID_PCH_M_HV_LC 0x10EB
-#define E1000_DEV_ID_PCH_D_HV_DM 0x10EF
-#define E1000_DEV_ID_PCH_D_HV_DC 0x10F0
-#define E1000_DEV_ID_PCH2_LV_LM 0x1502
-#define E1000_DEV_ID_PCH2_LV_V 0x1503
-#define E1000_DEV_ID_82576 0x10C9
-#define E1000_DEV_ID_82576_FIBER 0x10E6
-#define E1000_DEV_ID_82576_SERDES 0x10E7
-#define E1000_DEV_ID_82576_QUAD_COPPER 0x10E8
-#define E1000_DEV_ID_82576_QUAD_COPPER_ET2 0x1526
-#define E1000_DEV_ID_82576_NS 0x150A
-#define E1000_DEV_ID_82576_NS_SERDES 0x1518
-#define E1000_DEV_ID_82576_SERDES_QUAD 0x150D
-#define E1000_DEV_ID_82576_VF 0x10CA
-#define E1000_DEV_ID_82575EB_COPPER 0x10A7
-#define E1000_DEV_ID_82575EB_FIBER_SERDES 0x10A9
-#define E1000_DEV_ID_82575GB_QUAD_COPPER 0x10D6
-#define E1000_DEV_ID_82575GB_QUAD_COPPER_PM 0x10E2
-#define E1000_DEV_ID_82580_COPPER 0x150E
-#define E1000_DEV_ID_82580_FIBER 0x150F
-#define E1000_DEV_ID_82580_SERDES 0x1510
-#define E1000_DEV_ID_82580_SGMII 0x1511
-#define E1000_DEV_ID_82580_COPPER_DUAL 0x1516
-#define E1000_DEV_ID_82580_QUAD_FIBER 0x1527
-#define E1000_DEV_ID_DH89XXCC_SGMII 0x0436
-#define E1000_DEV_ID_DH89XXCC_SERDES 0x0438
-#define E1000_REVISION_0 0
-#define E1000_REVISION_1 1
-#define E1000_REVISION_2 2
-#define E1000_REVISION_3 3
-#define E1000_REVISION_4 4
-
-#define E1000_FUNC_0 0
-#define E1000_FUNC_1 1
-#define E1000_FUNC_2 2
-#define E1000_FUNC_3 3
-
-#define E1000_ALT_MAC_ADDRESS_OFFSET_LAN0 0
-#define E1000_ALT_MAC_ADDRESS_OFFSET_LAN1 3
-#define E1000_ALT_MAC_ADDRESS_OFFSET_LAN2 6
-#define E1000_ALT_MAC_ADDRESS_OFFSET_LAN3 9
+#define E1000_DEV_ID_82542 0x1000
+#define E1000_DEV_ID_82543GC_FIBER 0x1001
+#define E1000_DEV_ID_82543GC_COPPER 0x1004
+#define E1000_DEV_ID_82544EI_COPPER 0x1008
+#define E1000_DEV_ID_82544EI_FIBER 0x1009
+#define E1000_DEV_ID_82544GC_COPPER 0x100C
+#define E1000_DEV_ID_82544GC_LOM 0x100D
+#define E1000_DEV_ID_82540EM 0x100E
+#define E1000_DEV_ID_82540EM_LOM 0x1015
+#define E1000_DEV_ID_82540EP_LOM 0x1016
+#define E1000_DEV_ID_82540EP 0x1017
+#define E1000_DEV_ID_82540EP_LP 0x101E
+#define E1000_DEV_ID_82545EM_COPPER 0x100F
+#define E1000_DEV_ID_82545EM_FIBER 0x1011
+#define E1000_DEV_ID_82545GM_COPPER 0x1026
+#define E1000_DEV_ID_82545GM_FIBER 0x1027
+#define E1000_DEV_ID_82545GM_SERDES 0x1028
+#define E1000_DEV_ID_82546EB_COPPER 0x1010
+#define E1000_DEV_ID_82546EB_FIBER 0x1012
+#define E1000_DEV_ID_82546EB_QUAD_COPPER 0x101D
+#define E1000_DEV_ID_82546GB_COPPER 0x1079
+#define E1000_DEV_ID_82546GB_FIBER 0x107A
+#define E1000_DEV_ID_82546GB_SERDES 0x107B
+#define E1000_DEV_ID_82546GB_PCIE 0x108A
+#define E1000_DEV_ID_82546GB_QUAD_COPPER 0x1099
+#define E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3 0x10B5
+#define E1000_DEV_ID_82541EI 0x1013
+#define E1000_DEV_ID_82541EI_MOBILE 0x1018
+#define E1000_DEV_ID_82541ER_LOM 0x1014
+#define E1000_DEV_ID_82541ER 0x1078
+#define E1000_DEV_ID_82541GI 0x1076
+#define E1000_DEV_ID_82541GI_LF 0x107C
+#define E1000_DEV_ID_82541GI_MOBILE 0x1077
+#define E1000_DEV_ID_82547EI 0x1019
+#define E1000_DEV_ID_82547EI_MOBILE 0x101A
+#define E1000_DEV_ID_82547GI 0x1075
+#define E1000_DEV_ID_82571EB_COPPER 0x105E
+#define E1000_DEV_ID_82571EB_FIBER 0x105F
+#define E1000_DEV_ID_82571EB_SERDES 0x1060
+#define E1000_DEV_ID_82571EB_SERDES_DUAL 0x10D9
+#define E1000_DEV_ID_82571EB_SERDES_QUAD 0x10DA
+#define E1000_DEV_ID_82571EB_QUAD_COPPER 0x10A4
+#define E1000_DEV_ID_82571PT_QUAD_COPPER 0x10D5
+#define E1000_DEV_ID_82571EB_QUAD_FIBER 0x10A5
+#define E1000_DEV_ID_82571EB_QUAD_COPPER_LP 0x10BC
+#define E1000_DEV_ID_82572EI_COPPER 0x107D
+#define E1000_DEV_ID_82572EI_FIBER 0x107E
+#define E1000_DEV_ID_82572EI_SERDES 0x107F
+#define E1000_DEV_ID_82572EI 0x10B9
+#define E1000_DEV_ID_82573E 0x108B
+#define E1000_DEV_ID_82573E_IAMT 0x108C
+#define E1000_DEV_ID_82573L 0x109A
+#define E1000_DEV_ID_82574L 0x10D3
+#define E1000_DEV_ID_82574LA 0x10F6
+#define E1000_DEV_ID_82583V 0x150C
+#define E1000_DEV_ID_80003ES2LAN_COPPER_DPT 0x1096
+#define E1000_DEV_ID_80003ES2LAN_SERDES_DPT 0x1098
+#define E1000_DEV_ID_80003ES2LAN_COPPER_SPT 0x10BA
+#define E1000_DEV_ID_80003ES2LAN_SERDES_SPT 0x10BB
+#define E1000_DEV_ID_ICH8_82567V_3 0x1501
+#define E1000_DEV_ID_ICH8_IGP_M_AMT 0x1049
+#define E1000_DEV_ID_ICH8_IGP_AMT 0x104A
+#define E1000_DEV_ID_ICH8_IGP_C 0x104B
+#define E1000_DEV_ID_ICH8_IFE 0x104C
+#define E1000_DEV_ID_ICH8_IFE_GT 0x10C4
+#define E1000_DEV_ID_ICH8_IFE_G 0x10C5
+#define E1000_DEV_ID_ICH8_IGP_M 0x104D
+#define E1000_DEV_ID_ICH9_IGP_M 0x10BF
+#define E1000_DEV_ID_ICH9_IGP_M_AMT 0x10F5
+#define E1000_DEV_ID_ICH9_IGP_M_V 0x10CB
+#define E1000_DEV_ID_ICH9_IGP_AMT 0x10BD
+#define E1000_DEV_ID_ICH9_BM 0x10E5
+#define E1000_DEV_ID_ICH9_IGP_C 0x294C
+#define E1000_DEV_ID_ICH9_IFE 0x10C0
+#define E1000_DEV_ID_ICH9_IFE_GT 0x10C3
+#define E1000_DEV_ID_ICH9_IFE_G 0x10C2
+#define E1000_DEV_ID_ICH10_R_BM_LM 0x10CC
+#define E1000_DEV_ID_ICH10_R_BM_LF 0x10CD
+#define E1000_DEV_ID_ICH10_R_BM_V 0x10CE
+#define E1000_DEV_ID_ICH10_D_BM_LM 0x10DE
+#define E1000_DEV_ID_ICH10_D_BM_LF 0x10DF
+#define E1000_DEV_ID_ICH10_D_BM_V 0x1525
+#define E1000_DEV_ID_PCH_M_HV_LM 0x10EA
+#define E1000_DEV_ID_PCH_M_HV_LC 0x10EB
+#define E1000_DEV_ID_PCH_D_HV_DM 0x10EF
+#define E1000_DEV_ID_PCH_D_HV_DC 0x10F0
+#define E1000_DEV_ID_PCH2_LV_LM 0x1502
+#define E1000_DEV_ID_PCH2_LV_V 0x1503
+#define E1000_DEV_ID_PCH_LPT_I217_LM 0x153A
+#define E1000_DEV_ID_PCH_LPT_I217_V 0x153B
+#define E1000_DEV_ID_PCH_LPTLP_I218_LM 0x155A
+#define E1000_DEV_ID_PCH_LPTLP_I218_V 0x1559
+#define E1000_DEV_ID_82576 0x10C9
+#define E1000_DEV_ID_82576_FIBER 0x10E6
+#define E1000_DEV_ID_82576_SERDES 0x10E7
+#define E1000_DEV_ID_82576_QUAD_COPPER 0x10E8
+#define E1000_DEV_ID_82576_QUAD_COPPER_ET2 0x1526
+#define E1000_DEV_ID_82576_NS 0x150A
+#define E1000_DEV_ID_82576_NS_SERDES 0x1518
+#define E1000_DEV_ID_82576_SERDES_QUAD 0x150D
+#define E1000_DEV_ID_82576_VF 0x10CA
+#define E1000_DEV_ID_82576_VF_HV 0x152D
+#define E1000_DEV_ID_I350_VF 0x1520
+#define E1000_DEV_ID_I350_VF_HV 0x152F
+#define E1000_DEV_ID_82575EB_COPPER 0x10A7
+#define E1000_DEV_ID_82575EB_FIBER_SERDES 0x10A9
+#define E1000_DEV_ID_82575GB_QUAD_COPPER 0x10D6
+#define E1000_DEV_ID_82580_COPPER 0x150E
+#define E1000_DEV_ID_82580_FIBER 0x150F
+#define E1000_DEV_ID_82580_SERDES 0x1510
+#define E1000_DEV_ID_82580_SGMII 0x1511
+#define E1000_DEV_ID_82580_COPPER_DUAL 0x1516
+#define E1000_DEV_ID_82580_QUAD_FIBER 0x1527
+#define E1000_DEV_ID_I350_COPPER 0x1521
+#define E1000_DEV_ID_I350_FIBER 0x1522
+#define E1000_DEV_ID_I350_SERDES 0x1523
+#define E1000_DEV_ID_I350_SGMII 0x1524
+#define E1000_DEV_ID_I350_DA4 0x1546
+#define E1000_DEV_ID_I210_COPPER 0x1533
+#define E1000_DEV_ID_I210_COPPER_OEM1 0x1534
+#define E1000_DEV_ID_I210_COPPER_IT 0x1535
+#define E1000_DEV_ID_I210_FIBER 0x1536
+#define E1000_DEV_ID_I210_SERDES 0x1537
+#define E1000_DEV_ID_I210_SGMII 0x1538
+#define E1000_DEV_ID_I211_COPPER 0x1539
+#define E1000_DEV_ID_DH89XXCC_SGMII 0x0438
+#define E1000_DEV_ID_DH89XXCC_SERDES 0x043A
+#define E1000_DEV_ID_DH89XXCC_BACKPLANE 0x043C
+#define E1000_DEV_ID_DH89XXCC_SFP 0x0440
+
+#define E1000_REVISION_0 0
+#define E1000_REVISION_1 1
+#define E1000_REVISION_2 2
+#define E1000_REVISION_3 3
+#define E1000_REVISION_4 4
+
+#define E1000_FUNC_0 0
+#define E1000_FUNC_1 1
+#define E1000_FUNC_2 2
+#define E1000_FUNC_3 3
+
+#define E1000_ALT_MAC_ADDRESS_OFFSET_LAN0 0
+#define E1000_ALT_MAC_ADDRESS_OFFSET_LAN1 3
+#define E1000_ALT_MAC_ADDRESS_OFFSET_LAN2 6
+#define E1000_ALT_MAC_ADDRESS_OFFSET_LAN3 9
enum e1000_mac_type {
e1000_undefined = 0,
@@ -199,10 +218,15 @@ enum e1000_mac_type {
e1000_ich10lan,
e1000_pchlan,
e1000_pch2lan,
+ e1000_pch_lpt,
e1000_82575,
e1000_82576,
e1000_82580,
+ e1000_i350,
+ e1000_i210,
+ e1000_i211,
e1000_vfadapt,
+ e1000_vfadapt_i350,
e1000_num_macs /* List is 1-based, so subtract 1 for TRUE count. */
};
@@ -244,8 +268,10 @@ enum e1000_phy_type {
e1000_phy_82578,
e1000_phy_82577,
e1000_phy_82579,
+ e1000_phy_i217,
e1000_phy_82580,
e1000_phy_vf,
+ e1000_phy_i210,
};
enum e1000_bus_type {
@@ -339,9 +365,9 @@ enum e1000_serdes_link_state {
struct e1000_rx_desc {
__le64 buffer_addr; /* Address of the descriptor's data buffer */
__le16 length; /* Length of data DMAed into data buffer */
- __le16 csum; /* Packet checksum */
- u8 status; /* Descriptor status */
- u8 errors; /* Descriptor Errors */
+ __le16 csum; /* Packet checksum */
+ u8 status; /* Descriptor status */
+ u8 errors; /* Descriptor Errors */
__le16 special;
};
@@ -353,9 +379,9 @@ union e1000_rx_desc_extended {
} read;
struct {
struct {
- __le32 mrq; /* Multiple Rx Queues */
+ __le32 mrq; /* Multiple Rx Queues */
union {
- __le32 rss; /* RSS Hash */
+ __le32 rss; /* RSS Hash */
struct {
__le16 ip_id; /* IP id */
__le16 csum; /* Packet Checksum */
@@ -365,7 +391,7 @@ union e1000_rx_desc_extended {
struct {
__le32 status_error; /* ext status/error */
__le16 length;
- __le16 vlan; /* VLAN tag */
+ __le16 vlan; /* VLAN tag */
} upper;
} wb; /* writeback */
};
@@ -379,9 +405,9 @@ union e1000_rx_desc_packet_split {
} read;
struct {
struct {
- __le32 mrq; /* Multiple Rx Queues */
+ __le32 mrq; /* Multiple Rx Queues */
union {
- __le32 rss; /* RSS Hash */
+ __le32 rss; /* RSS Hash */
struct {
__le16 ip_id; /* IP id */
__le16 csum; /* Packet Checksum */
@@ -390,8 +416,8 @@ union e1000_rx_desc_packet_split {
} lower;
struct {
__le32 status_error; /* ext status/error */
- __le16 length0; /* length of buffer 0 */
- __le16 vlan; /* VLAN tag */
+ __le16 length0; /* length of buffer 0 */
+ __le16 vlan; /* VLAN tag */
} middle;
struct {
__le16 header_status;
@@ -407,16 +433,16 @@ struct e1000_tx_desc {
union {
__le32 data;
struct {
- __le16 length; /* Data buffer length */
- u8 cso; /* Checksum offset */
- u8 cmd; /* Descriptor control */
+ __le16 length; /* Data buffer length */
+ u8 cso; /* Checksum offset */
+ u8 cmd; /* Descriptor control */
} flags;
} lower;
union {
__le32 data;
struct {
- u8 status; /* Descriptor status */
- u8 css; /* Checksum start */
+ u8 status; /* Descriptor status */
+ u8 css; /* Checksum start */
__le16 special;
} fields;
} upper;
@@ -427,37 +453,37 @@ struct e1000_context_desc {
union {
__le32 ip_config;
struct {
- u8 ipcss; /* IP checksum start */
- u8 ipcso; /* IP checksum offset */
- __le16 ipcse; /* IP checksum end */
+ u8 ipcss; /* IP checksum start */
+ u8 ipcso; /* IP checksum offset */
+ __le16 ipcse; /* IP checksum end */
} ip_fields;
} lower_setup;
union {
__le32 tcp_config;
struct {
- u8 tucss; /* TCP checksum start */
- u8 tucso; /* TCP checksum offset */
- __le16 tucse; /* TCP checksum end */
+ u8 tucss; /* TCP checksum start */
+ u8 tucso; /* TCP checksum offset */
+ __le16 tucse; /* TCP checksum end */
} tcp_fields;
} upper_setup;
__le32 cmd_and_length;
union {
__le32 data;
struct {
- u8 status; /* Descriptor status */
- u8 hdr_len; /* Header length */
- __le16 mss; /* Maximum segment size */
+ u8 status; /* Descriptor status */
+ u8 hdr_len; /* Header length */
+ __le16 mss; /* Maximum segment size */
} fields;
} tcp_seg_setup;
};
/* Offload data descriptor */
struct e1000_data_desc {
- __le64 buffer_addr; /* Address of the descriptor's buffer address */
+ __le64 buffer_addr; /* Address of the descriptor's buffer address */
union {
__le32 data;
struct {
- __le16 length; /* Data buffer length */
+ __le16 length; /* Data buffer length */
u8 typ_len_ext;
u8 cmd;
} flags;
@@ -465,8 +491,8 @@ struct e1000_data_desc {
union {
__le32 data;
struct {
- u8 status; /* Descriptor status */
- u8 popts; /* Packet Options */
+ u8 status; /* Descriptor status */
+ u8 popts; /* Packet Options */
__le16 special;
} fields;
} upper;
@@ -550,6 +576,10 @@ struct e1000_hw_stats {
u64 scvpc;
u64 hrmpc;
u64 doosync;
+ u64 o2bgptc;
+ u64 o2bspc;
+ u64 b2ospc;
+ u64 b2ogprc;
};
struct e1000_vf_stats {
@@ -608,7 +638,7 @@ struct e1000_host_command_header {
u8 checksum;
};
-#define E1000_HI_MAX_DATA_LENGTH 252
+#define E1000_HI_MAX_DATA_LENGTH 252
struct e1000_host_command_info {
struct e1000_host_command_header command_header;
u8 command_data[E1000_HI_MAX_DATA_LENGTH];
@@ -623,7 +653,7 @@ struct e1000_host_mng_command_header {
u16 command_length;
};
-#define E1000_HI_MAX_MNG_DATA_LENGTH 0x6F8
+#define E1000_HI_MAX_MNG_DATA_LENGTH 0x6F8
struct e1000_host_mng_command_info {
struct e1000_host_mng_command_header command_header;
u8 command_data[E1000_HI_MAX_MNG_DATA_LENGTH];
@@ -643,13 +673,13 @@ struct e1000_host_mng_command_info {
#include <rtems/bsd/local/e1000_mbx.h>
#endif
+/* Function pointers for the MAC. */
struct e1000_mac_operations {
- /* Function pointers for the MAC. */
s32 (*init_params)(struct e1000_hw *);
s32 (*id_led_init)(struct e1000_hw *);
s32 (*blink_led)(struct e1000_hw *);
+ bool (*check_mng_mode)(struct e1000_hw *);
s32 (*check_for_link)(struct e1000_hw *);
- bool (*check_mng_mode)(struct e1000_hw *hw);
s32 (*cleanup_led)(struct e1000_hw *);
void (*clear_hw_cntrs)(struct e1000_hw *);
void (*clear_vfta)(struct e1000_hw *);
@@ -671,13 +701,25 @@ struct e1000_mac_operations {
void (*rar_set)(struct e1000_hw *, u8*, u32);
s32 (*read_mac_addr)(struct e1000_hw *);
s32 (*validate_mdi_setting)(struct e1000_hw *);
- s32 (*mng_host_if_write)(struct e1000_hw *, u8*, u16, u16, u8*);
- s32 (*mng_write_cmd_header)(struct e1000_hw *hw,
- struct e1000_host_mng_command_header*);
- s32 (*mng_enable_host_if)(struct e1000_hw *);
- s32 (*wait_autoneg)(struct e1000_hw *);
+ s32 (*set_obff_timer)(struct e1000_hw *, u32);
+ s32 (*acquire_swfw_sync)(struct e1000_hw *, u16);
+ void (*release_swfw_sync)(struct e1000_hw *, u16);
};
+/* When to use various PHY register access functions:
+ *
+ * Func Caller
+ * Function Does Does When to use
+ * ~~~~~~~~~~~~ ~~~~~ ~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+ * X_reg L,P,A n/a for simple PHY reg accesses
+ * X_reg_locked P,A L for multiple accesses of different regs
+ * on different pages
+ * X_reg_page A L,P for multiple accesses of different regs
+ * on the same page
+ *
+ * Where X=[read|write], L=locking, P=sets page, A=register access
+ *
+ */
struct e1000_phy_operations {
s32 (*init_params)(struct e1000_hw *);
s32 (*acquire)(struct e1000_hw *);
@@ -689,18 +731,24 @@ struct e1000_phy_operations {
s32 (*get_cfg_done)(struct e1000_hw *hw);
s32 (*get_cable_length)(struct e1000_hw *);
s32 (*get_info)(struct e1000_hw *);
+ s32 (*set_page)(struct e1000_hw *, u16);
s32 (*read_reg)(struct e1000_hw *, u32, u16 *);
s32 (*read_reg_locked)(struct e1000_hw *, u32, u16 *);
+ s32 (*read_reg_page)(struct e1000_hw *, u32, u16 *);
void (*release)(struct e1000_hw *);
s32 (*reset)(struct e1000_hw *);
s32 (*set_d0_lplu_state)(struct e1000_hw *, bool);
s32 (*set_d3_lplu_state)(struct e1000_hw *, bool);
s32 (*write_reg)(struct e1000_hw *, u32, u16);
s32 (*write_reg_locked)(struct e1000_hw *, u32, u16);
+ s32 (*write_reg_page)(struct e1000_hw *, u32, u16);
void (*power_up)(struct e1000_hw *);
void (*power_down)(struct e1000_hw *);
+ s32 (*read_i2c_byte)(struct e1000_hw *, u8, u8, u8 *);
+ s32 (*write_i2c_byte)(struct e1000_hw *, u8, u8, u8);
};
+/* Function pointers for the NVM. */
struct e1000_nvm_operations {
s32 (*init_params)(struct e1000_hw *);
s32 (*acquire)(struct e1000_hw *);
@@ -715,8 +763,8 @@ struct e1000_nvm_operations {
struct e1000_mac_info {
struct e1000_mac_operations ops;
- u8 addr[6];
- u8 perm_addr[6];
+ u8 addr[ETH_ADDR_LEN];
+ u8 perm_addr[ETH_ADDR_LEN];
enum e1000_mac_type type;
@@ -755,6 +803,7 @@ struct e1000_mac_info {
enum e1000_serdes_link_state serdes_link_state;
bool serdes_has_link;
bool tx_pkt_filtering;
+ u32 max_frame_size;
};
struct e1000_phy_info {
@@ -786,7 +835,6 @@ struct e1000_phy_info {
bool disable_polarity_correction;
bool is_mdix;
bool polarity_correction;
- bool reset_disable;
bool speed_downgraded;
bool autoneg_wait_to_complete;
};
@@ -816,14 +864,14 @@ struct e1000_bus_info {
};
struct e1000_fc_info {
- u32 high_water; /* Flow control high-water mark */
- u32 low_water; /* Flow control low-water mark */
- u16 pause_time; /* Flow control pause timer */
- u16 refresh_time; /* Flow control refresh timer */
- bool send_xon; /* Flow control send XON */
- bool strict_ieee; /* Strict IEEE mode */
- enum e1000_fc_mode current_mode; /* FC mode in effect */
- enum e1000_fc_mode requested_mode; /* FC mode requested by caller */
+ u32 high_water; /* Flow control high-water mark */
+ u32 low_water; /* Flow control low-water mark */
+ u16 pause_time; /* Flow control pause timer */
+ u16 refresh_time; /* Flow control refresh timer */
+ bool send_xon; /* Flow control send XON */
+ bool strict_ieee; /* Strict IEEE mode */
+ enum e1000_fc_mode current_mode; /* FC mode in effect */
+ enum e1000_fc_mode requested_mode; /* FC mode requested by caller */
};
struct e1000_mbx_operations {
@@ -895,16 +943,22 @@ struct e1000_dev_spec_ich8lan {
E1000_MUTEX swflag_mutex;
bool nvm_k1_enabled;
bool eee_disable;
+ u16 eee_lp_ability;
};
struct e1000_dev_spec_82575 {
bool sgmii_active;
bool global_device_reset;
+ bool eee_disable;
+ bool module_plugged;
+ bool clear_semaphore_once;
+ u32 mtu;
+ struct sfp_e1000_flags eth_flags;
};
struct e1000_dev_spec_vf {
- u32 vf_number;
- u32 v2p_mailbox;
+ u32 vf_number;
+ u32 v2p_mailbox;
};
struct e1000_hw {
@@ -923,14 +977,14 @@ struct e1000_hw {
struct e1000_host_mng_dhcp_cookie mng_cookie;
union {
- struct e1000_dev_spec_82541 _82541;
- struct e1000_dev_spec_82542 _82542;
- struct e1000_dev_spec_82543 _82543;
- struct e1000_dev_spec_82571 _82571;
+ struct e1000_dev_spec_82541 _82541;
+ struct e1000_dev_spec_82542 _82542;
+ struct e1000_dev_spec_82543 _82543;
+ struct e1000_dev_spec_82571 _82571;
struct e1000_dev_spec_80003es2lan _80003es2lan;
- struct e1000_dev_spec_ich8lan ich8lan;
- struct e1000_dev_spec_82575 _82575;
- struct e1000_dev_spec_vf vf;
+ struct e1000_dev_spec_ich8lan ich8lan;
+ struct e1000_dev_spec_82575 _82575;
+ struct e1000_dev_spec_vf vf;
} dev_spec;
u16 device_id;
@@ -948,6 +1002,7 @@ struct e1000_hw {
#include <dev/e1000/e1000_80003es2lan.h>
#include <dev/e1000/e1000_ich8lan.h>
#include <dev/e1000/e1000_82575.h>
+#include <dev/e1000/e1000_i210.h>
#else
#include <rtems/bsd/local/e1000_82541.h>
#include <rtems/bsd/local/e1000_82543.h>
@@ -955,7 +1010,8 @@ struct e1000_hw {
#include <rtems/bsd/local/e1000_80003es2lan.h>
#include <rtems/bsd/local/e1000_ich8lan.h>
#include <rtems/bsd/local/e1000_82575.h>
-#endif
+#include <rtems/bsd/local/e1000_i210.h>
+#endif /* __rtems__ */
/* These functions must be implemented by drivers */
void e1000_pci_clear_mwi(struct e1000_hw *hw);
diff --git a/freebsd/sys/dev/e1000/e1000_i210.h b/freebsd/sys/dev/e1000/e1000_i210.h
new file mode 100644
index 00000000..d7711fe0
--- /dev/null
+++ b/freebsd/sys/dev/e1000/e1000_i210.h
@@ -0,0 +1,92 @@
+/******************************************************************************
+
+ Copyright (c) 2001-2013, Intel Corporation
+ All rights reserved.
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ POSSIBILITY OF SUCH DAMAGE.
+
+******************************************************************************/
+/*$FreeBSD$*/
+
+#ifndef _E1000_I210_H_
+#define _E1000_I210_H_
+
+s32 e1000_update_flash_i210(struct e1000_hw *hw);
+s32 e1000_update_nvm_checksum_i210(struct e1000_hw *hw);
+s32 e1000_validate_nvm_checksum_i210(struct e1000_hw *hw);
+s32 e1000_write_nvm_srwr_i210(struct e1000_hw *hw, u16 offset,
+ u16 words, u16 *data);
+s32 e1000_read_nvm_srrd_i210(struct e1000_hw *hw, u16 offset,
+ u16 words, u16 *data);
+s32 e1000_read_invm_i211(struct e1000_hw *hw, u8 address, u16 *data);
+s32 e1000_acquire_swfw_sync_i210(struct e1000_hw *hw, u16 mask);
+void e1000_release_swfw_sync_i210(struct e1000_hw *hw, u16 mask);
+
+#define E1000_STM_OPCODE 0xDB00
+#define E1000_EEPROM_FLASH_SIZE_WORD 0x11
+
+#define INVM_DWORD_TO_RECORD_TYPE(invm_dword) \
+ (u8)((invm_dword) & 0x7)
+#define INVM_DWORD_TO_WORD_ADDRESS(invm_dword) \
+ (u8)(((invm_dword) & 0x0000FE00) >> 9)
+#define INVM_DWORD_TO_WORD_DATA(invm_dword) \
+ (u16)(((invm_dword) & 0xFFFF0000) >> 16)
+
+enum E1000_INVM_STRUCTURE_TYPE {
+ E1000_INVM_UNINITIALIZED_STRUCTURE = 0x00,
+ E1000_INVM_WORD_AUTOLOAD_STRUCTURE = 0x01,
+ E1000_INVM_CSR_AUTOLOAD_STRUCTURE = 0x02,
+ E1000_INVM_PHY_REGISTER_AUTOLOAD_STRUCTURE = 0x03,
+ E1000_INVM_RSA_KEY_SHA256_STRUCTURE = 0x04,
+ E1000_INVM_INVALIDATED_STRUCTURE = 0x0F,
+};
+
+#define E1000_INVM_RSA_KEY_SHA256_DATA_SIZE_IN_DWORDS 8
+#define E1000_INVM_CSR_AUTOLOAD_DATA_SIZE_IN_DWORDS 1
+#define E1000_INVM_ULT_BYTES_SIZE 8
+#define E1000_INVM_RECORD_SIZE_IN_BYTES 4
+#define E1000_INVM_VER_FIELD_ONE 0x1FF8
+#define E1000_INVM_VER_FIELD_TWO 0x7FE000
+#define E1000_INVM_IMGTYPE_FIELD 0x1F800000
+
+#define E1000_INVM_MAJOR_MASK 0x3F0
+#define E1000_INVM_MINOR_MASK 0xF
+#define E1000_INVM_MAJOR_SHIFT 4
+
+#define ID_LED_DEFAULT_I210 ((ID_LED_OFF1_ON2 << 8) | \
+ (ID_LED_DEF1_DEF2 << 4) | \
+ (ID_LED_OFF1_OFF2))
+#define ID_LED_DEFAULT_I210_SERDES ((ID_LED_DEF1_DEF2 << 8) | \
+ (ID_LED_DEF1_DEF2 << 4) | \
+ (ID_LED_DEF1_DEF2))
+
+/* NVM offset defaults for I211 devices */
+#define NVM_INIT_CTRL_2_DEFAULT_I211 0X7243
+#define NVM_INIT_CTRL_4_DEFAULT_I211 0x00C1
+#define NVM_LED_1_CFG_DEFAULT_I211 0x0184
+#define NVM_LED_0_2_CFG_DEFAULT_I211 0x200C
+#endif
diff --git a/freebsd/sys/dev/e1000/e1000_ich8lan.c b/freebsd/sys/dev/e1000/e1000_ich8lan.c
index 6bf287c8..44e09538 100644
--- a/freebsd/sys/dev/e1000/e1000_ich8lan.c
+++ b/freebsd/sys/dev/e1000/e1000_ich8lan.c
@@ -2,7 +2,7 @@
/******************************************************************************
- Copyright (c) 2001-2010, Intel Corporation
+ Copyright (c) 2001-2013, Intel Corporation
All rights reserved.
Redistribution and use in source and binary forms, with or without
@@ -34,8 +34,7 @@
******************************************************************************/
/*$FreeBSD$*/
-/*
- * 82562G 10/100 Network Connection
+/* 82562G 10/100 Network Connection
* 82562G-2 10/100 Network Connection
* 82562GT 10/100 Network Connection
* 82562GT-2 10/100 Network Connection
@@ -70,10 +69,6 @@
#include <rtems/bsd/local/e1000_api.h>
#endif
-static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw);
-static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw);
-static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw);
-static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw);
static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw);
static void e1000_release_swflag_ich8lan(struct e1000_hw *hw);
static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw);
@@ -81,29 +76,34 @@ static void e1000_release_nvm_ich8lan(struct e1000_hw *hw);
static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
static void e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
+static void e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
+static void e1000_update_mc_addr_list_pch2lan(struct e1000_hw *hw,
+ u8 *mc_addr_list,
+ u32 mc_addr_count);
static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw);
static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw);
static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw,
- bool active);
+ bool active);
static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw,
- bool active);
+ bool active);
static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset,
- u16 words, u16 *data);
+ u16 words, u16 *data);
static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset,
- u16 words, u16 *data);
+ u16 words, u16 *data);
static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw);
static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw);
static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw,
- u16 *data);
+ u16 *data);
static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw);
static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw);
static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw);
static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw);
static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
+static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw,
- u16 *speed, u16 *duplex);
+ u16 *speed, u16 *duplex);
static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
@@ -114,44 +114,37 @@ static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
-static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout);
-static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw);
static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw,
- u32 offset, u8 *data);
+ u32 offset, u8 *data);
static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
- u8 size, u16 *data);
+ u8 size, u16 *data);
static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw,
- u32 offset, u16 *data);
+ u32 offset, u16 *data);
static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
- u32 offset, u8 byte);
-static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw,
- u32 offset, u8 data);
-static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
- u8 size, u16 data);
+ u32 offset, u8 byte);
static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw);
-static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
-static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw);
static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
+static s32 e1000_set_obff_timer_pch_lpt(struct e1000_hw *hw, u32 itr);
/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
/* Offset 04h HSFSTS */
union ich8_hws_flash_status {
struct ich8_hsfsts {
- u16 flcdone :1; /* bit 0 Flash Cycle Done */
- u16 flcerr :1; /* bit 1 Flash Cycle Error */
- u16 dael :1; /* bit 2 Direct Access error Log */
- u16 berasesz :2; /* bit 4:3 Sector Erase Size */
- u16 flcinprog :1; /* bit 5 flash cycle in Progress */
- u16 reserved1 :2; /* bit 13:6 Reserved */
- u16 reserved2 :6; /* bit 13:6 Reserved */
- u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */
- u16 flockdn :1; /* bit 15 Flash Config Lock-Down */
+ u16 flcdone:1; /* bit 0 Flash Cycle Done */
+ u16 flcerr:1; /* bit 1 Flash Cycle Error */
+ u16 dael:1; /* bit 2 Direct Access error Log */
+ u16 berasesz:2; /* bit 4:3 Sector Erase Size */
+ u16 flcinprog:1; /* bit 5 flash cycle in Progress */
+ u16 reserved1:2; /* bit 13:6 Reserved */
+ u16 reserved2:6; /* bit 13:6 Reserved */
+ u16 fldesvalid:1; /* bit 14 Flash Descriptor Valid */
+ u16 flockdn:1; /* bit 15 Flash Config Lock-Down */
} hsf_status;
u16 regval;
};
@@ -160,11 +153,11 @@ union ich8_hws_flash_status {
/* Offset 06h FLCTL */
union ich8_hws_flash_ctrl {
struct ich8_hsflctl {
- u16 flcgo :1; /* 0 Flash Cycle Go */
- u16 flcycle :2; /* 2:1 Flash Cycle */
- u16 reserved :5; /* 7:3 Reserved */
- u16 fldbcount :2; /* 9:8 Flash Data Byte Count */
- u16 flockdn :6; /* 15:10 Reserved */
+ u16 flcgo:1; /* 0 Flash Cycle Go */
+ u16 flcycle:2; /* 2:1 Flash Cycle */
+ u16 reserved:5; /* 7:3 Reserved */
+ u16 fldbcount:2; /* 9:8 Flash Data Byte Count */
+ u16 flockdn:6; /* 15:10 Reserved */
} hsf_ctrl;
u16 regval;
};
@@ -172,115 +165,268 @@ union ich8_hws_flash_ctrl {
/* ICH Flash Region Access Permissions */
union ich8_hws_flash_regacc {
struct ich8_flracc {
- u32 grra :8; /* 0:7 GbE region Read Access */
- u32 grwa :8; /* 8:15 GbE region Write Access */
- u32 gmrag :8; /* 23:16 GbE Master Read Access Grant */
- u32 gmwag :8; /* 31:24 GbE Master Write Access Grant */
+ u32 grra:8; /* 0:7 GbE region Read Access */
+ u32 grwa:8; /* 8:15 GbE region Write Access */
+ u32 gmrag:8; /* 23:16 GbE Master Read Access Grant */
+ u32 gmwag:8; /* 31:24 GbE Master Write Access Grant */
} hsf_flregacc;
u16 regval;
};
/**
- * e1000_init_phy_params_pchlan - Initialize PHY function pointers
+ * e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
* @hw: pointer to the HW structure
*
- * Initialize family-specific PHY parameters and function pointers.
+ * Test access to the PHY registers by reading the PHY ID registers. If
+ * the PHY ID is already known (e.g. resume path) compare it with known ID,
+ * otherwise assume the read PHY ID is correct if it is valid.
+ *
+ * Assumes the sw/fw/hw semaphore is already acquired.
**/
-static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
+static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
{
- struct e1000_phy_info *phy = &hw->phy;
- u32 ctrl, fwsm;
- s32 ret_val = E1000_SUCCESS;
+ u16 phy_reg = 0;
+ u32 phy_id = 0;
+ s32 ret_val;
+ u16 retry_count;
- DEBUGFUNC("e1000_init_phy_params_pchlan");
+ for (retry_count = 0; retry_count < 2; retry_count++) {
+ ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID1, &phy_reg);
+ if (ret_val || (phy_reg == 0xFFFF))
+ continue;
+ phy_id = (u32)(phy_reg << 16);
+
+ ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID2, &phy_reg);
+ if (ret_val || (phy_reg == 0xFFFF)) {
+ phy_id = 0;
+ continue;
+ }
+ phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
+ break;
+ }
+
+ if (hw->phy.id) {
+ if (hw->phy.id == phy_id)
+ return TRUE;
+ } else if (phy_id) {
+ hw->phy.id = phy_id;
+ hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
+ return TRUE;
+ }
- phy->addr = 1;
- phy->reset_delay_us = 100;
-
- phy->ops.acquire = e1000_acquire_swflag_ich8lan;
- phy->ops.check_reset_block = e1000_check_reset_block_ich8lan;
- phy->ops.get_cfg_done = e1000_get_cfg_done_ich8lan;
- phy->ops.read_reg = e1000_read_phy_reg_hv;
- phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
- phy->ops.release = e1000_release_swflag_ich8lan;
- phy->ops.reset = e1000_phy_hw_reset_ich8lan;
- phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
- phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
- phy->ops.write_reg = e1000_write_phy_reg_hv;
- phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
- phy->ops.power_up = e1000_power_up_phy_copper;
- phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
- phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
-
- /*
- * The MAC-PHY interconnect may still be in SMBus mode
- * after Sx->S0. If the manageability engine (ME) is
- * disabled, then toggle the LANPHYPC Value bit to force
- * the interconnect to PCIe mode.
+ /* In case the PHY needs to be in mdio slow mode,
+ * set slow mode and try to get the PHY id again.
*/
- fwsm = E1000_READ_REG(hw, E1000_FWSM);
- if (!(fwsm & E1000_ICH_FWSM_FW_VALID)) {
- ctrl = E1000_READ_REG(hw, E1000_CTRL);
- ctrl |= E1000_CTRL_LANPHYPC_OVERRIDE;
- ctrl &= ~E1000_CTRL_LANPHYPC_VALUE;
- E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
- usec_delay(10);
- ctrl &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
- E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
- msec_delay(50);
+ hw->phy.ops.release(hw);
+ ret_val = e1000_set_mdio_slow_mode_hv(hw);
+ if (!ret_val)
+ ret_val = e1000_get_phy_id(hw);
+ hw->phy.ops.acquire(hw);
- /*
- * Gate automatic PHY configuration by hardware on
- * non-managed 82579
+ return !ret_val;
+}
+
+/**
+ * e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
+ * @hw: pointer to the HW structure
+ *
+ * Workarounds/flow necessary for PHY initialization during driver load
+ * and resume paths.
+ **/
+static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
+{
+ u32 mac_reg, fwsm = E1000_READ_REG(hw, E1000_FWSM);
+ s32 ret_val;
+ u16 phy_reg;
+
+ DEBUGFUNC("e1000_init_phy_workarounds_pchlan");
+
+ /* Gate automatic PHY configuration by hardware on managed and
+ * non-managed 82579 and newer adapters.
+ */
+ e1000_gate_hw_phy_config_ich8lan(hw, TRUE);
+
+ ret_val = hw->phy.ops.acquire(hw);
+ if (ret_val) {
+ DEBUGOUT("Failed to initialize PHY flow\n");
+ goto out;
+ }
+
+ /* The MAC-PHY interconnect may be in SMBus mode. If the PHY is
+ * inaccessible and resetting the PHY is not blocked, toggle the
+ * LANPHYPC Value bit to force the interconnect to PCIe mode.
+ */
+ switch (hw->mac.type) {
+ case e1000_pch_lpt:
+ if (e1000_phy_is_accessible_pchlan(hw))
+ break;
+
+ /* Before toggling LANPHYPC, see if PHY is accessible by
+ * forcing MAC to SMBus mode first.
*/
- if (hw->mac.type == e1000_pch2lan)
- e1000_gate_hw_phy_config_ich8lan(hw, TRUE);
+ mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
+ mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
+ E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
+
+ /* fall-through */
+ case e1000_pch2lan:
+ if (e1000_phy_is_accessible_pchlan(hw)) {
+ if (hw->mac.type == e1000_pch_lpt) {
+ /* Unforce SMBus mode in PHY */
+ hw->phy.ops.read_reg_locked(hw, CV_SMB_CTRL,
+ &phy_reg);
+ phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
+ hw->phy.ops.write_reg_locked(hw, CV_SMB_CTRL,
+ phy_reg);
+
+ /* Unforce SMBus mode in MAC */
+ mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
+ mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
+ E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
+ }
+ break;
+ }
+
+ /* fall-through */
+ case e1000_pchlan:
+ if ((hw->mac.type == e1000_pchlan) &&
+ (fwsm & E1000_ICH_FWSM_FW_VALID))
+ break;
+
+ if (hw->phy.ops.check_reset_block(hw)) {
+ DEBUGOUT("Required LANPHYPC toggle blocked by ME\n");
+ break;
+ }
+
+ DEBUGOUT("Toggling LANPHYPC\n");
+
+ /* Set Phy Config Counter to 50msec */
+ mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM3);
+ mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
+ mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
+ E1000_WRITE_REG(hw, E1000_FEXTNVM3, mac_reg);
+
+ if (hw->mac.type == e1000_pch_lpt) {
+ /* Toggling LANPHYPC brings the PHY out of SMBus mode
+ * So ensure that the MAC is also out of SMBus mode
+ */
+ mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
+ mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
+ E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
+ }
+
+ /* Toggle LANPHYPC Value bit */
+ mac_reg = E1000_READ_REG(hw, E1000_CTRL);
+ mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
+ mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
+ E1000_WRITE_REG(hw, E1000_CTRL, mac_reg);
+ E1000_WRITE_FLUSH(hw);
+ usec_delay(10);
+ mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
+ E1000_WRITE_REG(hw, E1000_CTRL, mac_reg);
+ E1000_WRITE_FLUSH(hw);
+ if (hw->mac.type < e1000_pch_lpt) {
+ msec_delay(50);
+ } else {
+ u16 count = 20;
+ do {
+ msec_delay(5);
+ } while (!(E1000_READ_REG(hw, E1000_CTRL_EXT) &
+ E1000_CTRL_EXT_LPCD) && count--);
+ }
+ break;
+ default:
+ break;
}
- /*
- * Reset the PHY before any acccess to it. Doing so, ensures that
- * the PHY is in a known good state before we read/write PHY registers.
- * The generic reset is sufficient here, because we haven't determined
- * the PHY type yet.
+ hw->phy.ops.release(hw);
+
+ /* Reset the PHY before any access to it. Doing so, ensures
+ * that the PHY is in a known good state before we read/write
+ * PHY registers. The generic reset is sufficient here,
+ * because we haven't determined the PHY type yet.
*/
ret_val = e1000_phy_hw_reset_generic(hw);
- if (ret_val)
- goto out;
+out:
/* Ungate automatic PHY configuration on non-managed 82579 */
- if ((hw->mac.type == e1000_pch2lan) &&
+ if ((hw->mac.type == e1000_pch2lan) &&
!(fwsm & E1000_ICH_FWSM_FW_VALID)) {
msec_delay(10);
e1000_gate_hw_phy_config_ich8lan(hw, FALSE);
}
+ return ret_val;
+}
+
+/**
+ * e1000_init_phy_params_pchlan - Initialize PHY function pointers
+ * @hw: pointer to the HW structure
+ *
+ * Initialize family-specific PHY parameters and function pointers.
+ **/
+static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_init_phy_params_pchlan");
+
+ phy->addr = 1;
+ phy->reset_delay_us = 100;
+
+ phy->ops.acquire = e1000_acquire_swflag_ich8lan;
+ phy->ops.check_reset_block = e1000_check_reset_block_ich8lan;
+ phy->ops.get_cfg_done = e1000_get_cfg_done_ich8lan;
+ phy->ops.set_page = e1000_set_page_igp;
+ phy->ops.read_reg = e1000_read_phy_reg_hv;
+ phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
+ phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
+ phy->ops.release = e1000_release_swflag_ich8lan;
+ phy->ops.reset = e1000_phy_hw_reset_ich8lan;
+ phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
+ phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
+ phy->ops.write_reg = e1000_write_phy_reg_hv;
+ phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
+ phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
+ phy->ops.power_up = e1000_power_up_phy_copper;
+ phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
+ phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
+
phy->id = e1000_phy_unknown;
- switch (hw->mac.type) {
- default:
- ret_val = e1000_get_phy_id(hw);
- if (ret_val)
- goto out;
- if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
+
+ ret_val = e1000_init_phy_workarounds_pchlan(hw);
+ if (ret_val)
+ return ret_val;
+
+ if (phy->id == e1000_phy_unknown)
+ switch (hw->mac.type) {
+ default:
+ ret_val = e1000_get_phy_id(hw);
+ if (ret_val)
+ return ret_val;
+ if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
+ break;
+ /* fall-through */
+ case e1000_pch2lan:
+ case e1000_pch_lpt:
+ /* In case the PHY needs to be in mdio slow mode,
+ * set slow mode and try to get the PHY id again.
+ */
+ ret_val = e1000_set_mdio_slow_mode_hv(hw);
+ if (ret_val)
+ return ret_val;
+ ret_val = e1000_get_phy_id(hw);
+ if (ret_val)
+ return ret_val;
break;
- /* fall-through */
- case e1000_pch2lan:
- /*
- * In case the PHY needs to be in mdio slow mode,
- * set slow mode and try to get the PHY id again.
- */
- ret_val = e1000_set_mdio_slow_mode_hv(hw);
- if (ret_val)
- goto out;
- ret_val = e1000_get_phy_id(hw);
- if (ret_val)
- goto out;
- break;
- }
+ }
phy->type = e1000_get_phy_type_from_id(phy->id);
switch (phy->type) {
case e1000_phy_82577:
case e1000_phy_82579:
+ case e1000_phy_i217:
phy->ops.check_polarity = e1000_check_polarity_82577;
phy->ops.force_speed_duplex =
e1000_phy_force_speed_duplex_82577;
@@ -299,7 +445,6 @@ static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
break;
}
-out:
return ret_val;
}
@@ -312,29 +457,28 @@ out:
static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val = E1000_SUCCESS;
+ s32 ret_val;
u16 i = 0;
DEBUGFUNC("e1000_init_phy_params_ich8lan");
- phy->addr = 1;
- phy->reset_delay_us = 100;
-
- phy->ops.acquire = e1000_acquire_swflag_ich8lan;
- phy->ops.check_reset_block = e1000_check_reset_block_ich8lan;
- phy->ops.get_cable_length = e1000_get_cable_length_igp_2;
- phy->ops.get_cfg_done = e1000_get_cfg_done_ich8lan;
- phy->ops.read_reg = e1000_read_phy_reg_igp;
- phy->ops.release = e1000_release_swflag_ich8lan;
- phy->ops.reset = e1000_phy_hw_reset_ich8lan;
- phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan;
- phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan;
- phy->ops.write_reg = e1000_write_phy_reg_igp;
- phy->ops.power_up = e1000_power_up_phy_copper;
- phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
-
- /*
- * We may need to do this twice - once for IGP and if that fails,
+ phy->addr = 1;
+ phy->reset_delay_us = 100;
+
+ phy->ops.acquire = e1000_acquire_swflag_ich8lan;
+ phy->ops.check_reset_block = e1000_check_reset_block_ich8lan;
+ phy->ops.get_cable_length = e1000_get_cable_length_igp_2;
+ phy->ops.get_cfg_done = e1000_get_cfg_done_ich8lan;
+ phy->ops.read_reg = e1000_read_phy_reg_igp;
+ phy->ops.release = e1000_release_swflag_ich8lan;
+ phy->ops.reset = e1000_phy_hw_reset_ich8lan;
+ phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan;
+ phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan;
+ phy->ops.write_reg = e1000_write_phy_reg_igp;
+ phy->ops.power_up = e1000_power_up_phy_copper;
+ phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
+
+ /* We may need to do this twice - once for IGP and if that fails,
* we'll set BM func pointers and try again
*/
ret_val = e1000_determine_phy_address(hw);
@@ -344,7 +488,7 @@ static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
ret_val = e1000_determine_phy_address(hw);
if (ret_val) {
DEBUGOUT("Cannot determine PHY addr. Erroring out\n");
- goto out;
+ return ret_val;
}
}
@@ -354,7 +498,7 @@ static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
msec_delay(1);
ret_val = e1000_get_phy_id(hw);
if (ret_val)
- goto out;
+ return ret_val;
}
/* Verify phy id */
@@ -388,12 +532,11 @@ static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
break;
default:
- ret_val = -E1000_ERR_PHY;
- goto out;
+ return -E1000_ERR_PHY;
+ break;
}
-out:
- return ret_val;
+ return E1000_SUCCESS;
}
/**
@@ -408,7 +551,6 @@ static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
struct e1000_nvm_info *nvm = &hw->nvm;
struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
u32 gfpreg, sector_base_addr, sector_end_addr;
- s32 ret_val = E1000_SUCCESS;
u16 i;
DEBUGFUNC("e1000_init_nvm_params_ich8lan");
@@ -416,16 +558,14 @@ static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
/* Can't read flash registers if the register set isn't mapped. */
if (!hw->flash_address) {
DEBUGOUT("ERROR: Flash registers not mapped\n");
- ret_val = -E1000_ERR_CONFIG;
- goto out;
+ return -E1000_ERR_CONFIG;
}
nvm->type = e1000_nvm_flash_sw;
gfpreg = E1000_READ_FLASH_REG(hw, ICH_FLASH_GFPREG);
- /*
- * sector_X_addr is a "sector"-aligned address (4096 bytes)
+ /* sector_X_addr is a "sector"-aligned address (4096 bytes)
* Add 1 to sector_end_addr since this sector is included in
* the overall size.
*/
@@ -435,12 +575,11 @@ static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
/* flash_base_addr is byte-aligned */
nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
- /*
- * find total size of the NVM, then cut in half since the total
+ /* find total size of the NVM, then cut in half since the total
* size represents two separate NVM banks.
*/
nvm->flash_bank_size = (sector_end_addr - sector_base_addr)
- << FLASH_SECTOR_ADDR_SHIFT;
+ << FLASH_SECTOR_ADDR_SHIFT;
nvm->flash_bank_size /= 2;
/* Adjust to word count */
nvm->flash_bank_size /= sizeof(u16);
@@ -457,16 +596,15 @@ static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
E1000_MUTEX_INIT(&dev_spec->swflag_mutex);
/* Function Pointers */
- nvm->ops.acquire = e1000_acquire_nvm_ich8lan;
- nvm->ops.release = e1000_release_nvm_ich8lan;
- nvm->ops.read = e1000_read_nvm_ich8lan;
- nvm->ops.update = e1000_update_nvm_checksum_ich8lan;
+ nvm->ops.acquire = e1000_acquire_nvm_ich8lan;
+ nvm->ops.release = e1000_release_nvm_ich8lan;
+ nvm->ops.read = e1000_read_nvm_ich8lan;
+ nvm->ops.update = e1000_update_nvm_checksum_ich8lan;
nvm->ops.valid_led_default = e1000_valid_led_default_ich8lan;
- nvm->ops.validate = e1000_validate_nvm_checksum_ich8lan;
- nvm->ops.write = e1000_write_nvm_ich8lan;
+ nvm->ops.validate = e1000_validate_nvm_checksum_ich8lan;
+ nvm->ops.write = e1000_write_nvm_ich8lan;
-out:
- return ret_val;
+ return E1000_SUCCESS;
}
/**
@@ -479,7 +617,6 @@ out:
static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
{
struct e1000_mac_info *mac = &hw->mac;
- u16 pci_cfg;
DEBUGFUNC("e1000_init_mac_params_ich8lan");
@@ -524,7 +661,7 @@ static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
/* clear hardware counters */
mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan;
- /* LED operations */
+ /* LED and other operations */
switch (mac->type) {
case e1000_ich8lan:
case e1000_ich9lan:
@@ -547,10 +684,11 @@ static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
mac->ops.rar_set = e1000_rar_set_pch2lan;
/* fall-through */
+ case e1000_pch_lpt:
+ /* multicast address update for pch2 */
+ mac->ops.update_mc_addr_list =
+ e1000_update_mc_addr_list_pch2lan;
case e1000_pchlan:
- /* save PCH revision_id */
- e1000_read_pci_cfg(hw, 0x2, &pci_cfg);
- hw->revision_id = (u8)(pci_cfg &= 0x000F);
/* check management mode */
mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
/* ID LED init */
@@ -567,50 +705,386 @@ static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
break;
}
+ if (mac->type == e1000_pch_lpt) {
+ mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
+ mac->ops.rar_set = e1000_rar_set_pch_lpt;
+ mac->ops.setup_physical_interface = e1000_setup_copper_link_pch_lpt;
+ mac->ops.set_obff_timer = e1000_set_obff_timer_pch_lpt;
+ }
+
/* Enable PCS Lock-loss workaround for ICH8 */
if (mac->type == e1000_ich8lan)
e1000_set_kmrn_lock_loss_workaround_ich8lan(hw, TRUE);
- /* Gate automatic PHY configuration by hardware on managed 82579 */
- if ((mac->type == e1000_pch2lan) &&
- (E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID))
- e1000_gate_hw_phy_config_ich8lan(hw, TRUE);
-
return E1000_SUCCESS;
}
/**
+ * __e1000_access_emi_reg_locked - Read/write EMI register
+ * @hw: pointer to the HW structure
+ * @addr: EMI address to program
+ * @data: pointer to value to read/write from/to the EMI address
+ * @read: boolean flag to indicate read or write
+ *
+ * This helper function assumes the SW/FW/HW Semaphore is already acquired.
+ **/
+static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
+ u16 *data, bool read)
+{
+ s32 ret_val;
+
+ DEBUGFUNC("__e1000_access_emi_reg_locked");
+
+ ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_ADDR, address);
+ if (ret_val)
+ return ret_val;
+
+ if (read)
+ ret_val = hw->phy.ops.read_reg_locked(hw, I82579_EMI_DATA,
+ data);
+ else
+ ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_DATA,
+ *data);
+
+ return ret_val;
+}
+
+/**
+ * e1000_read_emi_reg_locked - Read Extended Management Interface register
+ * @hw: pointer to the HW structure
+ * @addr: EMI address to program
+ * @data: value to be read from the EMI address
+ *
+ * Assumes the SW/FW/HW Semaphore is already acquired.
+ **/
+s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
+{
+ DEBUGFUNC("e1000_read_emi_reg_locked");
+
+ return __e1000_access_emi_reg_locked(hw, addr, data, TRUE);
+}
+
+/**
+ * e1000_write_emi_reg_locked - Write Extended Management Interface register
+ * @hw: pointer to the HW structure
+ * @addr: EMI address to program
+ * @data: value to be written to the EMI address
+ *
+ * Assumes the SW/FW/HW Semaphore is already acquired.
+ **/
+static s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
+{
+ DEBUGFUNC("e1000_read_emi_reg_locked");
+
+ return __e1000_access_emi_reg_locked(hw, addr, &data, FALSE);
+}
+
+/**
* e1000_set_eee_pchlan - Enable/disable EEE support
* @hw: pointer to the HW structure
*
- * Enable/disable EEE based on setting in dev_spec structure. The bits in
- * the LPI Control register will remain set only if/when link is up.
+ * Enable/disable EEE based on setting in dev_spec structure, the duplex of
+ * the link and the EEE capabilities of the link partner. The LPI Control
+ * register bits will remain set only if/when link is up.
**/
static s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
{
- s32 ret_val = E1000_SUCCESS;
- u16 phy_reg;
+ struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
+ s32 ret_val;
+ u16 lpi_ctrl;
DEBUGFUNC("e1000_set_eee_pchlan");
- if (hw->phy.type != e1000_phy_82579)
- goto out;
+ if ((hw->phy.type != e1000_phy_82579) &&
+ (hw->phy.type != e1000_phy_i217))
+ return E1000_SUCCESS;
- ret_val = hw->phy.ops.read_reg(hw, I82579_LPI_CTRL, &phy_reg);
+ ret_val = hw->phy.ops.acquire(hw);
if (ret_val)
- goto out;
+ return ret_val;
- if (hw->dev_spec.ich8lan.eee_disable)
- phy_reg &= ~I82579_LPI_CTRL_ENABLE_MASK;
- else
- phy_reg |= I82579_LPI_CTRL_ENABLE_MASK;
+ ret_val = hw->phy.ops.read_reg_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
+ if (ret_val)
+ goto release;
+
+ /* Clear bits that enable EEE in various speeds */
+ lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
+
+ /* Enable EEE if not disabled by user */
+ if (!dev_spec->eee_disable) {
+ u16 lpa, pcs_status, data;
+
+ /* Save off link partner's EEE ability */
+ switch (hw->phy.type) {
+ case e1000_phy_82579:
+ lpa = I82579_EEE_LP_ABILITY;
+ pcs_status = I82579_EEE_PCS_STATUS;
+ break;
+ case e1000_phy_i217:
+ lpa = I217_EEE_LP_ABILITY;
+ pcs_status = I217_EEE_PCS_STATUS;
+ break;
+ default:
+ ret_val = -E1000_ERR_PHY;
+ goto release;
+ }
+ ret_val = e1000_read_emi_reg_locked(hw, lpa,
+ &dev_spec->eee_lp_ability);
+ if (ret_val)
+ goto release;
+
+ /* Enable EEE only for speeds in which the link partner is
+ * EEE capable.
+ */
+ if (dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
+ lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
+
+ if (dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
+ hw->phy.ops.read_reg_locked(hw, PHY_LP_ABILITY, &data);
+ if (data & NWAY_LPAR_100TX_FD_CAPS)
+ lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
+ else
+ /* EEE is not supported in 100Half, so ignore
+ * partner's EEE in 100 ability if full-duplex
+ * is not advertised.
+ */
+ dev_spec->eee_lp_ability &=
+ ~I82579_EEE_100_SUPPORTED;
+ }
+
+ /* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
+ ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
+ if (ret_val)
+ goto release;
+ }
+
+ ret_val = hw->phy.ops.write_reg_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
+release:
+ hw->phy.ops.release(hw);
- ret_val = hw->phy.ops.write_reg(hw, I82579_LPI_CTRL, phy_reg);
-out:
return ret_val;
}
/**
+ * e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
+ * @hw: pointer to the HW structure
+ * @link: link up bool flag
+ *
+ * When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
+ * preventing further DMA write requests. Workaround the issue by disabling
+ * the de-assertion of the clock request when in 1Gpbs mode.
+ **/
+static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
+{
+ u32 fextnvm6 = E1000_READ_REG(hw, E1000_FEXTNVM6);
+ s32 ret_val = E1000_SUCCESS;
+
+ if (link && (E1000_READ_REG(hw, E1000_STATUS) &
+ E1000_STATUS_SPEED_1000)) {
+ u16 kmrn_reg;
+
+ ret_val = hw->phy.ops.acquire(hw);
+ if (ret_val)
+ return ret_val;
+
+ ret_val =
+ e1000_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
+ &kmrn_reg);
+ if (ret_val)
+ goto release;
+
+ ret_val =
+ e1000_write_kmrn_reg_locked(hw,
+ E1000_KMRNCTRLSTA_K1_CONFIG,
+ kmrn_reg &
+ ~E1000_KMRNCTRLSTA_K1_ENABLE);
+ if (ret_val)
+ goto release;
+
+ usec_delay(10);
+
+ E1000_WRITE_REG(hw, E1000_FEXTNVM6,
+ fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
+
+ ret_val =
+ e1000_write_kmrn_reg_locked(hw,
+ E1000_KMRNCTRLSTA_K1_CONFIG,
+ kmrn_reg);
+release:
+ hw->phy.ops.release(hw);
+ } else {
+ /* clear FEXTNVM6 bit 8 on link down or 10/100 */
+ E1000_WRITE_REG(hw, E1000_FEXTNVM6,
+ fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
+ }
+
+ return ret_val;
+}
+
+static u64 e1000_ltr2ns(u16 ltr)
+{
+ u32 value, scale;
+
+ /* Determine the latency in nsec based on the LTR value & scale */
+ value = ltr & E1000_LTRV_VALUE_MASK;
+ scale = (ltr & E1000_LTRV_SCALE_MASK) >> E1000_LTRV_SCALE_SHIFT;
+
+ return value * (1 << (scale * E1000_LTRV_SCALE_FACTOR));
+}
+
+/**
+ * e1000_platform_pm_pch_lpt - Set platform power management values
+ * @hw: pointer to the HW structure
+ * @link: bool indicating link status
+ *
+ * Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
+ * GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
+ * when link is up (which must not exceed the maximum latency supported
+ * by the platform), otherwise specify there is no LTR requirement.
+ * Unlike TRUE-PCIe devices which set the LTR maximum snoop/no-snoop
+ * latencies in the LTR Extended Capability Structure in the PCIe Extended
+ * Capability register set, on this device LTR is set by writing the
+ * equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
+ * set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
+ * message to the PMC.
+ *
+ * Use the LTR value to calculate the Optimized Buffer Flush/Fill (OBFF)
+ * high-water mark.
+ **/
+static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
+{
+ u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
+ link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
+ u16 lat_enc = 0; /* latency encoded */
+ s32 obff_hwm = 0;
+
+ DEBUGFUNC("e1000_platform_pm_pch_lpt");
+
+ if (link) {
+ u16 speed, duplex, scale = 0;
+ u16 max_snoop, max_nosnoop;
+ u16 max_ltr_enc; /* max LTR latency encoded */
+ s64 lat_ns; /* latency (ns) */
+ s64 value;
+ u32 rxa;
+
+ if (!hw->mac.max_frame_size) {
+ DEBUGOUT("max_frame_size not set.\n");
+ return -E1000_ERR_CONFIG;
+ }
+
+ hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
+ if (!speed) {
+ DEBUGOUT("Speed not set.\n");
+ return -E1000_ERR_CONFIG;
+ }
+
+ /* Rx Packet Buffer Allocation size (KB) */
+ rxa = E1000_READ_REG(hw, E1000_PBA) & E1000_PBA_RXA_MASK;
+
+ /* Determine the maximum latency tolerated by the device.
+ *
+ * Per the PCIe spec, the tolerated latencies are encoded as
+ * a 3-bit encoded scale (only 0-5 are valid) multiplied by
+ * a 10-bit value (0-1023) to provide a range from 1 ns to
+ * 2^25*(2^10-1) ns. The scale is encoded as 0=2^0ns,
+ * 1=2^5ns, 2=2^10ns,...5=2^25ns.
+ */
+ lat_ns = ((s64)rxa * 1024 -
+ (2 * (s64)hw->mac.max_frame_size)) * 8 * 1000;
+ if (lat_ns < 0)
+ lat_ns = 0;
+ else
+ lat_ns /= speed;
+
+ value = lat_ns;
+ while (value > E1000_LTRV_VALUE_MASK) {
+ scale++;
+ value = E1000_DIVIDE_ROUND_UP(value, (1 << 5));
+ }
+ if (scale > E1000_LTRV_SCALE_MAX) {
+ DEBUGOUT1("Invalid LTR latency scale %d\n", scale);
+ return -E1000_ERR_CONFIG;
+ }
+ lat_enc = (u16)((scale << E1000_LTRV_SCALE_SHIFT) | value);
+
+ /* Determine the maximum latency tolerated by the platform */
+ e1000_read_pci_cfg(hw, E1000_PCI_LTR_CAP_LPT, &max_snoop);
+ e1000_read_pci_cfg(hw, E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
+ max_ltr_enc = E1000_MAX(max_snoop, max_nosnoop);
+
+ if (lat_enc > max_ltr_enc) {
+ lat_enc = max_ltr_enc;
+ lat_ns = e1000_ltr2ns(max_ltr_enc);
+ }
+
+ if (lat_ns) {
+ lat_ns *= speed * 1000;
+ lat_ns /= 8;
+ lat_ns /= 1000000000;
+ obff_hwm = (s32)(rxa - lat_ns);
+ }
+
+ if ((obff_hwm < 0) || (obff_hwm > E1000_SVT_OFF_HWM_MASK)) {
+ DEBUGOUT1("Invalid high water mark %d\n", obff_hwm);
+ return -E1000_ERR_CONFIG;
+ }
+ }
+
+ /* Set Snoop and No-Snoop latencies the same */
+ reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
+ E1000_WRITE_REG(hw, E1000_LTRV, reg);
+
+ /* Set OBFF high water mark */
+ reg = E1000_READ_REG(hw, E1000_SVT) & ~E1000_SVT_OFF_HWM_MASK;
+ reg |= obff_hwm;
+ E1000_WRITE_REG(hw, E1000_SVT, reg);
+
+ /* Enable OBFF */
+ reg = E1000_READ_REG(hw, E1000_SVCR);
+ reg |= E1000_SVCR_OFF_EN;
+ /* Always unblock interrupts to the CPU even when the system is
+ * in OBFF mode. This ensures that small round-robin traffic
+ * (like ping) does not get dropped or experience long latency.
+ */
+ reg |= E1000_SVCR_OFF_MASKINT;
+ E1000_WRITE_REG(hw, E1000_SVCR, reg);
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_set_obff_timer_pch_lpt - Update Optimized Buffer Flush/Fill timer
+ * @hw: pointer to the HW structure
+ * @itr: interrupt throttling rate
+ *
+ * Configure OBFF with the updated interrupt rate.
+ **/
+static s32 e1000_set_obff_timer_pch_lpt(struct e1000_hw *hw, u32 itr)
+{
+ u32 svcr;
+ s32 timer;
+
+ DEBUGFUNC("e1000_set_obff_timer_pch_lpt");
+
+ /* Convert ITR value into microseconds for OBFF timer */
+ timer = itr & E1000_ITR_MASK;
+ timer = (timer * E1000_ITR_MULT) / 1000;
+
+ if ((timer < 0) || (timer > E1000_ITR_MASK)) {
+ DEBUGOUT1("Invalid OBFF timer %d\n", timer);
+ return -E1000_ERR_CONFIG;
+ }
+
+ svcr = E1000_READ_REG(hw, E1000_SVCR);
+ svcr &= ~E1000_SVCR_OFF_TIMER_MASK;
+ svcr |= timer << E1000_SVCR_OFF_TIMER_SHIFT;
+ E1000_WRITE_REG(hw, E1000_SVCR, svcr);
+
+ return E1000_SUCCESS;
+}
+
+/**
* e1000_check_for_copper_link_ich8lan - Check for link (Copper)
* @hw: pointer to the HW structure
*
@@ -623,54 +1097,116 @@ static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
struct e1000_mac_info *mac = &hw->mac;
s32 ret_val;
bool link;
+ u16 phy_reg;
DEBUGFUNC("e1000_check_for_copper_link_ich8lan");
- /*
- * We only want to go out to the PHY registers to see if Auto-Neg
+ /* We only want to go out to the PHY registers to see if Auto-Neg
* has completed and/or if our link status has changed. The
* get_link_status flag is set upon receiving a Link Status
* Change or Rx Sequence Error interrupt.
*/
- if (!mac->get_link_status) {
- ret_val = E1000_SUCCESS;
- goto out;
- }
+ if (!mac->get_link_status)
+ return E1000_SUCCESS;
- /*
- * First we want to see if the MII Status Register reports
+ /* First we want to see if the MII Status Register reports
* link. If so, then we want to get the current speed/duplex
* of the PHY.
*/
ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
if (ret_val)
- goto out;
+ return ret_val;
if (hw->mac.type == e1000_pchlan) {
ret_val = e1000_k1_gig_workaround_hv(hw, link);
if (ret_val)
- goto out;
+ return ret_val;
}
- if (!link)
- goto out; /* No link detected */
+ /* When connected at 10Mbps half-duplex, 82579 parts are excessively
+ * aggressive resulting in many collisions. To avoid this, increase
+ * the IPG and reduce Rx latency in the PHY.
+ */
+ if ((hw->mac.type == e1000_pch2lan) && link) {
+ u32 reg;
+ reg = E1000_READ_REG(hw, E1000_STATUS);
+ if (!(reg & (E1000_STATUS_FD | E1000_STATUS_SPEED_MASK))) {
+ reg = E1000_READ_REG(hw, E1000_TIPG);
+ reg &= ~E1000_TIPG_IPGT_MASK;
+ reg |= 0xFF;
+ E1000_WRITE_REG(hw, E1000_TIPG, reg);
+
+ /* Reduce Rx latency in analog PHY */
+ ret_val = hw->phy.ops.acquire(hw);
+ if (ret_val)
+ return ret_val;
- mac->get_link_status = FALSE;
+ ret_val = e1000_write_emi_reg_locked(hw, I82579_RX_CONFIG, 0);
- if (hw->phy.type == e1000_phy_82578) {
- ret_val = e1000_link_stall_workaround_hv(hw);
+ hw->phy.ops.release(hw);
+
+ if (ret_val)
+ return ret_val;
+ }
+ }
+
+ /* Work-around I218 hang issue */
+ if ((hw->device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
+ (hw->device_id == E1000_DEV_ID_PCH_LPTLP_I218_V)) {
+ ret_val = e1000_k1_workaround_lpt_lp(hw, link);
if (ret_val)
- goto out;
+ return ret_val;
}
- if (hw->mac.type == e1000_pch2lan) {
+ if (hw->mac.type == e1000_pch_lpt) {
+ /* Set platform power management values for Latency Tolerance
+ * Reporting (LTR) and Optimized Buffer Flush/Fill (OBFF).
+ */
+ ret_val = e1000_platform_pm_pch_lpt(hw, link);
+ if (ret_val)
+ return ret_val;
+ }
+
+ /* Clear link partner's EEE ability */
+ hw->dev_spec.ich8lan.eee_lp_ability = 0;
+
+ if (!link)
+ return E1000_SUCCESS; /* No link detected */
+
+ mac->get_link_status = FALSE;
+
+ switch (hw->mac.type) {
+ case e1000_pch2lan:
ret_val = e1000_k1_workaround_lv(hw);
if (ret_val)
- goto out;
+ return ret_val;
+ /* fall-thru */
+ case e1000_pchlan:
+ if (hw->phy.type == e1000_phy_82578) {
+ ret_val = e1000_link_stall_workaround_hv(hw);
+ if (ret_val)
+ return ret_val;
+ }
+
+ /* Workaround for PCHx parts in half-duplex:
+ * Set the number of preambles removed from the packet
+ * when it is passed from the PHY to the MAC to prevent
+ * the MAC from misinterpreting the packet type.
+ */
+ hw->phy.ops.read_reg(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
+ phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
+
+ if ((E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_FD) !=
+ E1000_STATUS_FD)
+ phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
+
+ hw->phy.ops.write_reg(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
+ break;
+ default:
+ break;
}
- /*
- * Check if there was DownShift, must be checked
+ /* Check if there was DownShift, must be checked
* immediately after link-up
*/
e1000_check_downshift_generic(hw);
@@ -678,26 +1214,21 @@ static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
/* Enable/Disable EEE after link up */
ret_val = e1000_set_eee_pchlan(hw);
if (ret_val)
- goto out;
+ return ret_val;
- /*
- * If we are forcing speed/duplex, then we simply return since
+ /* If we are forcing speed/duplex, then we simply return since
* we have already determined whether we have link or not.
*/
- if (!mac->autoneg) {
- ret_val = -E1000_ERR_CONFIG;
- goto out;
- }
+ if (!mac->autoneg)
+ return -E1000_ERR_CONFIG;
- /*
- * Auto-Neg is enabled. Auto Speed Detection takes care
+ /* Auto-Neg is enabled. Auto Speed Detection takes care
* of MAC speed/duplex configuration. So we only need to
* configure Collision Distance in the MAC.
*/
- e1000_config_collision_dist_generic(hw);
+ mac->ops.config_collision_dist(hw);
- /*
- * Configure Flow Control now that Auto-Neg has completed.
+ /* Configure Flow Control now that Auto-Neg has completed.
* First, we need to restore the desired flow control
* settings because we may have had to re-autoneg with a
* different link partner.
@@ -706,7 +1237,6 @@ static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
if (ret_val)
DEBUGOUT("Error configuring flow control\n");
-out:
return ret_val;
}
@@ -730,6 +1260,7 @@ void e1000_init_function_pointers_ich8lan(struct e1000_hw *hw)
break;
case e1000_pchlan:
case e1000_pch2lan:
+ case e1000_pch_lpt:
hw->phy.ops.init_params = e1000_init_phy_params_pchlan;
break;
default:
@@ -793,7 +1324,7 @@ static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
}
if (!timeout) {
- DEBUGOUT("SW/FW/HW has locked the resource for too long.\n");
+ DEBUGOUT("SW has already locked the resource.\n");
ret_val = -E1000_ERR_CONFIG;
goto out;
}
@@ -813,7 +1344,8 @@ static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
}
if (!timeout) {
- DEBUGOUT("Failed to acquire the semaphore.\n");
+ DEBUGOUT2("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
+ E1000_READ_REG(hw, E1000_FWSM), extcnf_ctrl);
extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
ret_val = -E1000_ERR_CONFIG;
@@ -841,8 +1373,13 @@ static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
DEBUGFUNC("e1000_release_swflag_ich8lan");
extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
- extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
- E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
+
+ if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
+ extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
+ E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
+ } else {
+ DEBUGOUT("Semaphore unexpectedly released by sw/fw/hw\n");
+ }
E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.swflag_mutex);
@@ -907,13 +1444,12 @@ static void e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
DEBUGFUNC("e1000_rar_set_pch2lan");
- /*
- * HW expects these in little endian so we reverse the byte order
+ /* HW expects these in little endian so we reverse the byte order
* from network order (big endian) to little endian
*/
rar_low = ((u32) addr[0] |
- ((u32) addr[1] << 8) |
- ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
+ ((u32) addr[1] << 8) |
+ ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
@@ -930,11 +1466,19 @@ static void e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
}
if (index < hw->mac.rar_entry_count) {
+ s32 ret_val;
+
+ ret_val = e1000_acquire_swflag_ich8lan(hw);
+ if (ret_val)
+ goto out;
+
E1000_WRITE_REG(hw, E1000_SHRAL(index - 1), rar_low);
E1000_WRITE_FLUSH(hw);
E1000_WRITE_REG(hw, E1000_SHRAH(index - 1), rar_high);
E1000_WRITE_FLUSH(hw);
+ e1000_release_swflag_ich8lan(hw);
+
/* verify the register updates */
if ((E1000_READ_REG(hw, E1000_SHRAL(index - 1)) == rar_low) &&
(E1000_READ_REG(hw, E1000_SHRAH(index - 1)) == rar_high))
@@ -944,10 +1488,133 @@ static void e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
(index - 1), E1000_READ_REG(hw, E1000_FWSM));
}
+out:
+ DEBUGOUT1("Failed to write receive address at index %d\n", index);
+}
+
+/**
+ * e1000_rar_set_pch_lpt - Set receive address registers
+ * @hw: pointer to the HW structure
+ * @addr: pointer to the receive address
+ * @index: receive address array register
+ *
+ * Sets the receive address register array at index to the address passed
+ * in by addr. For LPT, RAR[0] is the base address register that is to
+ * contain the MAC address. SHRA[0-10] are the shared receive address
+ * registers that are shared between the Host and manageability engine (ME).
+ **/
+static void e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
+{
+ u32 rar_low, rar_high;
+ u32 wlock_mac;
+
+ DEBUGFUNC("e1000_rar_set_pch_lpt");
+
+ /* HW expects these in little endian so we reverse the byte order
+ * from network order (big endian) to little endian
+ */
+ rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
+ ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
+
+ rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
+
+ /* If MAC address zero, no need to set the AV bit */
+ if (rar_low || rar_high)
+ rar_high |= E1000_RAH_AV;
+
+ if (index == 0) {
+ E1000_WRITE_REG(hw, E1000_RAL(index), rar_low);
+ E1000_WRITE_FLUSH(hw);
+ E1000_WRITE_REG(hw, E1000_RAH(index), rar_high);
+ E1000_WRITE_FLUSH(hw);
+ return;
+ }
+
+ /* The manageability engine (ME) can lock certain SHRAR registers that
+ * it is using - those registers are unavailable for use.
+ */
+ if (index < hw->mac.rar_entry_count) {
+ wlock_mac = E1000_READ_REG(hw, E1000_FWSM) &
+ E1000_FWSM_WLOCK_MAC_MASK;
+ wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
+
+ /* Check if all SHRAR registers are locked */
+ if (wlock_mac == 1)
+ goto out;
+
+ if ((wlock_mac == 0) || (index <= wlock_mac)) {
+ s32 ret_val;
+
+ ret_val = e1000_acquire_swflag_ich8lan(hw);
+
+ if (ret_val)
+ goto out;
+
+ E1000_WRITE_REG(hw, E1000_SHRAL_PCH_LPT(index - 1),
+ rar_low);
+ E1000_WRITE_FLUSH(hw);
+ E1000_WRITE_REG(hw, E1000_SHRAH_PCH_LPT(index - 1),
+ rar_high);
+ E1000_WRITE_FLUSH(hw);
+
+ e1000_release_swflag_ich8lan(hw);
+
+ /* verify the register updates */
+ if ((E1000_READ_REG(hw, E1000_SHRAL_PCH_LPT(index - 1)) == rar_low) &&
+ (E1000_READ_REG(hw, E1000_SHRAH_PCH_LPT(index - 1)) == rar_high))
+ return;
+ }
+ }
+
+out:
DEBUGOUT1("Failed to write receive address at index %d\n", index);
}
/**
+ * e1000_update_mc_addr_list_pch2lan - Update Multicast addresses
+ * @hw: pointer to the HW structure
+ * @mc_addr_list: array of multicast addresses to program
+ * @mc_addr_count: number of multicast addresses to program
+ *
+ * Updates entire Multicast Table Array of the PCH2 MAC and PHY.
+ * The caller must have a packed mc_addr_list of multicast addresses.
+ **/
+static void e1000_update_mc_addr_list_pch2lan(struct e1000_hw *hw,
+ u8 *mc_addr_list,
+ u32 mc_addr_count)
+{
+ u16 phy_reg = 0;
+ int i;
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_update_mc_addr_list_pch2lan");
+
+ e1000_update_mc_addr_list_generic(hw, mc_addr_list, mc_addr_count);
+
+ ret_val = hw->phy.ops.acquire(hw);
+ if (ret_val)
+ return;
+
+ ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
+ if (ret_val)
+ goto release;
+
+ for (i = 0; i < hw->mac.mta_reg_count; i++) {
+ hw->phy.ops.write_reg_page(hw, BM_MTA(i),
+ (u16)(hw->mac.mta_shadow[i] &
+ 0xFFFF));
+ hw->phy.ops.write_reg_page(hw, (BM_MTA(i) + 1),
+ (u16)((hw->mac.mta_shadow[i] >> 16) &
+ 0xFFFF));
+ }
+
+ e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
+
+release:
+ hw->phy.ops.release(hw);
+}
+
+/**
* e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
* @hw: pointer to the HW structure
*
@@ -961,13 +1628,10 @@ static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
DEBUGFUNC("e1000_check_reset_block_ich8lan");
- if (hw->phy.reset_disable)
- return E1000_BLK_PHY_RESET;
-
fwsm = E1000_READ_REG(hw, E1000_FWSM);
return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? E1000_SUCCESS
- : E1000_BLK_PHY_RESET;
+ : E1000_BLK_PHY_RESET;
}
/**
@@ -981,21 +1645,34 @@ static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
{
u16 phy_data;
u32 strap = E1000_READ_REG(hw, E1000_STRAP);
- s32 ret_val = E1000_SUCCESS;
+ u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
+ E1000_STRAP_SMT_FREQ_SHIFT;
+ s32 ret_val;
strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
if (ret_val)
- goto out;
+ return ret_val;
phy_data &= ~HV_SMB_ADDR_MASK;
phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
- ret_val = e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
-out:
- return ret_val;
+ if (hw->phy.type == e1000_phy_i217) {
+ /* Restore SMBus frequency */
+ if (freq--) {
+ phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
+ phy_data |= (freq & (1 << 0)) <<
+ HV_SMB_ADDR_FREQ_LOW_SHIFT;
+ phy_data |= (freq & (1 << 1)) <<
+ (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
+ } else {
+ DEBUGOUT("Unsupported SMB frequency in PHY\n");
+ }
+ }
+
+ return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
}
/**
@@ -1014,8 +1691,7 @@ static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
DEBUGFUNC("e1000_sw_lcd_config_ich8lan");
- /*
- * Initialize the PHY from the NVM on ICH platforms. This
+ /* Initialize the PHY from the NVM on ICH platforms. This
* is needed due to an issue where the NVM configuration is
* not properly autoloaded after power transitions.
* Therefore, after each PHY reset, we will load the
@@ -1034,6 +1710,7 @@ static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
/* Fall-thru */
case e1000_pchlan:
case e1000_pch2lan:
+ case e1000_pch_lpt:
sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
break;
default:
@@ -1046,45 +1723,42 @@ static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
data = E1000_READ_REG(hw, E1000_FEXTNVM);
if (!(data & sw_cfg_mask))
- goto out;
+ goto release;
- /*
- * Make sure HW does not configure LCD from PHY
+ /* Make sure HW does not configure LCD from PHY
* extended configuration before SW configuration
*/
data = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
- if (!(hw->mac.type == e1000_pch2lan)) {
- if (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)
- goto out;
- }
+ if ((hw->mac.type < e1000_pch2lan) &&
+ (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
+ goto release;
cnf_size = E1000_READ_REG(hw, E1000_EXTCNF_SIZE);
cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
if (!cnf_size)
- goto out;
+ goto release;
cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
- if ((!(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE) &&
- (hw->mac.type == e1000_pchlan)) ||
- (hw->mac.type == e1000_pch2lan)) {
- /*
- * HW configures the SMBus address and LEDs when the
+ if (((hw->mac.type == e1000_pchlan) &&
+ !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
+ (hw->mac.type > e1000_pchlan)) {
+ /* HW configures the SMBus address and LEDs when the
* OEM and LCD Write Enable bits are set in the NVM.
* When both NVM bits are cleared, SW will configure
* them instead.
*/
ret_val = e1000_write_smbus_addr(hw);
if (ret_val)
- goto out;
+ goto release;
data = E1000_READ_REG(hw, E1000_LEDCTL);
ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
(u16)data);
if (ret_val)
- goto out;
+ goto release;
}
/* Configure LCD from extended configuration region. */
@@ -1096,12 +1770,12 @@ static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
ret_val = hw->nvm.ops.read(hw, (word_addr + i * 2), 1,
&reg_data);
if (ret_val)
- goto out;
+ goto release;
ret_val = hw->nvm.ops.read(hw, (word_addr + i * 2 + 1),
1, &reg_addr);
if (ret_val)
- goto out;
+ goto release;
/* Save off the PHY page for future writes. */
if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
@@ -1115,10 +1789,10 @@ static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
ret_val = phy->ops.write_reg_locked(hw, (u32)reg_addr,
reg_data);
if (ret_val)
- goto out;
+ goto release;
}
-out:
+release:
hw->phy.ops.release(hw);
return ret_val;
}
@@ -1142,57 +1816,57 @@ static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
DEBUGFUNC("e1000_k1_gig_workaround_hv");
if (hw->mac.type != e1000_pchlan)
- goto out;
+ return E1000_SUCCESS;
/* Wrap the whole flow with the sw flag */
ret_val = hw->phy.ops.acquire(hw);
if (ret_val)
- goto out;
+ return ret_val;
/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
if (link) {
if (hw->phy.type == e1000_phy_82578) {
ret_val = hw->phy.ops.read_reg_locked(hw, BM_CS_STATUS,
- &status_reg);
+ &status_reg);
if (ret_val)
goto release;
status_reg &= BM_CS_STATUS_LINK_UP |
- BM_CS_STATUS_RESOLVED |
- BM_CS_STATUS_SPEED_MASK;
+ BM_CS_STATUS_RESOLVED |
+ BM_CS_STATUS_SPEED_MASK;
if (status_reg == (BM_CS_STATUS_LINK_UP |
- BM_CS_STATUS_RESOLVED |
- BM_CS_STATUS_SPEED_1000))
+ BM_CS_STATUS_RESOLVED |
+ BM_CS_STATUS_SPEED_1000))
k1_enable = FALSE;
}
if (hw->phy.type == e1000_phy_82577) {
ret_val = hw->phy.ops.read_reg_locked(hw, HV_M_STATUS,
- &status_reg);
+ &status_reg);
if (ret_val)
goto release;
status_reg &= HV_M_STATUS_LINK_UP |
- HV_M_STATUS_AUTONEG_COMPLETE |
- HV_M_STATUS_SPEED_MASK;
+ HV_M_STATUS_AUTONEG_COMPLETE |
+ HV_M_STATUS_SPEED_MASK;
if (status_reg == (HV_M_STATUS_LINK_UP |
- HV_M_STATUS_AUTONEG_COMPLETE |
- HV_M_STATUS_SPEED_1000))
+ HV_M_STATUS_AUTONEG_COMPLETE |
+ HV_M_STATUS_SPEED_1000))
k1_enable = FALSE;
}
/* Link stall fix for link up */
ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
- 0x0100);
+ 0x0100);
if (ret_val)
goto release;
} else {
/* Link stall fix for link down */
ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
- 0x4100);
+ 0x4100);
if (ret_val)
goto release;
}
@@ -1201,7 +1875,7 @@ static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
release:
hw->phy.ops.release(hw);
-out:
+
return ret_val;
}
@@ -1217,7 +1891,7 @@ out:
**/
s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
{
- s32 ret_val = E1000_SUCCESS;
+ s32 ret_val;
u32 ctrl_reg = 0;
u32 ctrl_ext = 0;
u32 reg = 0;
@@ -1225,22 +1899,20 @@ s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
DEBUGFUNC("e1000_configure_k1_ich8lan");
- ret_val = e1000_read_kmrn_reg_locked(hw,
- E1000_KMRNCTRLSTA_K1_CONFIG,
- &kmrn_reg);
+ ret_val = e1000_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
+ &kmrn_reg);
if (ret_val)
- goto out;
+ return ret_val;
if (k1_enable)
kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
else
kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
- ret_val = e1000_write_kmrn_reg_locked(hw,
- E1000_KMRNCTRLSTA_K1_CONFIG,
- kmrn_reg);
+ ret_val = e1000_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
+ kmrn_reg);
if (ret_val)
- goto out;
+ return ret_val;
usec_delay(20);
ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
@@ -1251,13 +1923,14 @@ s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
E1000_WRITE_REG(hw, E1000_CTRL, reg);
E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
+ E1000_WRITE_FLUSH(hw);
usec_delay(20);
E1000_WRITE_REG(hw, E1000_CTRL, ctrl_reg);
E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
+ E1000_WRITE_FLUSH(hw);
usec_delay(20);
-out:
- return ret_val;
+ return E1000_SUCCESS;
}
/**
@@ -1269,7 +1942,7 @@ out:
* collectively called OEM bits. The OEM Write Enable bit and SW Config bit
* in NVM determines whether HW should configure LPLU and Gbe Disable.
**/
-s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
+static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
{
s32 ret_val = 0;
u32 mac_reg;
@@ -1277,28 +1950,28 @@ s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
DEBUGFUNC("e1000_oem_bits_config_ich8lan");
- if ((hw->mac.type != e1000_pch2lan) && (hw->mac.type != e1000_pchlan))
+ if (hw->mac.type < e1000_pchlan)
return ret_val;
ret_val = hw->phy.ops.acquire(hw);
if (ret_val)
return ret_val;
- if (!(hw->mac.type == e1000_pch2lan)) {
+ if (hw->mac.type == e1000_pchlan) {
mac_reg = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
- goto out;
+ goto release;
}
mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM);
if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
- goto out;
+ goto release;
mac_reg = E1000_READ_REG(hw, E1000_PHY_CTRL);
ret_val = hw->phy.ops.read_reg_locked(hw, HV_OEM_BITS, &oem_reg);
if (ret_val)
- goto out;
+ goto release;
oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
@@ -1309,18 +1982,23 @@ s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
oem_reg |= HV_OEM_BITS_LPLU;
} else {
- if (mac_reg & E1000_PHY_CTRL_NOND0A_GBE_DISABLE)
+ if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
+ E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
oem_reg |= HV_OEM_BITS_GBE_DIS;
- if (mac_reg & E1000_PHY_CTRL_NOND0A_LPLU)
+ if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
+ E1000_PHY_CTRL_NOND0A_LPLU))
oem_reg |= HV_OEM_BITS_LPLU;
}
- /* Restart auto-neg to activate the bits */
- if (!hw->phy.ops.check_reset_block(hw))
+
+ /* Set Restart auto-neg to activate the bits */
+ if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
+ !hw->phy.ops.check_reset_block(hw))
oem_reg |= HV_OEM_BITS_RESTART_AN;
+
ret_val = hw->phy.ops.write_reg_locked(hw, HV_OEM_BITS, oem_reg);
-out:
+release:
hw->phy.ops.release(hw);
return ret_val;
@@ -1328,20 +2006,6 @@ out:
/**
- * e1000_hv_phy_powerdown_workaround_ich8lan - Power down workaround on Sx
- * @hw: pointer to the HW structure
- **/
-s32 e1000_hv_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
-{
- DEBUGFUNC("e1000_hv_phy_powerdown_workaround_ich8lan");
-
- if ((hw->phy.type != e1000_phy_82577) || (hw->revision_id > 2))
- return E1000_SUCCESS;
-
- return hw->phy.ops.write_reg(hw, PHY_REG(768, 25), 0x0444);
-}
-
-/**
* e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
* @hw: pointer to the HW structure
**/
@@ -1375,39 +2039,13 @@ static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
DEBUGFUNC("e1000_hv_phy_workarounds_ich8lan");
if (hw->mac.type != e1000_pchlan)
- goto out;
+ return E1000_SUCCESS;
/* Set MDIO slow mode before any other MDIO access */
if (hw->phy.type == e1000_phy_82577) {
ret_val = e1000_set_mdio_slow_mode_hv(hw);
if (ret_val)
- goto out;
- }
-
- /* Hanksville M Phy init for IEEE. */
- if ((hw->revision_id == 2) &&
- (hw->phy.type == e1000_phy_82577) &&
- ((hw->phy.revision == 2) || (hw->phy.revision == 3))) {
- hw->phy.ops.write_reg(hw, 0x10, 0x8823);
- hw->phy.ops.write_reg(hw, 0x11, 0x0018);
- hw->phy.ops.write_reg(hw, 0x10, 0x8824);
- hw->phy.ops.write_reg(hw, 0x11, 0x0016);
- hw->phy.ops.write_reg(hw, 0x10, 0x8825);
- hw->phy.ops.write_reg(hw, 0x11, 0x001A);
- hw->phy.ops.write_reg(hw, 0x10, 0x888C);
- hw->phy.ops.write_reg(hw, 0x11, 0x0007);
- hw->phy.ops.write_reg(hw, 0x10, 0x888D);
- hw->phy.ops.write_reg(hw, 0x11, 0x0007);
- hw->phy.ops.write_reg(hw, 0x10, 0x888E);
- hw->phy.ops.write_reg(hw, 0x11, 0x0007);
- hw->phy.ops.write_reg(hw, 0x10, 0x8827);
- hw->phy.ops.write_reg(hw, 0x11, 0x0001);
- hw->phy.ops.write_reg(hw, 0x10, 0x8835);
- hw->phy.ops.write_reg(hw, 0x11, 0x0001);
- hw->phy.ops.write_reg(hw, 0x10, 0x8834);
- hw->phy.ops.write_reg(hw, 0x11, 0x0001);
- hw->phy.ops.write_reg(hw, 0x10, 0x8833);
- hw->phy.ops.write_reg(hw, 0x11, 0x0002);
+ return ret_val;
}
if (((hw->phy.type == e1000_phy_82577) &&
@@ -1416,89 +2054,61 @@ static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
/* Disable generation of early preamble */
ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 25), 0x4431);
if (ret_val)
- goto out;
+ return ret_val;
/* Preamble tuning for SSC */
- ret_val = hw->phy.ops.write_reg(hw, PHY_REG(770, 16), 0xA204);
+ ret_val = hw->phy.ops.write_reg(hw, HV_KMRN_FIFO_CTRLSTA,
+ 0xA204);
if (ret_val)
- goto out;
+ return ret_val;
}
if (hw->phy.type == e1000_phy_82578) {
- if (hw->revision_id < 3) {
- /* PHY config */
- ret_val = hw->phy.ops.write_reg(hw, (1 << 6) | 0x29,
- 0x66C0);
- if (ret_val)
- goto out;
-
- /* PHY config */
- ret_val = hw->phy.ops.write_reg(hw, (1 << 6) | 0x1E,
- 0xFFFF);
- if (ret_val)
- goto out;
- }
-
- /*
- * Return registers to default by doing a soft reset then
+ /* Return registers to default by doing a soft reset then
* writing 0x3140 to the control register.
*/
if (hw->phy.revision < 2) {
e1000_phy_sw_reset_generic(hw);
ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL,
- 0x3140);
+ 0x3140);
}
}
- if ((hw->revision_id == 2) &&
- (hw->phy.type == e1000_phy_82577) &&
- ((hw->phy.revision == 2) || (hw->phy.revision == 3))) {
- /*
- * Workaround for OEM (GbE) not operating after reset -
- * restart AN (twice)
- */
- ret_val = hw->phy.ops.write_reg(hw, PHY_REG(768, 25), 0x0400);
- if (ret_val)
- goto out;
- ret_val = hw->phy.ops.write_reg(hw, PHY_REG(768, 25), 0x0400);
- if (ret_val)
- goto out;
- }
-
/* Select page 0 */
ret_val = hw->phy.ops.acquire(hw);
if (ret_val)
- goto out;
+ return ret_val;
hw->phy.addr = 1;
ret_val = e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
hw->phy.ops.release(hw);
if (ret_val)
- goto out;
+ return ret_val;
- /*
- * Configure the K1 Si workaround during phy reset assuming there is
+ /* Configure the K1 Si workaround during phy reset assuming there is
* link so that it disables K1 if link is in 1Gbps.
*/
ret_val = e1000_k1_gig_workaround_hv(hw, TRUE);
if (ret_val)
- goto out;
+ return ret_val;
/* Workaround for link disconnects on a busy hub in half duplex */
ret_val = hw->phy.ops.acquire(hw);
if (ret_val)
- goto out;
- ret_val = hw->phy.ops.read_reg_locked(hw,
- PHY_REG(BM_PORT_CTRL_PAGE, 17),
- &phy_data);
+ return ret_val;
+ ret_val = hw->phy.ops.read_reg_locked(hw, BM_PORT_GEN_CFG, &phy_data);
if (ret_val)
goto release;
- ret_val = hw->phy.ops.write_reg_locked(hw,
- PHY_REG(BM_PORT_CTRL_PAGE, 17),
- phy_data & 0x00FF);
+ ret_val = hw->phy.ops.write_reg_locked(hw, BM_PORT_GEN_CFG,
+ phy_data & 0x00FF);
+ if (ret_val)
+ goto release;
+
+ /* set MSE higher to enable link to stay up when noise is high */
+ ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
release:
hw->phy.ops.release(hw);
-out:
+
return ret_val;
}
@@ -1509,19 +2119,38 @@ out:
void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
{
u32 mac_reg;
- u16 i;
+ u16 i, phy_reg = 0;
+ s32 ret_val;
DEBUGFUNC("e1000_copy_rx_addrs_to_phy_ich8lan");
+ ret_val = hw->phy.ops.acquire(hw);
+ if (ret_val)
+ return;
+ ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
+ if (ret_val)
+ goto release;
+
/* Copy both RAL/H (rar_entry_count) and SHRAL/H (+4) to PHY */
for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
mac_reg = E1000_READ_REG(hw, E1000_RAL(i));
- hw->phy.ops.write_reg(hw, BM_RAR_L(i), (u16)(mac_reg & 0xFFFF));
- hw->phy.ops.write_reg(hw, BM_RAR_M(i), (u16)((mac_reg >> 16) & 0xFFFF));
+ hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
+ (u16)(mac_reg & 0xFFFF));
+ hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
+ (u16)((mac_reg >> 16) & 0xFFFF));
+
mac_reg = E1000_READ_REG(hw, E1000_RAH(i));
- hw->phy.ops.write_reg(hw, BM_RAR_H(i), (u16)(mac_reg & 0xFFFF));
- hw->phy.ops.write_reg(hw, BM_RAR_CTRL(i), (u16)((mac_reg >> 16) & 0x8000));
+ hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
+ (u16)(mac_reg & 0xFFFF));
+ hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
+ (u16)((mac_reg & E1000_RAH_AV)
+ >> 16));
}
+
+ e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
+
+release:
+ hw->phy.ops.release(hw);
}
static u32 e1000_calc_rx_da_crc(u8 mac[])
@@ -1557,18 +2186,18 @@ s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
DEBUGFUNC("e1000_lv_jumbo_workaround_ich8lan");
- if (hw->mac.type != e1000_pch2lan)
- goto out;
+ if (hw->mac.type < e1000_pch2lan)
+ return E1000_SUCCESS;
/* disable Rx path while enabling/disabling workaround */
hw->phy.ops.read_reg(hw, PHY_REG(769, 20), &phy_reg);
- ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 20), phy_reg | (1 << 14));
+ ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 20),
+ phy_reg | (1 << 14));
if (ret_val)
- goto out;
+ return ret_val;
if (enable) {
- /*
- * Write Rx addresses (rar_entry_count for RAL/H, +4 for
+ /* Write Rx addresses (rar_entry_count for RAL/H, +4 for
* SHRAL/H) and initial CRC values to the MAC
*/
for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
@@ -1607,24 +2236,24 @@ s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
E1000_KMRNCTRLSTA_CTRL_OFFSET,
&data);
if (ret_val)
- goto out;
+ return ret_val;
ret_val = e1000_write_kmrn_reg_generic(hw,
E1000_KMRNCTRLSTA_CTRL_OFFSET,
data | (1 << 0));
if (ret_val)
- goto out;
+ return ret_val;
ret_val = e1000_read_kmrn_reg_generic(hw,
E1000_KMRNCTRLSTA_HD_CTRL,
&data);
if (ret_val)
- goto out;
+ return ret_val;
data &= ~(0xF << 8);
data |= (0xB << 8);
ret_val = e1000_write_kmrn_reg_generic(hw,
E1000_KMRNCTRLSTA_HD_CTRL,
data);
if (ret_val)
- goto out;
+ return ret_val;
/* Enable jumbo frame workaround in the PHY */
hw->phy.ops.read_reg(hw, PHY_REG(769, 23), &data);
@@ -1632,25 +2261,26 @@ s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
data |= (0x37 << 5);
ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 23), data);
if (ret_val)
- goto out;
+ return ret_val;
hw->phy.ops.read_reg(hw, PHY_REG(769, 16), &data);
data &= ~(1 << 13);
ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 16), data);
if (ret_val)
- goto out;
+ return ret_val;
hw->phy.ops.read_reg(hw, PHY_REG(776, 20), &data);
data &= ~(0x3FF << 2);
data |= (0x1A << 2);
ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 20), data);
if (ret_val)
- goto out;
- ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 23), 0xFE00);
+ return ret_val;
+ ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 23), 0xF100);
if (ret_val)
- goto out;
+ return ret_val;
hw->phy.ops.read_reg(hw, HV_PM_CTRL, &data);
- ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL, data | (1 << 10));
+ ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL, data |
+ (1 << 10));
if (ret_val)
- goto out;
+ return ret_val;
} else {
/* Write MAC register values back to h/w defaults */
mac_reg = E1000_READ_REG(hw, E1000_FFLT_DBG);
@@ -1665,56 +2295,55 @@ s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
E1000_KMRNCTRLSTA_CTRL_OFFSET,
&data);
if (ret_val)
- goto out;
+ return ret_val;
ret_val = e1000_write_kmrn_reg_generic(hw,
E1000_KMRNCTRLSTA_CTRL_OFFSET,
data & ~(1 << 0));
if (ret_val)
- goto out;
+ return ret_val;
ret_val = e1000_read_kmrn_reg_generic(hw,
E1000_KMRNCTRLSTA_HD_CTRL,
&data);
if (ret_val)
- goto out;
+ return ret_val;
data &= ~(0xF << 8);
data |= (0xB << 8);
ret_val = e1000_write_kmrn_reg_generic(hw,
E1000_KMRNCTRLSTA_HD_CTRL,
data);
if (ret_val)
- goto out;
+ return ret_val;
/* Write PHY register values back to h/w defaults */
hw->phy.ops.read_reg(hw, PHY_REG(769, 23), &data);
data &= ~(0x7F << 5);
ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 23), data);
if (ret_val)
- goto out;
+ return ret_val;
hw->phy.ops.read_reg(hw, PHY_REG(769, 16), &data);
data |= (1 << 13);
ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 16), data);
if (ret_val)
- goto out;
+ return ret_val;
hw->phy.ops.read_reg(hw, PHY_REG(776, 20), &data);
data &= ~(0x3FF << 2);
data |= (0x8 << 2);
ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 20), data);
if (ret_val)
- goto out;
+ return ret_val;
ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 23), 0x7E00);
if (ret_val)
- goto out;
+ return ret_val;
hw->phy.ops.read_reg(hw, HV_PM_CTRL, &data);
- ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL, data & ~(1 << 10));
+ ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL, data &
+ ~(1 << 10));
if (ret_val)
- goto out;
+ return ret_val;
}
/* re-enable Rx path after enabling/disabling workaround */
- ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 20), phy_reg & ~(1 << 14));
-
-out:
- return ret_val;
+ return hw->phy.ops.write_reg(hw, PHY_REG(769, 20), phy_reg &
+ ~(1 << 14));
}
/**
@@ -1728,12 +2357,25 @@ static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
DEBUGFUNC("e1000_lv_phy_workarounds_ich8lan");
if (hw->mac.type != e1000_pch2lan)
- goto out;
+ return E1000_SUCCESS;
/* Set MDIO slow mode before any other MDIO access */
ret_val = e1000_set_mdio_slow_mode_hv(hw);
+ if (ret_val)
+ return ret_val;
+
+ ret_val = hw->phy.ops.acquire(hw);
+ if (ret_val)
+ return ret_val;
+ /* set MSE higher to enable link to stay up when noise is high */
+ ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
+ if (ret_val)
+ goto release;
+ /* drop link after 5 times MSE threshold was reached */
+ ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
+release:
+ hw->phy.ops.release(hw);
-out:
return ret_val;
}
@@ -1748,38 +2390,57 @@ static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
s32 ret_val = E1000_SUCCESS;
u16 status_reg = 0;
u32 mac_reg;
+ u16 phy_reg;
DEBUGFUNC("e1000_k1_workaround_lv");
if (hw->mac.type != e1000_pch2lan)
- goto out;
+ return E1000_SUCCESS;
/* Set K1 beacon duration based on 1Gbps speed or otherwise */
ret_val = hw->phy.ops.read_reg(hw, HV_M_STATUS, &status_reg);
if (ret_val)
- goto out;
+ return ret_val;
if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
== (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM4);
mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
- if (status_reg & HV_M_STATUS_SPEED_1000)
+ ret_val = hw->phy.ops.read_reg(hw, I82579_LPI_CTRL, &phy_reg);
+ if (ret_val)
+ return ret_val;
+
+ if (status_reg & HV_M_STATUS_SPEED_1000) {
+ u16 pm_phy_reg;
+
mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
- else
+ phy_reg &= ~I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT;
+ /* LV 1G Packet drop issue wa */
+ ret_val = hw->phy.ops.read_reg(hw, HV_PM_CTRL,
+ &pm_phy_reg);
+ if (ret_val)
+ return ret_val;
+ pm_phy_reg &= ~HV_PM_CTRL_PLL_STOP_IN_K1_GIGA;
+ ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL,
+ pm_phy_reg);
+ if (ret_val)
+ return ret_val;
+ } else {
mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
-
+ phy_reg |= I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT;
+ }
E1000_WRITE_REG(hw, E1000_FEXTNVM4, mac_reg);
+ ret_val = hw->phy.ops.write_reg(hw, I82579_LPI_CTRL, phy_reg);
}
-out:
return ret_val;
}
/**
* e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
* @hw: pointer to the HW structure
- * @gate: boolean set to TRUE to gate, FALSE to un-gate
+ * @gate: boolean set to TRUE to gate, FALSE to ungate
*
* Gate/ungate the automatic PHY configuration via hardware; perform
* the configuration via software instead.
@@ -1790,7 +2451,7 @@ static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
DEBUGFUNC("e1000_gate_hw_phy_config_ich8lan");
- if (hw->mac.type != e1000_pch2lan)
+ if (hw->mac.type < e1000_pch2lan)
return;
extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
@@ -1801,35 +2462,6 @@ static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
- return;
-}
-
-/**
- * e1000_hv_phy_tuning_workaround_ich8lan - This is a Phy tuning work around
- * needed for Nahum3 + Hanksville testing, requested by HW team
- **/
-static s32 e1000_hv_phy_tuning_workaround_ich8lan(struct e1000_hw *hw)
-{
- s32 ret_val = E1000_SUCCESS;
-
- DEBUGFUNC("e1000_hv_phy_tuning_workaround_ich8lan");
-
- ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 25), 0x4431);
- if (ret_val)
- goto out;
-
- ret_val = hw->phy.ops.write_reg(hw, PHY_REG(770, 16), 0xA204);
- if (ret_val)
- goto out;
-
- ret_val = hw->phy.ops.write_reg(hw, (1 << 6) | 0x29, 0x66C0);
- if (ret_val)
- goto out;
-
- ret_val = hw->phy.ops.write_reg(hw, (1 << 6) | 0x1E, 0xFFFF);
-
-out:
- return ret_val;
}
/**
@@ -1852,8 +2484,7 @@ static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
usec_delay(100);
} while ((!data) && --loop);
- /*
- * If basic configuration is incomplete before the above loop
+ /* If basic configuration is incomplete before the above loop
* count reaches 0, loading the configuration from NVM will
* leave the PHY in a bad state possibly resulting in no link.
*/
@@ -1878,7 +2509,7 @@ static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
DEBUGFUNC("e1000_post_phy_reset_ich8lan");
if (hw->phy.ops.check_reset_block(hw))
- goto out;
+ return E1000_SUCCESS;
/* Allow time for h/w to get to quiescent state after reset */
msec_delay(10);
@@ -1888,43 +2519,50 @@ static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
case e1000_pchlan:
ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
if (ret_val)
- goto out;
+ return ret_val;
break;
case e1000_pch2lan:
ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
if (ret_val)
- goto out;
+ return ret_val;
break;
default:
break;
}
- if (hw->device_id == E1000_DEV_ID_ICH10_HANKSVILLE) {
- ret_val = e1000_hv_phy_tuning_workaround_ich8lan(hw);
- if (ret_val)
- goto out;
+ /* Clear the host wakeup bit after lcd reset */
+ if (hw->mac.type >= e1000_pchlan) {
+ hw->phy.ops.read_reg(hw, BM_PORT_GEN_CFG, &reg);
+ reg &= ~BM_WUC_HOST_WU_BIT;
+ hw->phy.ops.write_reg(hw, BM_PORT_GEN_CFG, reg);
}
- /* Dummy read to clear the phy wakeup bit after lcd reset */
- if (hw->mac.type >= e1000_pchlan)
- hw->phy.ops.read_reg(hw, BM_WUC, &reg);
-
/* Configure the LCD with the extended configuration region in NVM */
ret_val = e1000_sw_lcd_config_ich8lan(hw);
if (ret_val)
- goto out;
+ return ret_val;
/* Configure the LCD with the OEM bits in NVM */
ret_val = e1000_oem_bits_config_ich8lan(hw, TRUE);
- /* Ungate automatic PHY configuration on non-managed 82579 */
- if ((hw->mac.type == e1000_pch2lan) &&
- !(E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID)) {
- msec_delay(10);
- e1000_gate_hw_phy_config_ich8lan(hw, FALSE);
+ if (hw->mac.type == e1000_pch2lan) {
+ /* Ungate automatic PHY configuration on non-managed 82579 */
+ if (!(E1000_READ_REG(hw, E1000_FWSM) &
+ E1000_ICH_FWSM_FW_VALID)) {
+ msec_delay(10);
+ e1000_gate_hw_phy_config_ich8lan(hw, FALSE);
+ }
+
+ /* Set EEE LPI Update Timer to 200usec */
+ ret_val = hw->phy.ops.acquire(hw);
+ if (ret_val)
+ return ret_val;
+ ret_val = e1000_write_emi_reg_locked(hw,
+ I82579_LPI_UPDATE_TIMER,
+ 0x1387);
+ hw->phy.ops.release(hw);
}
-out:
return ret_val;
}
@@ -1949,12 +2587,9 @@ static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
ret_val = e1000_phy_hw_reset_generic(hw);
if (ret_val)
- goto out;
-
- ret_val = e1000_post_phy_reset_ich8lan(hw);
+ return ret_val;
-out:
- return ret_val;
+ return e1000_post_phy_reset_ich8lan(hw);
}
/**
@@ -1970,25 +2605,24 @@ out:
**/
static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
{
- s32 ret_val = E1000_SUCCESS;
+ s32 ret_val;
u16 oem_reg;
DEBUGFUNC("e1000_set_lplu_state_pchlan");
ret_val = hw->phy.ops.read_reg(hw, HV_OEM_BITS, &oem_reg);
if (ret_val)
- goto out;
+ return ret_val;
if (active)
oem_reg |= HV_OEM_BITS_LPLU;
else
oem_reg &= ~HV_OEM_BITS_LPLU;
- oem_reg |= HV_OEM_BITS_RESTART_AN;
- ret_val = hw->phy.ops.write_reg(hw, HV_OEM_BITS, oem_reg);
+ if (!hw->phy.ops.check_reset_block(hw))
+ oem_reg |= HV_OEM_BITS_RESTART_AN;
-out:
- return ret_val;
+ return hw->phy.ops.write_reg(hw, HV_OEM_BITS, oem_reg);
}
/**
@@ -2014,7 +2648,7 @@ static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
DEBUGFUNC("e1000_set_d0_lplu_state_ich8lan");
if (phy->type == e1000_phy_ife)
- goto out;
+ return E1000_SUCCESS;
phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
@@ -2023,10 +2657,9 @@ static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
if (phy->type != e1000_phy_igp_3)
- goto out;
+ return E1000_SUCCESS;
- /*
- * Call gig speed drop workaround on LPLU before accessing
+ /* Call gig speed drop workaround on LPLU before accessing
* any PHY registers
*/
if (hw->mac.type == e1000_ich8lan)
@@ -2034,58 +2667,58 @@ static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
/* When LPLU is enabled, we should disable SmartSpeed */
ret_val = phy->ops.read_reg(hw,
- IGP01E1000_PHY_PORT_CONFIG,
- &data);
+ IGP01E1000_PHY_PORT_CONFIG,
+ &data);
+ if (ret_val)
+ return ret_val;
data &= ~IGP01E1000_PSCFR_SMART_SPEED;
ret_val = phy->ops.write_reg(hw,
- IGP01E1000_PHY_PORT_CONFIG,
- data);
+ IGP01E1000_PHY_PORT_CONFIG,
+ data);
if (ret_val)
- goto out;
+ return ret_val;
} else {
phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
if (phy->type != e1000_phy_igp_3)
- goto out;
+ return E1000_SUCCESS;
- /*
- * LPLU and SmartSpeed are mutually exclusive. LPLU is used
+ /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
* during Dx states where the power conservation is most
* important. During driver activity we should enable
* SmartSpeed, so performance is maintained.
*/
if (phy->smart_speed == e1000_smart_speed_on) {
ret_val = phy->ops.read_reg(hw,
- IGP01E1000_PHY_PORT_CONFIG,
- &data);
+ IGP01E1000_PHY_PORT_CONFIG,
+ &data);
if (ret_val)
- goto out;
+ return ret_val;
data |= IGP01E1000_PSCFR_SMART_SPEED;
ret_val = phy->ops.write_reg(hw,
- IGP01E1000_PHY_PORT_CONFIG,
- data);
+ IGP01E1000_PHY_PORT_CONFIG,
+ data);
if (ret_val)
- goto out;
+ return ret_val;
} else if (phy->smart_speed == e1000_smart_speed_off) {
ret_val = phy->ops.read_reg(hw,
- IGP01E1000_PHY_PORT_CONFIG,
- &data);
+ IGP01E1000_PHY_PORT_CONFIG,
+ &data);
if (ret_val)
- goto out;
+ return ret_val;
data &= ~IGP01E1000_PSCFR_SMART_SPEED;
ret_val = phy->ops.write_reg(hw,
- IGP01E1000_PHY_PORT_CONFIG,
- data);
+ IGP01E1000_PHY_PORT_CONFIG,
+ data);
if (ret_val)
- goto out;
+ return ret_val;
}
}
-out:
- return ret_val;
+ return E1000_SUCCESS;
}
/**
@@ -2117,52 +2750,50 @@ static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
if (phy->type != e1000_phy_igp_3)
- goto out;
+ return E1000_SUCCESS;
- /*
- * LPLU and SmartSpeed are mutually exclusive. LPLU is used
+ /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
* during Dx states where the power conservation is most
* important. During driver activity we should enable
* SmartSpeed, so performance is maintained.
*/
if (phy->smart_speed == e1000_smart_speed_on) {
ret_val = phy->ops.read_reg(hw,
- IGP01E1000_PHY_PORT_CONFIG,
- &data);
+ IGP01E1000_PHY_PORT_CONFIG,
+ &data);
if (ret_val)
- goto out;
+ return ret_val;
data |= IGP01E1000_PSCFR_SMART_SPEED;
ret_val = phy->ops.write_reg(hw,
- IGP01E1000_PHY_PORT_CONFIG,
- data);
+ IGP01E1000_PHY_PORT_CONFIG,
+ data);
if (ret_val)
- goto out;
+ return ret_val;
} else if (phy->smart_speed == e1000_smart_speed_off) {
ret_val = phy->ops.read_reg(hw,
- IGP01E1000_PHY_PORT_CONFIG,
- &data);
+ IGP01E1000_PHY_PORT_CONFIG,
+ &data);
if (ret_val)
- goto out;
+ return ret_val;
data &= ~IGP01E1000_PSCFR_SMART_SPEED;
ret_val = phy->ops.write_reg(hw,
- IGP01E1000_PHY_PORT_CONFIG,
- data);
+ IGP01E1000_PHY_PORT_CONFIG,
+ data);
if (ret_val)
- goto out;
+ return ret_val;
}
} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
- (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
- (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
+ (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
+ (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
if (phy->type != e1000_phy_igp_3)
- goto out;
+ return E1000_SUCCESS;
- /*
- * Call gig speed drop workaround on LPLU before accessing
+ /* Call gig speed drop workaround on LPLU before accessing
* any PHY registers
*/
if (hw->mac.type == e1000_ich8lan)
@@ -2170,18 +2801,17 @@ static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
/* When LPLU is enabled, we should disable SmartSpeed */
ret_val = phy->ops.read_reg(hw,
- IGP01E1000_PHY_PORT_CONFIG,
- &data);
+ IGP01E1000_PHY_PORT_CONFIG,
+ &data);
if (ret_val)
- goto out;
+ return ret_val;
data &= ~IGP01E1000_PSCFR_SMART_SPEED;
ret_val = phy->ops.write_reg(hw,
- IGP01E1000_PHY_PORT_CONFIG,
- data);
+ IGP01E1000_PHY_PORT_CONFIG,
+ data);
}
-out:
return ret_val;
}
@@ -2200,7 +2830,7 @@ static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
u8 sig_byte = 0;
- s32 ret_val = E1000_SUCCESS;
+ s32 ret_val;
DEBUGFUNC("e1000_valid_nvm_bank_detect_ich8lan");
@@ -2215,10 +2845,9 @@ static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
else
*bank = 0;
- goto out;
+ return E1000_SUCCESS;
}
- DEBUGOUT("Unable to determine valid NVM bank via EEC - "
- "reading flash signature\n");
+ DEBUGOUT("Unable to determine valid NVM bank via EEC - reading flash signature\n");
/* fall-thru */
default:
/* set bank to 0 in case flash read fails */
@@ -2226,33 +2855,30 @@ static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
/* Check bank 0 */
ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
- &sig_byte);
+ &sig_byte);
if (ret_val)
- goto out;
+ return ret_val;
if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
E1000_ICH_NVM_SIG_VALUE) {
*bank = 0;
- goto out;
+ return E1000_SUCCESS;
}
/* Check bank 1 */
ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
- bank1_offset,
- &sig_byte);
+ bank1_offset,
+ &sig_byte);
if (ret_val)
- goto out;
+ return ret_val;
if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
E1000_ICH_NVM_SIG_VALUE) {
*bank = 1;
- goto out;
+ return E1000_SUCCESS;
}
DEBUGOUT("ERROR: No valid NVM bank present\n");
- ret_val = -E1000_ERR_NVM;
- break;
+ return -E1000_ERR_NVM;
}
-out:
- return ret_val;
}
/**
@@ -2265,7 +2891,7 @@ out:
* Reads a word(s) from the NVM using the flash access registers.
**/
static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
- u16 *data)
+ u16 *data)
{
struct e1000_nvm_info *nvm = &hw->nvm;
struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
@@ -2296,13 +2922,12 @@ static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
ret_val = E1000_SUCCESS;
for (i = 0; i < words; i++) {
- if ((dev_spec->shadow_ram) &&
- (dev_spec->shadow_ram[offset+i].modified)) {
+ if (dev_spec->shadow_ram[offset+i].modified) {
data[i] = dev_spec->shadow_ram[offset+i].value;
} else {
ret_val = e1000_read_flash_word_ich8lan(hw,
- act_offset + i,
- &word);
+ act_offset + i,
+ &word);
if (ret_val)
break;
data[i] = word;
@@ -2329,17 +2954,15 @@ static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
{
union ich8_hws_flash_status hsfsts;
s32 ret_val = -E1000_ERR_NVM;
- s32 i = 0;
DEBUGFUNC("e1000_flash_cycle_init_ich8lan");
hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
/* Check if the flash descriptor is valid */
- if (hsfsts.hsf_status.fldesvalid == 0) {
- DEBUGOUT("Flash descriptor invalid. "
- "SW Sequencing must be used.");
- goto out;
+ if (!hsfsts.hsf_status.fldesvalid) {
+ DEBUGOUT("Flash descriptor invalid. SW Sequencing must be used.\n");
+ return -E1000_ERR_NVM;
}
/* Clear FCERR and DAEL in hw status by writing 1 */
@@ -2348,8 +2971,7 @@ static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval);
- /*
- * Either we should have a hardware SPI cycle in progress
+ /* Either we should have a hardware SPI cycle in progress
* bit to check against, in order to start a new cycle or
* FDONE bit should be changed in the hardware so that it
* is 1 after hardware reset, which can then be used as an
@@ -2357,9 +2979,8 @@ static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
* completed.
*/
- if (hsfsts.hsf_status.flcinprog == 0) {
- /*
- * There is no cycle running at present,
+ if (!hsfsts.hsf_status.flcinprog) {
+ /* There is no cycle running at present,
* so we can start a cycle.
* Begin by setting Flash Cycle Done.
*/
@@ -2367,33 +2988,32 @@ static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval);
ret_val = E1000_SUCCESS;
} else {
- /*
- * Otherwise poll for sometime so the current
+ s32 i;
+
+ /* Otherwise poll for sometime so the current
* cycle has a chance to end before giving up.
*/
for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
hsfsts.regval = E1000_READ_FLASH_REG16(hw,
- ICH_FLASH_HSFSTS);
- if (hsfsts.hsf_status.flcinprog == 0) {
+ ICH_FLASH_HSFSTS);
+ if (!hsfsts.hsf_status.flcinprog) {
ret_val = E1000_SUCCESS;
break;
}
usec_delay(1);
}
if (ret_val == E1000_SUCCESS) {
- /*
- * Successful in waiting for previous cycle to timeout,
+ /* Successful in waiting for previous cycle to timeout,
* now set the Flash Cycle Done.
*/
hsfsts.hsf_status.flcdone = 1;
E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS,
- hsfsts.regval);
+ hsfsts.regval);
} else {
- DEBUGOUT("Flash controller busy, cannot get access");
+ DEBUGOUT("Flash controller busy, cannot get access\n");
}
}
-out:
return ret_val;
}
@@ -2408,7 +3028,6 @@ static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
{
union ich8_hws_flash_ctrl hsflctl;
union ich8_hws_flash_status hsfsts;
- s32 ret_val = -E1000_ERR_NVM;
u32 i = 0;
DEBUGFUNC("e1000_flash_cycle_ich8lan");
@@ -2421,15 +3040,15 @@ static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
/* wait till FDONE bit is set to 1 */
do {
hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
- if (hsfsts.hsf_status.flcdone == 1)
+ if (hsfsts.hsf_status.flcdone)
break;
usec_delay(1);
} while (i++ < timeout);
- if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0)
- ret_val = E1000_SUCCESS;
+ if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
+ return E1000_SUCCESS;
- return ret_val;
+ return -E1000_ERR_NVM;
}
/**
@@ -2442,24 +3061,17 @@ static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
* to bytes before read.
**/
static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
- u16 *data)
+ u16 *data)
{
- s32 ret_val;
-
DEBUGFUNC("e1000_read_flash_word_ich8lan");
- if (!data) {
- ret_val = -E1000_ERR_NVM;
- goto out;
- }
+ if (!data)
+ return -E1000_ERR_NVM;
/* Must convert offset into bytes. */
offset <<= 1;
- ret_val = e1000_read_flash_data_ich8lan(hw, offset, 2, data);
-
-out:
- return ret_val;
+ return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
}
/**
@@ -2471,19 +3083,18 @@ out:
* Reads a single byte from the NVM using the flash access registers.
**/
static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
- u8 *data)
+ u8 *data)
{
- s32 ret_val = E1000_SUCCESS;
+ s32 ret_val;
u16 word = 0;
ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
if (ret_val)
- goto out;
+ return ret_val;
*data = (u8)word;
-out:
- return ret_val;
+ return E1000_SUCCESS;
}
/**
@@ -2496,7 +3107,7 @@ out:
* Reads a byte or word from the NVM using the flash access registers.
**/
static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
- u8 size, u16 *data)
+ u8 size, u16 *data)
{
union ich8_hws_flash_status hsfsts;
union ich8_hws_flash_ctrl hsflctl;
@@ -2508,10 +3119,10 @@ static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
DEBUGFUNC("e1000_read_flash_data_ich8lan");
if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
- goto out;
+ return -E1000_ERR_NVM;
flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
- hw->nvm.flash_base_addr;
+ hw->nvm.flash_base_addr;
do {
usec_delay(1);
@@ -2529,10 +3140,9 @@ static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr);
ret_val = e1000_flash_cycle_ich8lan(hw,
- ICH_FLASH_READ_COMMAND_TIMEOUT);
+ ICH_FLASH_READ_COMMAND_TIMEOUT);
- /*
- * Check if FCERR is set to 1, if set to 1, clear it
+ /* Check if FCERR is set to 1, if set to 1, clear it
* and try the whole sequence a few more times, else
* read in (shift in) the Flash Data0, the order is
* least significant byte first msb to lsb
@@ -2545,26 +3155,23 @@ static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
*data = (u16)(flash_data & 0x0000FFFF);
break;
} else {
- /*
- * If we've gotten here, then things are probably
+ /* If we've gotten here, then things are probably
* completely hosed, but if the error condition is
* detected, it won't hurt to give it another try...
* ICH_FLASH_CYCLE_REPEAT_COUNT times.
*/
hsfsts.regval = E1000_READ_FLASH_REG16(hw,
- ICH_FLASH_HSFSTS);
- if (hsfsts.hsf_status.flcerr == 1) {
+ ICH_FLASH_HSFSTS);
+ if (hsfsts.hsf_status.flcerr) {
/* Repeat for some time before giving up. */
continue;
- } else if (hsfsts.hsf_status.flcdone == 0) {
- DEBUGOUT("Timeout error - flash cycle "
- "did not complete.");
+ } else if (!hsfsts.hsf_status.flcdone) {
+ DEBUGOUT("Timeout error - flash cycle did not complete.\n");
break;
}
}
} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
-out:
return ret_val;
}
@@ -2578,11 +3185,10 @@ out:
* Writes a byte or word to the NVM using the flash access registers.
**/
static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
- u16 *data)
+ u16 *data)
{
struct e1000_nvm_info *nvm = &hw->nvm;
struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
- s32 ret_val = E1000_SUCCESS;
u16 i;
DEBUGFUNC("e1000_write_nvm_ich8lan");
@@ -2590,8 +3196,7 @@ static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
(words == 0)) {
DEBUGOUT("nvm parameter(s) out of bounds\n");
- ret_val = -E1000_ERR_NVM;
- goto out;
+ return -E1000_ERR_NVM;
}
nvm->ops.acquire(hw);
@@ -2603,8 +3208,7 @@ static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
nvm->ops.release(hw);
-out:
- return ret_val;
+ return E1000_SUCCESS;
}
/**
@@ -2637,8 +3241,7 @@ static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
nvm->ops.acquire(hw);
- /*
- * We're writing to the opposite bank so if we're on bank 1,
+ /* We're writing to the opposite bank so if we're on bank 1,
* write to bank 0 etc. We also need to erase the segment that
* is going to be written
*/
@@ -2663,8 +3266,7 @@ static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
}
for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
- /*
- * Determine whether to write the value stored
+ /* Determine whether to write the value stored
* in the other NVM bank or a modified value stored
* in the shadow RAM
*/
@@ -2672,14 +3274,13 @@ static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
data = dev_spec->shadow_ram[i].value;
} else {
ret_val = e1000_read_flash_word_ich8lan(hw, i +
- old_bank_offset,
- &data);
+ old_bank_offset,
+ &data);
if (ret_val)
break;
}
- /*
- * If the word is 0x13, then make sure the signature bits
+ /* If the word is 0x13, then make sure the signature bits
* (15:14) are 11b until the commit has completed.
* This will allow us to write 10b which indicates the
* signature is valid. We want to do this after the write
@@ -2695,21 +3296,20 @@ static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
usec_delay(100);
/* Write the bytes to the new bank. */
ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
- act_offset,
- (u8)data);
+ act_offset,
+ (u8)data);
if (ret_val)
break;
usec_delay(100);
ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
- act_offset + 1,
- (u8)(data >> 8));
+ act_offset + 1,
+ (u8)(data >> 8));
if (ret_val)
break;
}
- /*
- * Don't bother writing the segment valid bits if sector
+ /* Don't bother writing the segment valid bits if sector
* programming failed.
*/
if (ret_val) {
@@ -2717,8 +3317,7 @@ static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
goto release;
}
- /*
- * Finally validate the new segment by setting bit 15:14
+ /* Finally validate the new segment by setting bit 15:14
* to 10b in word 0x13 , this can be done without an
* erase as well since these bits are 11 to start with
* and we need to change bit 14 to 0b
@@ -2730,13 +3329,12 @@ static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
data &= 0xBFFF;
ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
- act_offset * 2 + 1,
- (u8)(data >> 8));
+ act_offset * 2 + 1,
+ (u8)(data >> 8));
if (ret_val)
goto release;
- /*
- * And invalidate the previously valid segment by setting
+ /* And invalidate the previously valid segment by setting
* its signature word (0x13) high_byte to 0b. This can be
* done without an erase because flash erase sets all bits
* to 1's. We can write 1's to 0's without an erase
@@ -2755,8 +3353,7 @@ static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
release:
nvm->ops.release(hw);
- /*
- * Reload the EEPROM, or else modifications will not appear
+ /* Reload the EEPROM, or else modifications will not appear
* until after the next adapter reset.
*/
if (!ret_val) {
@@ -2781,35 +3378,44 @@ out:
**/
static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
{
- s32 ret_val = E1000_SUCCESS;
+ s32 ret_val;
u16 data;
+ u16 word;
+ u16 valid_csum_mask;
DEBUGFUNC("e1000_validate_nvm_checksum_ich8lan");
- /*
- * Read 0x19 and check bit 6. If this bit is 0, the checksum
- * needs to be fixed. This bit is an indication that the NVM
- * was prepared by OEM software and did not calculate the
- * checksum...a likely scenario.
+ /* Read NVM and check Invalid Image CSUM bit. If this bit is 0,
+ * the checksum needs to be fixed. This bit is an indication that
+ * the NVM was prepared by OEM software and did not calculate
+ * the checksum...a likely scenario.
*/
- ret_val = hw->nvm.ops.read(hw, 0x19, 1, &data);
+ switch (hw->mac.type) {
+ case e1000_pch_lpt:
+ word = NVM_COMPAT;
+ valid_csum_mask = NVM_COMPAT_VALID_CSUM;
+ break;
+ default:
+ word = NVM_FUTURE_INIT_WORD1;
+ valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
+ break;
+ }
+
+ ret_val = hw->nvm.ops.read(hw, word, 1, &data);
if (ret_val)
- goto out;
+ return ret_val;
- if ((data & 0x40) == 0) {
- data |= 0x40;
- ret_val = hw->nvm.ops.write(hw, 0x19, 1, &data);
+ if (!(data & valid_csum_mask)) {
+ data |= valid_csum_mask;
+ ret_val = hw->nvm.ops.write(hw, word, 1, &data);
if (ret_val)
- goto out;
+ return ret_val;
ret_val = hw->nvm.ops.update(hw);
if (ret_val)
- goto out;
+ return ret_val;
}
- ret_val = e1000_validate_nvm_checksum_generic(hw);
-
-out:
- return ret_val;
+ return e1000_validate_nvm_checksum_generic(hw);
}
/**
@@ -2822,23 +3428,23 @@ out:
* Writes one/two bytes to the NVM using the flash access registers.
**/
static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
- u8 size, u16 data)
+ u8 size, u16 data)
{
union ich8_hws_flash_status hsfsts;
union ich8_hws_flash_ctrl hsflctl;
u32 flash_linear_addr;
u32 flash_data = 0;
- s32 ret_val = -E1000_ERR_NVM;
+ s32 ret_val;
u8 count = 0;
DEBUGFUNC("e1000_write_ich8_data");
if (size < 1 || size > 2 || data > size * 0xff ||
offset > ICH_FLASH_LINEAR_ADDR_MASK)
- goto out;
+ return -E1000_ERR_NVM;
flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
- hw->nvm.flash_base_addr;
+ hw->nvm.flash_base_addr;
do {
usec_delay(1);
@@ -2862,33 +3468,29 @@ static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FDATA0, flash_data);
- /*
- * check if FCERR is set to 1 , if set to 1, clear it
+ /* check if FCERR is set to 1 , if set to 1, clear it
* and try the whole sequence a few more times else done
*/
ret_val = e1000_flash_cycle_ich8lan(hw,
- ICH_FLASH_WRITE_COMMAND_TIMEOUT);
+ ICH_FLASH_WRITE_COMMAND_TIMEOUT);
if (ret_val == E1000_SUCCESS)
break;
- /*
- * If we're here, then things are most likely
+ /* If we're here, then things are most likely
* completely hosed, but if the error condition
* is detected, it won't hurt to give it another
* try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
*/
hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
- if (hsfsts.hsf_status.flcerr == 1)
+ if (hsfsts.hsf_status.flcerr)
/* Repeat for some time before giving up. */
continue;
- if (hsfsts.hsf_status.flcdone == 0) {
- DEBUGOUT("Timeout error - flash cycle "
- "did not complete.");
+ if (!hsfsts.hsf_status.flcdone) {
+ DEBUGOUT("Timeout error - flash cycle did not complete.\n");
break;
}
} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
-out:
return ret_val;
}
@@ -2901,7 +3503,7 @@ out:
* Writes a single byte to the NVM using the flash access registers.
**/
static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
- u8 data)
+ u8 data)
{
u16 word = (u16)data;
@@ -2920,7 +3522,7 @@ static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
* Goes through a retry algorithm before giving up.
**/
static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
- u32 offset, u8 byte)
+ u32 offset, u8 byte)
{
s32 ret_val;
u16 program_retries;
@@ -2928,8 +3530,8 @@ static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
DEBUGFUNC("e1000_retry_write_flash_byte_ich8lan");
ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
- if (ret_val == E1000_SUCCESS)
- goto out;
+ if (!ret_val)
+ return ret_val;
for (program_retries = 0; program_retries < 100; program_retries++) {
DEBUGOUT2("Retrying Byte %2.2X at offset %u\n", byte, offset);
@@ -2938,13 +3540,10 @@ static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
if (ret_val == E1000_SUCCESS)
break;
}
- if (program_retries == 100) {
- ret_val = -E1000_ERR_NVM;
- goto out;
- }
+ if (program_retries == 100)
+ return -E1000_ERR_NVM;
-out:
- return ret_val;
+ return E1000_SUCCESS;
}
/**
@@ -2963,7 +3562,7 @@ static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
u32 flash_linear_addr;
/* bank size is in 16bit words - adjust to bytes */
u32 flash_bank_size = nvm->flash_bank_size * 2;
- s32 ret_val = E1000_SUCCESS;
+ s32 ret_val;
s32 count = 0;
s32 j, iteration, sector_size;
@@ -2971,8 +3570,7 @@ static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
- /*
- * Determine HW Sector size: Read BERASE bits of hw flash status
+ /* Determine HW Sector size: Read BERASE bits of hw flash status
* register
* 00: The Hw sector is 256 bytes, hence we need to erase 16
* consecutive sectors. The start index for the nth Hw sector
@@ -3003,8 +3601,7 @@ static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
iteration = 1;
break;
default:
- ret_val = -E1000_ERR_NVM;
- goto out;
+ return -E1000_ERR_NVM;
}
/* Start with the base address, then add the sector offset. */
@@ -3016,49 +3613,45 @@ static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
/* Steps */
ret_val = e1000_flash_cycle_init_ich8lan(hw);
if (ret_val)
- goto out;
+ return ret_val;
- /*
- * Write a value 11 (block Erase) in Flash
+ /* Write a value 11 (block Erase) in Flash
* Cycle field in hw flash control
*/
hsflctl.regval = E1000_READ_FLASH_REG16(hw,
- ICH_FLASH_HSFCTL);
+ ICH_FLASH_HSFCTL);
hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL,
- hsflctl.regval);
+ hsflctl.regval);
- /*
- * Write the last 24 bits of an index within the
+ /* Write the last 24 bits of an index within the
* block into Flash Linear address field in Flash
* Address.
*/
flash_linear_addr += (j * sector_size);
E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR,
- flash_linear_addr);
+ flash_linear_addr);
ret_val = e1000_flash_cycle_ich8lan(hw,
- ICH_FLASH_ERASE_COMMAND_TIMEOUT);
+ ICH_FLASH_ERASE_COMMAND_TIMEOUT);
if (ret_val == E1000_SUCCESS)
break;
- /*
- * Check if FCERR is set to 1. If 1,
+ /* Check if FCERR is set to 1. If 1,
* clear it and try the whole sequence
* a few more times else Done
*/
hsfsts.regval = E1000_READ_FLASH_REG16(hw,
ICH_FLASH_HSFSTS);
- if (hsfsts.hsf_status.flcerr == 1)
+ if (hsfsts.hsf_status.flcerr)
/* repeat for some time before giving up */
continue;
- else if (hsfsts.hsf_status.flcdone == 0)
- goto out;
+ else if (!hsfsts.hsf_status.flcdone)
+ return ret_val;
} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
}
-out:
- return ret_val;
+ return E1000_SUCCESS;
}
/**
@@ -3079,15 +3672,13 @@ static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
if (ret_val) {
DEBUGOUT("NVM Read Error\n");
- goto out;
+ return ret_val;
}
- if (*data == ID_LED_RESERVED_0000 ||
- *data == ID_LED_RESERVED_FFFF)
+ if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
*data = ID_LED_DEFAULT_ICH8LAN;
-out:
- return ret_val;
+ return E1000_SUCCESS;
}
/**
@@ -3116,7 +3707,7 @@ static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
/* Get default ID LED modes */
ret_val = hw->nvm.ops.valid_led_default(hw, &data);
if (ret_val)
- goto out;
+ return ret_val;
mac->ledctl_default = E1000_READ_REG(hw, E1000_LEDCTL);
mac->ledctl_mode1 = mac->ledctl_default;
@@ -3161,8 +3752,7 @@ static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
}
}
-out:
- return ret_val;
+ return E1000_SUCCESS;
}
/**
@@ -3181,8 +3771,7 @@ static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
ret_val = e1000_get_bus_info_pcie_generic(hw);
- /*
- * ICH devices are "PCI Express"-ish. They have
+ /* ICH devices are "PCI Express"-ish. They have
* a configuration space, but do not contain
* PCI Express Capability registers, so bus width
* must be hardcoded.
@@ -3203,14 +3792,13 @@ static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
{
struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
- u16 reg;
- u32 ctrl, icr, kab;
+ u16 kum_cfg;
+ u32 ctrl, reg;
s32 ret_val;
DEBUGFUNC("e1000_reset_hw_ich8lan");
- /*
- * Prevent the PCI-E bus from sticking if there is no TLP connection
+ /* Prevent the PCI-E bus from sticking if there is no TLP connection
* on the last TLP read/write transaction when MAC is reset.
*/
ret_val = e1000_disable_pcie_master_generic(hw);
@@ -3220,8 +3808,7 @@ static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
DEBUGOUT("Masking off all interrupts\n");
E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
- /*
- * Disable the Transmit and Receive units. Then delay to allow
+ /* Disable the Transmit and Receive units. Then delay to allow
* any pending transactions to complete before we hit the MAC
* with the global reset.
*/
@@ -3241,11 +3828,11 @@ static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
if (hw->mac.type == e1000_pchlan) {
/* Save the NVM K1 bit setting*/
- ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &reg);
+ ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
if (ret_val)
return ret_val;
- if (reg & E1000_NVM_K1_ENABLE)
+ if (kum_cfg & E1000_NVM_K1_ENABLE)
dev_spec->nvm_k1_enabled = TRUE;
else
dev_spec->nvm_k1_enabled = FALSE;
@@ -3254,15 +3841,13 @@ static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
ctrl = E1000_READ_REG(hw, E1000_CTRL);
if (!hw->phy.ops.check_reset_block(hw)) {
- /*
- * Full-chip reset requires MAC and PHY reset at the same
+ /* Full-chip reset requires MAC and PHY reset at the same
* time to make sure the interface between MAC and the
* external PHY is reset.
*/
ctrl |= E1000_CTRL_PHY_RST;
- /*
- * Gate automatic PHY configuration by hardware on
+ /* Gate automatic PHY configuration by hardware on
* non-managed 82579
*/
if ((hw->mac.type == e1000_pch2lan) &&
@@ -3272,23 +3857,31 @@ static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
ret_val = e1000_acquire_swflag_ich8lan(hw);
DEBUGOUT("Issuing a global reset to ich8lan\n");
E1000_WRITE_REG(hw, E1000_CTRL, (ctrl | E1000_CTRL_RST));
+ /* cannot issue a flush here because it hangs the hardware */
msec_delay(20);
+ /* Set Phy Config Counter to 50msec */
+ if (hw->mac.type == e1000_pch2lan) {
+ reg = E1000_READ_REG(hw, E1000_FEXTNVM3);
+ reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
+ reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
+ E1000_WRITE_REG(hw, E1000_FEXTNVM3, reg);
+ }
+
if (!ret_val)
- e1000_release_swflag_ich8lan(hw);
+ E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.swflag_mutex);
if (ctrl & E1000_CTRL_PHY_RST) {
ret_val = hw->phy.ops.get_cfg_done(hw);
if (ret_val)
- goto out;
+ return ret_val;
ret_val = e1000_post_phy_reset_ich8lan(hw);
if (ret_val)
- goto out;
+ return ret_val;
}
- /*
- * For PCH, this write will make sure that any noise
+ /* For PCH, this write will make sure that any noise
* will be detected as a CRC error and be dropped rather than show up
* as a bad packet to the DMA engine.
*/
@@ -3296,14 +3889,13 @@ static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
E1000_WRITE_REG(hw, E1000_CRC_OFFSET, 0x65656565);
E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
- icr = E1000_READ_REG(hw, E1000_ICR);
+ E1000_READ_REG(hw, E1000_ICR);
- kab = E1000_READ_REG(hw, E1000_KABGTXD);
- kab |= E1000_KABGTXD_BGSQLBIAS;
- E1000_WRITE_REG(hw, E1000_KABGTXD, kab);
+ reg = E1000_READ_REG(hw, E1000_KABGTXD);
+ reg |= E1000_KABGTXD_BGSQLBIAS;
+ E1000_WRITE_REG(hw, E1000_KABGTXD, reg);
-out:
- return ret_val;
+ return E1000_SUCCESS;
}
/**
@@ -3331,9 +3923,9 @@ static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
/* Initialize identification LED */
ret_val = mac->ops.id_led_init(hw);
+ /* An error is not fatal and we should not stop init due to this */
if (ret_val)
DEBUGOUT("Error initializing identification LED\n");
- /* This is not fatal and we should not stop init due to this */
/* Setup the receive address. */
e1000_init_rx_addrs_generic(hw, mac->rar_entry_count);
@@ -3343,13 +3935,14 @@ static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
for (i = 0; i < mac->mta_reg_count; i++)
E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
- /*
- * The 82578 Rx buffer will stall if wakeup is enabled in host and
- * the ME. Reading the BM_WUC register will clear the host wakeup bit.
+ /* The 82578 Rx buffer will stall if wakeup is enabled in host and
+ * the ME. Disable wakeup by clearing the host wakeup bit.
* Reset the phy after disabling host wakeup to reset the Rx buffer.
*/
if (hw->phy.type == e1000_phy_82578) {
- hw->phy.ops.read_reg(hw, BM_WUC, &i);
+ hw->phy.ops.read_reg(hw, BM_PORT_GEN_CFG, &i);
+ i &= ~BM_WUC_HOST_WU_BIT;
+ hw->phy.ops.write_reg(hw, BM_PORT_GEN_CFG, i);
ret_val = e1000_phy_hw_reset_ich8lan(hw);
if (ret_val)
return ret_val;
@@ -3363,17 +3956,16 @@ static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
E1000_TXDCTL_FULL_TX_DESC_WB;
txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
- E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
+ E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
E1000_WRITE_REG(hw, E1000_TXDCTL(0), txdctl);
txdctl = E1000_READ_REG(hw, E1000_TXDCTL(1));
txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
E1000_TXDCTL_FULL_TX_DESC_WB;
txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
- E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
+ E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
E1000_WRITE_REG(hw, E1000_TXDCTL(1), txdctl);
- /*
- * ICH8 has opposite polarity of no_snoop bits.
+ /* ICH8 has opposite polarity of no_snoop bits.
* By default, we should use snoop behavior.
*/
if (mac->type == e1000_ich8lan)
@@ -3386,8 +3978,7 @@ static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
- /*
- * Clear all of the statistics registers (clear on read). It is
+ /* Clear all of the statistics registers (clear on read). It is
* important that we do this after we have tried to establish link
* because the symbol error count will increment wildly if there
* is no link.
@@ -3396,6 +3987,7 @@ static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
return ret_val;
}
+
/**
* e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
* @hw: pointer to the HW structure
@@ -3450,14 +4042,29 @@ static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
E1000_WRITE_REG(hw, E1000_STATUS, reg);
}
- /*
- * work-around descriptor data corruption issue during nfs v2 udp
+ /* work-around descriptor data corruption issue during nfs v2 udp
* traffic, just disable the nfs filtering capability
*/
reg = E1000_READ_REG(hw, E1000_RFCTL);
reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
+ /* Disable IPv6 extension header parsing because some malformed
+ * IPv6 headers can hang the Rx.
+ */
+ if (hw->mac.type == e1000_ich8lan)
+ reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
E1000_WRITE_REG(hw, E1000_RFCTL, reg);
+ /* Enable ECC on Lynxpoint */
+ if (hw->mac.type == e1000_pch_lpt) {
+ reg = E1000_READ_REG(hw, E1000_PBECCSTS);
+ reg |= E1000_PBECCSTS_ECC_ENABLE;
+ E1000_WRITE_REG(hw, E1000_PBECCSTS, reg);
+
+ reg = E1000_READ_REG(hw, E1000_CTRL);
+ reg |= E1000_CTRL_MEHE;
+ E1000_WRITE_REG(hw, E1000_CTRL, reg);
+ }
+
return;
}
@@ -3473,23 +4080,21 @@ static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
**/
static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
{
- s32 ret_val = E1000_SUCCESS;
+ s32 ret_val;
DEBUGFUNC("e1000_setup_link_ich8lan");
if (hw->phy.ops.check_reset_block(hw))
- goto out;
+ return E1000_SUCCESS;
- /*
- * ICH parts do not have a word in the NVM to determine
+ /* ICH parts do not have a word in the NVM to determine
* the default flow control setting, so we explicitly
* set it to full.
*/
if (hw->fc.requested_mode == e1000_fc_default)
hw->fc.requested_mode = e1000_fc_full;
- /*
- * Save off the requested flow control mode for use later. Depending
+ /* Save off the requested flow control mode for use later. Depending
* on the link partner's capabilities, we may or may not use this mode.
*/
hw->fc.current_mode = hw->fc.requested_mode;
@@ -3500,25 +4105,23 @@ static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
/* Continue to configure the copper link. */
ret_val = hw->mac.ops.setup_physical_interface(hw);
if (ret_val)
- goto out;
+ return ret_val;
E1000_WRITE_REG(hw, E1000_FCTTV, hw->fc.pause_time);
if ((hw->phy.type == e1000_phy_82578) ||
(hw->phy.type == e1000_phy_82579) ||
+ (hw->phy.type == e1000_phy_i217) ||
(hw->phy.type == e1000_phy_82577)) {
E1000_WRITE_REG(hw, E1000_FCRTV_PCH, hw->fc.refresh_time);
ret_val = hw->phy.ops.write_reg(hw,
- PHY_REG(BM_PORT_CTRL_PAGE, 27),
- hw->fc.pause_time);
+ PHY_REG(BM_PORT_CTRL_PAGE, 27),
+ hw->fc.pause_time);
if (ret_val)
- goto out;
+ return ret_val;
}
- ret_val = e1000_set_fc_watermarks_generic(hw);
-
-out:
- return ret_val;
+ return e1000_set_fc_watermarks_generic(hw);
}
/**
@@ -3542,50 +4145,49 @@ static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
- /*
- * Set the mac to wait the maximum time between each iteration
+ /* Set the mac to wait the maximum time between each iteration
* and increase the max iterations when polling the phy;
* this fixes erroneous timeouts at 10Mbps.
*/
ret_val = e1000_write_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_TIMEOUTS,
- 0xFFFF);
+ 0xFFFF);
if (ret_val)
- goto out;
+ return ret_val;
ret_val = e1000_read_kmrn_reg_generic(hw,
- E1000_KMRNCTRLSTA_INBAND_PARAM,
- &reg_data);
+ E1000_KMRNCTRLSTA_INBAND_PARAM,
+ &reg_data);
if (ret_val)
- goto out;
+ return ret_val;
reg_data |= 0x3F;
ret_val = e1000_write_kmrn_reg_generic(hw,
- E1000_KMRNCTRLSTA_INBAND_PARAM,
- reg_data);
+ E1000_KMRNCTRLSTA_INBAND_PARAM,
+ reg_data);
if (ret_val)
- goto out;
+ return ret_val;
switch (hw->phy.type) {
case e1000_phy_igp_3:
ret_val = e1000_copper_link_setup_igp(hw);
if (ret_val)
- goto out;
+ return ret_val;
break;
case e1000_phy_bm:
case e1000_phy_82578:
ret_val = e1000_copper_link_setup_m88(hw);
if (ret_val)
- goto out;
+ return ret_val;
break;
case e1000_phy_82577:
case e1000_phy_82579:
ret_val = e1000_copper_link_setup_82577(hw);
if (ret_val)
- goto out;
+ return ret_val;
break;
case e1000_phy_ife:
ret_val = hw->phy.ops.read_reg(hw, IFE_PHY_MDIX_CONTROL,
- &reg_data);
+ &reg_data);
if (ret_val)
- goto out;
+ return ret_val;
reg_data &= ~IFE_PMC_AUTO_MDIX;
@@ -3602,17 +4204,42 @@ static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
break;
}
ret_val = hw->phy.ops.write_reg(hw, IFE_PHY_MDIX_CONTROL,
- reg_data);
+ reg_data);
if (ret_val)
- goto out;
+ return ret_val;
break;
default:
break;
}
- ret_val = e1000_setup_copper_link_generic(hw);
-out:
- return ret_val;
+ return e1000_setup_copper_link_generic(hw);
+}
+
+/**
+ * e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
+ * @hw: pointer to the HW structure
+ *
+ * Calls the PHY specific link setup function and then calls the
+ * generic setup_copper_link to finish configuring the link for
+ * Lynxpoint PCH devices
+ **/
+static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
+{
+ u32 ctrl;
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_setup_copper_link_pch_lpt");
+
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+ ctrl |= E1000_CTRL_SLU;
+ ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+ ret_val = e1000_copper_link_setup_82577(hw);
+ if (ret_val)
+ return ret_val;
+
+ return e1000_setup_copper_link_generic(hw);
}
/**
@@ -3626,7 +4253,7 @@ out:
* gigabit speeds.
**/
static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
- u16 *duplex)
+ u16 *duplex)
{
s32 ret_val;
@@ -3634,7 +4261,7 @@ static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
ret_val = e1000_get_speed_and_duplex_copper_generic(hw, speed, duplex);
if (ret_val)
- goto out;
+ return ret_val;
if ((hw->mac.type == e1000_ich8lan) &&
(hw->phy.type == e1000_phy_igp_3) &&
@@ -3642,7 +4269,6 @@ static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
}
-out:
return ret_val;
}
@@ -3665,41 +4291,36 @@ static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
{
struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
u32 phy_ctrl;
- s32 ret_val = E1000_SUCCESS;
+ s32 ret_val;
u16 i, data;
bool link;
DEBUGFUNC("e1000_kmrn_lock_loss_workaround_ich8lan");
- if (!(dev_spec->kmrn_lock_loss_workaround_enabled))
- goto out;
+ if (!dev_spec->kmrn_lock_loss_workaround_enabled)
+ return E1000_SUCCESS;
- /*
- * Make sure link is up before proceeding. If not just return.
+ /* Make sure link is up before proceeding. If not just return.
* Attempting this while link is negotiating fouled up link
* stability
*/
ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
- if (!link) {
- ret_val = E1000_SUCCESS;
- goto out;
- }
+ if (!link)
+ return E1000_SUCCESS;
for (i = 0; i < 10; i++) {
/* read once to clear */
ret_val = hw->phy.ops.read_reg(hw, IGP3_KMRN_DIAG, &data);
if (ret_val)
- goto out;
+ return ret_val;
/* and again to get new status */
ret_val = hw->phy.ops.read_reg(hw, IGP3_KMRN_DIAG, &data);
if (ret_val)
- goto out;
+ return ret_val;
/* check for PCS lock */
- if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS)) {
- ret_val = E1000_SUCCESS;
- goto out;
- }
+ if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
+ return E1000_SUCCESS;
/* Issue PHY reset */
hw->phy.ops.reset(hw);
@@ -3708,20 +4329,16 @@ static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
/* Disable GigE link negotiation */
phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
- E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
+ E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
- /*
- * Call gig speed drop workaround on Gig disable before accessing
+ /* Call gig speed drop workaround on Gig disable before accessing
* any PHY registers
*/
e1000_gig_downshift_workaround_ich8lan(hw);
/* unable to acquire PCS lock */
- ret_val = -E1000_ERR_PHY;
-
-out:
- return ret_val;
+ return -E1000_ERR_PHY;
}
/**
@@ -3733,7 +4350,7 @@ out:
* /disabled - FALSE).
**/
void e1000_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
- bool state)
+ bool state)
{
struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
@@ -3768,18 +4385,17 @@ void e1000_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
DEBUGFUNC("e1000_igp3_phy_powerdown_workaround_ich8lan");
if (hw->phy.type != e1000_phy_igp_3)
- goto out;
+ return;
/* Try the workaround twice (if needed) */
do {
/* Disable link */
reg = E1000_READ_REG(hw, E1000_PHY_CTRL);
reg |= (E1000_PHY_CTRL_GBE_DISABLE |
- E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
+ E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
E1000_WRITE_REG(hw, E1000_PHY_CTRL, reg);
- /*
- * Call gig speed drop workaround on Gig disable before
+ /* Call gig speed drop workaround on Gig disable before
* accessing any PHY registers
*/
if (hw->mac.type == e1000_ich8lan)
@@ -3789,7 +4405,7 @@ void e1000_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
hw->phy.ops.read_reg(hw, IGP3_VR_CTRL, &data);
data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
hw->phy.ops.write_reg(hw, IGP3_VR_CTRL,
- data | IGP3_VR_CTRL_MODE_SHUTDOWN);
+ data | IGP3_VR_CTRL_MODE_SHUTDOWN);
/* Read it back and test */
hw->phy.ops.read_reg(hw, IGP3_VR_CTRL, &data);
@@ -3802,9 +4418,6 @@ void e1000_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
E1000_WRITE_REG(hw, E1000_CTRL, reg | E1000_CTRL_PHY_RST);
retry++;
} while (retry);
-
-out:
- return;
}
/**
@@ -3815,61 +4428,148 @@ out:
* LPLU, Gig disable, MDIC PHY reset):
* 1) Set Kumeran Near-end loopback
* 2) Clear Kumeran Near-end loopback
- * Should only be called for ICH8[m] devices with IGP_3 Phy.
+ * Should only be called for ICH8[m] devices with any 1G Phy.
**/
void e1000_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
{
- s32 ret_val = E1000_SUCCESS;
+ s32 ret_val;
u16 reg_data;
DEBUGFUNC("e1000_gig_downshift_workaround_ich8lan");
if ((hw->mac.type != e1000_ich8lan) ||
- (hw->phy.type != e1000_phy_igp_3))
- goto out;
+ (hw->phy.type == e1000_phy_ife))
+ return;
ret_val = e1000_read_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
- &reg_data);
+ &reg_data);
if (ret_val)
- goto out;
+ return;
reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
ret_val = e1000_write_kmrn_reg_generic(hw,
- E1000_KMRNCTRLSTA_DIAG_OFFSET,
- reg_data);
+ E1000_KMRNCTRLSTA_DIAG_OFFSET,
+ reg_data);
if (ret_val)
- goto out;
+ return;
reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
- ret_val = e1000_write_kmrn_reg_generic(hw,
- E1000_KMRNCTRLSTA_DIAG_OFFSET,
- reg_data);
-out:
- return;
+ e1000_write_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
+ reg_data);
}
/**
- * e1000_disable_gig_wol_ich8lan - disable gig during WoL
+ * e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
* @hw: pointer to the HW structure
*
* During S0 to Sx transition, it is possible the link remains at gig
* instead of negotiating to a lower speed. Before going to Sx, set
- * 'LPLU Enabled' and 'Gig Disable' to force link speed negotiation
- * to a lower speed.
- *
- * Should only be called for applicable parts.
+ * 'Gig Disable' to force link speed negotiation to a lower speed based on
+ * the LPLU setting in the NVM or custom setting. For PCH and newer parts,
+ * the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
+ * needs to be written.
+ * Parts that support (and are linked to a partner which support) EEE in
+ * 100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
+ * than 10Mbps w/o EEE.
**/
-void e1000_disable_gig_wol_ich8lan(struct e1000_hw *hw)
+void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
{
+ struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
u32 phy_ctrl;
s32 ret_val;
- DEBUGFUNC("e1000_disable_gig_wol_ich8lan");
+ DEBUGFUNC("e1000_suspend_workarounds_ich8lan");
phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
- phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU | E1000_PHY_CTRL_GBE_DISABLE;
+ phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
+
+ if (hw->phy.type == e1000_phy_i217) {
+ u16 phy_reg, device_id = hw->device_id;
+
+ if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
+ (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V)) {
+ u32 fextnvm6 = E1000_READ_REG(hw, E1000_FEXTNVM6);
+
+ E1000_WRITE_REG(hw, E1000_FEXTNVM6,
+ fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
+ }
+
+ ret_val = hw->phy.ops.acquire(hw);
+ if (ret_val)
+ goto out;
+
+ if (!dev_spec->eee_disable) {
+ u16 eee_advert;
+
+ ret_val =
+ e1000_read_emi_reg_locked(hw,
+ I217_EEE_ADVERTISEMENT,
+ &eee_advert);
+ if (ret_val)
+ goto release;
+
+ /* Disable LPLU if both link partners support 100BaseT
+ * EEE and 100Full is advertised on both ends of the
+ * link.
+ */
+ if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
+ (dev_spec->eee_lp_ability &
+ I82579_EEE_100_SUPPORTED) &&
+ (hw->phy.autoneg_advertised & ADVERTISE_100_FULL))
+ phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
+ E1000_PHY_CTRL_NOND0A_LPLU);
+ }
+
+ /* For i217 Intel Rapid Start Technology support,
+ * when the system is going into Sx and no manageability engine
+ * is present, the driver must configure proxy to reset only on
+ * power good. LPI (Low Power Idle) state must also reset only
+ * on power good, as well as the MTA (Multicast table array).
+ * The SMBus release must also be disabled on LCD reset.
+ */
+ if (!(E1000_READ_REG(hw, E1000_FWSM) &
+ E1000_ICH_FWSM_FW_VALID)) {
+ /* Enable proxy to reset only on power good. */
+ hw->phy.ops.read_reg_locked(hw, I217_PROXY_CTRL,
+ &phy_reg);
+ phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
+ hw->phy.ops.write_reg_locked(hw, I217_PROXY_CTRL,
+ phy_reg);
+
+ /* Set bit enable LPI (EEE) to reset only on
+ * power good.
+ */
+ hw->phy.ops.read_reg_locked(hw, I217_SxCTRL, &phy_reg);
+ phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
+ hw->phy.ops.write_reg_locked(hw, I217_SxCTRL, phy_reg);
+
+ /* Disable the SMB release on LCD reset. */
+ hw->phy.ops.read_reg_locked(hw, I217_MEMPWR, &phy_reg);
+ phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
+ hw->phy.ops.write_reg_locked(hw, I217_MEMPWR, phy_reg);
+ }
+
+ /* Enable MTA to reset for Intel Rapid Start Technology
+ * Support
+ */
+ hw->phy.ops.read_reg_locked(hw, I217_CGFREG, &phy_reg);
+ phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
+ hw->phy.ops.write_reg_locked(hw, I217_CGFREG, phy_reg);
+
+release:
+ hw->phy.ops.release(hw);
+ }
+out:
E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
+ if (hw->mac.type == e1000_ich8lan)
+ e1000_gig_downshift_workaround_ich8lan(hw);
+
if (hw->mac.type >= e1000_pchlan) {
e1000_oem_bits_config_ich8lan(hw, FALSE);
+
+ /* Reset PHY to activate OEM bits on 82577/8 */
+ if (hw->mac.type == e1000_pchlan)
+ e1000_phy_hw_reset_generic(hw);
+
ret_val = hw->phy.ops.acquire(hw);
if (ret_val)
return;
@@ -3881,6 +4581,74 @@ void e1000_disable_gig_wol_ich8lan(struct e1000_hw *hw)
}
/**
+ * e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
+ * @hw: pointer to the HW structure
+ *
+ * During Sx to S0 transitions on non-managed devices or managed devices
+ * on which PHY resets are not blocked, if the PHY registers cannot be
+ * accessed properly by the s/w toggle the LANPHYPC value to power cycle
+ * the PHY.
+ * On i217, setup Intel Rapid Start Technology.
+ **/
+void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
+{
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_resume_workarounds_pchlan");
+
+ if (hw->mac.type < e1000_pch2lan)
+ return;
+
+ ret_val = e1000_init_phy_workarounds_pchlan(hw);
+ if (ret_val) {
+ DEBUGOUT1("Failed to init PHY flow ret_val=%d\n", ret_val);
+ return;
+ }
+
+ /* For i217 Intel Rapid Start Technology support when the system
+ * is transitioning from Sx and no manageability engine is present
+ * configure SMBus to restore on reset, disable proxy, and enable
+ * the reset on MTA (Multicast table array).
+ */
+ if (hw->phy.type == e1000_phy_i217) {
+ u16 phy_reg;
+
+ ret_val = hw->phy.ops.acquire(hw);
+ if (ret_val) {
+ DEBUGOUT("Failed to setup iRST\n");
+ return;
+ }
+
+ if (!(E1000_READ_REG(hw, E1000_FWSM) &
+ E1000_ICH_FWSM_FW_VALID)) {
+ /* Restore clear on SMB if no manageability engine
+ * is present
+ */
+ ret_val = hw->phy.ops.read_reg_locked(hw, I217_MEMPWR,
+ &phy_reg);
+ if (ret_val)
+ goto release;
+ phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
+ hw->phy.ops.write_reg_locked(hw, I217_MEMPWR, phy_reg);
+
+ /* Disable Proxy */
+ hw->phy.ops.write_reg_locked(hw, I217_PROXY_CTRL, 0);
+ }
+ /* Enable reset on MTA */
+ ret_val = hw->phy.ops.read_reg_locked(hw, I217_CGFREG,
+ &phy_reg);
+ if (ret_val)
+ goto release;
+ phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
+ hw->phy.ops.write_reg_locked(hw, I217_CGFREG, phy_reg);
+release:
+ if (ret_val)
+ DEBUGOUT1("Error %d in resume workarounds\n", ret_val);
+ hw->phy.ops.release(hw);
+ }
+}
+
+/**
* e1000_cleanup_led_ich8lan - Restore the default LED operation
* @hw: pointer to the HW structure
*
@@ -3892,7 +4660,7 @@ static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
if (hw->phy.type == e1000_phy_ife)
return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
- 0);
+ 0);
E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_default);
return E1000_SUCCESS;
@@ -3910,7 +4678,7 @@ static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
if (hw->phy.type == e1000_phy_ife)
return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
- (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
+ (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode2);
return E1000_SUCCESS;
@@ -3928,7 +4696,7 @@ static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
if (hw->phy.type == e1000_phy_ife)
return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
- (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
+ (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1);
return E1000_SUCCESS;
@@ -3945,7 +4713,7 @@ static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
DEBUGFUNC("e1000_setup_led_pchlan");
return hw->phy.ops.write_reg(hw, HV_LED_CONFIG,
- (u16)hw->mac.ledctl_mode1);
+ (u16)hw->mac.ledctl_mode1);
}
/**
@@ -3959,7 +4727,7 @@ static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
DEBUGFUNC("e1000_cleanup_led_pchlan");
return hw->phy.ops.write_reg(hw, HV_LED_CONFIG,
- (u16)hw->mac.ledctl_default);
+ (u16)hw->mac.ledctl_default);
}
/**
@@ -3975,8 +4743,7 @@ static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
DEBUGFUNC("e1000_led_on_pchlan");
- /*
- * If no link, then turn LED on by setting the invert bit
+ /* If no link, then turn LED on by setting the invert bit
* for each LED that's mode is "link_up" in ledctl_mode2.
*/
if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
@@ -4008,8 +4775,7 @@ static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
DEBUGFUNC("e1000_led_off_pchlan");
- /*
- * If no link, then turn LED off by clearing the invert bit
+ /* If no link, then turn LED off by clearing the invert bit
* for each LED that's mode is "link_up" in ledctl_mode1.
*/
if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
@@ -4056,8 +4822,7 @@ static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
} else {
ret_val = e1000_get_auto_rd_done_generic(hw);
if (ret_val) {
- /*
- * When auto config read does not complete, do not
+ /* When auto config read does not complete, do not
* return with an error. This can happen in situations
* where there is no eeprom and prevents getting link.
*/
@@ -4075,7 +4840,7 @@ static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
/* If EEPROM is not marked present, init the IGP 3 PHY manually */
if (hw->mac.type <= e1000_ich9lan) {
- if (((E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES) == 0) &&
+ if (!(E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES) &&
(hw->phy.type == e1000_phy_igp_3)) {
e1000_phy_init_script_igp3(hw);
}
@@ -4117,6 +4882,7 @@ static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
{
u16 phy_data;
+ s32 ret_val;
DEBUGFUNC("e1000_clear_hw_cntrs_ich8lan");
@@ -4139,21 +4905,31 @@ static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
/* Clear PHY statistics registers */
if ((hw->phy.type == e1000_phy_82578) ||
(hw->phy.type == e1000_phy_82579) ||
+ (hw->phy.type == e1000_phy_i217) ||
(hw->phy.type == e1000_phy_82577)) {
- hw->phy.ops.read_reg(hw, HV_SCC_UPPER, &phy_data);
- hw->phy.ops.read_reg(hw, HV_SCC_LOWER, &phy_data);
- hw->phy.ops.read_reg(hw, HV_ECOL_UPPER, &phy_data);
- hw->phy.ops.read_reg(hw, HV_ECOL_LOWER, &phy_data);
- hw->phy.ops.read_reg(hw, HV_MCC_UPPER, &phy_data);
- hw->phy.ops.read_reg(hw, HV_MCC_LOWER, &phy_data);
- hw->phy.ops.read_reg(hw, HV_LATECOL_UPPER, &phy_data);
- hw->phy.ops.read_reg(hw, HV_LATECOL_LOWER, &phy_data);
- hw->phy.ops.read_reg(hw, HV_COLC_UPPER, &phy_data);
- hw->phy.ops.read_reg(hw, HV_COLC_LOWER, &phy_data);
- hw->phy.ops.read_reg(hw, HV_DC_UPPER, &phy_data);
- hw->phy.ops.read_reg(hw, HV_DC_LOWER, &phy_data);
- hw->phy.ops.read_reg(hw, HV_TNCRS_UPPER, &phy_data);
- hw->phy.ops.read_reg(hw, HV_TNCRS_LOWER, &phy_data);
+ ret_val = hw->phy.ops.acquire(hw);
+ if (ret_val)
+ return;
+ ret_val = hw->phy.ops.set_page(hw,
+ HV_STATS_PAGE << IGP_PAGE_SHIFT);
+ if (ret_val)
+ goto release;
+ hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
+ hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
+ hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
+ hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
+ hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
+ hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
+ hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
+ hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
+ hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
+ hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
+ hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
+ hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
+ hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
+ hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
+release:
+ hw->phy.ops.release(hw);
}
}
diff --git a/freebsd/sys/dev/e1000/e1000_ich8lan.h b/freebsd/sys/dev/e1000/e1000_ich8lan.h
index 2935af56..bf928981 100644
--- a/freebsd/sys/dev/e1000/e1000_ich8lan.h
+++ b/freebsd/sys/dev/e1000/e1000_ich8lan.h
@@ -1,6 +1,6 @@
/******************************************************************************
- Copyright (c) 2001-2010, Intel Corporation
+ Copyright (c) 2001-2013, Intel Corporation
All rights reserved.
Redistribution and use in source and binary forms, with or without
@@ -35,212 +35,243 @@
#ifndef _E1000_ICH8LAN_H_
#define _E1000_ICH8LAN_H_
-#define ICH_FLASH_GFPREG 0x0000
-#define ICH_FLASH_HSFSTS 0x0004
-#define ICH_FLASH_HSFCTL 0x0006
-#define ICH_FLASH_FADDR 0x0008
-#define ICH_FLASH_FDATA0 0x0010
+#define ICH_FLASH_GFPREG 0x0000
+#define ICH_FLASH_HSFSTS 0x0004
+#define ICH_FLASH_HSFCTL 0x0006
+#define ICH_FLASH_FADDR 0x0008
+#define ICH_FLASH_FDATA0 0x0010
/* Requires up to 10 seconds when MNG might be accessing part. */
-#define ICH_FLASH_READ_COMMAND_TIMEOUT 10000000
-#define ICH_FLASH_WRITE_COMMAND_TIMEOUT 10000000
-#define ICH_FLASH_ERASE_COMMAND_TIMEOUT 10000000
-#define ICH_FLASH_LINEAR_ADDR_MASK 0x00FFFFFF
-#define ICH_FLASH_CYCLE_REPEAT_COUNT 10
+#define ICH_FLASH_READ_COMMAND_TIMEOUT 10000000
+#define ICH_FLASH_WRITE_COMMAND_TIMEOUT 10000000
+#define ICH_FLASH_ERASE_COMMAND_TIMEOUT 10000000
+#define ICH_FLASH_LINEAR_ADDR_MASK 0x00FFFFFF
+#define ICH_FLASH_CYCLE_REPEAT_COUNT 10
-#define ICH_CYCLE_READ 0
-#define ICH_CYCLE_WRITE 2
-#define ICH_CYCLE_ERASE 3
+#define ICH_CYCLE_READ 0
+#define ICH_CYCLE_WRITE 2
+#define ICH_CYCLE_ERASE 3
-#define FLASH_GFPREG_BASE_MASK 0x1FFF
-#define FLASH_SECTOR_ADDR_SHIFT 12
+#define FLASH_GFPREG_BASE_MASK 0x1FFF
+#define FLASH_SECTOR_ADDR_SHIFT 12
-#define ICH_FLASH_SEG_SIZE_256 256
-#define ICH_FLASH_SEG_SIZE_4K 4096
-#define ICH_FLASH_SEG_SIZE_8K 8192
-#define ICH_FLASH_SEG_SIZE_64K 65536
-#define ICH_FLASH_SECTOR_SIZE 4096
+#define ICH_FLASH_SEG_SIZE_256 256
+#define ICH_FLASH_SEG_SIZE_4K 4096
+#define ICH_FLASH_SEG_SIZE_8K 8192
+#define ICH_FLASH_SEG_SIZE_64K 65536
-#define ICH_FLASH_REG_MAPSIZE 0x00A0
-
-#define E1000_ICH_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI Reset */
-#define E1000_ICH_FWSM_DISSW 0x10000000 /* FW Disables SW Writes */
+#define E1000_ICH_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI Reset */
/* FW established a valid mode */
-#define E1000_ICH_FWSM_FW_VALID 0x00008000
+#define E1000_ICH_FWSM_FW_VALID 0x00008000
+#define E1000_ICH_FWSM_PCIM2PCI 0x01000000 /* ME PCIm-to-PCI active */
+#define E1000_ICH_FWSM_PCIM2PCI_COUNT 2000
-#define E1000_ICH_MNG_IAMT_MODE 0x2
+#define E1000_ICH_MNG_IAMT_MODE 0x2
-#define E1000_FWSM_PROXY_MODE 0x00000008 /* FW is in proxy mode */
+#define E1000_FWSM_WLOCK_MAC_MASK 0x0380
+#define E1000_FWSM_WLOCK_MAC_SHIFT 7
/* Shared Receive Address Registers */
-#define E1000_SHRAL(_i) (0x05438 + ((_i) * 8))
-#define E1000_SHRAH(_i) (0x0543C + ((_i) * 8))
-#define E1000_SHRAH_AV 0x80000000 /* Addr Valid bit */
-#define E1000_SHRAH_MAV 0x40000000 /* Multicast Addr Valid bit */
-
-#define E1000_H2ME 0x05B50 /* Host to ME */
-#define E1000_H2ME_LSECREQ 0x00000001 /* Linksec Request */
-#define E1000_H2ME_LSECA 0x00000002 /* Linksec Active */
-#define E1000_H2ME_LSECSF 0x00000004 /* Linksec Failed */
-#define E1000_H2ME_LSECD 0x00000008 /* Linksec Disabled */
-#define E1000_H2ME_SLCAPD 0x00000010 /* Start LCAPD */
-#define E1000_H2ME_IPV4_ARP_EN 0x00000020 /* Arp Offload enable bit */
-#define E1000_H2ME_IPV6_NS_EN 0x00000040 /* NS Offload enable bit */
-
-#define ID_LED_DEFAULT_ICH8LAN ((ID_LED_DEF1_DEF2 << 12) | \
- (ID_LED_OFF1_OFF2 << 8) | \
- (ID_LED_OFF1_ON2 << 4) | \
- (ID_LED_DEF1_DEF2))
-
-#define E1000_ICH_NVM_SIG_WORD 0x13
-#define E1000_ICH_NVM_SIG_MASK 0xC000
-#define E1000_ICH_NVM_VALID_SIG_MASK 0xC0
-#define E1000_ICH_NVM_SIG_VALUE 0x80
-
-#define E1000_ICH8_LAN_INIT_TIMEOUT 1500
-
-#define E1000_FEXTNVM_SW_CONFIG 1
-#define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M */
-
-#define E1000_FEXTNVM4_BEACON_DURATION_MASK 0x7
-#define E1000_FEXTNVM4_BEACON_DURATION_8USEC 0x7
-#define E1000_FEXTNVM4_BEACON_DURATION_16USEC 0x3
-
-#define PCIE_ICH8_SNOOP_ALL PCIE_NO_SNOOP_ALL
-
-#define E1000_ICH_RAR_ENTRIES 7
-#define E1000_PCH2_RAR_ENTRIES 5 /* RAR[0], SHRA[0-3] */
-
-#define PHY_PAGE_SHIFT 5
-#define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
- ((reg) & MAX_PHY_REG_ADDRESS))
-#define IGP3_KMRN_DIAG PHY_REG(770, 19) /* KMRN Diagnostic */
-#define IGP3_VR_CTRL PHY_REG(776, 18) /* Voltage Regulator Control */
-#define IGP3_CAPABILITY PHY_REG(776, 19) /* Capability */
-#define IGP3_PM_CTRL PHY_REG(769, 20) /* Power Management Control */
-
-#define IGP3_KMRN_DIAG_PCS_LOCK_LOSS 0x0002
-#define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
-#define IGP3_VR_CTRL_MODE_SHUTDOWN 0x0200
-#define IGP3_PM_CTRL_FORCE_PWR_DOWN 0x0020
+#define E1000_SHRAL_PCH_LPT(_i) (0x05408 + ((_i) * 8))
+#define E1000_SHRAH_PCH_LPT(_i) (0x0540C + ((_i) * 8))
+
+#define ID_LED_DEFAULT_ICH8LAN ((ID_LED_DEF1_DEF2 << 12) | \
+ (ID_LED_OFF1_OFF2 << 8) | \
+ (ID_LED_OFF1_ON2 << 4) | \
+ (ID_LED_DEF1_DEF2))
+
+#define E1000_ICH_NVM_SIG_WORD 0x13
+#define E1000_ICH_NVM_SIG_MASK 0xC000
+#define E1000_ICH_NVM_VALID_SIG_MASK 0xC0
+#define E1000_ICH_NVM_SIG_VALUE 0x80
+
+#define E1000_ICH8_LAN_INIT_TIMEOUT 1500
+
+#define E1000_FEXTNVM_SW_CONFIG 1
+#define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M */
+
+#define E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK 0x0C000000
+#define E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC 0x08000000
+
+#define E1000_FEXTNVM4_BEACON_DURATION_MASK 0x7
+#define E1000_FEXTNVM4_BEACON_DURATION_8USEC 0x7
+#define E1000_FEXTNVM4_BEACON_DURATION_16USEC 0x3
+
+#define E1000_FEXTNVM6_REQ_PLL_CLK 0x00000100
+
+#define PCIE_ICH8_SNOOP_ALL PCIE_NO_SNOOP_ALL
+
+#define E1000_ICH_RAR_ENTRIES 7
+#define E1000_PCH2_RAR_ENTRIES 5 /* RAR[0], SHRA[0-3] */
+#define E1000_PCH_LPT_RAR_ENTRIES 12 /* RAR[0], SHRA[0-10] */
+
+#define PHY_PAGE_SHIFT 5
+#define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
+ ((reg) & MAX_PHY_REG_ADDRESS))
+#define IGP3_KMRN_DIAG PHY_REG(770, 19) /* KMRN Diagnostic */
+#define IGP3_VR_CTRL PHY_REG(776, 18) /* Voltage Regulator Control */
+
+#define IGP3_KMRN_DIAG_PCS_LOCK_LOSS 0x0002
+#define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
+#define IGP3_VR_CTRL_MODE_SHUTDOWN 0x0200
/* PHY Wakeup Registers and defines */
-#define BM_RCTL PHY_REG(BM_WUC_PAGE, 0)
-#define BM_WUC PHY_REG(BM_WUC_PAGE, 1)
-#define BM_WUFC PHY_REG(BM_WUC_PAGE, 2)
-#define BM_WUS PHY_REG(BM_WUC_PAGE, 3)
-#define BM_RAR_L(_i) (BM_PHY_REG(BM_WUC_PAGE, 16 + ((_i) << 2)))
-#define BM_RAR_M(_i) (BM_PHY_REG(BM_WUC_PAGE, 17 + ((_i) << 2)))
-#define BM_RAR_H(_i) (BM_PHY_REG(BM_WUC_PAGE, 18 + ((_i) << 2)))
-#define BM_RAR_CTRL(_i) (BM_PHY_REG(BM_WUC_PAGE, 19 + ((_i) << 2)))
-#define BM_MTA(_i) (BM_PHY_REG(BM_WUC_PAGE, 128 + ((_i) << 1)))
-#define BM_IPAV (BM_PHY_REG(BM_WUC_PAGE, 64))
-#define BM_IP4AT_L(_i) (BM_PHY_REG(BM_WUC_PAGE, 82 + ((_i) * 2)))
-#define BM_IP4AT_H(_i) (BM_PHY_REG(BM_WUC_PAGE, 83 + ((_i) * 2)))
-
-#define BM_SHRAL_LOWER(_i) (BM_PHY_REG(BM_WUC_PAGE, 44 + ((_i) * 4)))
-#define BM_SHRAL_UPPER(_i) (BM_PHY_REG(BM_WUC_PAGE, 45 + ((_i) * 4)))
-#define BM_SHRAH_LOWER(_i) (BM_PHY_REG(BM_WUC_PAGE, 46 + ((_i) * 4)))
-#define BM_SHRAH_UPPER(_i) (BM_PHY_REG(BM_WUC_PAGE, 47 + ((_i) * 4)))
-
-#define BM_RCTL_UPE 0x0001 /* Unicast Promiscuous Mode */
-#define BM_RCTL_MPE 0x0002 /* Multicast Promiscuous Mode */
-#define BM_RCTL_MO_SHIFT 3 /* Multicast Offset Shift */
-#define BM_RCTL_MO_MASK (3 << 3) /* Multicast Offset Mask */
-#define BM_RCTL_BAM 0x0020 /* Broadcast Accept Mode */
-#define BM_RCTL_PMCF 0x0040 /* Pass MAC Control Frames */
-#define BM_RCTL_RFCE 0x0080 /* Rx Flow Control Enable */
+#define BM_PORT_GEN_CFG PHY_REG(BM_PORT_CTRL_PAGE, 17)
+#define BM_RCTL PHY_REG(BM_WUC_PAGE, 0)
+#define BM_WUC PHY_REG(BM_WUC_PAGE, 1)
+#define BM_WUFC PHY_REG(BM_WUC_PAGE, 2)
+#define BM_WUS PHY_REG(BM_WUC_PAGE, 3)
+#define BM_RAR_L(_i) (BM_PHY_REG(BM_WUC_PAGE, 16 + ((_i) << 2)))
+#define BM_RAR_M(_i) (BM_PHY_REG(BM_WUC_PAGE, 17 + ((_i) << 2)))
+#define BM_RAR_H(_i) (BM_PHY_REG(BM_WUC_PAGE, 18 + ((_i) << 2)))
+#define BM_RAR_CTRL(_i) (BM_PHY_REG(BM_WUC_PAGE, 19 + ((_i) << 2)))
+#define BM_MTA(_i) (BM_PHY_REG(BM_WUC_PAGE, 128 + ((_i) << 1)))
+
+#define BM_RCTL_UPE 0x0001 /* Unicast Promiscuous Mode */
+#define BM_RCTL_MPE 0x0002 /* Multicast Promiscuous Mode */
+#define BM_RCTL_MO_SHIFT 3 /* Multicast Offset Shift */
+#define BM_RCTL_MO_MASK (3 << 3) /* Multicast Offset Mask */
+#define BM_RCTL_BAM 0x0020 /* Broadcast Accept Mode */
+#define BM_RCTL_PMCF 0x0040 /* Pass MAC Control Frames */
+#define BM_RCTL_RFCE 0x0080 /* Rx Flow Control Enable */
#define HV_LED_CONFIG PHY_REG(768, 30) /* LED Configuration */
-#define HV_MUX_DATA_CTRL PHY_REG(776, 16)
-#define HV_MUX_DATA_CTRL_GEN_TO_MAC 0x0400
-#define HV_MUX_DATA_CTRL_FORCE_SPEED 0x0004
-#define HV_SCC_UPPER PHY_REG(778, 16) /* Single Collision Count */
-#define HV_SCC_LOWER PHY_REG(778, 17)
-#define HV_ECOL_UPPER PHY_REG(778, 18) /* Excessive Collision Count */
-#define HV_ECOL_LOWER PHY_REG(778, 19)
-#define HV_MCC_UPPER PHY_REG(778, 20) /* Multiple Collision Count */
-#define HV_MCC_LOWER PHY_REG(778, 21)
-#define HV_LATECOL_UPPER PHY_REG(778, 23) /* Late Collision Count */
-#define HV_LATECOL_LOWER PHY_REG(778, 24)
-#define HV_COLC_UPPER PHY_REG(778, 25) /* Collision Count */
-#define HV_COLC_LOWER PHY_REG(778, 26)
-#define HV_DC_UPPER PHY_REG(778, 27) /* Defer Count */
-#define HV_DC_LOWER PHY_REG(778, 28)
-#define HV_TNCRS_UPPER PHY_REG(778, 29) /* Transmit with no CRS */
-#define HV_TNCRS_LOWER PHY_REG(778, 30)
-
-#define E1000_FCRTV_PCH 0x05F40 /* PCH Flow Control Refresh Timer Value */
-
-#define E1000_NVM_K1_CONFIG 0x1B /* NVM K1 Config Word */
-#define E1000_NVM_K1_ENABLE 0x1 /* NVM Enable K1 bit */
+#define HV_MUX_DATA_CTRL PHY_REG(776, 16)
+#define HV_MUX_DATA_CTRL_GEN_TO_MAC 0x0400
+#define HV_MUX_DATA_CTRL_FORCE_SPEED 0x0004
+#define HV_STATS_PAGE 778
+#define HV_SCC_UPPER PHY_REG(HV_STATS_PAGE, 16) /* Single Collision Count */
+#define HV_SCC_LOWER PHY_REG(HV_STATS_PAGE, 17)
+#define HV_ECOL_UPPER PHY_REG(HV_STATS_PAGE, 18) /* Excessive Coll. Count */
+#define HV_ECOL_LOWER PHY_REG(HV_STATS_PAGE, 19)
+#define HV_MCC_UPPER PHY_REG(HV_STATS_PAGE, 20) /* Multiple Coll. Count */
+#define HV_MCC_LOWER PHY_REG(HV_STATS_PAGE, 21)
+#define HV_LATECOL_UPPER PHY_REG(HV_STATS_PAGE, 23) /* Late Collision Count */
+#define HV_LATECOL_LOWER PHY_REG(HV_STATS_PAGE, 24)
+#define HV_COLC_UPPER PHY_REG(HV_STATS_PAGE, 25) /* Collision Count */
+#define HV_COLC_LOWER PHY_REG(HV_STATS_PAGE, 26)
+#define HV_DC_UPPER PHY_REG(HV_STATS_PAGE, 27) /* Defer Count */
+#define HV_DC_LOWER PHY_REG(HV_STATS_PAGE, 28)
+#define HV_TNCRS_UPPER PHY_REG(HV_STATS_PAGE, 29) /* Transmit with no CRS */
+#define HV_TNCRS_LOWER PHY_REG(HV_STATS_PAGE, 30)
+
+#define E1000_FCRTV_PCH 0x05F40 /* PCH Flow Control Refresh Timer Value */
+
+#define E1000_NVM_K1_CONFIG 0x1B /* NVM K1 Config Word */
+#define E1000_NVM_K1_ENABLE 0x1 /* NVM Enable K1 bit */
+
+/* SMBus Control Phy Register */
+#define CV_SMB_CTRL PHY_REG(769, 23)
+#define CV_SMB_CTRL_FORCE_SMBUS 0x0001
/* SMBus Address Phy Register */
-#define HV_SMB_ADDR PHY_REG(768, 26)
-#define HV_SMB_ADDR_MASK 0x007F
-#define HV_SMB_ADDR_PEC_EN 0x0200
-#define HV_SMB_ADDR_VALID 0x0080
+#define HV_SMB_ADDR PHY_REG(768, 26)
+#define HV_SMB_ADDR_MASK 0x007F
+#define HV_SMB_ADDR_PEC_EN 0x0200
+#define HV_SMB_ADDR_VALID 0x0080
+#define HV_SMB_ADDR_FREQ_MASK 0x1100
+#define HV_SMB_ADDR_FREQ_LOW_SHIFT 8
+#define HV_SMB_ADDR_FREQ_HIGH_SHIFT 12
/* Strapping Option Register - RO */
-#define E1000_STRAP 0x0000C
-#define E1000_STRAP_SMBUS_ADDRESS_MASK 0x00FE0000
-#define E1000_STRAP_SMBUS_ADDRESS_SHIFT 17
+#define E1000_STRAP 0x0000C
+#define E1000_STRAP_SMBUS_ADDRESS_MASK 0x00FE0000
+#define E1000_STRAP_SMBUS_ADDRESS_SHIFT 17
+#define E1000_STRAP_SMT_FREQ_MASK 0x00003000
+#define E1000_STRAP_SMT_FREQ_SHIFT 12
/* OEM Bits Phy Register */
-#define HV_OEM_BITS PHY_REG(768, 25)
-#define HV_OEM_BITS_LPLU 0x0004 /* Low Power Link Up */
-#define HV_OEM_BITS_GBE_DIS 0x0040 /* Gigabit Disable */
-#define HV_OEM_BITS_RESTART_AN 0x0400 /* Restart Auto-negotiation */
-
-#define LCD_CFG_PHY_ADDR_BIT 0x0020 /* Phy address bit from LCD Config word */
+#define HV_OEM_BITS PHY_REG(768, 25)
+#define HV_OEM_BITS_LPLU 0x0004 /* Low Power Link Up */
+#define HV_OEM_BITS_GBE_DIS 0x0040 /* Gigabit Disable */
+#define HV_OEM_BITS_RESTART_AN 0x0400 /* Restart Auto-negotiation */
/* KMRN Mode Control */
#define HV_KMRN_MODE_CTRL PHY_REG(769, 16)
#define HV_KMRN_MDIO_SLOW 0x0400
+/* KMRN FIFO Control and Status */
+#define HV_KMRN_FIFO_CTRLSTA PHY_REG(770, 16)
+#define HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK 0x7000
+#define HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT 12
+
/* PHY Power Management Control */
#define HV_PM_CTRL PHY_REG(770, 17)
+#define HV_PM_CTRL_PLL_STOP_IN_K1_GIGA 0x100
-#define SW_FLAG_TIMEOUT 1000 /* SW Semaphore flag timeout in milliseconds */
+#define SW_FLAG_TIMEOUT 1000 /* SW Semaphore flag timeout in ms */
/* PHY Low Power Idle Control */
-#define I82579_LPI_CTRL PHY_REG(772, 20)
-#define I82579_LPI_CTRL_ENABLE_MASK 0x6000
-
-/*
- * Additional interrupts need to be handled for ICH family:
- * DSW = The FW changed the status of the DISSW bit in FWSM
- * PHYINT = The LAN connected device generates an interrupt
- * EPRST = Manageability reset event
- */
-#define IMS_ICH_ENABLE_MASK (\
- E1000_IMS_DSW | \
- E1000_IMS_PHYINT | \
- E1000_IMS_EPRST)
-
-/* Additional interrupt register bit definitions */
-#define E1000_ICR_LSECPNC 0x00004000 /* PN threshold - client */
-#define E1000_IMS_LSECPNC E1000_ICR_LSECPNC /* PN threshold - client */
-#define E1000_ICS_LSECPNC E1000_ICR_LSECPNC /* PN threshold - client */
-
-/* Security Processing bit Indication */
-#define E1000_RXDEXT_LINKSEC_STATUS_LSECH 0x01000000
-#define E1000_RXDEXT_LINKSEC_ERROR_BIT_MASK 0x60000000
-#define E1000_RXDEXT_LINKSEC_ERROR_NO_SA_MATCH 0x20000000
-#define E1000_RXDEXT_LINKSEC_ERROR_REPLAY_ERROR 0x40000000
-#define E1000_RXDEXT_LINKSEC_ERROR_BAD_SIG 0x60000000
+#define I82579_LPI_CTRL PHY_REG(772, 20)
+#define I82579_LPI_CTRL_100_ENABLE 0x2000
+#define I82579_LPI_CTRL_1000_ENABLE 0x4000
+#define I82579_LPI_CTRL_ENABLE_MASK 0x6000
+#define I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT 0x80
+
+/* Extended Management Interface (EMI) Registers */
+#define I82579_EMI_ADDR 0x10
+#define I82579_EMI_DATA 0x11
+#define I82579_LPI_UPDATE_TIMER 0x4805 /* in 40ns units + 40 ns base value */
+#define I82579_MSE_THRESHOLD 0x084F /* 82579 Mean Square Error Threshold */
+#define I82577_MSE_THRESHOLD 0x0887 /* 82577 Mean Square Error Threshold */
+#define I82579_MSE_LINK_DOWN 0x2411 /* MSE count before dropping link */
+#define I82579_RX_CONFIG 0x3412 /* Receive configuration */
+#define I82579_EEE_PCS_STATUS 0x182D /* IEEE MMD Register 3.1 >> 8 */
+#define I82579_EEE_CAPABILITY 0x0410 /* IEEE MMD Register 3.20 */
+#define I82579_EEE_ADVERTISEMENT 0x040E /* IEEE MMD Register 7.60 */
+#define I82579_EEE_LP_ABILITY 0x040F /* IEEE MMD Register 7.61 */
+#define I82579_EEE_100_SUPPORTED (1 << 1) /* 100BaseTx EEE supported */
+#define I82579_EEE_1000_SUPPORTED (1 << 2) /* 1000BaseTx EEE supported */
+#define I217_EEE_PCS_STATUS 0x9401 /* IEEE MMD Register 3.1 */
+#define I217_EEE_CAPABILITY 0x8000 /* IEEE MMD Register 3.20 */
+#define I217_EEE_ADVERTISEMENT 0x8001 /* IEEE MMD Register 7.60 */
+#define I217_EEE_LP_ABILITY 0x8002 /* IEEE MMD Register 7.61 */
+
+#define E1000_EEE_RX_LPI_RCVD 0x0400 /* Tx LP idle received */
+#define E1000_EEE_TX_LPI_RCVD 0x0800 /* Rx LP idle received */
+
+/* Intel Rapid Start Technology Support */
+#define I217_PROXY_CTRL BM_PHY_REG(BM_WUC_PAGE, 70)
+#define I217_PROXY_CTRL_AUTO_DISABLE 0x0080
+#define I217_SxCTRL PHY_REG(BM_PORT_CTRL_PAGE, 28)
+#define I217_SxCTRL_ENABLE_LPI_RESET 0x1000
+#define I217_CGFREG PHY_REG(772, 29)
+#define I217_CGFREG_ENABLE_MTA_RESET 0x0002
+#define I217_MEMPWR PHY_REG(772, 26)
+#define I217_MEMPWR_DISABLE_SMB_RELEASE 0x0010
/* Receive Address Initial CRC Calculation */
#define E1000_PCH_RAICC(_n) (0x05F50 + ((_n) * 4))
+/* Latency Tolerance Reporting */
+#define E1000_LTRV 0x000F8
+#define E1000_LTRV_VALUE_MASK 0x000003FF
+#define E1000_LTRV_SCALE_MAX 5
+#define E1000_LTRV_SCALE_FACTOR 5
+#define E1000_LTRV_SCALE_SHIFT 10
+#define E1000_LTRV_SCALE_MASK 0x00001C00
+#define E1000_LTRV_REQ_SHIFT 15
+#define E1000_LTRV_NOSNOOP_SHIFT 16
+#define E1000_LTRV_SEND (1 << 30)
+
+/* Proprietary Latency Tolerance Reporting PCI Capability */
+#define E1000_PCI_LTR_CAP_LPT 0xA8
+
+/* OBFF Control & Threshold Defines */
+#define E1000_SVCR_OFF_EN 0x00000001
+#define E1000_SVCR_OFF_MASKINT 0x00001000
+#define E1000_SVCR_OFF_TIMER_MASK 0xFFFF0000
+#define E1000_SVCR_OFF_TIMER_SHIFT 16
+#define E1000_SVT_OFF_HWM_MASK 0x0000001F
+
void e1000_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
- bool state);
+ bool state);
void e1000_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw);
void e1000_gig_downshift_workaround_ich8lan(struct e1000_hw *hw);
-void e1000_disable_gig_wol_ich8lan(struct e1000_hw *hw);
+void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw);
+void e1000_resume_workarounds_pchlan(struct e1000_hw *hw);
s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable);
-s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_config);
-s32 e1000_hv_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw);
void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw);
s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable);
-#endif
+s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data);
+#endif /* _E1000_ICH8LAN_H_ */
diff --git a/freebsd/sys/dev/e1000/e1000_mac.c b/freebsd/sys/dev/e1000/e1000_mac.c
index 0a78d95d..2d59acce 100644
--- a/freebsd/sys/dev/e1000/e1000_mac.c
+++ b/freebsd/sys/dev/e1000/e1000_mac.c
@@ -2,7 +2,7 @@
/******************************************************************************
- Copyright (c) 2001-2010, Intel Corporation
+ Copyright (c) 2001-2013, Intel Corporation
All rights reserved.
Redistribution and use in source and binary forms, with or without
@@ -42,6 +42,8 @@
static s32 e1000_validate_mdi_setting_generic(struct e1000_hw *hw);
static void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw);
+static void e1000_config_collision_dist_generic(struct e1000_hw *hw);
+static void e1000_rar_set_generic(struct e1000_hw *hw, u8 *addr, u32 index);
/**
* e1000_init_mac_ops_generic - Initialize MAC function pointers
@@ -74,12 +76,9 @@ void e1000_init_mac_ops_generic(struct e1000_hw *hw)
mac->ops.setup_link = e1000_null_ops_generic;
mac->ops.get_link_up_info = e1000_null_link_info;
mac->ops.check_for_link = e1000_null_ops_generic;
- mac->ops.wait_autoneg = e1000_wait_autoneg_generic;
+ mac->ops.set_obff_timer = e1000_null_set_obff_timer;
/* Management */
mac->ops.check_mng_mode = e1000_null_mng_mode;
- mac->ops.mng_host_if_write = e1000_mng_host_if_write_generic;
- mac->ops.mng_write_cmd_header = e1000_mng_write_cmd_header_generic;
- mac->ops.mng_enable_host_if = e1000_mng_enable_host_if_generic;
/* VLAN, MC, etc. */
mac->ops.update_mc_addr_list = e1000_null_update_mc;
mac->ops.clear_vfta = e1000_null_mac_generic;
@@ -122,8 +121,7 @@ s32 e1000_null_link_info(struct e1000_hw *hw, u16 *s, u16 *d)
* e1000_null_mng_mode - No-op function, return FALSE
* @hw: pointer to the HW structure
**/
-bool e1000_null_mng_mode(struct e1000_hw *hw)
-{
+bool e1000_null_mng_mode(struct e1000_hw *hw) {
DEBUGFUNC("e1000_null_mng_mode");
return FALSE;
}
@@ -159,6 +157,16 @@ void e1000_null_rar_set(struct e1000_hw *hw, u8 *h, u32 a)
}
/**
+ * e1000_null_set_obff_timer - No-op function, return 0
+ * @hw: pointer to the HW structure
+ **/
+s32 e1000_null_set_obff_timer(struct e1000_hw *hw, u32 a)
+{
+ DEBUGFUNC("e1000_null_set_obff_timer");
+ return E1000_SUCCESS;
+}
+
+/**
* e1000_get_bus_info_pci_generic - Get PCI(x) bus information
* @hw: pointer to the HW structure
*
@@ -183,8 +191,8 @@ s32 e1000_get_bus_info_pci_generic(struct e1000_hw *hw)
/* Bus speed */
if (bus->type == e1000_bus_type_pci) {
bus->speed = (status & E1000_STATUS_PCI66)
- ? e1000_bus_speed_66
- : e1000_bus_speed_33;
+ ? e1000_bus_speed_66
+ : e1000_bus_speed_33;
} else {
switch (status & E1000_STATUS_PCIX_SPEED) {
case E1000_STATUS_PCIX_SPEED_66:
@@ -204,8 +212,8 @@ s32 e1000_get_bus_info_pci_generic(struct e1000_hw *hw)
/* Bus width */
bus->width = (status & E1000_STATUS_BUS64)
- ? e1000_bus_width_64
- : e1000_bus_width_32;
+ ? e1000_bus_width_64
+ : e1000_bus_width_32;
/* Which PCI(-X) function? */
mac->ops.set_lan_id(hw);
@@ -232,9 +240,8 @@ s32 e1000_get_bus_info_pcie_generic(struct e1000_hw *hw)
bus->type = e1000_bus_type_pci_express;
- ret_val = e1000_read_pcie_cap_reg(hw,
- PCIE_LINK_STATUS,
- &pcie_link_status);
+ ret_val = e1000_read_pcie_cap_reg(hw, PCIE_LINK_STATUS,
+ &pcie_link_status);
if (ret_val) {
bus->width = e1000_bus_width_unknown;
bus->speed = e1000_bus_speed_unknown;
@@ -250,10 +257,9 @@ s32 e1000_get_bus_info_pcie_generic(struct e1000_hw *hw)
bus->speed = e1000_bus_speed_unknown;
break;
}
-
+
bus->width = (enum e1000_bus_width)((pcie_link_status &
- PCIE_LINK_WIDTH_MASK) >>
- PCIE_LINK_WIDTH_SHIFT);
+ PCIE_LINK_WIDTH_MASK) >> PCIE_LINK_WIDTH_SHIFT);
}
mac->ops.set_lan_id(hw);
@@ -274,8 +280,7 @@ static void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw)
struct e1000_bus_info *bus = &hw->bus;
u32 reg;
- /*
- * The status register reports the correct function number
+ /* The status register reports the correct function number
* for the device regardless of function swap state.
*/
reg = E1000_READ_REG(hw, E1000_STATUS);
@@ -298,7 +303,7 @@ void e1000_set_lan_id_multi_port_pci(struct e1000_hw *hw)
if (pci_header_type & PCI_HEADER_TYPE_MULTIFUNC) {
status = E1000_READ_REG(hw, E1000_STATUS);
bus->func = (status & E1000_STATUS_FUNC_MASK)
- >> E1000_STATUS_FUNC_SHIFT;
+ >> E1000_STATUS_FUNC_SHIFT;
} else {
bus->func = 0;
}
@@ -358,7 +363,7 @@ void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value)
* @hw: pointer to the HW structure
* @rar_count: receive address registers
*
- * Setups the receive address registers by setting the base receive address
+ * Setup the receive address registers by setting the base receive address
* register to the devices MAC address and clearing all the other receive
* address registers to 0.
**/
@@ -395,7 +400,7 @@ void e1000_init_rx_addrs_generic(struct e1000_hw *hw, u16 rar_count)
s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw)
{
u32 i;
- s32 ret_val = E1000_SUCCESS;
+ s32 ret_val;
u16 offset, nvm_alt_mac_addr_offset, nvm_data;
u8 alt_mac_addr[ETH_ADDR_LEN];
@@ -403,25 +408,29 @@ s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw)
ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &nvm_data);
if (ret_val)
- goto out;
+ return ret_val;
- /* Check for LOM (vs. NIC) or one of two valid mezzanine cards */
- if (!((nvm_data & NVM_COMPAT_LOM) ||
- (hw->device_id == E1000_DEV_ID_82571EB_SERDES_DUAL) ||
- (hw->device_id == E1000_DEV_ID_82571EB_SERDES_QUAD)))
- goto out;
+ /* not supported on older hardware or 82573 */
+ if ((hw->mac.type < e1000_82571) || (hw->mac.type == e1000_82573))
+ return E1000_SUCCESS;
+
+ /* Alternate MAC address is handled by the option ROM for 82580
+ * and newer. SW support not required.
+ */
+ if (hw->mac.type >= e1000_82580)
+ return E1000_SUCCESS;
ret_val = hw->nvm.ops.read(hw, NVM_ALT_MAC_ADDR_PTR, 1,
- &nvm_alt_mac_addr_offset);
+ &nvm_alt_mac_addr_offset);
if (ret_val) {
DEBUGOUT("NVM Read Error\n");
- goto out;
+ return ret_val;
}
- if (nvm_alt_mac_addr_offset == 0xFFFF) {
+ if ((nvm_alt_mac_addr_offset == 0xFFFF) ||
+ (nvm_alt_mac_addr_offset == 0x0000))
/* There is no Alternate MAC Address */
- goto out;
- }
+ return E1000_SUCCESS;
if (hw->bus.func == E1000_FUNC_1)
nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1;
@@ -435,7 +444,7 @@ s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw)
ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data);
if (ret_val) {
DEBUGOUT("NVM Read Error\n");
- goto out;
+ return ret_val;
}
alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
@@ -445,18 +454,16 @@ s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw)
/* if multicast bit is set, the alternate address will not be used */
if (alt_mac_addr[0] & 0x01) {
DEBUGOUT("Ignoring Alternate Mac Address with MC bit set\n");
- goto out;
+ return E1000_SUCCESS;
}
- /*
- * We have a valid alternate MAC address, and we want to treat it the
+ /* We have a valid alternate MAC address, and we want to treat it the
* same as the normal permanent MAC address stored by the HW into the
* RAR. Do this by mapping this address into RAR0.
*/
hw->mac.ops.rar_set(hw, alt_mac_addr, 0);
-out:
- return ret_val;
+ return E1000_SUCCESS;
}
/**
@@ -468,19 +475,17 @@ out:
* Sets the receive address array register at index to the address passed
* in by addr.
**/
-void e1000_rar_set_generic(struct e1000_hw *hw, u8 *addr, u32 index)
+static void e1000_rar_set_generic(struct e1000_hw *hw, u8 *addr, u32 index)
{
u32 rar_low, rar_high;
DEBUGFUNC("e1000_rar_set_generic");
- /*
- * HW expects these in little endian so we reverse the byte order
+ /* HW expects these in little endian so we reverse the byte order
* from network order (big endian) to little endian
*/
- rar_low = ((u32) addr[0] |
- ((u32) addr[1] << 8) |
- ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
+ rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
+ ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
@@ -488,8 +493,7 @@ void e1000_rar_set_generic(struct e1000_hw *hw, u8 *addr, u32 index)
if (rar_low || rar_high)
rar_high |= E1000_RAH_AV;
- /*
- * Some bridges will combine consecutive 32-bit writes into
+ /* Some bridges will combine consecutive 32-bit writes into
* a single burst write, which will malfunction on some parts.
* The flushes avoid this.
*/
@@ -500,43 +504,6 @@ void e1000_rar_set_generic(struct e1000_hw *hw, u8 *addr, u32 index)
}
/**
- * e1000_update_mc_addr_list_generic - Update Multicast addresses
- * @hw: pointer to the HW structure
- * @mc_addr_list: array of multicast addresses to program
- * @mc_addr_count: number of multicast addresses to program
- *
- * Updates entire Multicast Table Array.
- * The caller must have a packed mc_addr_list of multicast addresses.
- **/
-void e1000_update_mc_addr_list_generic(struct e1000_hw *hw,
- u8 *mc_addr_list, u32 mc_addr_count)
-{
- u32 hash_value, hash_bit, hash_reg;
- int i;
-
- DEBUGFUNC("e1000_update_mc_addr_list_generic");
-
- /* clear mta_shadow */
- memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
-
- /* update mta_shadow from mc_addr_list */
- for (i = 0; (u32) i < mc_addr_count; i++) {
- hash_value = e1000_hash_mc_addr_generic(hw, mc_addr_list);
-
- hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
- hash_bit = hash_value & 0x1F;
-
- hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit);
- mc_addr_list += (ETH_ADDR_LEN);
- }
-
- /* replace the entire MTA table */
- for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
- E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, hw->mac.mta_shadow[i]);
- E1000_WRITE_FLUSH(hw);
-}
-
-/**
* e1000_hash_mc_addr_generic - Generate a multicast hash value
* @hw: pointer to the HW structure
* @mc_addr: pointer to a multicast address
@@ -554,15 +521,13 @@ u32 e1000_hash_mc_addr_generic(struct e1000_hw *hw, u8 *mc_addr)
/* Register count multiplied by bits per register */
hash_mask = (hw->mac.mta_reg_count * 32) - 1;
- /*
- * For a mc_filter_type of 0, bit_shift is the number of left-shifts
+ /* For a mc_filter_type of 0, bit_shift is the number of left-shifts
* where 0xFF would still fall within the hash mask.
*/
while (hash_mask >> bit_shift != 0xFF)
bit_shift++;
- /*
- * The portion of the address that is used for the hash table
+ /* The portion of the address that is used for the hash table
* is determined by the mc_filter_type setting.
* The algorithm is such that there is a total of 8 bits of shifting.
* The bit_shift for a mc_filter_type of 0 represents the number of
@@ -580,7 +545,7 @@ u32 e1000_hash_mc_addr_generic(struct e1000_hw *hw, u8 *mc_addr)
* values resulting from each mc_filter_type...
* [0] [1] [2] [3] [4] [5]
* 01 AA 00 12 34 56
- * LSB MSB
+ * LSB MSB
*
* case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
* case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
@@ -603,12 +568,49 @@ u32 e1000_hash_mc_addr_generic(struct e1000_hw *hw, u8 *mc_addr)
}
hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
- (((u16) mc_addr[5]) << bit_shift)));
+ (((u16) mc_addr[5]) << bit_shift)));
return hash_value;
}
/**
+ * e1000_update_mc_addr_list_generic - Update Multicast addresses
+ * @hw: pointer to the HW structure
+ * @mc_addr_list: array of multicast addresses to program
+ * @mc_addr_count: number of multicast addresses to program
+ *
+ * Updates entire Multicast Table Array.
+ * The caller must have a packed mc_addr_list of multicast addresses.
+ **/
+void e1000_update_mc_addr_list_generic(struct e1000_hw *hw,
+ u8 *mc_addr_list, u32 mc_addr_count)
+{
+ u32 hash_value, hash_bit, hash_reg;
+ int i;
+
+ DEBUGFUNC("e1000_update_mc_addr_list_generic");
+
+ /* clear mta_shadow */
+ memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
+
+ /* update mta_shadow from mc_addr_list */
+ for (i = 0; (u32) i < mc_addr_count; i++) {
+ hash_value = e1000_hash_mc_addr_generic(hw, mc_addr_list);
+
+ hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
+ hash_bit = hash_value & 0x1F;
+
+ hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit);
+ mc_addr_list += (ETH_ADDR_LEN);
+ }
+
+ /* replace the entire MTA table */
+ for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
+ E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, hw->mac.mta_shadow[i]);
+ E1000_WRITE_FLUSH(hw);
+}
+
+/**
* e1000_pcix_mmrbc_workaround_generic - Fix incorrect MMRBC value
* @hw: pointer to the HW structure
*
@@ -633,9 +635,9 @@ void e1000_pcix_mmrbc_workaround_generic(struct e1000_hw *hw)
e1000_read_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd);
e1000_read_pci_cfg(hw, PCIX_STATUS_REGISTER_HI, &pcix_stat_hi_word);
cmd_mmrbc = (pcix_cmd & PCIX_COMMAND_MMRBC_MASK) >>
- PCIX_COMMAND_MMRBC_SHIFT;
+ PCIX_COMMAND_MMRBC_SHIFT;
stat_mmrbc = (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
- PCIX_STATUS_HI_MMRBC_SHIFT;
+ PCIX_STATUS_HI_MMRBC_SHIFT;
if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
if (cmd_mmrbc > stat_mmrbc) {
@@ -710,55 +712,45 @@ s32 e1000_check_for_copper_link_generic(struct e1000_hw *hw)
DEBUGFUNC("e1000_check_for_copper_link");
- /*
- * We only want to go out to the PHY registers to see if Auto-Neg
+ /* We only want to go out to the PHY registers to see if Auto-Neg
* has completed and/or if our link status has changed. The
* get_link_status flag is set upon receiving a Link Status
* Change or Rx Sequence Error interrupt.
*/
- if (!mac->get_link_status) {
- ret_val = E1000_SUCCESS;
- goto out;
- }
+ if (!mac->get_link_status)
+ return E1000_SUCCESS;
- /*
- * First we want to see if the MII Status Register reports
+ /* First we want to see if the MII Status Register reports
* link. If so, then we want to get the current speed/duplex
* of the PHY.
*/
ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
if (ret_val)
- goto out;
+ return ret_val;
if (!link)
- goto out; /* No link detected */
+ return E1000_SUCCESS; /* No link detected */
mac->get_link_status = FALSE;
- /*
- * Check if there was DownShift, must be checked
+ /* Check if there was DownShift, must be checked
* immediately after link-up
*/
e1000_check_downshift_generic(hw);
- /*
- * If we are forcing speed/duplex, then we simply return since
+ /* If we are forcing speed/duplex, then we simply return since
* we have already determined whether we have link or not.
*/
- if (!mac->autoneg) {
- ret_val = -E1000_ERR_CONFIG;
- goto out;
- }
+ if (!mac->autoneg)
+ return -E1000_ERR_CONFIG;
- /*
- * Auto-Neg is enabled. Auto Speed Detection takes care
+ /* Auto-Neg is enabled. Auto Speed Detection takes care
* of MAC speed/duplex configuration. So we only need to
* configure Collision Distance in the MAC.
*/
mac->ops.config_collision_dist(hw);
- /*
- * Configure Flow Control now that Auto-Neg has completed.
+ /* Configure Flow Control now that Auto-Neg has completed.
* First, we need to restore the desired flow control
* settings because we may have had to re-autoneg with a
* different link partner.
@@ -767,7 +759,6 @@ s32 e1000_check_for_copper_link_generic(struct e1000_hw *hw)
if (ret_val)
DEBUGOUT("Error configuring flow control\n");
-out:
return ret_val;
}
@@ -784,7 +775,7 @@ s32 e1000_check_for_fiber_link_generic(struct e1000_hw *hw)
u32 rxcw;
u32 ctrl;
u32 status;
- s32 ret_val = E1000_SUCCESS;
+ s32 ret_val;
DEBUGFUNC("e1000_check_for_fiber_link_generic");
@@ -792,8 +783,7 @@ s32 e1000_check_for_fiber_link_generic(struct e1000_hw *hw)
status = E1000_READ_REG(hw, E1000_STATUS);
rxcw = E1000_READ_REG(hw, E1000_RXCW);
- /*
- * If we don't have link (auto-negotiation failed or link partner
+ /* If we don't have link (auto-negotiation failed or link partner
* cannot auto-negotiate), the cable is plugged in (we have signal),
* and our link partner is not trying to auto-negotiate with us (we
* are receiving idles or data), we need to force link up. We also
@@ -801,13 +791,13 @@ s32 e1000_check_for_fiber_link_generic(struct e1000_hw *hw)
* was just plugged in. The autoneg_failed flag does this.
*/
/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
- if ((ctrl & E1000_CTRL_SWDPIN1) && (!(status & E1000_STATUS_LU)) &&
- (!(rxcw & E1000_RXCW_C))) {
- if (mac->autoneg_failed == 0) {
- mac->autoneg_failed = 1;
- goto out;
+ if ((ctrl & E1000_CTRL_SWDPIN1) && !(status & E1000_STATUS_LU) &&
+ !(rxcw & E1000_RXCW_C)) {
+ if (!mac->autoneg_failed) {
+ mac->autoneg_failed = TRUE;
+ return E1000_SUCCESS;
}
- DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n");
+ DEBUGOUT("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
/* Disable auto-negotiation in the TXCW register */
E1000_WRITE_REG(hw, E1000_TXCW, (mac->txcw & ~E1000_TXCW_ANE));
@@ -821,24 +811,22 @@ s32 e1000_check_for_fiber_link_generic(struct e1000_hw *hw)
ret_val = e1000_config_fc_after_link_up_generic(hw);
if (ret_val) {
DEBUGOUT("Error configuring flow control\n");
- goto out;
+ return ret_val;
}
} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
- /*
- * If we are forcing link and we are receiving /C/ ordered
+ /* If we are forcing link and we are receiving /C/ ordered
* sets, re-enable auto-negotiation in the TXCW register
* and disable forced link in the Device Control register
* in an attempt to auto-negotiate with our link partner.
*/
- DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n");
+ DEBUGOUT("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw);
E1000_WRITE_REG(hw, E1000_CTRL, (ctrl & ~E1000_CTRL_SLU));
mac->serdes_has_link = TRUE;
}
-out:
- return ret_val;
+ return E1000_SUCCESS;
}
/**
@@ -854,7 +842,7 @@ s32 e1000_check_for_serdes_link_generic(struct e1000_hw *hw)
u32 rxcw;
u32 ctrl;
u32 status;
- s32 ret_val = E1000_SUCCESS;
+ s32 ret_val;
DEBUGFUNC("e1000_check_for_serdes_link_generic");
@@ -862,20 +850,19 @@ s32 e1000_check_for_serdes_link_generic(struct e1000_hw *hw)
status = E1000_READ_REG(hw, E1000_STATUS);
rxcw = E1000_READ_REG(hw, E1000_RXCW);
- /*
- * If we don't have link (auto-negotiation failed or link partner
+ /* If we don't have link (auto-negotiation failed or link partner
* cannot auto-negotiate), and our link partner is not trying to
* auto-negotiate with us (we are receiving idles or data),
* we need to force link up. We also need to give auto-negotiation
* time to complete.
*/
/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
- if ((!(status & E1000_STATUS_LU)) && (!(rxcw & E1000_RXCW_C))) {
- if (mac->autoneg_failed == 0) {
- mac->autoneg_failed = 1;
- goto out;
+ if (!(status & E1000_STATUS_LU) && !(rxcw & E1000_RXCW_C)) {
+ if (!mac->autoneg_failed) {
+ mac->autoneg_failed = TRUE;
+ return E1000_SUCCESS;
}
- DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n");
+ DEBUGOUT("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
/* Disable auto-negotiation in the TXCW register */
E1000_WRITE_REG(hw, E1000_TXCW, (mac->txcw & ~E1000_TXCW_ANE));
@@ -889,23 +876,21 @@ s32 e1000_check_for_serdes_link_generic(struct e1000_hw *hw)
ret_val = e1000_config_fc_after_link_up_generic(hw);
if (ret_val) {
DEBUGOUT("Error configuring flow control\n");
- goto out;
+ return ret_val;
}
} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
- /*
- * If we are forcing link and we are receiving /C/ ordered
+ /* If we are forcing link and we are receiving /C/ ordered
* sets, re-enable auto-negotiation in the TXCW register
* and disable forced link in the Device Control register
* in an attempt to auto-negotiate with our link partner.
*/
- DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n");
+ DEBUGOUT("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw);
E1000_WRITE_REG(hw, E1000_CTRL, (ctrl & ~E1000_CTRL_SLU));
mac->serdes_has_link = TRUE;
} else if (!(E1000_TXCW_ANE & E1000_READ_REG(hw, E1000_TXCW))) {
- /*
- * If we force link for non-auto-negotiation switch, check
+ /* If we force link for non-auto-negotiation switch, check
* link status based on MAC synchronization for internal
* serdes media type.
*/
@@ -932,12 +917,10 @@ s32 e1000_check_for_serdes_link_generic(struct e1000_hw *hw)
if (rxcw & E1000_RXCW_SYNCH) {
if (!(rxcw & E1000_RXCW_IV)) {
mac->serdes_has_link = TRUE;
- DEBUGOUT("SERDES: Link up - autoneg "
- "completed sucessfully.\n");
+ DEBUGOUT("SERDES: Link up - autoneg completed successfully.\n");
} else {
mac->serdes_has_link = FALSE;
- DEBUGOUT("SERDES: Link down - invalid"
- "codewords detected in autoneg.\n");
+ DEBUGOUT("SERDES: Link down - invalid codewords detected in autoneg.\n");
}
} else {
mac->serdes_has_link = FALSE;
@@ -949,8 +932,47 @@ s32 e1000_check_for_serdes_link_generic(struct e1000_hw *hw)
}
}
-out:
- return ret_val;
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_set_default_fc_generic - Set flow control default values
+ * @hw: pointer to the HW structure
+ *
+ * Read the EEPROM for the default values for flow control and store the
+ * values.
+ **/
+s32 e1000_set_default_fc_generic(struct e1000_hw *hw)
+{
+ s32 ret_val;
+ u16 nvm_data;
+
+ DEBUGFUNC("e1000_set_default_fc_generic");
+
+ /* Read and store word 0x0F of the EEPROM. This word contains bits
+ * that determine the hardware's default PAUSE (flow control) mode,
+ * a bit that determines whether the HW defaults to enabling or
+ * disabling auto-negotiation, and the direction of the
+ * SW defined pins. If there is no SW over-ride of the flow
+ * control setting, then the variable hw->fc will
+ * be initialized based on a value in the EEPROM.
+ */
+ ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data);
+
+ if (ret_val) {
+ DEBUGOUT("NVM Read Error\n");
+ return ret_val;
+ }
+
+ if (!(nvm_data & NVM_WORD0F_PAUSE_MASK))
+ hw->fc.requested_mode = e1000_fc_none;
+ else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) ==
+ NVM_WORD0F_ASM_DIR)
+ hw->fc.requested_mode = e1000_fc_tx_pause;
+ else
+ hw->fc.requested_mode = e1000_fc_full;
+
+ return E1000_SUCCESS;
}
/**
@@ -965,29 +987,26 @@ out:
**/
s32 e1000_setup_link_generic(struct e1000_hw *hw)
{
- s32 ret_val = E1000_SUCCESS;
+ s32 ret_val;
DEBUGFUNC("e1000_setup_link_generic");
- /*
- * In the case of the phy reset being blocked, we already have a link.
+ /* In the case of the phy reset being blocked, we already have a link.
* We do not need to set it up again.
*/
- if (e1000_check_reset_block(hw))
- goto out;
+ if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
+ return E1000_SUCCESS;
- /*
- * If requested flow control is set to default, set flow control
+ /* If requested flow control is set to default, set flow control
* based on the EEPROM flow control settings.
*/
if (hw->fc.requested_mode == e1000_fc_default) {
ret_val = e1000_set_default_fc_generic(hw);
if (ret_val)
- goto out;
+ return ret_val;
}
- /*
- * Save off the requested flow control mode for use later. Depending
+ /* Save off the requested flow control mode for use later. Depending
* on the link partner's capabilities, we may or may not use this mode.
*/
hw->fc.current_mode = hw->fc.requested_mode;
@@ -998,10 +1017,9 @@ s32 e1000_setup_link_generic(struct e1000_hw *hw)
/* Call the necessary media_type subroutine to configure the link. */
ret_val = hw->mac.ops.setup_physical_interface(hw);
if (ret_val)
- goto out;
+ return ret_val;
- /*
- * Initialize the flow control address, type, and PAUSE timer
+ /* Initialize the flow control address, type, and PAUSE timer
* registers to their default values. This is done even if flow
* control is disabled, because it does not hurt anything to
* initialize these registers.
@@ -1013,87 +1031,76 @@ s32 e1000_setup_link_generic(struct e1000_hw *hw)
E1000_WRITE_REG(hw, E1000_FCTTV, hw->fc.pause_time);
- ret_val = e1000_set_fc_watermarks_generic(hw);
-
-out:
- return ret_val;
+ return e1000_set_fc_watermarks_generic(hw);
}
/**
- * e1000_setup_fiber_serdes_link_generic - Setup link for fiber/serdes
+ * e1000_commit_fc_settings_generic - Configure flow control
* @hw: pointer to the HW structure
*
- * Configures collision distance and flow control for fiber and serdes
- * links. Upon successful setup, poll for link.
+ * Write the flow control settings to the Transmit Config Word Register (TXCW)
+ * base on the flow control settings in e1000_mac_info.
**/
-s32 e1000_setup_fiber_serdes_link_generic(struct e1000_hw *hw)
+s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw)
{
struct e1000_mac_info *mac = &hw->mac;
- u32 ctrl;
- s32 ret_val = E1000_SUCCESS;
-
- DEBUGFUNC("e1000_setup_fiber_serdes_link_generic");
-
- ctrl = E1000_READ_REG(hw, E1000_CTRL);
-
- /* Take the link out of reset */
- ctrl &= ~E1000_CTRL_LRST;
-
- mac->ops.config_collision_dist(hw);
-
- ret_val = e1000_commit_fc_settings_generic(hw);
- if (ret_val)
- goto out;
-
- /*
- * Since auto-negotiation is enabled, take the link out of reset (the
- * link will be in reset, because we previously reset the chip). This
- * will restart auto-negotiation. If auto-negotiation is successful
- * then the link-up status bit will be set and the flow control enable
- * bits (RFCE and TFCE) will be set according to their negotiated value.
- */
- DEBUGOUT("Auto-negotiation enabled\n");
+ u32 txcw;
- E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
- E1000_WRITE_FLUSH(hw);
- msec_delay(1);
+ DEBUGFUNC("e1000_commit_fc_settings_generic");
- /*
- * For these adapters, the SW definable pin 1 is set when the optics
- * detect a signal. If we have a signal, then poll for a "Link-Up"
- * indication.
+ /* Check for a software override of the flow control settings, and
+ * setup the device accordingly. If auto-negotiation is enabled, then
+ * software will have to set the "PAUSE" bits to the correct value in
+ * the Transmit Config Word Register (TXCW) and re-start auto-
+ * negotiation. However, if auto-negotiation is disabled, then
+ * software will have to manually configure the two flow control enable
+ * bits in the CTRL register.
+ *
+ * The possible values of the "fc" parameter are:
+ * 0: Flow control is completely disabled
+ * 1: Rx flow control is enabled (we can receive pause frames,
+ * but not send pause frames).
+ * 2: Tx flow control is enabled (we can send pause frames but we
+ * do not support receiving pause frames).
+ * 3: Both Rx and Tx flow control (symmetric) are enabled.
*/
- if (hw->phy.media_type == e1000_media_type_internal_serdes ||
- (E1000_READ_REG(hw, E1000_CTRL) & E1000_CTRL_SWDPIN1)) {
- ret_val = e1000_poll_fiber_serdes_link_generic(hw);
- } else {
- DEBUGOUT("No signal detected\n");
+ switch (hw->fc.current_mode) {
+ case e1000_fc_none:
+ /* Flow control completely disabled by a software over-ride. */
+ txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
+ break;
+ case e1000_fc_rx_pause:
+ /* Rx Flow control is enabled and Tx Flow control is disabled
+ * by a software over-ride. Since there really isn't a way to
+ * advertise that we are capable of Rx Pause ONLY, we will
+ * advertise that we support both symmetric and asymmetric Rx
+ * PAUSE. Later, we will disable the adapter's ability to send
+ * PAUSE frames.
+ */
+ txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
+ break;
+ case e1000_fc_tx_pause:
+ /* Tx Flow control is enabled, and Rx Flow control is disabled,
+ * by a software over-ride.
+ */
+ txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
+ break;
+ case e1000_fc_full:
+ /* Flow control (both Rx and Tx) is enabled by a software
+ * over-ride.
+ */
+ txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
+ break;
+ default:
+ DEBUGOUT("Flow control param set incorrectly\n");
+ return -E1000_ERR_CONFIG;
+ break;
}
-out:
- return ret_val;
-}
-
-/**
- * e1000_config_collision_dist_generic - Configure collision distance
- * @hw: pointer to the HW structure
- *
- * Configures the collision distance to the default value and is used
- * during link setup.
- **/
-void e1000_config_collision_dist_generic(struct e1000_hw *hw)
-{
- u32 tctl;
-
- DEBUGFUNC("e1000_config_collision_dist_generic");
-
- tctl = E1000_READ_REG(hw, E1000_TCTL);
-
- tctl &= ~E1000_TCTL_COLD;
- tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
+ E1000_WRITE_REG(hw, E1000_TXCW, txcw);
+ mac->txcw = txcw;
- E1000_WRITE_REG(hw, E1000_TCTL, tctl);
- E1000_WRITE_FLUSH(hw);
+ return E1000_SUCCESS;
}
/**
@@ -1107,12 +1114,11 @@ s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw)
{
struct e1000_mac_info *mac = &hw->mac;
u32 i, status;
- s32 ret_val = E1000_SUCCESS;
+ s32 ret_val;
DEBUGFUNC("e1000_poll_fiber_serdes_link_generic");
- /*
- * If we have a signal (the cable is plugged in, or assumed TRUE for
+ /* If we have a signal (the cable is plugged in, or assumed TRUE for
* serdes media) then poll for a "Link-Up" indication in the Device
* Status Register. Time-out if a link isn't seen in 500 milliseconds
* seconds (Auto-negotiation should complete in less than 500
@@ -1126,9 +1132,8 @@ s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw)
}
if (i == FIBER_LINK_UP_LIMIT) {
DEBUGOUT("Never got a valid link from auto-neg!!!\n");
- mac->autoneg_failed = 1;
- /*
- * AutoNeg failed to achieve a link, so we'll call
+ mac->autoneg_failed = TRUE;
+ /* AutoNeg failed to achieve a link, so we'll call
* mac->check_for_link. This routine will force the
* link up if we detect a signal. This will allow us to
* communicate with non-autonegotiating link partners.
@@ -1136,95 +1141,91 @@ s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw)
ret_val = mac->ops.check_for_link(hw);
if (ret_val) {
DEBUGOUT("Error while checking for link\n");
- goto out;
+ return ret_val;
}
- mac->autoneg_failed = 0;
+ mac->autoneg_failed = FALSE;
} else {
- mac->autoneg_failed = 0;
+ mac->autoneg_failed = FALSE;
DEBUGOUT("Valid Link Found\n");
}
-out:
- return ret_val;
+ return E1000_SUCCESS;
}
/**
- * e1000_commit_fc_settings_generic - Configure flow control
+ * e1000_setup_fiber_serdes_link_generic - Setup link for fiber/serdes
* @hw: pointer to the HW structure
*
- * Write the flow control settings to the Transmit Config Word Register (TXCW)
- * base on the flow control settings in e1000_mac_info.
+ * Configures collision distance and flow control for fiber and serdes
+ * links. Upon successful setup, poll for link.
**/
-s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw)
+s32 e1000_setup_fiber_serdes_link_generic(struct e1000_hw *hw)
{
- struct e1000_mac_info *mac = &hw->mac;
- u32 txcw;
- s32 ret_val = E1000_SUCCESS;
+ u32 ctrl;
+ s32 ret_val;
- DEBUGFUNC("e1000_commit_fc_settings_generic");
+ DEBUGFUNC("e1000_setup_fiber_serdes_link_generic");
- /*
- * Check for a software override of the flow control settings, and
- * setup the device accordingly. If auto-negotiation is enabled, then
- * software will have to set the "PAUSE" bits to the correct value in
- * the Transmit Config Word Register (TXCW) and re-start auto-
- * negotiation. However, if auto-negotiation is disabled, then
- * software will have to manually configure the two flow control enable
- * bits in the CTRL register.
- *
- * The possible values of the "fc" parameter are:
- * 0: Flow control is completely disabled
- * 1: Rx flow control is enabled (we can receive pause frames,
- * but not send pause frames).
- * 2: Tx flow control is enabled (we can send pause frames but we
- * do not support receiving pause frames).
- * 3: Both Rx and Tx flow control (symmetric) are enabled.
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+ /* Take the link out of reset */
+ ctrl &= ~E1000_CTRL_LRST;
+
+ hw->mac.ops.config_collision_dist(hw);
+
+ ret_val = e1000_commit_fc_settings_generic(hw);
+ if (ret_val)
+ return ret_val;
+
+ /* Since auto-negotiation is enabled, take the link out of reset (the
+ * link will be in reset, because we previously reset the chip). This
+ * will restart auto-negotiation. If auto-negotiation is successful
+ * then the link-up status bit will be set and the flow control enable
+ * bits (RFCE and TFCE) will be set according to their negotiated value.
*/
- switch (hw->fc.current_mode) {
- case e1000_fc_none:
- /* Flow control completely disabled by a software over-ride. */
- txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
- break;
- case e1000_fc_rx_pause:
- /*
- * Rx Flow control is enabled and Tx Flow control is disabled
- * by a software over-ride. Since there really isn't a way to
- * advertise that we are capable of Rx Pause ONLY, we will
- * advertise that we support both symmetric and asymmetric Rx
- * PAUSE. Later, we will disable the adapter's ability to send
- * PAUSE frames.
- */
- txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
- break;
- case e1000_fc_tx_pause:
- /*
- * Tx Flow control is enabled, and Rx Flow control is disabled,
- * by a software over-ride.
- */
- txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
- break;
- case e1000_fc_full:
- /*
- * Flow control (both Rx and Tx) is enabled by a software
- * over-ride.
- */
- txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
- break;
- default:
- DEBUGOUT("Flow control param set incorrectly\n");
- ret_val = -E1000_ERR_CONFIG;
- goto out;
- break;
- }
+ DEBUGOUT("Auto-negotiation enabled\n");
- E1000_WRITE_REG(hw, E1000_TXCW, txcw);
- mac->txcw = txcw;
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+ E1000_WRITE_FLUSH(hw);
+ msec_delay(1);
+
+ /* For these adapters, the SW definable pin 1 is set when the optics
+ * detect a signal. If we have a signal, then poll for a "Link-Up"
+ * indication.
+ */
+ if (hw->phy.media_type == e1000_media_type_internal_serdes ||
+ (E1000_READ_REG(hw, E1000_CTRL) & E1000_CTRL_SWDPIN1)) {
+ ret_val = e1000_poll_fiber_serdes_link_generic(hw);
+ } else {
+ DEBUGOUT("No signal detected\n");
+ }
-out:
return ret_val;
}
/**
+ * e1000_config_collision_dist_generic - Configure collision distance
+ * @hw: pointer to the HW structure
+ *
+ * Configures the collision distance to the default value and is used
+ * during link setup.
+ **/
+static void e1000_config_collision_dist_generic(struct e1000_hw *hw)
+{
+ u32 tctl;
+
+ DEBUGFUNC("e1000_config_collision_dist_generic");
+
+ tctl = E1000_READ_REG(hw, E1000_TCTL);
+
+ tctl &= ~E1000_TCTL_COLD;
+ tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
+
+ E1000_WRITE_REG(hw, E1000_TCTL, tctl);
+ E1000_WRITE_FLUSH(hw);
+}
+
+/**
* e1000_set_fc_watermarks_generic - Set flow control high/low watermarks
* @hw: pointer to the HW structure
*
@@ -1238,16 +1239,14 @@ s32 e1000_set_fc_watermarks_generic(struct e1000_hw *hw)
DEBUGFUNC("e1000_set_fc_watermarks_generic");
- /*
- * Set the flow control receive threshold registers. Normally,
+ /* Set the flow control receive threshold registers. Normally,
* these registers will be set to a default threshold that may be
* adjusted later by the driver's runtime code. However, if the
* ability to transmit pause frames is not enabled, then these
* registers will be set to 0.
*/
if (hw->fc.current_mode & e1000_fc_tx_pause) {
- /*
- * We need to set up the Receive Threshold high and low water
+ /* We need to set up the Receive Threshold high and low water
* marks as well as (optionally) enabling the transmission of
* XON frames.
*/
@@ -1264,48 +1263,6 @@ s32 e1000_set_fc_watermarks_generic(struct e1000_hw *hw)
}
/**
- * e1000_set_default_fc_generic - Set flow control default values
- * @hw: pointer to the HW structure
- *
- * Read the EEPROM for the default values for flow control and store the
- * values.
- **/
-s32 e1000_set_default_fc_generic(struct e1000_hw *hw)
-{
- s32 ret_val = E1000_SUCCESS;
- u16 nvm_data;
-
- DEBUGFUNC("e1000_set_default_fc_generic");
-
- /*
- * Read and store word 0x0F of the EEPROM. This word contains bits
- * that determine the hardware's default PAUSE (flow control) mode,
- * a bit that determines whether the HW defaults to enabling or
- * disabling auto-negotiation, and the direction of the
- * SW defined pins. If there is no SW over-ride of the flow
- * control setting, then the variable hw->fc will
- * be initialized based on a value in the EEPROM.
- */
- ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data);
-
- if (ret_val) {
- DEBUGOUT("NVM Read Error\n");
- goto out;
- }
-
- if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0)
- hw->fc.requested_mode = e1000_fc_none;
- else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) ==
- NVM_WORD0F_ASM_DIR)
- hw->fc.requested_mode = e1000_fc_tx_pause;
- else
- hw->fc.requested_mode = e1000_fc_full;
-
-out:
- return ret_val;
-}
-
-/**
* e1000_force_mac_fc_generic - Force the MAC's flow control settings
* @hw: pointer to the HW structure
*
@@ -1318,14 +1275,12 @@ out:
s32 e1000_force_mac_fc_generic(struct e1000_hw *hw)
{
u32 ctrl;
- s32 ret_val = E1000_SUCCESS;
DEBUGFUNC("e1000_force_mac_fc_generic");
ctrl = E1000_READ_REG(hw, E1000_CTRL);
- /*
- * Because we didn't get link via the internal auto-negotiation
+ /* Because we didn't get link via the internal auto-negotiation
* mechanism (we either forced link or we got link via PHY
* auto-neg), we have to manually enable/disable transmit an
* receive flow control.
@@ -1361,14 +1316,12 @@ s32 e1000_force_mac_fc_generic(struct e1000_hw *hw)
break;
default:
DEBUGOUT("Flow control param set incorrectly\n");
- ret_val = -E1000_ERR_CONFIG;
- goto out;
+ return -E1000_ERR_CONFIG;
}
E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
-out:
- return ret_val;
+ return E1000_SUCCESS;
}
/**
@@ -1385,13 +1338,13 @@ s32 e1000_config_fc_after_link_up_generic(struct e1000_hw *hw)
{
struct e1000_mac_info *mac = &hw->mac;
s32 ret_val = E1000_SUCCESS;
+ u32 pcs_status_reg, pcs_adv_reg, pcs_lp_ability_reg, pcs_ctrl_reg;
u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
u16 speed, duplex;
DEBUGFUNC("e1000_config_fc_after_link_up_generic");
- /*
- * Check for the case where we have fiber media and auto-neg failed
+ /* Check for the case where we have fiber media and auto-neg failed
* so we had to force link. In this case, we need to force the
* configuration of the MAC to match the "fc" parameter.
*/
@@ -1406,52 +1359,47 @@ s32 e1000_config_fc_after_link_up_generic(struct e1000_hw *hw)
if (ret_val) {
DEBUGOUT("Error forcing flow control settings\n");
- goto out;
+ return ret_val;
}
- /*
- * Check for the case where we have copper media and auto-neg is
+ /* Check for the case where we have copper media and auto-neg is
* enabled. In this case, we need to check and see if Auto-Neg
* has completed, and if so, how the PHY and link partner has
* flow control configured.
*/
if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
- /*
- * Read the MII Status Register and check to see if AutoNeg
+ /* Read the MII Status Register and check to see if AutoNeg
* has completed. We read this twice because this reg has
* some "sticky" (latched) bits.
*/
ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg);
if (ret_val)
- goto out;
+ return ret_val;
ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg);
if (ret_val)
- goto out;
+ return ret_val;
if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
- DEBUGOUT("Copper PHY and Auto Neg "
- "has not completed.\n");
- goto out;
+ DEBUGOUT("Copper PHY and Auto Neg has not completed.\n");
+ return ret_val;
}
- /*
- * The AutoNeg process has completed, so we now need to
+ /* The AutoNeg process has completed, so we now need to
* read both the Auto Negotiation Advertisement
* Register (Address 4) and the Auto_Negotiation Base
* Page Ability Register (Address 5) to determine how
* flow control was negotiated.
*/
ret_val = hw->phy.ops.read_reg(hw, PHY_AUTONEG_ADV,
- &mii_nway_adv_reg);
+ &mii_nway_adv_reg);
if (ret_val)
- goto out;
+ return ret_val;
ret_val = hw->phy.ops.read_reg(hw, PHY_LP_ABILITY,
- &mii_nway_lp_ability_reg);
+ &mii_nway_lp_ability_reg);
if (ret_val)
- goto out;
+ return ret_val;
- /*
- * Two bits in the Auto Negotiation Advertisement Register
+ /* Two bits in the Auto Negotiation Advertisement Register
* (Address 4) and two bits in the Auto Negotiation Base
* Page Ability Register (Address 5) determine flow control
* for both the PHY and the link partner. The following
@@ -1486,24 +1434,21 @@ s32 e1000_config_fc_after_link_up_generic(struct e1000_hw *hw)
*/
if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
- /*
- * Now we need to check if the user selected Rx ONLY
+ /* Now we need to check if the user selected Rx ONLY
* of pause frames. In this case, we had to advertise
* FULL flow control because we could not advertise Rx
* ONLY. Hence, we must now check to see if we need to
- * turn OFF the TRANSMISSION of PAUSE frames.
+ * turn OFF the TRANSMISSION of PAUSE frames.
*/
if (hw->fc.requested_mode == e1000_fc_full) {
hw->fc.current_mode = e1000_fc_full;
- DEBUGOUT("Flow Control = FULL.\r\n");
+ DEBUGOUT("Flow Control = FULL.\n");
} else {
hw->fc.current_mode = e1000_fc_rx_pause;
- DEBUGOUT("Flow Control = "
- "Rx PAUSE frames only.\r\n");
+ DEBUGOUT("Flow Control = Rx PAUSE frames only.\n");
}
}
- /*
- * For receiving PAUSE frames ONLY.
+ /* For receiving PAUSE frames ONLY.
*
* LOCAL DEVICE | LINK PARTNER
* PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
@@ -1511,14 +1456,13 @@ s32 e1000_config_fc_after_link_up_generic(struct e1000_hw *hw)
* 0 | 1 | 1 | 1 | e1000_fc_tx_pause
*/
else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
- (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
- (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
- (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
+ (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
+ (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
+ (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
hw->fc.current_mode = e1000_fc_tx_pause;
- DEBUGOUT("Flow Control = Tx PAUSE frames only.\r\n");
+ DEBUGOUT("Flow Control = Tx PAUSE frames only.\n");
}
- /*
- * For transmitting PAUSE frames ONLY.
+ /* For transmitting PAUSE frames ONLY.
*
* LOCAL DEVICE | LINK PARTNER
* PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
@@ -1526,47 +1470,167 @@ s32 e1000_config_fc_after_link_up_generic(struct e1000_hw *hw)
* 1 | 1 | 0 | 1 | e1000_fc_rx_pause
*/
else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
- (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
- !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
- (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
+ (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
+ !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
+ (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
hw->fc.current_mode = e1000_fc_rx_pause;
- DEBUGOUT("Flow Control = Rx PAUSE frames only.\r\n");
+ DEBUGOUT("Flow Control = Rx PAUSE frames only.\n");
} else {
- /*
- * Per the IEEE spec, at this point flow control
+ /* Per the IEEE spec, at this point flow control
* should be disabled.
*/
hw->fc.current_mode = e1000_fc_none;
- DEBUGOUT("Flow Control = NONE.\r\n");
+ DEBUGOUT("Flow Control = NONE.\n");
}
- /*
- * Now we need to do one last check... If we auto-
+ /* Now we need to do one last check... If we auto-
* negotiated to HALF DUPLEX, flow control should not be
* enabled per IEEE 802.3 spec.
*/
ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex);
if (ret_val) {
DEBUGOUT("Error getting link speed and duplex\n");
- goto out;
+ return ret_val;
}
if (duplex == HALF_DUPLEX)
hw->fc.current_mode = e1000_fc_none;
- /*
- * Now we call a subroutine to actually force the MAC
+ /* Now we call a subroutine to actually force the MAC
* controller to use the correct flow control settings.
*/
ret_val = e1000_force_mac_fc_generic(hw);
if (ret_val) {
DEBUGOUT("Error forcing flow control settings\n");
- goto out;
+ return ret_val;
}
}
-out:
- return ret_val;
+ /* Check for the case where we have SerDes media and auto-neg is
+ * enabled. In this case, we need to check and see if Auto-Neg
+ * has completed, and if so, how the PHY and link partner has
+ * flow control configured.
+ */
+ if ((hw->phy.media_type == e1000_media_type_internal_serdes) &&
+ mac->autoneg) {
+ /* Read the PCS_LSTS and check to see if AutoNeg
+ * has completed.
+ */
+ pcs_status_reg = E1000_READ_REG(hw, E1000_PCS_LSTAT);
+
+ if (!(pcs_status_reg & E1000_PCS_LSTS_AN_COMPLETE)) {
+ DEBUGOUT("PCS Auto Neg has not completed.\n");
+ return ret_val;
+ }
+
+ /* The AutoNeg process has completed, so we now need to
+ * read both the Auto Negotiation Advertisement
+ * Register (PCS_ANADV) and the Auto_Negotiation Base
+ * Page Ability Register (PCS_LPAB) to determine how
+ * flow control was negotiated.
+ */
+ pcs_adv_reg = E1000_READ_REG(hw, E1000_PCS_ANADV);
+ pcs_lp_ability_reg = E1000_READ_REG(hw, E1000_PCS_LPAB);
+
+ /* Two bits in the Auto Negotiation Advertisement Register
+ * (PCS_ANADV) and two bits in the Auto Negotiation Base
+ * Page Ability Register (PCS_LPAB) determine flow control
+ * for both the PHY and the link partner. The following
+ * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
+ * 1999, describes these PAUSE resolution bits and how flow
+ * control is determined based upon these settings.
+ * NOTE: DC = Don't Care
+ *
+ * LOCAL DEVICE | LINK PARTNER
+ * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
+ *-------|---------|-------|---------|--------------------
+ * 0 | 0 | DC | DC | e1000_fc_none
+ * 0 | 1 | 0 | DC | e1000_fc_none
+ * 0 | 1 | 1 | 0 | e1000_fc_none
+ * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
+ * 1 | 0 | 0 | DC | e1000_fc_none
+ * 1 | DC | 1 | DC | e1000_fc_full
+ * 1 | 1 | 0 | 0 | e1000_fc_none
+ * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
+ *
+ * Are both PAUSE bits set to 1? If so, this implies
+ * Symmetric Flow Control is enabled at both ends. The
+ * ASM_DIR bits are irrelevant per the spec.
+ *
+ * For Symmetric Flow Control:
+ *
+ * LOCAL DEVICE | LINK PARTNER
+ * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
+ *-------|---------|-------|---------|--------------------
+ * 1 | DC | 1 | DC | e1000_fc_full
+ *
+ */
+ if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
+ (pcs_lp_ability_reg & E1000_TXCW_PAUSE)) {
+ /* Now we need to check if the user selected Rx ONLY
+ * of pause frames. In this case, we had to advertise
+ * FULL flow control because we could not advertise Rx
+ * ONLY. Hence, we must now check to see if we need to
+ * turn OFF the TRANSMISSION of PAUSE frames.
+ */
+ if (hw->fc.requested_mode == e1000_fc_full) {
+ hw->fc.current_mode = e1000_fc_full;
+ DEBUGOUT("Flow Control = FULL.\n");
+ } else {
+ hw->fc.current_mode = e1000_fc_rx_pause;
+ DEBUGOUT("Flow Control = Rx PAUSE frames only.\n");
+ }
+ }
+ /* For receiving PAUSE frames ONLY.
+ *
+ * LOCAL DEVICE | LINK PARTNER
+ * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
+ *-------|---------|-------|---------|--------------------
+ * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
+ */
+ else if (!(pcs_adv_reg & E1000_TXCW_PAUSE) &&
+ (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
+ (pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
+ (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
+ hw->fc.current_mode = e1000_fc_tx_pause;
+ DEBUGOUT("Flow Control = Tx PAUSE frames only.\n");
+ }
+ /* For transmitting PAUSE frames ONLY.
+ *
+ * LOCAL DEVICE | LINK PARTNER
+ * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
+ *-------|---------|-------|---------|--------------------
+ * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
+ */
+ else if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
+ (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
+ !(pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
+ (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
+ hw->fc.current_mode = e1000_fc_rx_pause;
+ DEBUGOUT("Flow Control = Rx PAUSE frames only.\n");
+ } else {
+ /* Per the IEEE spec, at this point flow control
+ * should be disabled.
+ */
+ hw->fc.current_mode = e1000_fc_none;
+ DEBUGOUT("Flow Control = NONE.\n");
+ }
+
+ /* Now we call a subroutine to actually force the MAC
+ * controller to use the correct flow control settings.
+ */
+ pcs_ctrl_reg = E1000_READ_REG(hw, E1000_PCS_LCTL);
+ pcs_ctrl_reg |= E1000_PCS_LCTL_FORCE_FCTRL;
+ E1000_WRITE_REG(hw, E1000_PCS_LCTL, pcs_ctrl_reg);
+
+ ret_val = e1000_force_mac_fc_generic(hw);
+ if (ret_val) {
+ DEBUGOUT("Error forcing flow control settings\n");
+ return ret_val;
+ }
+ }
+
+ return E1000_SUCCESS;
}
/**
@@ -1579,7 +1643,7 @@ out:
* speed and duplex for copper connections.
**/
s32 e1000_get_speed_and_duplex_copper_generic(struct e1000_hw *hw, u16 *speed,
- u16 *duplex)
+ u16 *duplex)
{
u32 status;
@@ -1618,7 +1682,7 @@ s32 e1000_get_speed_and_duplex_copper_generic(struct e1000_hw *hw, u16 *speed,
* for fiber/serdes links.
**/
s32 e1000_get_speed_and_duplex_fiber_serdes_generic(struct e1000_hw *hw,
- u16 *speed, u16 *duplex)
+ u16 *speed, u16 *duplex)
{
DEBUGFUNC("e1000_get_speed_and_duplex_fiber_serdes_generic");
@@ -1637,7 +1701,6 @@ s32 e1000_get_speed_and_duplex_fiber_serdes_generic(struct e1000_hw *hw,
s32 e1000_get_hw_semaphore_generic(struct e1000_hw *hw)
{
u32 swsm;
- s32 ret_val = E1000_SUCCESS;
s32 timeout = hw->nvm.word_size + 1;
s32 i = 0;
@@ -1655,8 +1718,7 @@ s32 e1000_get_hw_semaphore_generic(struct e1000_hw *hw)
if (i == timeout) {
DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
- ret_val = -E1000_ERR_NVM;
- goto out;
+ return -E1000_ERR_NVM;
}
/* Get the FW semaphore. */
@@ -1675,12 +1737,10 @@ s32 e1000_get_hw_semaphore_generic(struct e1000_hw *hw)
/* Release semaphores */
e1000_put_hw_semaphore_generic(hw);
DEBUGOUT("Driver can't access the NVM\n");
- ret_val = -E1000_ERR_NVM;
- goto out;
+ return -E1000_ERR_NVM;
}
-out:
- return ret_val;
+ return E1000_SUCCESS;
}
/**
@@ -1711,7 +1771,6 @@ void e1000_put_hw_semaphore_generic(struct e1000_hw *hw)
s32 e1000_get_auto_rd_done_generic(struct e1000_hw *hw)
{
s32 i = 0;
- s32 ret_val = E1000_SUCCESS;
DEBUGFUNC("e1000_get_auto_rd_done_generic");
@@ -1724,12 +1783,10 @@ s32 e1000_get_auto_rd_done_generic(struct e1000_hw *hw)
if (i == AUTO_READ_DONE_TIMEOUT) {
DEBUGOUT("Auto read by HW from NVM has not completed.\n");
- ret_val = -E1000_ERR_RESET;
- goto out;
+ return -E1000_ERR_RESET;
}
-out:
- return ret_val;
+ return E1000_SUCCESS;
}
/**
@@ -1749,14 +1806,13 @@ s32 e1000_valid_led_default_generic(struct e1000_hw *hw, u16 *data)
ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
if (ret_val) {
DEBUGOUT("NVM Read Error\n");
- goto out;
+ return ret_val;
}
if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
*data = ID_LED_DEFAULT;
-out:
- return ret_val;
+ return E1000_SUCCESS;
}
/**
@@ -1778,7 +1834,7 @@ s32 e1000_id_led_init_generic(struct e1000_hw *hw)
ret_val = hw->nvm.ops.valid_led_default(hw, &data);
if (ret_val)
- goto out;
+ return ret_val;
mac->ledctl_default = E1000_READ_REG(hw, E1000_LEDCTL);
mac->ledctl_mode1 = mac->ledctl_default;
@@ -1822,8 +1878,7 @@ s32 e1000_id_led_init_generic(struct e1000_hw *hw)
}
}
-out:
- return ret_val;
+ return E1000_SUCCESS;
}
/**
@@ -1836,31 +1891,26 @@ out:
s32 e1000_setup_led_generic(struct e1000_hw *hw)
{
u32 ledctl;
- s32 ret_val = E1000_SUCCESS;
DEBUGFUNC("e1000_setup_led_generic");
- if (hw->mac.ops.setup_led != e1000_setup_led_generic) {
- ret_val = -E1000_ERR_CONFIG;
- goto out;
- }
+ if (hw->mac.ops.setup_led != e1000_setup_led_generic)
+ return -E1000_ERR_CONFIG;
if (hw->phy.media_type == e1000_media_type_fiber) {
ledctl = E1000_READ_REG(hw, E1000_LEDCTL);
hw->mac.ledctl_default = ledctl;
/* Turn off LED0 */
- ledctl &= ~(E1000_LEDCTL_LED0_IVRT |
- E1000_LEDCTL_LED0_BLINK |
- E1000_LEDCTL_LED0_MODE_MASK);
+ ledctl &= ~(E1000_LEDCTL_LED0_IVRT | E1000_LEDCTL_LED0_BLINK |
+ E1000_LEDCTL_LED0_MODE_MASK);
ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
- E1000_LEDCTL_LED0_MODE_SHIFT);
+ E1000_LEDCTL_LED0_MODE_SHIFT);
E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl);
} else if (hw->phy.media_type == e1000_media_type_copper) {
E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1);
}
-out:
- return ret_val;
+ return E1000_SUCCESS;
}
/**
@@ -1896,16 +1946,28 @@ s32 e1000_blink_led_generic(struct e1000_hw *hw)
ledctl_blink = E1000_LEDCTL_LED0_BLINK |
(E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
} else {
- /*
- * set the blink bit for each LED that's "on" (0x0E)
- * in ledctl_mode2
+ /* Set the blink bit for each LED that's "on" (0x0E)
+ * (or "off" if inverted) in ledctl_mode2. The blink
+ * logic in hardware only works when mode is set to "on"
+ * so it must be changed accordingly when the mode is
+ * "off" and inverted.
*/
ledctl_blink = hw->mac.ledctl_mode2;
- for (i = 0; i < 4; i++)
- if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
- E1000_LEDCTL_MODE_LED_ON)
- ledctl_blink |= (E1000_LEDCTL_LED0_BLINK <<
- (i * 8));
+ for (i = 0; i < 32; i += 8) {
+ u32 mode = (hw->mac.ledctl_mode2 >> i) &
+ E1000_LEDCTL_LED0_MODE_MASK;
+ u32 led_default = hw->mac.ledctl_default >> i;
+
+ if ((!(led_default & E1000_LEDCTL_LED0_IVRT) &&
+ (mode == E1000_LEDCTL_MODE_LED_ON)) ||
+ ((led_default & E1000_LEDCTL_LED0_IVRT) &&
+ (mode == E1000_LEDCTL_MODE_LED_OFF))) {
+ ledctl_blink &=
+ ~(E1000_LEDCTL_LED0_MODE_MASK << i);
+ ledctl_blink |= (E1000_LEDCTL_LED0_BLINK |
+ E1000_LEDCTL_MODE_LED_ON) << i;
+ }
+ }
}
E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl_blink);
@@ -1985,7 +2047,7 @@ void e1000_set_pcie_no_snoop_generic(struct e1000_hw *hw, u32 no_snoop)
DEBUGFUNC("e1000_set_pcie_no_snoop_generic");
if (hw->bus.type != e1000_bus_type_pci_express)
- goto out;
+ return;
if (no_snoop) {
gcr = E1000_READ_REG(hw, E1000_GCR);
@@ -1993,8 +2055,6 @@ void e1000_set_pcie_no_snoop_generic(struct e1000_hw *hw, u32 no_snoop)
gcr |= no_snoop;
E1000_WRITE_REG(hw, E1000_GCR, gcr);
}
-out:
- return;
}
/**
@@ -2012,12 +2072,11 @@ s32 e1000_disable_pcie_master_generic(struct e1000_hw *hw)
{
u32 ctrl;
s32 timeout = MASTER_DISABLE_TIMEOUT;
- s32 ret_val = E1000_SUCCESS;
DEBUGFUNC("e1000_disable_pcie_master_generic");
if (hw->bus.type != e1000_bus_type_pci_express)
- goto out;
+ return E1000_SUCCESS;
ctrl = E1000_READ_REG(hw, E1000_CTRL);
ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
@@ -2033,11 +2092,10 @@ s32 e1000_disable_pcie_master_generic(struct e1000_hw *hw)
if (!timeout) {
DEBUGOUT("Master requests are pending.\n");
- ret_val = -E1000_ERR_MASTER_REQUESTS_PENDING;
+ return -E1000_ERR_MASTER_REQUESTS_PENDING;
}
-out:
- return ret_val;
+ return E1000_SUCCESS;
}
/**
@@ -2054,7 +2112,7 @@ void e1000_reset_adaptive_generic(struct e1000_hw *hw)
if (!mac->adaptive_ifs) {
DEBUGOUT("Not in Adaptive IFS mode!\n");
- goto out;
+ return;
}
mac->current_ifs_val = 0;
@@ -2065,8 +2123,6 @@ void e1000_reset_adaptive_generic(struct e1000_hw *hw)
mac->in_ifs_mode = FALSE;
E1000_WRITE_REG(hw, E1000_AIT, 0);
-out:
- return;
}
/**
@@ -2084,7 +2140,7 @@ void e1000_update_adaptive_generic(struct e1000_hw *hw)
if (!mac->adaptive_ifs) {
DEBUGOUT("Not in Adaptive IFS mode!\n");
- goto out;
+ return;
}
if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) {
@@ -2096,7 +2152,8 @@ void e1000_update_adaptive_generic(struct e1000_hw *hw)
else
mac->current_ifs_val +=
mac->ifs_step_size;
- E1000_WRITE_REG(hw, E1000_AIT, mac->current_ifs_val);
+ E1000_WRITE_REG(hw, E1000_AIT,
+ mac->current_ifs_val);
}
}
} else {
@@ -2107,8 +2164,6 @@ void e1000_update_adaptive_generic(struct e1000_hw *hw)
E1000_WRITE_REG(hw, E1000_AIT, 0);
}
}
-out:
- return;
}
/**
@@ -2120,19 +2175,29 @@ out:
**/
static s32 e1000_validate_mdi_setting_generic(struct e1000_hw *hw)
{
- s32 ret_val = E1000_SUCCESS;
-
DEBUGFUNC("e1000_validate_mdi_setting_generic");
if (!hw->mac.autoneg && (hw->phy.mdix == 0 || hw->phy.mdix == 3)) {
DEBUGOUT("Invalid MDI setting detected\n");
hw->phy.mdix = 1;
- ret_val = -E1000_ERR_CONFIG;
- goto out;
+ return -E1000_ERR_CONFIG;
}
-out:
- return ret_val;
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_validate_mdi_setting_crossover_generic - Verify MDI/MDIx settings
+ * @hw: pointer to the HW structure
+ *
+ * Validate the MDI/MDIx setting, allowing for auto-crossover during forced
+ * operation.
+ **/
+s32 e1000_validate_mdi_setting_crossover_generic(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_validate_mdi_setting_crossover_generic");
+
+ return E1000_SUCCESS;
}
/**
@@ -2147,10 +2212,9 @@ out:
* completion.
**/
s32 e1000_write_8bit_ctrl_reg_generic(struct e1000_hw *hw, u32 reg,
- u32 offset, u8 data)
+ u32 offset, u8 data)
{
u32 i, regvalue = 0;
- s32 ret_val = E1000_SUCCESS;
DEBUGFUNC("e1000_write_8bit_ctrl_reg_generic");
@@ -2167,10 +2231,8 @@ s32 e1000_write_8bit_ctrl_reg_generic(struct e1000_hw *hw, u32 reg,
}
if (!(regvalue & E1000_GEN_CTL_READY)) {
DEBUGOUT1("Reg %08x did not indicate ready\n", reg);
- ret_val = -E1000_ERR_PHY;
- goto out;
+ return -E1000_ERR_PHY;
}
-out:
- return ret_val;
+ return E1000_SUCCESS;
}
diff --git a/freebsd/sys/dev/e1000/e1000_mac.h b/freebsd/sys/dev/e1000/e1000_mac.h
index 348d660f..3e2ccded 100644
--- a/freebsd/sys/dev/e1000/e1000_mac.h
+++ b/freebsd/sys/dev/e1000/e1000_mac.h
@@ -1,6 +1,6 @@
/******************************************************************************
- Copyright (c) 2001-2010, Intel Corporation
+ Copyright (c) 2001-2013, Intel Corporation
All rights reserved.
Redistribution and use in source and binary forms, with or without
@@ -35,10 +35,6 @@
#ifndef _E1000_MAC_H_
#define _E1000_MAC_H_
-/*
- * Functions that should not be called directly from drivers but can be used
- * by other files in this 'shared code'
- */
void e1000_init_mac_ops_generic(struct e1000_hw *hw);
void e1000_null_mac_generic(struct e1000_hw *hw);
s32 e1000_null_ops_generic(struct e1000_hw *hw);
@@ -47,6 +43,7 @@ bool e1000_null_mng_mode(struct e1000_hw *hw);
void e1000_null_update_mc(struct e1000_hw *hw, u8 *h, u32 a);
void e1000_null_write_vfta(struct e1000_hw *hw, u32 a, u32 b);
void e1000_null_rar_set(struct e1000_hw *hw, u8 *h, u32 a);
+s32 e1000_null_set_obff_timer(struct e1000_hw *hw, u32 a);
s32 e1000_blink_led_generic(struct e1000_hw *hw);
s32 e1000_check_for_copper_link_generic(struct e1000_hw *hw);
s32 e1000_check_for_fiber_link_generic(struct e1000_hw *hw);
@@ -64,31 +61,30 @@ void e1000_set_lan_id_single_port(struct e1000_hw *hw);
void e1000_set_lan_id_multi_port_pci(struct e1000_hw *hw);
s32 e1000_get_hw_semaphore_generic(struct e1000_hw *hw);
s32 e1000_get_speed_and_duplex_copper_generic(struct e1000_hw *hw, u16 *speed,
- u16 *duplex);
+ u16 *duplex);
s32 e1000_get_speed_and_duplex_fiber_serdes_generic(struct e1000_hw *hw,
- u16 *speed, u16 *duplex);
+ u16 *speed, u16 *duplex);
s32 e1000_id_led_init_generic(struct e1000_hw *hw);
s32 e1000_led_on_generic(struct e1000_hw *hw);
s32 e1000_led_off_generic(struct e1000_hw *hw);
void e1000_update_mc_addr_list_generic(struct e1000_hw *hw,
- u8 *mc_addr_list, u32 mc_addr_count);
+ u8 *mc_addr_list, u32 mc_addr_count);
s32 e1000_set_default_fc_generic(struct e1000_hw *hw);
s32 e1000_set_fc_watermarks_generic(struct e1000_hw *hw);
s32 e1000_setup_fiber_serdes_link_generic(struct e1000_hw *hw);
s32 e1000_setup_led_generic(struct e1000_hw *hw);
s32 e1000_setup_link_generic(struct e1000_hw *hw);
+s32 e1000_validate_mdi_setting_crossover_generic(struct e1000_hw *hw);
s32 e1000_write_8bit_ctrl_reg_generic(struct e1000_hw *hw, u32 reg,
- u32 offset, u8 data);
+ u32 offset, u8 data);
u32 e1000_hash_mc_addr_generic(struct e1000_hw *hw, u8 *mc_addr);
void e1000_clear_hw_cntrs_base_generic(struct e1000_hw *hw);
void e1000_clear_vfta_generic(struct e1000_hw *hw);
-void e1000_config_collision_dist_generic(struct e1000_hw *hw);
void e1000_init_rx_addrs_generic(struct e1000_hw *hw, u16 rar_count);
void e1000_pcix_mmrbc_workaround_generic(struct e1000_hw *hw);
void e1000_put_hw_semaphore_generic(struct e1000_hw *hw);
-void e1000_rar_set_generic(struct e1000_hw *hw, u8 *addr, u32 index);
s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw);
void e1000_reset_adaptive_generic(struct e1000_hw *hw);
void e1000_set_pcie_no_snoop_generic(struct e1000_hw *hw, u32 no_snoop);
diff --git a/freebsd/sys/dev/e1000/e1000_manage.c b/freebsd/sys/dev/e1000/e1000_manage.c
index 540b8a0c..1646f435 100644
--- a/freebsd/sys/dev/e1000/e1000_manage.c
+++ b/freebsd/sys/dev/e1000/e1000_manage.c
@@ -2,7 +2,7 @@
/******************************************************************************
- Copyright (c) 2001-2010, Intel Corporation
+ Copyright (c) 2001-2013, Intel Corporation
All rights reserved.
Redistribution and use in source and binary forms, with or without
@@ -40,8 +40,6 @@
#include <rtems/bsd/local/e1000_api.h>
#endif
-static u8 e1000_calculate_checksum(u8 *buffer, u32 length);
-
/**
* e1000_calculate_checksum - Calculate checksum for buffer
* @buffer: pointer to EEPROM
@@ -50,10 +48,10 @@ static u8 e1000_calculate_checksum(u8 *buffer, u32 length);
* Calculates the checksum for some buffer on a specified length. The
* checksum calculated is returned.
**/
-static u8 e1000_calculate_checksum(u8 *buffer, u32 length)
+u8 e1000_calculate_checksum(u8 *buffer, u32 length)
{
u32 i;
- u8 sum = 0;
+ u8 sum = 0;
DEBUGFUNC("e1000_calculate_checksum");
@@ -79,23 +77,20 @@ static u8 e1000_calculate_checksum(u8 *buffer, u32 length)
s32 e1000_mng_enable_host_if_generic(struct e1000_hw *hw)
{
u32 hicr;
- s32 ret_val = E1000_SUCCESS;
u8 i;
DEBUGFUNC("e1000_mng_enable_host_if_generic");
- if (!(hw->mac.arc_subsystem_valid)) {
+ if (!hw->mac.arc_subsystem_valid) {
DEBUGOUT("ARC subsystem not valid.\n");
- ret_val = -E1000_ERR_HOST_INTERFACE_COMMAND;
- goto out;
+ return -E1000_ERR_HOST_INTERFACE_COMMAND;
}
/* Check that the host interface is enabled. */
hicr = E1000_READ_REG(hw, E1000_HICR);
- if ((hicr & E1000_HICR_EN) == 0) {
+ if (!(hicr & E1000_HICR_EN)) {
DEBUGOUT("E1000_HOST_EN bit disabled.\n");
- ret_val = -E1000_ERR_HOST_INTERFACE_COMMAND;
- goto out;
+ return -E1000_ERR_HOST_INTERFACE_COMMAND;
}
/* check the previous command is completed */
for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT; i++) {
@@ -107,12 +102,10 @@ s32 e1000_mng_enable_host_if_generic(struct e1000_hw *hw)
if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) {
DEBUGOUT("Previous command timeout failed .\n");
- ret_val = -E1000_ERR_HOST_INTERFACE_COMMAND;
- goto out;
+ return -E1000_ERR_HOST_INTERFACE_COMMAND;
}
-out:
- return ret_val;
+ return E1000_SUCCESS;
}
/**
@@ -130,7 +123,7 @@ bool e1000_check_mng_mode_generic(struct e1000_hw *hw)
return (fwsm & E1000_FWSM_MODE_MASK) ==
- (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT);
+ (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT);
}
/**
@@ -155,17 +148,16 @@ bool e1000_enable_tx_pkt_filtering_generic(struct e1000_hw *hw)
/* No manageability, no filtering */
if (!hw->mac.ops.check_mng_mode(hw)) {
hw->mac.tx_pkt_filtering = FALSE;
- goto out;
+ return hw->mac.tx_pkt_filtering;
}
- /*
- * If we can't read from the host interface for whatever
+ /* If we can't read from the host interface for whatever
* reason, disable filtering.
*/
- ret_val = hw->mac.ops.mng_enable_host_if(hw);
+ ret_val = e1000_mng_enable_host_if_generic(hw);
if (ret_val != E1000_SUCCESS) {
hw->mac.tx_pkt_filtering = FALSE;
- goto out;
+ return hw->mac.tx_pkt_filtering;
}
/* Read in the header. Length and offset are in dwords. */
@@ -173,79 +165,28 @@ bool e1000_enable_tx_pkt_filtering_generic(struct e1000_hw *hw)
offset = E1000_MNG_DHCP_COOKIE_OFFSET >> 2;
for (i = 0; i < len; i++)
*(buffer + i) = E1000_READ_REG_ARRAY_DWORD(hw, E1000_HOST_IF,
- offset + i);
+ offset + i);
hdr_csum = hdr->checksum;
hdr->checksum = 0;
csum = e1000_calculate_checksum((u8 *)hdr,
- E1000_MNG_DHCP_COOKIE_LENGTH);
- /*
- * If either the checksums or signature don't match, then
+ E1000_MNG_DHCP_COOKIE_LENGTH);
+ /* If either the checksums or signature don't match, then
* the cookie area isn't considered valid, in which case we
* take the safe route of assuming Tx filtering is enabled.
*/
if ((hdr_csum != csum) || (hdr->signature != E1000_IAMT_SIGNATURE)) {
hw->mac.tx_pkt_filtering = TRUE;
- goto out;
+ return hw->mac.tx_pkt_filtering;
}
/* Cookie area is valid, make the final check for filtering. */
- if (!(hdr->status & E1000_MNG_DHCP_COOKIE_STATUS_PARSING)) {
+ if (!(hdr->status & E1000_MNG_DHCP_COOKIE_STATUS_PARSING))
hw->mac.tx_pkt_filtering = FALSE;
- goto out;
- }
-out:
return hw->mac.tx_pkt_filtering;
}
/**
- * e1000_mng_write_dhcp_info_generic - Writes DHCP info to host interface
- * @hw: pointer to the HW structure
- * @buffer: pointer to the host interface
- * @length: size of the buffer
- *
- * Writes the DHCP information to the host interface.
- **/
-s32 e1000_mng_write_dhcp_info_generic(struct e1000_hw *hw, u8 *buffer,
- u16 length)
-{
- struct e1000_host_mng_command_header hdr;
- s32 ret_val;
- u32 hicr;
-
- DEBUGFUNC("e1000_mng_write_dhcp_info_generic");
-
- hdr.command_id = E1000_MNG_DHCP_TX_PAYLOAD_CMD;
- hdr.command_length = length;
- hdr.reserved1 = 0;
- hdr.reserved2 = 0;
- hdr.checksum = 0;
-
- /* Enable the host interface */
- ret_val = hw->mac.ops.mng_enable_host_if(hw);
- if (ret_val)
- goto out;
-
- /* Populate the host interface with the contents of "buffer". */
- ret_val = hw->mac.ops.mng_host_if_write(hw, buffer, length,
- sizeof(hdr), &(hdr.checksum));
- if (ret_val)
- goto out;
-
- /* Write the manageability command header */
- ret_val = hw->mac.ops.mng_write_cmd_header(hw, &hdr);
- if (ret_val)
- goto out;
-
- /* Tell the ARC a new command is pending. */
- hicr = E1000_READ_REG(hw, E1000_HICR);
- E1000_WRITE_REG(hw, E1000_HICR, hicr | E1000_HICR_C);
-
-out:
- return ret_val;
-}
-
-/**
* e1000_mng_write_cmd_header_generic - Writes manageability command header
* @hw: pointer to the HW structure
* @hdr: pointer to the host interface command header
@@ -253,7 +194,7 @@ out:
* Writes the command header after does the checksum calculation.
**/
s32 e1000_mng_write_cmd_header_generic(struct e1000_hw *hw,
- struct e1000_host_mng_command_header *hdr)
+ struct e1000_host_mng_command_header *hdr)
{
u16 i, length = sizeof(struct e1000_host_mng_command_header);
@@ -267,7 +208,7 @@ s32 e1000_mng_write_cmd_header_generic(struct e1000_hw *hw,
/* Write the relevant command block into the ram area. */
for (i = 0; i < length; i++) {
E1000_WRITE_REG_ARRAY_DWORD(hw, E1000_HOST_IF, i,
- *((u32 *) hdr + i));
+ *((u32 *) hdr + i));
E1000_WRITE_FLUSH(hw);
}
@@ -287,22 +228,19 @@ s32 e1000_mng_write_cmd_header_generic(struct e1000_hw *hw,
* way. Also fills up the sum of the buffer in *buffer parameter.
**/
s32 e1000_mng_host_if_write_generic(struct e1000_hw *hw, u8 *buffer,
- u16 length, u16 offset, u8 *sum)
+ u16 length, u16 offset, u8 *sum)
{
u8 *tmp;
u8 *bufptr = buffer;
u32 data = 0;
- s32 ret_val = E1000_SUCCESS;
u16 remaining, i, j, prev_bytes;
DEBUGFUNC("e1000_mng_host_if_write_generic");
/* sum = only sum of the data and it is not checksum */
- if (length == 0 || offset + length > E1000_HI_MAX_MNG_DATA_LENGTH) {
- ret_val = -E1000_ERR_PARAM;
- goto out;
- }
+ if (length == 0 || offset + length > E1000_HI_MAX_MNG_DATA_LENGTH)
+ return -E1000_ERR_PARAM;
tmp = (u8 *)&data;
prev_bytes = offset & 0x3;
@@ -325,8 +263,7 @@ s32 e1000_mng_host_if_write_generic(struct e1000_hw *hw, u8 *buffer,
/* Calculate length in DWORDs */
length >>= 2;
- /*
- * The device driver writes the relevant command block into the
+ /* The device driver writes the relevant command block into the
* ram area.
*/
for (i = 0; i < length; i++) {
@@ -336,7 +273,7 @@ s32 e1000_mng_host_if_write_generic(struct e1000_hw *hw, u8 *buffer,
}
E1000_WRITE_REG_ARRAY_DWORD(hw, E1000_HOST_IF, offset + i,
- data);
+ data);
}
if (remaining) {
for (j = 0; j < sizeof(u32); j++) {
@@ -347,11 +284,57 @@ s32 e1000_mng_host_if_write_generic(struct e1000_hw *hw, u8 *buffer,
*sum += *(tmp + j);
}
- E1000_WRITE_REG_ARRAY_DWORD(hw, E1000_HOST_IF, offset + i, data);
+ E1000_WRITE_REG_ARRAY_DWORD(hw, E1000_HOST_IF, offset + i,
+ data);
}
-out:
- return ret_val;
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_mng_write_dhcp_info_generic - Writes DHCP info to host interface
+ * @hw: pointer to the HW structure
+ * @buffer: pointer to the host interface
+ * @length: size of the buffer
+ *
+ * Writes the DHCP information to the host interface.
+ **/
+s32 e1000_mng_write_dhcp_info_generic(struct e1000_hw *hw, u8 *buffer,
+ u16 length)
+{
+ struct e1000_host_mng_command_header hdr;
+ s32 ret_val;
+ u32 hicr;
+
+ DEBUGFUNC("e1000_mng_write_dhcp_info_generic");
+
+ hdr.command_id = E1000_MNG_DHCP_TX_PAYLOAD_CMD;
+ hdr.command_length = length;
+ hdr.reserved1 = 0;
+ hdr.reserved2 = 0;
+ hdr.checksum = 0;
+
+ /* Enable the host interface */
+ ret_val = e1000_mng_enable_host_if_generic(hw);
+ if (ret_val)
+ return ret_val;
+
+ /* Populate the host interface with the contents of "buffer". */
+ ret_val = e1000_mng_host_if_write_generic(hw, buffer, length,
+ sizeof(hdr), &(hdr.checksum));
+ if (ret_val)
+ return ret_val;
+
+ /* Write the manageability command header */
+ ret_val = e1000_mng_write_cmd_header_generic(hw, &hdr);
+ if (ret_val)
+ return ret_val;
+
+ /* Tell the ARC a new command is pending. */
+ hicr = E1000_READ_REG(hw, E1000_HICR);
+ E1000_WRITE_REG(hw, E1000_HICR, hicr | E1000_HICR_C);
+
+ return E1000_SUCCESS;
}
/**
@@ -365,17 +348,16 @@ bool e1000_enable_mng_pass_thru(struct e1000_hw *hw)
{
u32 manc;
u32 fwsm, factps;
- bool ret_val = FALSE;
DEBUGFUNC("e1000_enable_mng_pass_thru");
if (!hw->mac.asf_firmware_present)
- goto out;
+ return FALSE;
manc = E1000_READ_REG(hw, E1000_MANC);
if (!(manc & E1000_MANC_RCV_TCO_EN))
- goto out;
+ return FALSE;
if (hw->mac.has_fwsm) {
fwsm = E1000_READ_REG(hw, E1000_FWSM);
@@ -383,10 +365,8 @@ bool e1000_enable_mng_pass_thru(struct e1000_hw *hw)
if (!(factps & E1000_FACTPS_MNGCG) &&
((fwsm & E1000_FWSM_MODE_MASK) ==
- (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) {
- ret_val = TRUE;
- goto out;
- }
+ (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT)))
+ return TRUE;
} else if ((hw->mac.type == e1000_82574) ||
(hw->mac.type == e1000_82583)) {
u16 data;
@@ -396,17 +376,205 @@ bool e1000_enable_mng_pass_thru(struct e1000_hw *hw)
if (!(factps & E1000_FACTPS_MNGCG) &&
((data & E1000_NVM_INIT_CTRL2_MNGM) ==
- (e1000_mng_mode_pt << 13))) {
- ret_val = TRUE;
- goto out;
- }
+ (e1000_mng_mode_pt << 13)))
+ return TRUE;
} else if ((manc & E1000_MANC_SMBUS_EN) &&
- !(manc & E1000_MANC_ASF_EN)) {
- ret_val = TRUE;
- goto out;
+ !(manc & E1000_MANC_ASF_EN)) {
+ return TRUE;
}
-out:
- return ret_val;
+ return FALSE;
}
+/**
+ * e1000_host_interface_command - Writes buffer to host interface
+ * @hw: pointer to the HW structure
+ * @buffer: contains a command to write
+ * @length: the byte length of the buffer, must be multiple of 4 bytes
+ *
+ * Writes a buffer to the Host Interface. Upon success, returns E1000_SUCCESS
+ * else returns E1000_ERR_HOST_INTERFACE_COMMAND.
+ **/
+s32 e1000_host_interface_command(struct e1000_hw *hw, u8 *buffer, u32 length)
+{
+ u32 hicr, i;
+
+ DEBUGFUNC("e1000_host_interface_command");
+
+ if (!(hw->mac.arc_subsystem_valid)) {
+ DEBUGOUT("Hardware doesn't support host interface command.\n");
+ return E1000_SUCCESS;
+ }
+
+ if (!hw->mac.asf_firmware_present) {
+ DEBUGOUT("Firmware is not present.\n");
+ return E1000_SUCCESS;
+ }
+
+ if (length == 0 || length & 0x3 ||
+ length > E1000_HI_MAX_BLOCK_BYTE_LENGTH) {
+ DEBUGOUT("Buffer length failure.\n");
+ return -E1000_ERR_HOST_INTERFACE_COMMAND;
+ }
+
+ /* Check that the host interface is enabled. */
+ hicr = E1000_READ_REG(hw, E1000_HICR);
+ if (!(hicr & E1000_HICR_EN)) {
+ DEBUGOUT("E1000_HOST_EN bit disabled.\n");
+ return -E1000_ERR_HOST_INTERFACE_COMMAND;
+ }
+
+ /* Calculate length in DWORDs */
+ length >>= 2;
+
+ /* The device driver writes the relevant command block
+ * into the ram area.
+ */
+ for (i = 0; i < length; i++)
+ E1000_WRITE_REG_ARRAY_DWORD(hw, E1000_HOST_IF, i,
+ *((u32 *)buffer + i));
+
+ /* Setting this bit tells the ARC that a new command is pending. */
+ E1000_WRITE_REG(hw, E1000_HICR, hicr | E1000_HICR_C);
+
+ for (i = 0; i < E1000_HI_COMMAND_TIMEOUT; i++) {
+ hicr = E1000_READ_REG(hw, E1000_HICR);
+ if (!(hicr & E1000_HICR_C))
+ break;
+ msec_delay(1);
+ }
+
+ /* Check command successful completion. */
+ if (i == E1000_HI_COMMAND_TIMEOUT ||
+ (!(E1000_READ_REG(hw, E1000_HICR) & E1000_HICR_SV))) {
+ DEBUGOUT("Command has failed with no status valid.\n");
+ return -E1000_ERR_HOST_INTERFACE_COMMAND;
+ }
+
+ for (i = 0; i < length; i++)
+ *((u32 *)buffer + i) = E1000_READ_REG_ARRAY_DWORD(hw,
+ E1000_HOST_IF,
+ i);
+
+ return E1000_SUCCESS;
+}
+/**
+ * e1000_load_firmware - Writes proxy FW code buffer to host interface
+ * and execute.
+ * @hw: pointer to the HW structure
+ * @buffer: contains a firmware to write
+ * @length: the byte length of the buffer, must be multiple of 4 bytes
+ *
+ * Upon success returns E1000_SUCCESS, returns E1000_ERR_CONFIG if not enabled
+ * in HW else returns E1000_ERR_HOST_INTERFACE_COMMAND.
+ **/
+s32 e1000_load_firmware(struct e1000_hw *hw, u8 *buffer, u32 length)
+{
+ u32 hicr, hibba, fwsm, icr, i;
+
+ DEBUGFUNC("e1000_load_firmware");
+
+ if (hw->mac.type < e1000_i210) {
+ DEBUGOUT("Hardware doesn't support loading FW by the driver\n");
+ return -E1000_ERR_CONFIG;
+ }
+
+ /* Check that the host interface is enabled. */
+ hicr = E1000_READ_REG(hw, E1000_HICR);
+ if (!(hicr & E1000_HICR_EN)) {
+ DEBUGOUT("E1000_HOST_EN bit disabled.\n");
+ return -E1000_ERR_CONFIG;
+ }
+ if (!(hicr & E1000_HICR_MEMORY_BASE_EN)) {
+ DEBUGOUT("E1000_HICR_MEMORY_BASE_EN bit disabled.\n");
+ return -E1000_ERR_CONFIG;
+ }
+
+ if (length == 0 || length & 0x3 || length > E1000_HI_FW_MAX_LENGTH) {
+ DEBUGOUT("Buffer length failure.\n");
+ return -E1000_ERR_INVALID_ARGUMENT;
+ }
+
+ /* Clear notification from ROM-FW by reading ICR register */
+ icr = E1000_READ_REG(hw, E1000_ICR_V2);
+
+ /* Reset ROM-FW */
+ hicr = E1000_READ_REG(hw, E1000_HICR);
+ hicr |= E1000_HICR_FW_RESET_ENABLE;
+ E1000_WRITE_REG(hw, E1000_HICR, hicr);
+ hicr |= E1000_HICR_FW_RESET;
+ E1000_WRITE_REG(hw, E1000_HICR, hicr);
+ E1000_WRITE_FLUSH(hw);
+
+ /* Wait till MAC notifies about its readiness after ROM-FW reset */
+ for (i = 0; i < (E1000_HI_COMMAND_TIMEOUT * 2); i++) {
+ icr = E1000_READ_REG(hw, E1000_ICR_V2);
+ if (icr & E1000_ICR_MNG)
+ break;
+ msec_delay(1);
+ }
+
+ /* Check for timeout */
+ if (i == E1000_HI_COMMAND_TIMEOUT) {
+ DEBUGOUT("FW reset failed.\n");
+ return -E1000_ERR_HOST_INTERFACE_COMMAND;
+ }
+
+ /* Wait till MAC is ready to accept new FW code */
+ for (i = 0; i < E1000_HI_COMMAND_TIMEOUT; i++) {
+ fwsm = E1000_READ_REG(hw, E1000_FWSM);
+ if ((fwsm & E1000_FWSM_FW_VALID) &&
+ ((fwsm & E1000_FWSM_MODE_MASK) >> E1000_FWSM_MODE_SHIFT ==
+ E1000_FWSM_HI_EN_ONLY_MODE))
+ break;
+ msec_delay(1);
+ }
+
+ /* Check for timeout */
+ if (i == E1000_HI_COMMAND_TIMEOUT) {
+ DEBUGOUT("FW reset failed.\n");
+ return -E1000_ERR_HOST_INTERFACE_COMMAND;
+ }
+
+ /* Calculate length in DWORDs */
+ length >>= 2;
+
+ /* The device driver writes the relevant FW code block
+ * into the ram area in DWORDs via 1kB ram addressing window.
+ */
+ for (i = 0; i < length; i++) {
+ if (!(i % E1000_HI_FW_BLOCK_DWORD_LENGTH)) {
+ /* Point to correct 1kB ram window */
+ hibba = E1000_HI_FW_BASE_ADDRESS +
+ ((E1000_HI_FW_BLOCK_DWORD_LENGTH << 2) *
+ (i / E1000_HI_FW_BLOCK_DWORD_LENGTH));
+
+ E1000_WRITE_REG(hw, E1000_HIBBA, hibba);
+ }
+
+ E1000_WRITE_REG_ARRAY_DWORD(hw, E1000_HOST_IF,
+ i % E1000_HI_FW_BLOCK_DWORD_LENGTH,
+ *((u32 *)buffer + i));
+ }
+
+ /* Setting this bit tells the ARC that a new FW is ready to execute. */
+ hicr = E1000_READ_REG(hw, E1000_HICR);
+ E1000_WRITE_REG(hw, E1000_HICR, hicr | E1000_HICR_C);
+
+ for (i = 0; i < E1000_HI_COMMAND_TIMEOUT; i++) {
+ hicr = E1000_READ_REG(hw, E1000_HICR);
+ if (!(hicr & E1000_HICR_C))
+ break;
+ msec_delay(1);
+ }
+
+ /* Check for successful FW start. */
+ if (i == E1000_HI_COMMAND_TIMEOUT) {
+ DEBUGOUT("New FW did not start within timeout period.\n");
+ return -E1000_ERR_HOST_INTERFACE_COMMAND;
+ }
+
+ return E1000_SUCCESS;
+}
+
+
diff --git a/freebsd/sys/dev/e1000/e1000_manage.h b/freebsd/sys/dev/e1000/e1000_manage.h
index 146caeb5..51f17671 100644
--- a/freebsd/sys/dev/e1000/e1000_manage.h
+++ b/freebsd/sys/dev/e1000/e1000_manage.h
@@ -1,6 +1,6 @@
/******************************************************************************
- Copyright (c) 2001-2008, Intel Corporation
+ Copyright (c) 2001-2012, Intel Corporation
All rights reserved.
Redistribution and use in source and binary forms, with or without
@@ -39,12 +39,15 @@ bool e1000_check_mng_mode_generic(struct e1000_hw *hw);
bool e1000_enable_tx_pkt_filtering_generic(struct e1000_hw *hw);
s32 e1000_mng_enable_host_if_generic(struct e1000_hw *hw);
s32 e1000_mng_host_if_write_generic(struct e1000_hw *hw, u8 *buffer,
- u16 length, u16 offset, u8 *sum);
+ u16 length, u16 offset, u8 *sum);
s32 e1000_mng_write_cmd_header_generic(struct e1000_hw *hw,
- struct e1000_host_mng_command_header *hdr);
+ struct e1000_host_mng_command_header *hdr);
s32 e1000_mng_write_dhcp_info_generic(struct e1000_hw *hw,
- u8 *buffer, u16 length);
+ u8 *buffer, u16 length);
bool e1000_enable_mng_pass_thru(struct e1000_hw *hw);
+u8 e1000_calculate_checksum(u8 *buffer, u32 length);
+s32 e1000_host_interface_command(struct e1000_hw *hw, u8 *buffer, u32 length);
+s32 e1000_load_firmware(struct e1000_hw *hw, u8 *buffer, u32 length);
enum e1000_mng_mode {
e1000_mng_mode_none = 0,
@@ -54,35 +57,40 @@ enum e1000_mng_mode {
e1000_mng_mode_host_if_only
};
-#define E1000_FACTPS_MNGCG 0x20000000
+#define E1000_FACTPS_MNGCG 0x20000000
-#define E1000_FWSM_MODE_MASK 0xE
-#define E1000_FWSM_MODE_SHIFT 1
+#define E1000_FWSM_MODE_MASK 0xE
+#define E1000_FWSM_MODE_SHIFT 1
+#define E1000_FWSM_FW_VALID 0x00008000
+#define E1000_FWSM_HI_EN_ONLY_MODE 0x4
-#define E1000_MNG_IAMT_MODE 0x3
-#define E1000_MNG_DHCP_COOKIE_LENGTH 0x10
-#define E1000_MNG_DHCP_COOKIE_OFFSET 0x6F0
-#define E1000_MNG_DHCP_COMMAND_TIMEOUT 10
-#define E1000_MNG_DHCP_TX_PAYLOAD_CMD 64
-#define E1000_MNG_DHCP_COOKIE_STATUS_PARSING 0x1
-#define E1000_MNG_DHCP_COOKIE_STATUS_VLAN 0x2
+#define E1000_MNG_IAMT_MODE 0x3
+#define E1000_MNG_DHCP_COOKIE_LENGTH 0x10
+#define E1000_MNG_DHCP_COOKIE_OFFSET 0x6F0
+#define E1000_MNG_DHCP_COMMAND_TIMEOUT 10
+#define E1000_MNG_DHCP_TX_PAYLOAD_CMD 64
+#define E1000_MNG_DHCP_COOKIE_STATUS_PARSING 0x1
+#define E1000_MNG_DHCP_COOKIE_STATUS_VLAN 0x2
-#define E1000_VFTA_ENTRY_SHIFT 5
-#define E1000_VFTA_ENTRY_MASK 0x7F
-#define E1000_VFTA_ENTRY_BIT_SHIFT_MASK 0x1F
+#define E1000_VFTA_ENTRY_SHIFT 5
+#define E1000_VFTA_ENTRY_MASK 0x7F
+#define E1000_VFTA_ENTRY_BIT_SHIFT_MASK 0x1F
-#define E1000_HI_MAX_BLOCK_BYTE_LENGTH 1792 /* Num of bytes in range */
-#define E1000_HI_MAX_BLOCK_DWORD_LENGTH 448 /* Num of dwords in range */
-#define E1000_HI_COMMAND_TIMEOUT 500 /* Process HI command limit */
-
-#define E1000_HICR_EN 0x01 /* Enable bit - RO */
+#define E1000_HI_MAX_BLOCK_BYTE_LENGTH 1792 /* Num of bytes in range */
+#define E1000_HI_MAX_BLOCK_DWORD_LENGTH 448 /* Num of dwords in range */
+#define E1000_HI_COMMAND_TIMEOUT 500 /* Process HI cmd limit */
+#define E1000_HI_FW_BASE_ADDRESS 0x10000
+#define E1000_HI_FW_MAX_LENGTH (64 * 1024) /* Num of bytes */
+#define E1000_HI_FW_BLOCK_DWORD_LENGTH 256 /* Num of DWORDs per page */
+#define E1000_HICR_MEMORY_BASE_EN 0x200 /* MB Enable bit - RO */
+#define E1000_HICR_EN 0x01 /* Enable bit - RO */
/* Driver sets this bit when done to put command in RAM */
-#define E1000_HICR_C 0x02
-#define E1000_HICR_SV 0x04 /* Status Validity */
-#define E1000_HICR_FW_RESET_ENABLE 0x40
-#define E1000_HICR_FW_RESET 0x80
+#define E1000_HICR_C 0x02
+#define E1000_HICR_SV 0x04 /* Status Validity */
+#define E1000_HICR_FW_RESET_ENABLE 0x40
+#define E1000_HICR_FW_RESET 0x80
/* Intel(R) Active Management Technology signature */
-#define E1000_IAMT_SIGNATURE 0x544D4149
+#define E1000_IAMT_SIGNATURE 0x544D4149
#endif
diff --git a/freebsd/sys/dev/e1000/e1000_mbx.c b/freebsd/sys/dev/e1000/e1000_mbx.c
index 5236837a..7408d814 100644
--- a/freebsd/sys/dev/e1000/e1000_mbx.c
+++ b/freebsd/sys/dev/e1000/e1000_mbx.c
@@ -742,7 +742,9 @@ s32 e1000_init_mbx_params_pf(struct e1000_hw *hw)
{
struct e1000_mbx_info *mbx = &hw->mbx;
- if (hw->mac.type == e1000_82576) {
+ switch (hw->mac.type) {
+ case e1000_82576:
+ case e1000_i350:
mbx->timeout = 0;
mbx->usec_delay = 0;
@@ -761,8 +763,8 @@ s32 e1000_init_mbx_params_pf(struct e1000_hw *hw)
mbx->stats.reqs = 0;
mbx->stats.acks = 0;
mbx->stats.rsts = 0;
+ default:
+ return E1000_SUCCESS;
}
-
- return E1000_SUCCESS;
}
diff --git a/freebsd/sys/dev/e1000/e1000_nvm.c b/freebsd/sys/dev/e1000/e1000_nvm.c
index 8fefe31c..370dca32 100644
--- a/freebsd/sys/dev/e1000/e1000_nvm.c
+++ b/freebsd/sys/dev/e1000/e1000_nvm.c
@@ -2,7 +2,7 @@
/******************************************************************************
- Copyright (c) 2001-2010, Intel Corporation
+ Copyright (c) 2001-2013, Intel Corporation
All rights reserved.
Redistribution and use in source and binary forms, with or without
@@ -233,7 +233,6 @@ s32 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg)
{
u32 attempts = 100000;
u32 i, reg = 0;
- s32 ret_val = -E1000_ERR_NVM;
DEBUGFUNC("e1000_poll_eerd_eewr_done");
@@ -243,15 +242,13 @@ s32 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg)
else
reg = E1000_READ_REG(hw, E1000_EEWR);
- if (reg & E1000_NVM_RW_REG_DONE) {
- ret_val = E1000_SUCCESS;
- break;
- }
+ if (reg & E1000_NVM_RW_REG_DONE)
+ return E1000_SUCCESS;
usec_delay(5);
}
- return ret_val;
+ return -E1000_ERR_NVM;
}
/**
@@ -266,7 +263,6 @@ s32 e1000_acquire_nvm_generic(struct e1000_hw *hw)
{
u32 eecd = E1000_READ_REG(hw, E1000_EECD);
s32 timeout = E1000_NVM_GRANT_ATTEMPTS;
- s32 ret_val = E1000_SUCCESS;
DEBUGFUNC("e1000_acquire_nvm_generic");
@@ -285,10 +281,10 @@ s32 e1000_acquire_nvm_generic(struct e1000_hw *hw)
eecd &= ~E1000_EECD_REQ;
E1000_WRITE_REG(hw, E1000_EECD, eecd);
DEBUGOUT("Could not acquire NVM grant\n");
- ret_val = -E1000_ERR_NVM;
+ return -E1000_ERR_NVM;
}
- return ret_val;
+ return E1000_SUCCESS;
}
/**
@@ -319,8 +315,7 @@ static void e1000_standby_nvm(struct e1000_hw *hw)
usec_delay(nvm->delay_usec);
e1000_lower_eec_clk(hw, &eecd);
- } else
- if (nvm->type == e1000_nvm_eeprom_spi) {
+ } else if (nvm->type == e1000_nvm_eeprom_spi) {
/* Toggle CS to flush commands */
eecd |= E1000_EECD_CS;
E1000_WRITE_REG(hw, E1000_EECD, eecd);
@@ -388,8 +383,6 @@ static s32 e1000_ready_nvm_eeprom(struct e1000_hw *hw)
{
struct e1000_nvm_info *nvm = &hw->nvm;
u32 eecd = E1000_READ_REG(hw, E1000_EECD);
- s32 ret_val = E1000_SUCCESS;
- u16 timeout = 0;
u8 spi_stat_reg;
DEBUGFUNC("e1000_ready_nvm_eeprom");
@@ -401,23 +394,23 @@ static s32 e1000_ready_nvm_eeprom(struct e1000_hw *hw)
/* Set CS */
eecd |= E1000_EECD_CS;
E1000_WRITE_REG(hw, E1000_EECD, eecd);
- } else
- if (nvm->type == e1000_nvm_eeprom_spi) {
+ } else if (nvm->type == e1000_nvm_eeprom_spi) {
+ u16 timeout = NVM_MAX_RETRY_SPI;
+
/* Clear SK and CS */
eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
E1000_WRITE_REG(hw, E1000_EECD, eecd);
+ E1000_WRITE_FLUSH(hw);
usec_delay(1);
- timeout = NVM_MAX_RETRY_SPI;
- /*
- * Read "Status Register" repeatedly until the LSB is cleared.
+ /* Read "Status Register" repeatedly until the LSB is cleared.
* The EEPROM will signal that the command has been completed
* by clearing bit 0 of the internal status register. If it's
* not cleared within 'timeout', then error out.
*/
while (timeout) {
e1000_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI,
- hw->nvm.opcode_bits);
+ hw->nvm.opcode_bits);
spi_stat_reg = (u8)e1000_shift_in_eec_bits(hw, 8);
if (!(spi_stat_reg & NVM_STATUS_RDY_SPI))
break;
@@ -429,13 +422,11 @@ static s32 e1000_ready_nvm_eeprom(struct e1000_hw *hw)
if (!timeout) {
DEBUGOUT("SPI NVM Status error\n");
- ret_val = -E1000_ERR_NVM;
- goto out;
+ return -E1000_ERR_NVM;
}
}
-out:
- return ret_val;
+ return E1000_SUCCESS;
}
/**
@@ -457,20 +448,18 @@ s32 e1000_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
DEBUGFUNC("e1000_read_nvm_spi");
- /*
- * A check for invalid values: offset too large, too many words,
+ /* A check for invalid values: offset too large, too many words,
* and not enough words.
*/
if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
(words == 0)) {
DEBUGOUT("nvm parameter(s) out of bounds\n");
- ret_val = -E1000_ERR_NVM;
- goto out;
+ return -E1000_ERR_NVM;
}
ret_val = nvm->ops.acquire(hw);
if (ret_val)
- goto out;
+ return ret_val;
ret_val = e1000_ready_nvm_eeprom(hw);
if (ret_val)
@@ -485,8 +474,7 @@ s32 e1000_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
e1000_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits);
e1000_shift_out_eec_bits(hw, (u16)(offset*2), nvm->address_bits);
- /*
- * Read the data. SPI NVMs increment the address with each byte
+ /* Read the data. SPI NVMs increment the address with each byte
* read and will roll over if reading beyond the end. This allows
* us to read the whole NVM from any offset
*/
@@ -498,7 +486,6 @@ s32 e1000_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
release:
nvm->ops.release(hw);
-out:
return ret_val;
}
@@ -512,7 +499,7 @@ out:
* Reads a 16 bit word from the EEPROM.
**/
s32 e1000_read_nvm_microwire(struct e1000_hw *hw, u16 offset, u16 words,
- u16 *data)
+ u16 *data)
{
struct e1000_nvm_info *nvm = &hw->nvm;
u32 i = 0;
@@ -521,20 +508,18 @@ s32 e1000_read_nvm_microwire(struct e1000_hw *hw, u16 offset, u16 words,
DEBUGFUNC("e1000_read_nvm_microwire");
- /*
- * A check for invalid values: offset too large, too many words,
+ /* A check for invalid values: offset too large, too many words,
* and not enough words.
*/
if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
(words == 0)) {
DEBUGOUT("nvm parameter(s) out of bounds\n");
- ret_val = -E1000_ERR_NVM;
- goto out;
+ return -E1000_ERR_NVM;
}
ret_val = nvm->ops.acquire(hw);
if (ret_val)
- goto out;
+ return ret_val;
ret_val = e1000_ready_nvm_eeprom(hw);
if (ret_val)
@@ -546,8 +531,7 @@ s32 e1000_read_nvm_microwire(struct e1000_hw *hw, u16 offset, u16 words,
e1000_shift_out_eec_bits(hw, (u16)(offset + i),
nvm->address_bits);
- /*
- * Read the data. For microwire, each word requires the
+ /* Read the data. For microwire, each word requires the
* overhead of setup and tear-down.
*/
data[i] = e1000_shift_in_eec_bits(hw, 16);
@@ -557,7 +541,6 @@ s32 e1000_read_nvm_microwire(struct e1000_hw *hw, u16 offset, u16 words,
release:
nvm->ops.release(hw);
-out:
return ret_val;
}
@@ -578,15 +561,13 @@ s32 e1000_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
DEBUGFUNC("e1000_read_nvm_eerd");
- /*
- * A check for invalid values: offset too large, too many words,
+ /* A check for invalid values: offset too large, too many words,
* too many words for the offset, and not enough words.
*/
if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
(words == 0)) {
DEBUGOUT("nvm parameter(s) out of bounds\n");
- ret_val = -E1000_ERR_NVM;
- goto out;
+ return -E1000_ERR_NVM;
}
for (i = 0; i < words; i++) {
@@ -599,10 +580,9 @@ s32 e1000_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
break;
data[i] = (E1000_READ_REG(hw, E1000_EERD) >>
- E1000_NVM_RW_REG_DATA);
+ E1000_NVM_RW_REG_DATA);
}
-out:
return ret_val;
}
@@ -621,43 +601,42 @@ out:
s32 e1000_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
{
struct e1000_nvm_info *nvm = &hw->nvm;
- s32 ret_val;
+ s32 ret_val = -E1000_ERR_NVM;
u16 widx = 0;
DEBUGFUNC("e1000_write_nvm_spi");
- /*
- * A check for invalid values: offset too large, too many words,
+ /* A check for invalid values: offset too large, too many words,
* and not enough words.
*/
if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
(words == 0)) {
DEBUGOUT("nvm parameter(s) out of bounds\n");
- ret_val = -E1000_ERR_NVM;
- goto out;
+ return -E1000_ERR_NVM;
}
- ret_val = nvm->ops.acquire(hw);
- if (ret_val)
- goto out;
-
while (widx < words) {
u8 write_opcode = NVM_WRITE_OPCODE_SPI;
- ret_val = e1000_ready_nvm_eeprom(hw);
+ ret_val = nvm->ops.acquire(hw);
if (ret_val)
- goto release;
+ return ret_val;
+
+ ret_val = e1000_ready_nvm_eeprom(hw);
+ if (ret_val) {
+ nvm->ops.release(hw);
+ return ret_val;
+ }
e1000_standby_nvm(hw);
/* Send the WRITE ENABLE command (8 bit opcode) */
e1000_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI,
- nvm->opcode_bits);
+ nvm->opcode_bits);
e1000_standby_nvm(hw);
- /*
- * Some SPI eeproms use the 8th address bit embedded in the
+ /* Some SPI eeproms use the 8th address bit embedded in the
* opcode
*/
if ((nvm->address_bits == 8) && (offset >= 128))
@@ -666,7 +645,7 @@ s32 e1000_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
/* Send the Write command (8-bit opcode + addr) */
e1000_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits);
e1000_shift_out_eec_bits(hw, (u16)((offset + widx) * 2),
- nvm->address_bits);
+ nvm->address_bits);
/* Loop to allow for up to whole page write of eeprom */
while (widx < words) {
@@ -680,13 +659,10 @@ s32 e1000_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
break;
}
}
+ msec_delay(10);
+ nvm->ops.release(hw);
}
- msec_delay(10);
-release:
- nvm->ops.release(hw);
-
-out:
return ret_val;
}
@@ -703,7 +679,7 @@ out:
* EEPROM will most likely contain an invalid checksum.
**/
s32 e1000_write_nvm_microwire(struct e1000_hw *hw, u16 offset, u16 words,
- u16 *data)
+ u16 *data)
{
struct e1000_nvm_info *nvm = &hw->nvm;
s32 ret_val;
@@ -713,27 +689,25 @@ s32 e1000_write_nvm_microwire(struct e1000_hw *hw, u16 offset, u16 words,
DEBUGFUNC("e1000_write_nvm_microwire");
- /*
- * A check for invalid values: offset too large, too many words,
+ /* A check for invalid values: offset too large, too many words,
* and not enough words.
*/
if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
(words == 0)) {
DEBUGOUT("nvm parameter(s) out of bounds\n");
- ret_val = -E1000_ERR_NVM;
- goto out;
+ return -E1000_ERR_NVM;
}
ret_val = nvm->ops.acquire(hw);
if (ret_val)
- goto out;
+ return ret_val;
ret_val = e1000_ready_nvm_eeprom(hw);
if (ret_val)
goto release;
e1000_shift_out_eec_bits(hw, NVM_EWEN_OPCODE_MICROWIRE,
- (u16)(nvm->opcode_bits + 2));
+ (u16)(nvm->opcode_bits + 2));
e1000_shift_out_eec_bits(hw, 0, (u16)(nvm->address_bits - 2));
@@ -741,10 +715,10 @@ s32 e1000_write_nvm_microwire(struct e1000_hw *hw, u16 offset, u16 words,
while (words_written < words) {
e1000_shift_out_eec_bits(hw, NVM_WRITE_OPCODE_MICROWIRE,
- nvm->opcode_bits);
+ nvm->opcode_bits);
e1000_shift_out_eec_bits(hw, (u16)(offset + words_written),
- nvm->address_bits);
+ nvm->address_bits);
e1000_shift_out_eec_bits(hw, data[words_written], 16);
@@ -769,14 +743,13 @@ s32 e1000_write_nvm_microwire(struct e1000_hw *hw, u16 offset, u16 words,
}
e1000_shift_out_eec_bits(hw, NVM_EWDS_OPCODE_MICROWIRE,
- (u16)(nvm->opcode_bits + 2));
+ (u16)(nvm->opcode_bits + 2));
e1000_shift_out_eec_bits(hw, 0, (u16)(nvm->address_bits - 2));
release:
nvm->ops.release(hw);
-out:
return ret_val;
}
@@ -789,8 +762,8 @@ out:
* Reads the product board assembly (PBA) number from the EEPROM and stores
* the value in pba_num.
**/
-s32 e1000_read_pba_string_generic(struct e1000_hw *hw, u8 *pba_num,
- u32 pba_num_size)
+s32 e1000_read_pba_string_generic(struct e1000_hw *hw, u8 *pba_num,
+ u32 pba_num_size)
{
s32 ret_val;
u16 nvm_data;
@@ -802,32 +775,30 @@ s32 e1000_read_pba_string_generic(struct e1000_hw *hw, u8 *pba_num,
if (pba_num == NULL) {
DEBUGOUT("PBA string buffer was null\n");
- ret_val = E1000_ERR_INVALID_ARGUMENT;
- goto out;
+ return -E1000_ERR_INVALID_ARGUMENT;
}
ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
if (ret_val) {
DEBUGOUT("NVM Read Error\n");
- goto out;
+ return ret_val;
}
ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &pba_ptr);
if (ret_val) {
DEBUGOUT("NVM Read Error\n");
- goto out;
+ return ret_val;
}
- /*
- * if nvm_data is not ptr guard the PBA must be in legacy format which
+ /* if nvm_data is not ptr guard the PBA must be in legacy format which
* means pba_ptr is actually our second data word for the PBA number
* and we can decode it into an ascii string
*/
if (nvm_data != NVM_PBA_PTR_GUARD) {
DEBUGOUT("NVM PBA number is not stored as string\n");
- /* we will need 11 characters to store the PBA */
- if (pba_num_size < 11) {
+ /* make sure callers buffer is big enough to store the PBA */
+ if (pba_num_size < E1000_PBANUM_LENGTH) {
DEBUGOUT("PBA string buffer too small\n");
return E1000_ERR_NO_SPACE;
}
@@ -855,25 +826,23 @@ s32 e1000_read_pba_string_generic(struct e1000_hw *hw, u8 *pba_num,
pba_num[offset] += 'A' - 0xA;
}
- goto out;
+ return E1000_SUCCESS;
}
ret_val = hw->nvm.ops.read(hw, pba_ptr, 1, &length);
if (ret_val) {
DEBUGOUT("NVM Read Error\n");
- goto out;
+ return ret_val;
}
if (length == 0xFFFF || length == 0) {
DEBUGOUT("NVM PBA number section invalid length\n");
- ret_val = E1000_ERR_NVM_PBA_SECTION;
- goto out;
+ return -E1000_ERR_NVM_PBA_SECTION;
}
/* check if pba_num buffer is big enough */
if (pba_num_size < (((u32)length * 2) - 1)) {
DEBUGOUT("PBA string buffer too small\n");
- ret_val = E1000_ERR_NO_SPACE;
- goto out;
+ return -E1000_ERR_NO_SPACE;
}
/* trim pba length from start of string */
@@ -884,15 +853,14 @@ s32 e1000_read_pba_string_generic(struct e1000_hw *hw, u8 *pba_num,
ret_val = hw->nvm.ops.read(hw, pba_ptr + offset, 1, &nvm_data);
if (ret_val) {
DEBUGOUT("NVM Read Error\n");
- goto out;
+ return ret_val;
}
pba_num[offset * 2] = (u8)(nvm_data >> 8);
pba_num[(offset * 2) + 1] = (u8)(nvm_data & 0xFF);
}
pba_num[offset * 2] = '\0';
-out:
- return ret_val;
+ return E1000_SUCCESS;
}
/**
@@ -914,85 +882,233 @@ s32 e1000_read_pba_length_generic(struct e1000_hw *hw, u32 *pba_num_size)
if (pba_num_size == NULL) {
DEBUGOUT("PBA buffer size was null\n");
- ret_val = E1000_ERR_INVALID_ARGUMENT;
- goto out;
+ return -E1000_ERR_INVALID_ARGUMENT;
}
ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
if (ret_val) {
DEBUGOUT("NVM Read Error\n");
- goto out;
+ return ret_val;
}
ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &pba_ptr);
if (ret_val) {
DEBUGOUT("NVM Read Error\n");
- goto out;
+ return ret_val;
}
/* if data is not ptr guard the PBA must be in legacy format */
if (nvm_data != NVM_PBA_PTR_GUARD) {
- *pba_num_size = 11;
- goto out;
+ *pba_num_size = E1000_PBANUM_LENGTH;
+ return E1000_SUCCESS;
}
ret_val = hw->nvm.ops.read(hw, pba_ptr, 1, &length);
if (ret_val) {
DEBUGOUT("NVM Read Error\n");
- goto out;
+ return ret_val;
}
if (length == 0xFFFF || length == 0) {
DEBUGOUT("NVM PBA number section invalid length\n");
- ret_val = E1000_ERR_NVM_PBA_SECTION;
- goto out;
+ return -E1000_ERR_NVM_PBA_SECTION;
}
- /*
- * Convert from length in u16 values to u8 chars, add 1 for NULL,
+ /* Convert from length in u16 values to u8 chars, add 1 for NULL,
* and subtract 2 because length field is included in length.
*/
*pba_num_size = ((u32)length * 2) - 1;
-out:
- return ret_val;
+ return E1000_SUCCESS;
}
+
/**
- * e1000_read_pba_num_generic - Read device part number
+ * e1000_read_pba_raw
* @hw: pointer to the HW structure
- * @pba_num: pointer to device part number
+ * @eeprom_buf: optional pointer to EEPROM image
+ * @eeprom_buf_size: size of EEPROM image in words
+ * @max_pba_block_size: PBA block size limit
+ * @pba: pointer to output PBA structure
+ *
+ * Reads PBA from EEPROM image when eeprom_buf is not NULL.
+ * Reads PBA from physical EEPROM device when eeprom_buf is NULL.
*
- * Reads the product board assembly (PBA) number from the EEPROM and stores
- * the value in pba_num.
**/
-s32 e1000_read_pba_num_generic(struct e1000_hw *hw, u32 *pba_num)
+s32 e1000_read_pba_raw(struct e1000_hw *hw, u16 *eeprom_buf,
+ u32 eeprom_buf_size, u16 max_pba_block_size,
+ struct e1000_pba *pba)
{
- s32 ret_val;
- u16 nvm_data;
+ s32 ret_val;
+ u16 pba_block_size;
- DEBUGFUNC("e1000_read_pba_num_generic");
+ if (pba == NULL)
+ return -E1000_ERR_PARAM;
- ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
- if (ret_val) {
- DEBUGOUT("NVM Read Error\n");
- goto out;
- } else if (nvm_data == NVM_PBA_PTR_GUARD) {
- DEBUGOUT("NVM Not Supported\n");
- ret_val = E1000_NOT_IMPLEMENTED;
- goto out;
+ if (eeprom_buf == NULL) {
+ ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_0, 2,
+ &pba->word[0]);
+ if (ret_val)
+ return ret_val;
+ } else {
+ if (eeprom_buf_size > NVM_PBA_OFFSET_1) {
+ pba->word[0] = eeprom_buf[NVM_PBA_OFFSET_0];
+ pba->word[1] = eeprom_buf[NVM_PBA_OFFSET_1];
+ } else {
+ return -E1000_ERR_PARAM;
+ }
}
- *pba_num = (u32)(nvm_data << 16);
- ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &nvm_data);
- if (ret_val) {
- DEBUGOUT("NVM Read Error\n");
- goto out;
+ if (pba->word[0] == NVM_PBA_PTR_GUARD) {
+ if (pba->pba_block == NULL)
+ return -E1000_ERR_PARAM;
+
+ ret_val = e1000_get_pba_block_size(hw, eeprom_buf,
+ eeprom_buf_size,
+ &pba_block_size);
+ if (ret_val)
+ return ret_val;
+
+ if (pba_block_size > max_pba_block_size)
+ return -E1000_ERR_PARAM;
+
+ if (eeprom_buf == NULL) {
+ ret_val = e1000_read_nvm(hw, pba->word[1],
+ pba_block_size,
+ pba->pba_block);
+ if (ret_val)
+ return ret_val;
+ } else {
+ if (eeprom_buf_size > (u32)(pba->word[1] +
+ pba->pba_block[0])) {
+ memcpy(pba->pba_block,
+ &eeprom_buf[pba->word[1]],
+ pba_block_size * sizeof(u16));
+ } else {
+ return -E1000_ERR_PARAM;
+ }
+ }
}
- *pba_num |= nvm_data;
-out:
- return ret_val;
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_write_pba_raw
+ * @hw: pointer to the HW structure
+ * @eeprom_buf: optional pointer to EEPROM image
+ * @eeprom_buf_size: size of EEPROM image in words
+ * @pba: pointer to PBA structure
+ *
+ * Writes PBA to EEPROM image when eeprom_buf is not NULL.
+ * Writes PBA to physical EEPROM device when eeprom_buf is NULL.
+ *
+ **/
+s32 e1000_write_pba_raw(struct e1000_hw *hw, u16 *eeprom_buf,
+ u32 eeprom_buf_size, struct e1000_pba *pba)
+{
+ s32 ret_val;
+
+ if (pba == NULL)
+ return -E1000_ERR_PARAM;
+
+ if (eeprom_buf == NULL) {
+ ret_val = e1000_write_nvm(hw, NVM_PBA_OFFSET_0, 2,
+ &pba->word[0]);
+ if (ret_val)
+ return ret_val;
+ } else {
+ if (eeprom_buf_size > NVM_PBA_OFFSET_1) {
+ eeprom_buf[NVM_PBA_OFFSET_0] = pba->word[0];
+ eeprom_buf[NVM_PBA_OFFSET_1] = pba->word[1];
+ } else {
+ return -E1000_ERR_PARAM;
+ }
+ }
+
+ if (pba->word[0] == NVM_PBA_PTR_GUARD) {
+ if (pba->pba_block == NULL)
+ return -E1000_ERR_PARAM;
+
+ if (eeprom_buf == NULL) {
+ ret_val = e1000_write_nvm(hw, pba->word[1],
+ pba->pba_block[0],
+ pba->pba_block);
+ if (ret_val)
+ return ret_val;
+ } else {
+ if (eeprom_buf_size > (u32)(pba->word[1] +
+ pba->pba_block[0])) {
+ memcpy(&eeprom_buf[pba->word[1]],
+ pba->pba_block,
+ pba->pba_block[0] * sizeof(u16));
+ } else {
+ return -E1000_ERR_PARAM;
+ }
+ }
+ }
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_get_pba_block_size
+ * @hw: pointer to the HW structure
+ * @eeprom_buf: optional pointer to EEPROM image
+ * @eeprom_buf_size: size of EEPROM image in words
+ * @pba_data_size: pointer to output variable
+ *
+ * Returns the size of the PBA block in words. Function operates on EEPROM
+ * image if the eeprom_buf pointer is not NULL otherwise it accesses physical
+ * EEPROM device.
+ *
+ **/
+s32 e1000_get_pba_block_size(struct e1000_hw *hw, u16 *eeprom_buf,
+ u32 eeprom_buf_size, u16 *pba_block_size)
+{
+ s32 ret_val;
+ u16 pba_word[2];
+ u16 length;
+
+ DEBUGFUNC("e1000_get_pba_block_size");
+
+ if (eeprom_buf == NULL) {
+ ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_0, 2, &pba_word[0]);
+ if (ret_val)
+ return ret_val;
+ } else {
+ if (eeprom_buf_size > NVM_PBA_OFFSET_1) {
+ pba_word[0] = eeprom_buf[NVM_PBA_OFFSET_0];
+ pba_word[1] = eeprom_buf[NVM_PBA_OFFSET_1];
+ } else {
+ return -E1000_ERR_PARAM;
+ }
+ }
+
+ if (pba_word[0] == NVM_PBA_PTR_GUARD) {
+ if (eeprom_buf == NULL) {
+ ret_val = e1000_read_nvm(hw, pba_word[1] + 0, 1,
+ &length);
+ if (ret_val)
+ return ret_val;
+ } else {
+ if (eeprom_buf_size > pba_word[1])
+ length = eeprom_buf[pba_word[1] + 0];
+ else
+ return -E1000_ERR_PARAM;
+ }
+
+ if (length == 0xFFFF || length == 0)
+ return -E1000_ERR_NVM_PBA_SECTION;
+ } else {
+ /* PBA number in legacy format, there is no PBA Block. */
+ length = 0;
+ }
+
+ if (pba_block_size != NULL)
+ *pba_block_size = length;
+
+ return E1000_SUCCESS;
}
/**
@@ -1033,7 +1149,7 @@ s32 e1000_read_mac_addr_generic(struct e1000_hw *hw)
**/
s32 e1000_validate_nvm_checksum_generic(struct e1000_hw *hw)
{
- s32 ret_val = E1000_SUCCESS;
+ s32 ret_val;
u16 checksum = 0;
u16 i, nvm_data;
@@ -1043,19 +1159,17 @@ s32 e1000_validate_nvm_checksum_generic(struct e1000_hw *hw)
ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
if (ret_val) {
DEBUGOUT("NVM Read Error\n");
- goto out;
+ return ret_val;
}
checksum += nvm_data;
}
if (checksum != (u16) NVM_SUM) {
DEBUGOUT("NVM Checksum Invalid\n");
- ret_val = -E1000_ERR_NVM;
- goto out;
+ return -E1000_ERR_NVM;
}
-out:
- return ret_val;
+ return E1000_SUCCESS;
}
/**
@@ -1078,7 +1192,7 @@ s32 e1000_update_nvm_checksum_generic(struct e1000_hw *hw)
ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
if (ret_val) {
DEBUGOUT("NVM Read Error while updating checksum.\n");
- goto out;
+ return ret_val;
}
checksum += nvm_data;
}
@@ -1087,7 +1201,6 @@ s32 e1000_update_nvm_checksum_generic(struct e1000_hw *hw)
if (ret_val)
DEBUGOUT("NVM Write Error while updating checksum.\n");
-out:
return ret_val;
}
@@ -1111,3 +1224,4 @@ static void e1000_reload_nvm_generic(struct e1000_hw *hw)
E1000_WRITE_FLUSH(hw);
}
+
diff --git a/freebsd/sys/dev/e1000/e1000_nvm.h b/freebsd/sys/dev/e1000/e1000_nvm.h
index 36ee4448..34077b24 100644
--- a/freebsd/sys/dev/e1000/e1000_nvm.h
+++ b/freebsd/sys/dev/e1000/e1000_nvm.h
@@ -1,6 +1,6 @@
/******************************************************************************
- Copyright (c) 2001-2010, Intel Corporation
+ Copyright (c) 2001-2013, Intel Corporation
All rights reserved.
Redistribution and use in source and binary forms, with or without
@@ -35,6 +35,14 @@
#ifndef _E1000_NVM_H_
#define _E1000_NVM_H_
+#if !defined(NO_READ_PBA_RAW) || !defined(NO_WRITE_PBA_RAW)
+struct e1000_pba {
+ u16 word[2];
+ u16 *pba_block;
+};
+#endif
+
+
void e1000_init_nvm_ops_generic(struct e1000_hw *hw);
s32 e1000_null_read_nvm(struct e1000_hw *hw, u16 a, u16 b, u16 *c);
void e1000_null_nvm_generic(struct e1000_hw *hw);
@@ -44,27 +52,31 @@ s32 e1000_acquire_nvm_generic(struct e1000_hw *hw);
s32 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg);
s32 e1000_read_mac_addr_generic(struct e1000_hw *hw);
-s32 e1000_read_pba_num_generic(struct e1000_hw *hw, u32 *pba_num);
s32 e1000_read_pba_string_generic(struct e1000_hw *hw, u8 *pba_num,
- u32 pba_num_size);
+ u32 pba_num_size);
s32 e1000_read_pba_length_generic(struct e1000_hw *hw, u32 *pba_num_size);
+s32 e1000_read_pba_raw(struct e1000_hw *hw, u16 *eeprom_buf,
+ u32 eeprom_buf_size, u16 max_pba_block_size,
+ struct e1000_pba *pba);
+s32 e1000_write_pba_raw(struct e1000_hw *hw, u16 *eeprom_buf,
+ u32 eeprom_buf_size, struct e1000_pba *pba);
+s32 e1000_get_pba_block_size(struct e1000_hw *hw, u16 *eeprom_buf,
+ u32 eeprom_buf_size, u16 *pba_block_size);
s32 e1000_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data);
s32 e1000_read_nvm_microwire(struct e1000_hw *hw, u16 offset,
- u16 words, u16 *data);
+ u16 words, u16 *data);
s32 e1000_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words,
- u16 *data);
+ u16 *data);
s32 e1000_valid_led_default_generic(struct e1000_hw *hw, u16 *data);
s32 e1000_validate_nvm_checksum_generic(struct e1000_hw *hw);
-s32 e1000_write_nvm_eewr(struct e1000_hw *hw, u16 offset,
- u16 words, u16 *data);
s32 e1000_write_nvm_microwire(struct e1000_hw *hw, u16 offset,
- u16 words, u16 *data);
+ u16 words, u16 *data);
s32 e1000_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words,
- u16 *data);
+ u16 *data);
s32 e1000_update_nvm_checksum_generic(struct e1000_hw *hw);
void e1000_stop_nvm(struct e1000_hw *hw);
void e1000_release_nvm_generic(struct e1000_hw *hw);
-#define E1000_STM_OPCODE 0xDB00
+#define E1000_STM_OPCODE 0xDB00
#endif
diff --git a/freebsd/sys/dev/e1000/e1000_osdep.c b/freebsd/sys/dev/e1000/e1000_osdep.c
index e02899ad..2d59a9db 100644
--- a/freebsd/sys/dev/e1000/e1000_osdep.c
+++ b/freebsd/sys/dev/e1000/e1000_osdep.c
@@ -2,7 +2,7 @@
/******************************************************************************
- Copyright (c) 2001-2009, Intel Corporation
+ Copyright (c) 2001-2010, Intel Corporation
All rights reserved.
Redistribution and use in source and binary forms, with or without
@@ -81,7 +81,7 @@ e1000_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
device_t dev = ((struct e1000_osdep *)hw->back)->dev;
u32 offset;
- pci_find_extcap(dev, PCIY_EXPRESS, &offset);
+ pci_find_cap(dev, PCIY_EXPRESS, &offset);
*value = pci_read_config(dev, offset + reg, 2);
return (E1000_SUCCESS);
}
@@ -95,7 +95,7 @@ e1000_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
device_t dev = ((struct e1000_osdep *)hw->back)->dev;
u32 offset;
- pci_find_extcap(dev, PCIY_EXPRESS, &offset);
+ pci_find_cap(dev, PCIY_EXPRESS, &offset);
pci_write_config(dev, offset + reg, *value, 2);
return (E1000_SUCCESS);
}
diff --git a/freebsd/sys/dev/e1000/e1000_osdep.h b/freebsd/sys/dev/e1000/e1000_osdep.h
index e3db3ec5..345536a4 100644
--- a/freebsd/sys/dev/e1000/e1000_osdep.h
+++ b/freebsd/sys/dev/e1000/e1000_osdep.h
@@ -1,6 +1,6 @@
/******************************************************************************
- Copyright (c) 2001-2010, Intel Corporation
+ Copyright (c) 2001-2013, Intel Corporation
All rights reserved.
Redistribution and use in source and binary forms, with or without
@@ -66,23 +66,27 @@
#define MSGOUT(S, A, B) printf(S "\n", A, B)
#define DEBUGFUNC(F) DEBUGOUT(F);
#define DEBUGOUT(S) do {} while (0)
-#define DEBUGOUT1(S,A) do {} while (0)
+/* This define is needed or shared code will not build */
+#define DEBUGOUT1(S,A) if (0) printf(S,A);
#define DEBUGOUT2(S,A,B) do {} while (0)
#define DEBUGOUT3(S,A,B,C) do {} while (0)
#define DEBUGOUT7(S,A,B,C,D,E,F,G) do {} while (0)
#define STATIC static
#define FALSE 0
-#define false FALSE
#define TRUE 1
+#ifndef __bool_true_false_are_defined
+#define false FALSE
#define true TRUE
+#endif
#define CMD_MEM_WRT_INVALIDATE 0x0010 /* BIT_4 */
#define PCI_COMMAND_REGISTER PCIR_COMMAND
/* Mutex used in the shared code */
#define E1000_MUTEX struct mtx
#define E1000_MUTEX_INIT(mutex) mtx_init((mutex), #mutex, \
- MTX_NETWORK_LOCK, MTX_DEF)
+ MTX_NETWORK_LOCK, \
+ MTX_DEF | MTX_DUPOK)
#define E1000_MUTEX_DESTROY(mutex) mtx_destroy(mutex)
#define E1000_MUTEX_LOCK(mutex) mtx_lock(mutex)
#define E1000_MUTEX_TRYLOCK(mutex) mtx_trylock(mutex)
@@ -97,8 +101,10 @@ typedef int32_t s32;
typedef int16_t s16;
typedef int8_t s8;
#ifndef __rtems__
+#ifndef __bool_true_false_are_defined
typedef boolean_t bool;
#endif
+#endif /* __rtems__ */
#define __le16 u16
#define __le32 u32
diff --git a/freebsd/sys/dev/e1000/e1000_phy.c b/freebsd/sys/dev/e1000/e1000_phy.c
index c5365e51..73f03d74 100644
--- a/freebsd/sys/dev/e1000/e1000_phy.c
+++ b/freebsd/sys/dev/e1000/e1000_phy.c
@@ -2,7 +2,7 @@
/******************************************************************************
- Copyright (c) 2001-2010, Intel Corporation
+ Copyright (c) 2001-2013, Intel Corporation
All rights reserved.
Redistribution and use in source and binary forms, with or without
@@ -40,32 +40,32 @@
#include <rtems/bsd/local/e1000_api.h>
#endif
-static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg);
+static s32 e1000_wait_autoneg(struct e1000_hw *hw);
static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
- u16 *data, bool read);
+ u16 *data, bool read, bool page_set);
static u32 e1000_get_phy_addr_for_hv_page(u32 page);
static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
- u16 *data, bool read);
+ u16 *data, bool read);
/* Cable length tables */
-static const u16 e1000_m88_cable_length_table[] =
- { 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };
+static const u16 e1000_m88_cable_length_table[] = {
+ 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };
#define M88E1000_CABLE_LENGTH_TABLE_SIZE \
- (sizeof(e1000_m88_cable_length_table) / \
- sizeof(e1000_m88_cable_length_table[0]))
-
-static const u16 e1000_igp_2_cable_length_table[] =
- { 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21,
- 0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41,
- 6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61,
- 21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82,
- 40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104,
- 60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121,
- 83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124,
- 104, 109, 114, 118, 121, 124};
+ (sizeof(e1000_m88_cable_length_table) / \
+ sizeof(e1000_m88_cable_length_table[0]))
+
+static const u16 e1000_igp_2_cable_length_table[] = {
+ 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3,
+ 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22,
+ 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40,
+ 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61,
+ 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82,
+ 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95,
+ 100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121,
+ 124};
#define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
- (sizeof(e1000_igp_2_cable_length_table) / \
- sizeof(e1000_igp_2_cable_length_table[0]))
+ (sizeof(e1000_igp_2_cable_length_table) / \
+ sizeof(e1000_igp_2_cable_length_table[0]))
/**
* e1000_init_phy_ops_generic - Initialize PHY function pointers
@@ -88,20 +88,35 @@ void e1000_init_phy_ops_generic(struct e1000_hw *hw)
phy->ops.get_cfg_done = e1000_null_ops_generic;
phy->ops.get_cable_length = e1000_null_ops_generic;
phy->ops.get_info = e1000_null_ops_generic;
+ phy->ops.set_page = e1000_null_set_page;
phy->ops.read_reg = e1000_null_read_reg;
phy->ops.read_reg_locked = e1000_null_read_reg;
+ phy->ops.read_reg_page = e1000_null_read_reg;
phy->ops.release = e1000_null_phy_generic;
phy->ops.reset = e1000_null_ops_generic;
phy->ops.set_d0_lplu_state = e1000_null_lplu_state;
phy->ops.set_d3_lplu_state = e1000_null_lplu_state;
phy->ops.write_reg = e1000_null_write_reg;
phy->ops.write_reg_locked = e1000_null_write_reg;
+ phy->ops.write_reg_page = e1000_null_write_reg;
phy->ops.power_up = e1000_null_phy_generic;
phy->ops.power_down = e1000_null_phy_generic;
+ phy->ops.read_i2c_byte = e1000_read_i2c_byte_null;
+ phy->ops.write_i2c_byte = e1000_write_i2c_byte_null;
phy->ops.cfg_on_link_up = e1000_null_ops_generic;
}
/**
+ * e1000_null_set_page - No-op function, return 0
+ * @hw: pointer to the HW structure
+ **/
+s32 e1000_null_set_page(struct e1000_hw *hw, u16 data)
+{
+ DEBUGFUNC("e1000_null_set_page");
+ return E1000_SUCCESS;
+}
+
+/**
* e1000_null_read_reg - No-op function, return 0
* @hw: pointer to the HW structure
**/
@@ -142,6 +157,38 @@ s32 e1000_null_write_reg(struct e1000_hw *hw, u32 offset, u16 data)
}
/**
+ * e1000_read_i2c_byte_null - No-op function, return 0
+ * @hw: pointer to hardware structure
+ * @byte_offset: byte offset to write
+ * @dev_addr: device address
+ * @data: data value read
+ *
+ **/
+s32 e1000_read_i2c_byte_null(struct e1000_hw *hw, u8 byte_offset,
+ u8 dev_addr, u8 *data)
+{
+ DEBUGFUNC("e1000_read_i2c_byte_null");
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_write_i2c_byte_null - No-op function, return 0
+ * @hw: pointer to hardware structure
+ * @byte_offset: byte offset to write
+ * @dev_addr: device address
+ * @data: data value to write
+ *
+ **/
+s32 e1000_write_i2c_byte_null(struct e1000_hw *hw,
+ u8 byte_offset,
+ u8 dev_addr,
+ u8 data)
+{
+ DEBUGFUNC("e1000_write_i2c_byte_null");
+ return E1000_SUCCESS;
+}
+
+/**
* e1000_check_reset_block_generic - Check if PHY reset is blocked
* @hw: pointer to the HW structure
*
@@ -177,30 +224,30 @@ s32 e1000_get_phy_id(struct e1000_hw *hw)
DEBUGFUNC("e1000_get_phy_id");
- if (!(phy->ops.read_reg))
- goto out;
+ if (!phy->ops.read_reg)
+ return E1000_SUCCESS;
while (retry_count < 2) {
ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id);
if (ret_val)
- goto out;
+ return ret_val;
phy->id = (u32)(phy_id << 16);
usec_delay(20);
ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id);
if (ret_val)
- goto out;
+ return ret_val;
phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
if (phy->id != 0 && phy->id != PHY_REVISION_MASK)
- goto out;
+ return E1000_SUCCESS;
retry_count++;
}
-out:
- return ret_val;
+
+ return E1000_SUCCESS;
}
/**
@@ -211,21 +258,18 @@ out:
**/
s32 e1000_phy_reset_dsp_generic(struct e1000_hw *hw)
{
- s32 ret_val = E1000_SUCCESS;
+ s32 ret_val;
DEBUGFUNC("e1000_phy_reset_dsp_generic");
- if (!(hw->phy.ops.write_reg))
- goto out;
+ if (!hw->phy.ops.write_reg)
+ return E1000_SUCCESS;
ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
if (ret_val)
- goto out;
-
- ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0);
+ return ret_val;
-out:
- return ret_val;
+ return hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0);
}
/**
@@ -241,7 +285,6 @@ s32 e1000_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
{
struct e1000_phy_info *phy = &hw->phy;
u32 i, mdic = 0;
- s32 ret_val = E1000_SUCCESS;
DEBUGFUNC("e1000_read_phy_reg_mdic");
@@ -250,23 +293,17 @@ s32 e1000_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
return -E1000_ERR_PARAM;
}
- /*
- * Set up Op-code, Phy Address, and register offset in the MDI
+ /* Set up Op-code, Phy Address, and register offset in the MDI
* Control register. The MAC will take care of interfacing with the
* PHY to retrieve the desired data.
*/
mdic = ((offset << E1000_MDIC_REG_SHIFT) |
- (phy->addr << E1000_MDIC_PHY_SHIFT) |
- (E1000_MDIC_OP_READ));
+ (phy->addr << E1000_MDIC_PHY_SHIFT) |
+ (E1000_MDIC_OP_READ));
E1000_WRITE_REG(hw, E1000_MDIC, mdic);
- /* Workaround for Si errata */
- if ((hw->phy.type == e1000_phy_82577) && (hw->revision_id <= 2))
- msec_delay(10);
-
- /*
- * Poll the ready bit to see if the MDI read completed
+ /* Poll the ready bit to see if the MDI read completed
* Increasing the time out as testing showed failures with
* the lower time out
*/
@@ -278,25 +315,27 @@ s32 e1000_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
}
if (!(mdic & E1000_MDIC_READY)) {
DEBUGOUT("MDI Read did not complete\n");
- ret_val = -E1000_ERR_PHY;
- goto out;
+ return -E1000_ERR_PHY;
}
if (mdic & E1000_MDIC_ERROR) {
DEBUGOUT("MDI Error\n");
- ret_val = -E1000_ERR_PHY;
- goto out;
+ return -E1000_ERR_PHY;
+ }
+ if (((mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT) != offset) {
+ DEBUGOUT2("MDI Read offset error - requested %d, returned %d\n",
+ offset,
+ (mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
+ return -E1000_ERR_PHY;
}
*data = (u16) mdic;
-
- /*
- * Allow some time after each MDIC transaction to avoid
+
+ /* Allow some time after each MDIC transaction to avoid
* reading duplicate data in the next MDIC transaction.
*/
if (hw->mac.type == e1000_pch2lan)
usec_delay(100);
-out:
- return ret_val;
+ return E1000_SUCCESS;
}
/**
@@ -311,7 +350,6 @@ s32 e1000_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
{
struct e1000_phy_info *phy = &hw->phy;
u32 i, mdic = 0;
- s32 ret_val = E1000_SUCCESS;
DEBUGFUNC("e1000_write_phy_reg_mdic");
@@ -320,24 +358,18 @@ s32 e1000_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
return -E1000_ERR_PARAM;
}
- /*
- * Set up Op-code, Phy Address, and register offset in the MDI
+ /* Set up Op-code, Phy Address, and register offset in the MDI
* Control register. The MAC will take care of interfacing with the
* PHY to retrieve the desired data.
*/
mdic = (((u32)data) |
- (offset << E1000_MDIC_REG_SHIFT) |
- (phy->addr << E1000_MDIC_PHY_SHIFT) |
- (E1000_MDIC_OP_WRITE));
+ (offset << E1000_MDIC_REG_SHIFT) |
+ (phy->addr << E1000_MDIC_PHY_SHIFT) |
+ (E1000_MDIC_OP_WRITE));
E1000_WRITE_REG(hw, E1000_MDIC, mdic);
- /* Workaround for Si errata */
- if ((hw->phy.type == e1000_phy_82577) && (hw->revision_id <= 2))
- msec_delay(10);
-
- /*
- * Poll the ready bit to see if the MDI read completed
+ /* Poll the ready bit to see if the MDI read completed
* Increasing the time out as testing showed failures with
* the lower time out
*/
@@ -349,24 +381,26 @@ s32 e1000_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
}
if (!(mdic & E1000_MDIC_READY)) {
DEBUGOUT("MDI Write did not complete\n");
- ret_val = -E1000_ERR_PHY;
- goto out;
+ return -E1000_ERR_PHY;
}
if (mdic & E1000_MDIC_ERROR) {
DEBUGOUT("MDI Error\n");
- ret_val = -E1000_ERR_PHY;
- goto out;
+ return -E1000_ERR_PHY;
+ }
+ if (((mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT) != offset) {
+ DEBUGOUT2("MDI Write offset error - requested %d, returned %d\n",
+ offset,
+ (mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
+ return -E1000_ERR_PHY;
}
- /*
- * Allow some time after each MDIC transaction to avoid
+ /* Allow some time after each MDIC transaction to avoid
* reading duplicate data in the next MDIC transaction.
*/
if (hw->mac.type == e1000_pch2lan)
usec_delay(100);
-out:
- return ret_val;
+ return E1000_SUCCESS;
}
/**
@@ -385,14 +419,13 @@ s32 e1000_read_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 *data)
DEBUGFUNC("e1000_read_phy_reg_i2c");
- /*
- * Set up Op-code, Phy Address, and register address in the I2CCMD
+ /* Set up Op-code, Phy Address, and register address in the I2CCMD
* register. The MAC will take care of interfacing with the
* PHY to retrieve the desired data.
*/
i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
- (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
- (E1000_I2CCMD_OPCODE_READ));
+ (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
+ (E1000_I2CCMD_OPCODE_READ));
E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd);
@@ -434,18 +467,24 @@ s32 e1000_write_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 data)
DEBUGFUNC("e1000_write_phy_reg_i2c");
+ /* Prevent overwritting SFP I2C EEPROM which is at A0 address.*/
+ if ((hw->phy.addr == 0) || (hw->phy.addr > 7)) {
+ DEBUGOUT1("PHY I2C Address %d is out of range.\n",
+ hw->phy.addr);
+ return -E1000_ERR_CONFIG;
+ }
+
/* Swap the data bytes for the I2C interface */
phy_data_swapped = ((data >> 8) & 0x00FF) | ((data << 8) & 0xFF00);
- /*
- * Set up Op-code, Phy Address, and register address in the I2CCMD
+ /* Set up Op-code, Phy Address, and register address in the I2CCMD
* register. The MAC will take care of interfacing with the
* PHY to retrieve the desired data.
*/
i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
- (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
- E1000_I2CCMD_OPCODE_WRITE |
- phy_data_swapped);
+ (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
+ E1000_I2CCMD_OPCODE_WRITE |
+ phy_data_swapped);
E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd);
@@ -469,6 +508,134 @@ s32 e1000_write_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 data)
}
/**
+ * e1000_read_sfp_data_byte - Reads SFP module data.
+ * @hw: pointer to the HW structure
+ * @offset: byte location offset to be read
+ * @data: read data buffer pointer
+ *
+ * Reads one byte from SFP module data stored
+ * in SFP resided EEPROM memory or SFP diagnostic area.
+ * Function should be called with
+ * E1000_I2CCMD_SFP_DATA_ADDR(<byte offset>) for SFP module database access
+ * E1000_I2CCMD_SFP_DIAG_ADDR(<byte offset>) for SFP diagnostics parameters
+ * access
+ **/
+s32 e1000_read_sfp_data_byte(struct e1000_hw *hw, u16 offset, u8 *data)
+{
+ u32 i = 0;
+ u32 i2ccmd = 0;
+ u32 data_local = 0;
+
+ DEBUGFUNC("e1000_read_sfp_data_byte");
+
+ if (offset > E1000_I2CCMD_SFP_DIAG_ADDR(255)) {
+ DEBUGOUT("I2CCMD command address exceeds upper limit\n");
+ return -E1000_ERR_PHY;
+ }
+
+ /* Set up Op-code, EEPROM Address,in the I2CCMD
+ * register. The MAC will take care of interfacing with the
+ * EEPROM to retrieve the desired data.
+ */
+ i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
+ E1000_I2CCMD_OPCODE_READ);
+
+ E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd);
+
+ /* Poll the ready bit to see if the I2C read completed */
+ for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
+ usec_delay(50);
+ data_local = E1000_READ_REG(hw, E1000_I2CCMD);
+ if (data_local & E1000_I2CCMD_READY)
+ break;
+ }
+ if (!(data_local & E1000_I2CCMD_READY)) {
+ DEBUGOUT("I2CCMD Read did not complete\n");
+ return -E1000_ERR_PHY;
+ }
+ if (data_local & E1000_I2CCMD_ERROR) {
+ DEBUGOUT("I2CCMD Error bit set\n");
+ return -E1000_ERR_PHY;
+ }
+ *data = (u8) data_local & 0xFF;
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_write_sfp_data_byte - Writes SFP module data.
+ * @hw: pointer to the HW structure
+ * @offset: byte location offset to write to
+ * @data: data to write
+ *
+ * Writes one byte to SFP module data stored
+ * in SFP resided EEPROM memory or SFP diagnostic area.
+ * Function should be called with
+ * E1000_I2CCMD_SFP_DATA_ADDR(<byte offset>) for SFP module database access
+ * E1000_I2CCMD_SFP_DIAG_ADDR(<byte offset>) for SFP diagnostics parameters
+ * access
+ **/
+s32 e1000_write_sfp_data_byte(struct e1000_hw *hw, u16 offset, u8 data)
+{
+ u32 i = 0;
+ u32 i2ccmd = 0;
+ u32 data_local = 0;
+
+ DEBUGFUNC("e1000_write_sfp_data_byte");
+
+ if (offset > E1000_I2CCMD_SFP_DIAG_ADDR(255)) {
+ DEBUGOUT("I2CCMD command address exceeds upper limit\n");
+ return -E1000_ERR_PHY;
+ }
+ /* The programming interface is 16 bits wide
+ * so we need to read the whole word first
+ * then update appropriate byte lane and write
+ * the updated word back.
+ */
+ /* Set up Op-code, EEPROM Address,in the I2CCMD
+ * register. The MAC will take care of interfacing
+ * with an EEPROM to write the data given.
+ */
+ i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
+ E1000_I2CCMD_OPCODE_READ);
+ /* Set a command to read single word */
+ E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd);
+ for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
+ usec_delay(50);
+ /* Poll the ready bit to see if lastly
+ * launched I2C operation completed
+ */
+ i2ccmd = E1000_READ_REG(hw, E1000_I2CCMD);
+ if (i2ccmd & E1000_I2CCMD_READY) {
+ /* Check if this is READ or WRITE phase */
+ if ((i2ccmd & E1000_I2CCMD_OPCODE_READ) ==
+ E1000_I2CCMD_OPCODE_READ) {
+ /* Write the selected byte
+ * lane and update whole word
+ */
+ data_local = i2ccmd & 0xFF00;
+ data_local |= data;
+ i2ccmd = ((offset <<
+ E1000_I2CCMD_REG_ADDR_SHIFT) |
+ E1000_I2CCMD_OPCODE_WRITE | data_local);
+ E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd);
+ } else {
+ break;
+ }
+ }
+ }
+ if (!(i2ccmd & E1000_I2CCMD_READY)) {
+ DEBUGOUT("I2CCMD Write did not complete\n");
+ return -E1000_ERR_PHY;
+ }
+ if (i2ccmd & E1000_I2CCMD_ERROR) {
+ DEBUGOUT("I2CCMD Error bit set\n");
+ return -E1000_ERR_PHY;
+ }
+ return E1000_SUCCESS;
+}
+
+/**
* e1000_read_phy_reg_m88 - Read m88 PHY register
* @hw: pointer to the HW structure
* @offset: register offset to be read
@@ -480,23 +647,22 @@ s32 e1000_write_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 data)
**/
s32 e1000_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data)
{
- s32 ret_val = E1000_SUCCESS;
+ s32 ret_val;
DEBUGFUNC("e1000_read_phy_reg_m88");
- if (!(hw->phy.ops.acquire))
- goto out;
+ if (!hw->phy.ops.acquire)
+ return E1000_SUCCESS;
ret_val = hw->phy.ops.acquire(hw);
if (ret_val)
- goto out;
+ return ret_val;
ret_val = e1000_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
- data);
+ data);
hw->phy.ops.release(hw);
-out:
return ret_val;
}
@@ -511,27 +677,46 @@ out:
**/
s32 e1000_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data)
{
- s32 ret_val = E1000_SUCCESS;
+ s32 ret_val;
DEBUGFUNC("e1000_write_phy_reg_m88");
- if (!(hw->phy.ops.acquire))
- goto out;
+ if (!hw->phy.ops.acquire)
+ return E1000_SUCCESS;
ret_val = hw->phy.ops.acquire(hw);
if (ret_val)
- goto out;
+ return ret_val;
ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
- data);
+ data);
hw->phy.ops.release(hw);
-out:
return ret_val;
}
/**
+ * e1000_set_page_igp - Set page as on IGP-like PHY(s)
+ * @hw: pointer to the HW structure
+ * @page: page to set (shifted left when necessary)
+ *
+ * Sets PHY page required for PHY register access. Assumes semaphore is
+ * already acquired. Note, this function sets phy.addr to 1 so the caller
+ * must set it appropriately (if necessary) after this function returns.
+ **/
+s32 e1000_set_page_igp(struct e1000_hw *hw, u16 page)
+{
+ DEBUGFUNC("e1000_set_page_igp");
+
+ DEBUGOUT1("Setting page 0x%x\n", page);
+
+ hw->phy.addr = 1;
+
+ return e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, page);
+}
+
+/**
* __e1000_read_phy_reg_igp - Read igp PHY register
* @hw: pointer to the HW structure
* @offset: register offset to be read
@@ -543,36 +728,32 @@ out:
* semaphores before exiting.
**/
static s32 __e1000_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data,
- bool locked)
+ bool locked)
{
s32 ret_val = E1000_SUCCESS;
DEBUGFUNC("__e1000_read_phy_reg_igp");
if (!locked) {
- if (!(hw->phy.ops.acquire))
- goto out;
+ if (!hw->phy.ops.acquire)
+ return E1000_SUCCESS;
ret_val = hw->phy.ops.acquire(hw);
if (ret_val)
- goto out;
+ return ret_val;
}
- if (offset > MAX_PHY_MULTI_PAGE_REG) {
+ if (offset > MAX_PHY_MULTI_PAGE_REG)
ret_val = e1000_write_phy_reg_mdic(hw,
- IGP01E1000_PHY_PAGE_SELECT,
- (u16)offset);
- if (ret_val)
- goto release;
- }
-
- ret_val = e1000_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
- data);
-
-release:
+ IGP01E1000_PHY_PAGE_SELECT,
+ (u16)offset);
+ if (!ret_val)
+ ret_val = e1000_read_phy_reg_mdic(hw,
+ MAX_PHY_REG_ADDRESS & offset,
+ data);
if (!locked)
hw->phy.ops.release(hw);
-out:
+
return ret_val;
}
@@ -616,37 +797,32 @@ s32 e1000_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data)
* at the offset. Release any acquired semaphores before exiting.
**/
static s32 __e1000_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data,
- bool locked)
+ bool locked)
{
s32 ret_val = E1000_SUCCESS;
DEBUGFUNC("e1000_write_phy_reg_igp");
if (!locked) {
- if (!(hw->phy.ops.acquire))
- goto out;
+ if (!hw->phy.ops.acquire)
+ return E1000_SUCCESS;
ret_val = hw->phy.ops.acquire(hw);
if (ret_val)
- goto out;
+ return ret_val;
}
- if (offset > MAX_PHY_MULTI_PAGE_REG) {
+ if (offset > MAX_PHY_MULTI_PAGE_REG)
ret_val = e1000_write_phy_reg_mdic(hw,
- IGP01E1000_PHY_PAGE_SELECT,
- (u16)offset);
- if (ret_val)
- goto release;
- }
-
- ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
- data);
-
-release:
+ IGP01E1000_PHY_PAGE_SELECT,
+ (u16)offset);
+ if (!ret_val)
+ ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS &
+ offset,
+ data);
if (!locked)
hw->phy.ops.release(hw);
-out:
return ret_val;
}
@@ -690,25 +866,27 @@ s32 e1000_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data)
* Release any acquired semaphores before exiting.
**/
static s32 __e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data,
- bool locked)
+ bool locked)
{
u32 kmrnctrlsta;
- s32 ret_val = E1000_SUCCESS;
DEBUGFUNC("__e1000_read_kmrn_reg");
if (!locked) {
- if (!(hw->phy.ops.acquire))
- goto out;
+ s32 ret_val = E1000_SUCCESS;
+
+ if (!hw->phy.ops.acquire)
+ return E1000_SUCCESS;
ret_val = hw->phy.ops.acquire(hw);
if (ret_val)
- goto out;
+ return ret_val;
}
kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
- E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
+ E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
E1000_WRITE_REG(hw, E1000_KMRNCTRLSTA, kmrnctrlsta);
+ E1000_WRITE_FLUSH(hw);
usec_delay(2);
@@ -718,8 +896,7 @@ static s32 __e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data,
if (!locked)
hw->phy.ops.release(hw);
-out:
- return ret_val;
+ return E1000_SUCCESS;
}
/**
@@ -764,33 +941,34 @@ s32 e1000_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data)
* before exiting.
**/
static s32 __e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data,
- bool locked)
+ bool locked)
{
u32 kmrnctrlsta;
- s32 ret_val = E1000_SUCCESS;
DEBUGFUNC("e1000_write_kmrn_reg_generic");
if (!locked) {
- if (!(hw->phy.ops.acquire))
- goto out;
+ s32 ret_val = E1000_SUCCESS;
+
+ if (!hw->phy.ops.acquire)
+ return E1000_SUCCESS;
ret_val = hw->phy.ops.acquire(hw);
if (ret_val)
- goto out;
+ return ret_val;
}
kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
- E1000_KMRNCTRLSTA_OFFSET) | data;
+ E1000_KMRNCTRLSTA_OFFSET) | data;
E1000_WRITE_REG(hw, E1000_KMRNCTRLSTA, kmrnctrlsta);
+ E1000_WRITE_FLUSH(hw);
usec_delay(2);
if (!locked)
hw->phy.ops.release(hw);
-out:
- return ret_val;
+ return E1000_SUCCESS;
}
/**
@@ -822,6 +1000,46 @@ s32 e1000_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data)
}
/**
+ * e1000_set_master_slave_mode - Setup PHY for Master/slave mode
+ * @hw: pointer to the HW structure
+ *
+ * Sets up Master/slave mode
+ **/
+static s32 e1000_set_master_slave_mode(struct e1000_hw *hw)
+{
+ s32 ret_val;
+ u16 phy_data;
+
+ /* Resolve Master/Slave mode */
+ ret_val = hw->phy.ops.read_reg(hw, PHY_1000T_CTRL, &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ /* load defaults for future use */
+ hw->phy.original_ms_type = (phy_data & CR_1000T_MS_ENABLE) ?
+ ((phy_data & CR_1000T_MS_VALUE) ?
+ e1000_ms_force_master :
+ e1000_ms_force_slave) : e1000_ms_auto;
+
+ switch (hw->phy.ms_type) {
+ case e1000_ms_force_master:
+ phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
+ break;
+ case e1000_ms_force_slave:
+ phy_data |= CR_1000T_MS_ENABLE;
+ phy_data &= ~(CR_1000T_MS_VALUE);
+ break;
+ case e1000_ms_auto:
+ phy_data &= ~CR_1000T_MS_ENABLE;
+ /* fall-through */
+ default:
+ break;
+ }
+
+ return hw->phy.ops.write_reg(hw, PHY_1000T_CTRL, phy_data);
+}
+
+/**
* e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link
* @hw: pointer to the HW structure
*
@@ -834,33 +1052,58 @@ s32 e1000_copper_link_setup_82577(struct e1000_hw *hw)
DEBUGFUNC("e1000_copper_link_setup_82577");
- if (hw->phy.reset_disable) {
- ret_val = E1000_SUCCESS;
- goto out;
- }
-
if (hw->phy.type == e1000_phy_82580) {
ret_val = hw->phy.ops.reset(hw);
if (ret_val) {
DEBUGOUT("Error resetting the PHY.\n");
- goto out;
+ return ret_val;
}
}
- /* Enable CRS on TX. This must be set for half-duplex operation. */
+ /* Enable CRS on Tx. This must be set for half-duplex operation.
+ * Not required on some PHYs.
+ */
ret_val = hw->phy.ops.read_reg(hw, I82577_CFG_REG, &phy_data);
if (ret_val)
- goto out;
+ return ret_val;
- phy_data |= I82577_CFG_ASSERT_CRS_ON_TX;
+ if ((hw->phy.type != e1000_phy_82579) &&
+ (hw->phy.type != e1000_phy_i217))
+ phy_data |= I82577_CFG_ASSERT_CRS_ON_TX;
/* Enable downshift */
phy_data |= I82577_CFG_ENABLE_DOWNSHIFT;
ret_val = hw->phy.ops.write_reg(hw, I82577_CFG_REG, phy_data);
+ if (ret_val)
+ return ret_val;
-out:
- return ret_val;
+ /* Set MDI/MDIX mode */
+ ret_val = hw->phy.ops.read_reg(hw, I82577_PHY_CTRL_2, &phy_data);
+ if (ret_val)
+ return ret_val;
+ phy_data &= ~I82577_PHY_CTRL2_MDIX_CFG_MASK;
+ /* Options:
+ * 0 - Auto (default)
+ * 1 - MDI mode
+ * 2 - MDI-X mode
+ */
+ switch (hw->phy.mdix) {
+ case 1:
+ break;
+ case 2:
+ phy_data |= I82577_PHY_CTRL2_MANUAL_MDIX;
+ break;
+ case 0:
+ default:
+ phy_data |= I82577_PHY_CTRL2_AUTO_MDI_MDIX;
+ break;
+ }
+ ret_val = hw->phy.ops.write_reg(hw, I82577_PHY_CTRL_2, phy_data);
+ if (ret_val)
+ return ret_val;
+
+ return e1000_set_master_slave_mode(hw);
}
/**
@@ -878,23 +1121,17 @@ s32 e1000_copper_link_setup_m88(struct e1000_hw *hw)
DEBUGFUNC("e1000_copper_link_setup_m88");
- if (phy->reset_disable) {
- ret_val = E1000_SUCCESS;
- goto out;
- }
/* Enable CRS on Tx. This must be set for half-duplex operation. */
ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
if (ret_val)
- goto out;
+ return ret_val;
- phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
/* For BM PHY this bit is downshift enable */
- if (phy->type == e1000_phy_bm)
- phy_data &= ~M88E1000_PSCR_ASSERT_CRS_ON_TX;
+ if (phy->type != e1000_phy_bm)
+ phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
- /*
- * Options:
+ /* Options:
* MDI/MDI-X = 0 (default)
* 0 - Auto for all speeds
* 1 - MDI mode
@@ -919,36 +1156,50 @@ s32 e1000_copper_link_setup_m88(struct e1000_hw *hw)
break;
}
- /*
- * Options:
+ /* Options:
* disable_polarity_correction = 0 (default)
* Automatic Correction for Reversed Cable Polarity
* 0 - Disabled
* 1 - Enabled
*/
phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
- if (phy->disable_polarity_correction == 1)
+ if (phy->disable_polarity_correction)
phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
/* Enable downshift on BM (disabled by default) */
- if (phy->type == e1000_phy_bm)
+ if (phy->type == e1000_phy_bm) {
+ /* For 82574/82583, first disable then enable downshift */
+ if (phy->id == BME1000_E_PHY_ID_R2) {
+ phy_data &= ~BME1000_PSCR_ENABLE_DOWNSHIFT;
+ ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL,
+ phy_data);
+ if (ret_val)
+ return ret_val;
+ /* Commit the changes. */
+ ret_val = phy->ops.commit(hw);
+ if (ret_val) {
+ DEBUGOUT("Error committing the PHY changes\n");
+ return ret_val;
+ }
+ }
+
phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT;
+ }
ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
if (ret_val)
- goto out;
+ return ret_val;
if ((phy->type == e1000_phy_m88) &&
(phy->revision < E1000_REVISION_4) &&
(phy->id != BME1000_E_PHY_ID_R2)) {
- /*
- * Force TX_CLK in the Extended PHY Specific Control Register
+ /* Force TX_CLK in the Extended PHY Specific Control Register
* to 25MHz clock.
*/
ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
- &phy_data);
+ &phy_data);
if (ret_val)
- goto out;
+ return ret_val;
phy_data |= M88E1000_EPSCR_TX_CLK_25;
@@ -960,52 +1211,135 @@ s32 e1000_copper_link_setup_m88(struct e1000_hw *hw)
} else {
/* Configure Master and Slave downshift values */
phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
- M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
+ M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
- M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
+ M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
}
ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
- phy_data);
+ phy_data);
if (ret_val)
- goto out;
+ return ret_val;
}
if ((phy->type == e1000_phy_bm) && (phy->id == BME1000_E_PHY_ID_R2)) {
/* Set PHY page 0, register 29 to 0x0003 */
ret_val = phy->ops.write_reg(hw, 29, 0x0003);
if (ret_val)
- goto out;
+ return ret_val;
/* Set PHY page 0, register 30 to 0x0000 */
ret_val = phy->ops.write_reg(hw, 30, 0x0000);
if (ret_val)
- goto out;
+ return ret_val;
}
/* Commit the changes. */
ret_val = phy->ops.commit(hw);
if (ret_val) {
DEBUGOUT("Error committing the PHY changes\n");
- goto out;
+ return ret_val;
}
if (phy->type == e1000_phy_82578) {
ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
- &phy_data);
+ &phy_data);
if (ret_val)
- goto out;
+ return ret_val;
/* 82578 PHY - set the downshift count to 1x. */
phy_data |= I82578_EPSCR_DOWNSHIFT_ENABLE;
phy_data &= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK;
ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
- phy_data);
+ phy_data);
+ if (ret_val)
+ return ret_val;
+ }
+
+ if (phy->type == e1000_phy_i210) {
+ ret_val = e1000_set_master_slave_mode(hw);
if (ret_val)
- goto out;
+ return ret_val;
}
-out:
- return ret_val;
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_copper_link_setup_m88_gen2 - Setup m88 PHY's for copper link
+ * @hw: pointer to the HW structure
+ *
+ * Sets up MDI/MDI-X and polarity for i347-AT4, m88e1322 and m88e1112 PHY's.
+ * Also enables and sets the downshift parameters.
+ **/
+s32 e1000_copper_link_setup_m88_gen2(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 phy_data;
+
+ DEBUGFUNC("e1000_copper_link_setup_m88_gen2");
+
+
+ /* Enable CRS on Tx. This must be set for half-duplex operation. */
+ ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ /* Options:
+ * MDI/MDI-X = 0 (default)
+ * 0 - Auto for all speeds
+ * 1 - MDI mode
+ * 2 - MDI-X mode
+ * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
+ */
+ phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
+
+ switch (phy->mdix) {
+ case 1:
+ phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
+ break;
+ case 2:
+ phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
+ break;
+ case 3:
+ /* M88E1112 does not support this mode) */
+ if (phy->id != M88E1112_E_PHY_ID) {
+ phy_data |= M88E1000_PSCR_AUTO_X_1000T;
+ break;
+ }
+ case 0:
+ default:
+ phy_data |= M88E1000_PSCR_AUTO_X_MODE;
+ break;
+ }
+
+ /* Options:
+ * disable_polarity_correction = 0 (default)
+ * Automatic Correction for Reversed Cable Polarity
+ * 0 - Disabled
+ * 1 - Enabled
+ */
+ phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
+ if (phy->disable_polarity_correction)
+ phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
+
+ /* Enable downshift and setting it to X6 */
+ phy_data &= ~I347AT4_PSCR_DOWNSHIFT_MASK;
+ phy_data |= I347AT4_PSCR_DOWNSHIFT_6X;
+ phy_data |= I347AT4_PSCR_DOWNSHIFT_ENABLE;
+
+ ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
+ if (ret_val)
+ return ret_val;
+
+ /* Commit the changes. */
+ ret_val = phy->ops.commit(hw);
+ if (ret_val) {
+ DEBUGOUT("Error committing the PHY changes\n");
+ return ret_val;
+ }
+
+ return E1000_SUCCESS;
}
/**
@@ -1023,25 +1357,19 @@ s32 e1000_copper_link_setup_igp(struct e1000_hw *hw)
DEBUGFUNC("e1000_copper_link_setup_igp");
- if (phy->reset_disable) {
- ret_val = E1000_SUCCESS;
- goto out;
- }
ret_val = hw->phy.ops.reset(hw);
if (ret_val) {
DEBUGOUT("Error resetting the PHY.\n");
- goto out;
+ return ret_val;
}
- /*
- * Wait 100ms for MAC to configure PHY from NVM settings, to avoid
+ /* Wait 100ms for MAC to configure PHY from NVM settings, to avoid
* timeout issues when LFS is enabled.
*/
msec_delay(100);
- /*
- * The NVM settings will configure LPLU in D3 for
+ /* The NVM settings will configure LPLU in D3 for
* non-IGP1 PHYs.
*/
if (phy->type == e1000_phy_igp) {
@@ -1049,7 +1377,7 @@ s32 e1000_copper_link_setup_igp(struct e1000_hw *hw)
ret_val = hw->phy.ops.set_d3_lplu_state(hw, FALSE);
if (ret_val) {
DEBUGOUT("Error Disabling LPLU D3\n");
- goto out;
+ return ret_val;
}
}
@@ -1058,13 +1386,13 @@ s32 e1000_copper_link_setup_igp(struct e1000_hw *hw)
ret_val = hw->phy.ops.set_d0_lplu_state(hw, FALSE);
if (ret_val) {
DEBUGOUT("Error Disabling LPLU D0\n");
- goto out;
+ return ret_val;
}
}
/* Configure mdi-mdix settings */
ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &data);
if (ret_val)
- goto out;
+ return ret_val;
data &= ~IGP01E1000_PSCR_AUTO_MDIX;
@@ -1082,141 +1410,43 @@ s32 e1000_copper_link_setup_igp(struct e1000_hw *hw)
}
ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, data);
if (ret_val)
- goto out;
+ return ret_val;
/* set auto-master slave resolution settings */
if (hw->mac.autoneg) {
- /*
- * when autonegotiation advertisement is only 1000Mbps then we
+ /* when autonegotiation advertisement is only 1000Mbps then we
* should disable SmartSpeed and enable Auto MasterSlave
* resolution as hardware default.
*/
if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
/* Disable SmartSpeed */
ret_val = phy->ops.read_reg(hw,
- IGP01E1000_PHY_PORT_CONFIG,
- &data);
+ IGP01E1000_PHY_PORT_CONFIG,
+ &data);
if (ret_val)
- goto out;
+ return ret_val;
data &= ~IGP01E1000_PSCFR_SMART_SPEED;
ret_val = phy->ops.write_reg(hw,
- IGP01E1000_PHY_PORT_CONFIG,
- data);
+ IGP01E1000_PHY_PORT_CONFIG,
+ data);
if (ret_val)
- goto out;
+ return ret_val;
/* Set auto Master/Slave resolution process */
ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data);
if (ret_val)
- goto out;
+ return ret_val;
data &= ~CR_1000T_MS_ENABLE;
ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data);
if (ret_val)
- goto out;
- }
-
- ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data);
- if (ret_val)
- goto out;
-
- /* load defaults for future use */
- phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ?
- ((data & CR_1000T_MS_VALUE) ?
- e1000_ms_force_master :
- e1000_ms_force_slave) :
- e1000_ms_auto;
-
- switch (phy->ms_type) {
- case e1000_ms_force_master:
- data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
- break;
- case e1000_ms_force_slave:
- data |= CR_1000T_MS_ENABLE;
- data &= ~(CR_1000T_MS_VALUE);
- break;
- case e1000_ms_auto:
- data &= ~CR_1000T_MS_ENABLE;
- default:
- break;
+ return ret_val;
}
- ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data);
- if (ret_val)
- goto out;
- }
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
- * @hw: pointer to the HW structure
- *
- * Performs initial bounds checking on autoneg advertisement parameter, then
- * configure to advertise the full capability. Setup the PHY to autoneg
- * and restart the negotiation process between the link partner. If
- * autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
- **/
-s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 phy_ctrl;
-
- DEBUGFUNC("e1000_copper_link_autoneg");
-
- /*
- * Perform some bounds checking on the autoneg advertisement
- * parameter.
- */
- phy->autoneg_advertised &= phy->autoneg_mask;
-
- /*
- * If autoneg_advertised is zero, we assume it was not defaulted
- * by the calling code so we set to advertise full capability.
- */
- if (phy->autoneg_advertised == 0)
- phy->autoneg_advertised = phy->autoneg_mask;
-
- DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
- ret_val = e1000_phy_setup_autoneg(hw);
- if (ret_val) {
- DEBUGOUT("Error Setting up Auto-Negotiation\n");
- goto out;
- }
- DEBUGOUT("Restarting Auto-Neg\n");
- /*
- * Restart auto-negotiation by setting the Auto Neg Enable bit and
- * the Auto Neg Restart bit in the PHY control register.
- */
- ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
- if (ret_val)
- goto out;
-
- phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
- ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
- if (ret_val)
- goto out;
-
- /*
- * Does the user want to wait for Auto-Neg to complete here, or
- * check at a later time (for example, callback routine).
- */
- if (phy->autoneg_wait_to_complete) {
- ret_val = hw->mac.ops.wait_autoneg(hw);
- if (ret_val) {
- DEBUGOUT("Error while waiting for "
- "autoneg to complete\n");
- goto out;
- }
+ ret_val = e1000_set_master_slave_mode(hw);
}
- hw->mac.get_link_status = TRUE;
-
-out:
return ret_val;
}
@@ -1243,33 +1473,31 @@ s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
/* Read the MII Auto-Neg Advertisement Register (Address 4). */
ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
if (ret_val)
- goto out;
+ return ret_val;
if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
/* Read the MII 1000Base-T Control Register (Address 9). */
ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL,
- &mii_1000t_ctrl_reg);
+ &mii_1000t_ctrl_reg);
if (ret_val)
- goto out;
+ return ret_val;
}
- /*
- * Need to parse both autoneg_advertised and fc and set up
+ /* Need to parse both autoneg_advertised and fc and set up
* the appropriate PHY registers. First we will parse for
* autoneg_advertised software override. Since we can advertise
* a plethora of combinations, we need to check each bit
* individually.
*/
- /*
- * First we clear all the 10/100 mb speed bits in the Auto-Neg
+ /* First we clear all the 10/100 mb speed bits in the Auto-Neg
* Advertisement Register (Address 4) and the 1000 mb speed bits in
* the 1000Base-T Control Register (Address 9).
*/
mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
- NWAY_AR_100TX_HD_CAPS |
- NWAY_AR_10T_FD_CAPS |
- NWAY_AR_10T_HD_CAPS);
+ NWAY_AR_100TX_HD_CAPS |
+ NWAY_AR_10T_FD_CAPS |
+ NWAY_AR_10T_HD_CAPS);
mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
DEBUGOUT1("autoneg_advertised %x\n", phy->autoneg_advertised);
@@ -1308,8 +1536,7 @@ s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
}
- /*
- * Check for a software override of the flow control settings, and
+ /* Check for a software override of the flow control settings, and
* setup the PHY advertisement registers accordingly. If
* auto-negotiation is enabled, then software will have to set the
* "PAUSE" bits to the correct value in the Auto-Negotiation
@@ -1328,15 +1555,13 @@ s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
*/
switch (hw->fc.current_mode) {
case e1000_fc_none:
- /*
- * Flow control (Rx & Tx) is completely disabled by a
+ /* Flow control (Rx & Tx) is completely disabled by a
* software over-ride.
*/
mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
break;
case e1000_fc_rx_pause:
- /*
- * Rx Flow control is enabled, and Tx Flow control is
+ /* Rx Flow control is enabled, and Tx Flow control is
* disabled, by a software over-ride.
*
* Since there really isn't a way to advertise that we are
@@ -1348,41 +1573,97 @@ s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
break;
case e1000_fc_tx_pause:
- /*
- * Tx Flow control is enabled, and Rx Flow control is
+ /* Tx Flow control is enabled, and Rx Flow control is
* disabled, by a software over-ride.
*/
mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
break;
case e1000_fc_full:
- /*
- * Flow control (both Rx and Tx) is enabled by a software
+ /* Flow control (both Rx and Tx) is enabled by a software
* over-ride.
*/
mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
break;
default:
DEBUGOUT("Flow control param set incorrectly\n");
- ret_val = -E1000_ERR_CONFIG;
- goto out;
+ return -E1000_ERR_CONFIG;
}
ret_val = phy->ops.write_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
if (ret_val)
- goto out;
+ return ret_val;
DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
- if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
- ret_val = phy->ops.write_reg(hw,
- PHY_1000T_CTRL,
- mii_1000t_ctrl_reg);
- if (ret_val)
- goto out;
+ if (phy->autoneg_mask & ADVERTISE_1000_FULL)
+ ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL,
+ mii_1000t_ctrl_reg);
+
+ return ret_val;
+}
+
+/**
+ * e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
+ * @hw: pointer to the HW structure
+ *
+ * Performs initial bounds checking on autoneg advertisement parameter, then
+ * configure to advertise the full capability. Setup the PHY to autoneg
+ * and restart the negotiation process between the link partner. If
+ * autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
+ **/
+s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 phy_ctrl;
+
+ DEBUGFUNC("e1000_copper_link_autoneg");
+
+ /* Perform some bounds checking on the autoneg advertisement
+ * parameter.
+ */
+ phy->autoneg_advertised &= phy->autoneg_mask;
+
+ /* If autoneg_advertised is zero, we assume it was not defaulted
+ * by the calling code so we set to advertise full capability.
+ */
+ if (!phy->autoneg_advertised)
+ phy->autoneg_advertised = phy->autoneg_mask;
+
+ DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
+ ret_val = e1000_phy_setup_autoneg(hw);
+ if (ret_val) {
+ DEBUGOUT("Error Setting up Auto-Negotiation\n");
+ return ret_val;
}
+ DEBUGOUT("Restarting Auto-Neg\n");
+
+ /* Restart auto-negotiation by setting the Auto Neg Enable bit and
+ * the Auto Neg Restart bit in the PHY control register.
+ */
+ ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
+ if (ret_val)
+ return ret_val;
+
+ phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
+ ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
+ if (ret_val)
+ return ret_val;
+
+ /* Does the user want to wait for Auto-Neg to complete here, or
+ * check at a later time (for example, callback routine).
+ */
+ if (phy->autoneg_wait_to_complete) {
+ ret_val = e1000_wait_autoneg(hw);
+ if (ret_val) {
+ DEBUGOUT("Error while waiting for autoneg to complete\n");
+ return ret_val;
+ }
+ }
+
+ hw->mac.get_link_status = TRUE;
-out:
return ret_val;
}
@@ -1403,46 +1684,40 @@ s32 e1000_setup_copper_link_generic(struct e1000_hw *hw)
DEBUGFUNC("e1000_setup_copper_link_generic");
if (hw->mac.autoneg) {
- /*
- * Setup autoneg and flow control advertisement and perform
+ /* Setup autoneg and flow control advertisement and perform
* autonegotiation.
*/
ret_val = e1000_copper_link_autoneg(hw);
if (ret_val)
- goto out;
+ return ret_val;
} else {
- /*
- * PHY will be set to 10H, 10F, 100H or 100F
+ /* PHY will be set to 10H, 10F, 100H or 100F
* depending on user settings.
*/
DEBUGOUT("Forcing Speed and Duplex\n");
ret_val = hw->phy.ops.force_speed_duplex(hw);
if (ret_val) {
DEBUGOUT("Error Forcing Speed and Duplex\n");
- goto out;
+ return ret_val;
}
}
- /*
- * Check link status. Wait up to 100 microseconds for link to become
+ /* Check link status. Wait up to 100 microseconds for link to become
* valid.
*/
- ret_val = e1000_phy_has_link_generic(hw,
- COPPER_LINK_UP_LIMIT,
- 10,
- &link);
+ ret_val = e1000_phy_has_link_generic(hw, COPPER_LINK_UP_LIMIT, 10,
+ &link);
if (ret_val)
- goto out;
+ return ret_val;
if (link) {
DEBUGOUT("Valid link established!!!\n");
- e1000_config_collision_dist_generic(hw);
+ hw->mac.ops.config_collision_dist(hw);
ret_val = e1000_config_fc_after_link_up_generic(hw);
} else {
DEBUGOUT("Unable to establish link!!!\n");
}
-out:
return ret_val;
}
@@ -1465,28 +1740,27 @@ s32 e1000_phy_force_speed_duplex_igp(struct e1000_hw *hw)
ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
if (ret_val)
- goto out;
+ return ret_val;
e1000_phy_force_speed_duplex_setup(hw, &phy_data);
ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
if (ret_val)
- goto out;
+ return ret_val;
- /*
- * Clear Auto-Crossover to force MDI manually. IGP requires MDI
+ /* Clear Auto-Crossover to force MDI manually. IGP requires MDI
* forced whenever speed and duplex are forced.
*/
ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
if (ret_val)
- goto out;
+ return ret_val;
phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
if (ret_val)
- goto out;
+ return ret_val;
DEBUGOUT1("IGP PSCR: %X\n", phy_data);
@@ -1495,26 +1769,19 @@ s32 e1000_phy_force_speed_duplex_igp(struct e1000_hw *hw)
if (phy->autoneg_wait_to_complete) {
DEBUGOUT("Waiting for forced speed/duplex link on IGP phy.\n");
- ret_val = e1000_phy_has_link_generic(hw,
- PHY_FORCE_LIMIT,
- 100000,
- &link);
+ ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
+ 100000, &link);
if (ret_val)
- goto out;
+ return ret_val;
if (!link)
DEBUGOUT("Link taking longer than expected.\n");
/* Try once more */
- ret_val = e1000_phy_has_link_generic(hw,
- PHY_FORCE_LIMIT,
- 100000,
- &link);
- if (ret_val)
- goto out;
+ ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
+ 100000, &link);
}
-out:
return ret_val;
}
@@ -1537,99 +1804,120 @@ s32 e1000_phy_force_speed_duplex_m88(struct e1000_hw *hw)
DEBUGFUNC("e1000_phy_force_speed_duplex_m88");
- /*
- * Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
- * forced whenever speed and duplex are forced.
- */
- ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
- if (ret_val)
- goto out;
+ /* I210 and I211 devices support Auto-Crossover in forced operation. */
+ if (phy->type != e1000_phy_i210) {
+ /* Clear Auto-Crossover to force MDI manually. M88E1000
+ * requires MDI forced whenever speed and duplex are forced.
+ */
+ ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL,
+ &phy_data);
+ if (ret_val)
+ return ret_val;
- phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
- ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
- if (ret_val)
- goto out;
+ phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
+ ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL,
+ phy_data);
+ if (ret_val)
+ return ret_val;
+ }
DEBUGOUT1("M88E1000 PSCR: %X\n", phy_data);
ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
if (ret_val)
- goto out;
+ return ret_val;
e1000_phy_force_speed_duplex_setup(hw, &phy_data);
ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
if (ret_val)
- goto out;
+ return ret_val;
/* Reset the phy to commit changes. */
ret_val = hw->phy.ops.commit(hw);
if (ret_val)
- goto out;
+ return ret_val;
if (phy->autoneg_wait_to_complete) {
DEBUGOUT("Waiting for forced speed/duplex link on M88 phy.\n");
ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
- 100000, &link);
+ 100000, &link);
if (ret_val)
- goto out;
+ return ret_val;
if (!link) {
- if (hw->phy.type != e1000_phy_m88) {
+ bool reset_dsp = TRUE;
+
+ switch (hw->phy.id) {
+ case I347AT4_E_PHY_ID:
+ case M88E1340M_E_PHY_ID:
+ case M88E1112_E_PHY_ID:
+ case I210_I_PHY_ID:
+ reset_dsp = FALSE;
+ break;
+ default:
+ if (hw->phy.type != e1000_phy_m88)
+ reset_dsp = FALSE;
+ break;
+ }
+
+ if (!reset_dsp) {
DEBUGOUT("Link taking longer than expected.\n");
} else {
- /*
- * We didn't get link.
+ /* We didn't get link.
* Reset the DSP and cross our fingers.
*/
ret_val = phy->ops.write_reg(hw,
M88E1000_PHY_PAGE_SELECT,
0x001d);
if (ret_val)
- goto out;
+ return ret_val;
ret_val = e1000_phy_reset_dsp_generic(hw);
if (ret_val)
- goto out;
+ return ret_val;
}
}
/* Try once more */
ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
- 100000, &link);
+ 100000, &link);
if (ret_val)
- goto out;
+ return ret_val;
}
if (hw->phy.type != e1000_phy_m88)
- goto out;
+ return E1000_SUCCESS;
+ if (hw->phy.id == I347AT4_E_PHY_ID ||
+ hw->phy.id == M88E1340M_E_PHY_ID ||
+ hw->phy.id == M88E1112_E_PHY_ID)
+ return E1000_SUCCESS;
+ if (hw->phy.id == I210_I_PHY_ID)
+ return E1000_SUCCESS;
ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
if (ret_val)
- goto out;
+ return ret_val;
- /*
- * Resetting the phy means we need to re-force TX_CLK in the
+ /* Resetting the phy means we need to re-force TX_CLK in the
* Extended PHY Specific Control Register to 25MHz clock from
* the reset value of 2.5MHz.
*/
phy_data |= M88E1000_EPSCR_TX_CLK_25;
ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
if (ret_val)
- goto out;
+ return ret_val;
- /*
- * In addition, we must re-enable CRS on Tx for both half and full
+ /* In addition, we must re-enable CRS on Tx for both half and full
* duplex.
*/
ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
if (ret_val)
- goto out;
+ return ret_val;
phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
-out:
return ret_val;
}
@@ -1652,25 +1940,25 @@ s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw)
ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &data);
if (ret_val)
- goto out;
+ return ret_val;
e1000_phy_force_speed_duplex_setup(hw, &data);
ret_val = phy->ops.write_reg(hw, PHY_CONTROL, data);
if (ret_val)
- goto out;
+ return ret_val;
/* Disable MDI-X support for 10/100 */
ret_val = phy->ops.read_reg(hw, IFE_PHY_MDIX_CONTROL, &data);
if (ret_val)
- goto out;
+ return ret_val;
data &= ~IFE_PMC_AUTO_MDIX;
data &= ~IFE_PMC_FORCE_MDIX;
ret_val = phy->ops.write_reg(hw, IFE_PHY_MDIX_CONTROL, data);
if (ret_val)
- goto out;
+ return ret_val;
DEBUGOUT1("IFE PMC: %X\n", data);
@@ -1679,27 +1967,22 @@ s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw)
if (phy->autoneg_wait_to_complete) {
DEBUGOUT("Waiting for forced speed/duplex link on IFE phy.\n");
- ret_val = e1000_phy_has_link_generic(hw,
- PHY_FORCE_LIMIT,
- 100000,
- &link);
+ ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
+ 100000, &link);
if (ret_val)
- goto out;
+ return ret_val;
if (!link)
DEBUGOUT("Link taking longer than expected.\n");
/* Try once more */
- ret_val = e1000_phy_has_link_generic(hw,
- PHY_FORCE_LIMIT,
- 100000,
- &link);
+ ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
+ 100000, &link);
if (ret_val)
- goto out;
+ return ret_val;
}
-out:
- return ret_val;
+ return E1000_SUCCESS;
}
/**
@@ -1750,16 +2033,15 @@ void e1000_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl)
if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
ctrl |= E1000_CTRL_SPD_100;
*phy_ctrl |= MII_CR_SPEED_100;
- *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
+ *phy_ctrl &= ~MII_CR_SPEED_1000;
DEBUGOUT("Forcing 100mb\n");
} else {
ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
- *phy_ctrl |= MII_CR_SPEED_10;
*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
DEBUGOUT("Forcing 10mb\n");
}
- e1000_config_collision_dist_generic(hw);
+ hw->mac.ops.config_collision_dist(hw);
E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
}
@@ -1781,78 +2063,76 @@ void e1000_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl)
s32 e1000_set_d3_lplu_state_generic(struct e1000_hw *hw, bool active)
{
struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val = E1000_SUCCESS;
+ s32 ret_val;
u16 data;
DEBUGFUNC("e1000_set_d3_lplu_state_generic");
- if (!(hw->phy.ops.read_reg))
- goto out;
+ if (!hw->phy.ops.read_reg)
+ return E1000_SUCCESS;
ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
if (ret_val)
- goto out;
+ return ret_val;
if (!active) {
data &= ~IGP02E1000_PM_D3_LPLU;
ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
- data);
+ data);
if (ret_val)
- goto out;
- /*
- * LPLU and SmartSpeed are mutually exclusive. LPLU is used
+ return ret_val;
+ /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
* during Dx states where the power conservation is most
* important. During driver activity we should enable
* SmartSpeed, so performance is maintained.
*/
if (phy->smart_speed == e1000_smart_speed_on) {
ret_val = phy->ops.read_reg(hw,
- IGP01E1000_PHY_PORT_CONFIG,
- &data);
+ IGP01E1000_PHY_PORT_CONFIG,
+ &data);
if (ret_val)
- goto out;
+ return ret_val;
data |= IGP01E1000_PSCFR_SMART_SPEED;
ret_val = phy->ops.write_reg(hw,
- IGP01E1000_PHY_PORT_CONFIG,
- data);
+ IGP01E1000_PHY_PORT_CONFIG,
+ data);
if (ret_val)
- goto out;
+ return ret_val;
} else if (phy->smart_speed == e1000_smart_speed_off) {
ret_val = phy->ops.read_reg(hw,
- IGP01E1000_PHY_PORT_CONFIG,
- &data);
+ IGP01E1000_PHY_PORT_CONFIG,
+ &data);
if (ret_val)
- goto out;
+ return ret_val;
data &= ~IGP01E1000_PSCFR_SMART_SPEED;
ret_val = phy->ops.write_reg(hw,
- IGP01E1000_PHY_PORT_CONFIG,
- data);
+ IGP01E1000_PHY_PORT_CONFIG,
+ data);
if (ret_val)
- goto out;
+ return ret_val;
}
} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
- (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
- (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
+ (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
+ (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
data |= IGP02E1000_PM_D3_LPLU;
ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
- data);
+ data);
if (ret_val)
- goto out;
+ return ret_val;
/* When LPLU is enabled, we should disable SmartSpeed */
ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
- &data);
+ &data);
if (ret_val)
- goto out;
+ return ret_val;
data &= ~IGP01E1000_PSCFR_SMART_SPEED;
ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
- data);
+ data);
}
-out:
return ret_val;
}
@@ -1873,32 +2153,31 @@ s32 e1000_check_downshift_generic(struct e1000_hw *hw)
DEBUGFUNC("e1000_check_downshift_generic");
switch (phy->type) {
+ case e1000_phy_i210:
case e1000_phy_m88:
case e1000_phy_gg82563:
case e1000_phy_bm:
case e1000_phy_82578:
- offset = M88E1000_PHY_SPEC_STATUS;
- mask = M88E1000_PSSR_DOWNSHIFT;
+ offset = M88E1000_PHY_SPEC_STATUS;
+ mask = M88E1000_PSSR_DOWNSHIFT;
break;
case e1000_phy_igp:
case e1000_phy_igp_2:
case e1000_phy_igp_3:
- offset = IGP01E1000_PHY_LINK_HEALTH;
- mask = IGP01E1000_PLHR_SS_DOWNGRADE;
+ offset = IGP01E1000_PHY_LINK_HEALTH;
+ mask = IGP01E1000_PLHR_SS_DOWNGRADE;
break;
default:
/* speed downshift not supported */
phy->speed_downgraded = FALSE;
- ret_val = E1000_SUCCESS;
- goto out;
+ return E1000_SUCCESS;
}
ret_val = phy->ops.read_reg(hw, offset, &phy_data);
if (!ret_val)
- phy->speed_downgraded = (phy_data & mask) ? TRUE : FALSE;
+ phy->speed_downgraded = !!(phy_data & mask);
-out:
return ret_val;
}
@@ -1922,8 +2201,8 @@ s32 e1000_check_polarity_m88(struct e1000_hw *hw)
if (!ret_val)
phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY)
- ? e1000_rev_polarity_reversed
- : e1000_rev_polarity_normal;
+ ? e1000_rev_polarity_reversed
+ : e1000_rev_polarity_normal;
return ret_val;
}
@@ -1945,35 +2224,32 @@ s32 e1000_check_polarity_igp(struct e1000_hw *hw)
DEBUGFUNC("e1000_check_polarity_igp");
- /*
- * Polarity is determined based on the speed of
+ /* Polarity is determined based on the speed of
* our connection.
*/
ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
if (ret_val)
- goto out;
+ return ret_val;
if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
IGP01E1000_PSSR_SPEED_1000MBPS) {
- offset = IGP01E1000_PHY_PCS_INIT_REG;
- mask = IGP01E1000_PHY_POLARITY_MASK;
+ offset = IGP01E1000_PHY_PCS_INIT_REG;
+ mask = IGP01E1000_PHY_POLARITY_MASK;
} else {
- /*
- * This really only applies to 10Mbps since
+ /* This really only applies to 10Mbps since
* there is no polarity for 100Mbps (always 0).
*/
- offset = IGP01E1000_PHY_PORT_STATUS;
- mask = IGP01E1000_PSSR_POLARITY_REVERSED;
+ offset = IGP01E1000_PHY_PORT_STATUS;
+ mask = IGP01E1000_PSSR_POLARITY_REVERSED;
}
ret_val = phy->ops.read_reg(hw, offset, &data);
if (!ret_val)
phy->cable_polarity = (data & mask)
- ? e1000_rev_polarity_reversed
- : e1000_rev_polarity_normal;
+ ? e1000_rev_polarity_reversed
+ : e1000_rev_polarity_normal;
-out:
return ret_val;
}
@@ -1991,8 +2267,7 @@ s32 e1000_check_polarity_ife(struct e1000_hw *hw)
DEBUGFUNC("e1000_check_polarity_ife");
- /*
- * Polarity is determined based on the reversal feature being enabled.
+ /* Polarity is determined based on the reversal feature being enabled.
*/
if (phy->polarity_correction) {
offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
@@ -2006,27 +2281,27 @@ s32 e1000_check_polarity_ife(struct e1000_hw *hw)
if (!ret_val)
phy->cable_polarity = (phy_data & mask)
- ? e1000_rev_polarity_reversed
- : e1000_rev_polarity_normal;
+ ? e1000_rev_polarity_reversed
+ : e1000_rev_polarity_normal;
return ret_val;
}
/**
- * e1000_wait_autoneg_generic - Wait for auto-neg completion
+ * e1000_wait_autoneg - Wait for auto-neg completion
* @hw: pointer to the HW structure
*
* Waits for auto-negotiation to complete or for the auto-negotiation time
* limit to expire, which ever happens first.
**/
-s32 e1000_wait_autoneg_generic(struct e1000_hw *hw)
+static s32 e1000_wait_autoneg(struct e1000_hw *hw)
{
s32 ret_val = E1000_SUCCESS;
u16 i, phy_status;
- DEBUGFUNC("e1000_wait_autoneg_generic");
+ DEBUGFUNC("e1000_wait_autoneg");
- if (!(hw->phy.ops.read_reg))
+ if (!hw->phy.ops.read_reg)
return E1000_SUCCESS;
/* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
@@ -2042,8 +2317,7 @@ s32 e1000_wait_autoneg_generic(struct e1000_hw *hw)
msec_delay(100);
}
- /*
- * PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
+ /* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
* has completed.
*/
return ret_val;
@@ -2059,26 +2333,24 @@ s32 e1000_wait_autoneg_generic(struct e1000_hw *hw)
* Polls the PHY status register for link, 'iterations' number of times.
**/
s32 e1000_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
- u32 usec_interval, bool *success)
+ u32 usec_interval, bool *success)
{
s32 ret_val = E1000_SUCCESS;
u16 i, phy_status;
DEBUGFUNC("e1000_phy_has_link_generic");
- if (!(hw->phy.ops.read_reg))
+ if (!hw->phy.ops.read_reg)
return E1000_SUCCESS;
for (i = 0; i < iterations; i++) {
- /*
- * Some PHYs require the PHY_STATUS register to be read
+ /* Some PHYs require the PHY_STATUS register to be read
* twice due to the link bit being sticky. No harm doing
* it across the board.
*/
ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
if (ret_val)
- /*
- * If the first read fails, another entity may have
+ /* If the first read fails, another entity may have
* ownership of the resources, wait and try again to
* see if they have relinquished the resources yet.
*/
@@ -2094,7 +2366,7 @@ s32 e1000_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
usec_delay(usec_interval);
}
- *success = (i < iterations) ? TRUE : FALSE;
+ *success = (i < iterations);
return ret_val;
}
@@ -2124,21 +2396,129 @@ s32 e1000_get_cable_length_m88(struct e1000_hw *hw)
ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
if (ret_val)
- goto out;
+ return ret_val;
index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
- M88E1000_PSSR_CABLE_LENGTH_SHIFT;
- if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) {
- ret_val = -E1000_ERR_PHY;
- goto out;
- }
+ M88E1000_PSSR_CABLE_LENGTH_SHIFT;
+
+ if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1)
+ return -E1000_ERR_PHY;
phy->min_cable_length = e1000_m88_cable_length_table[index];
phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
-out:
+ return E1000_SUCCESS;
+}
+
+s32 e1000_get_cable_length_m88_gen2(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 phy_data, phy_data2, is_cm;
+ u16 index, default_page;
+
+ DEBUGFUNC("e1000_get_cable_length_m88_gen2");
+
+ switch (hw->phy.id) {
+ case I210_I_PHY_ID:
+ /* Get cable length from PHY Cable Diagnostics Control Reg */
+ ret_val = phy->ops.read_reg(hw, (0x7 << GS40G_PAGE_SHIFT) +
+ (I347AT4_PCDL + phy->addr),
+ &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ /* Check if the unit of cable length is meters or cm */
+ ret_val = phy->ops.read_reg(hw, (0x7 << GS40G_PAGE_SHIFT) +
+ I347AT4_PCDC, &phy_data2);
+ if (ret_val)
+ return ret_val;
+
+ is_cm = !(phy_data2 & I347AT4_PCDC_CABLE_LENGTH_UNIT);
+
+ /* Populate the phy structure with cable length in meters */
+ phy->min_cable_length = phy_data / (is_cm ? 100 : 1);
+ phy->max_cable_length = phy_data / (is_cm ? 100 : 1);
+ phy->cable_length = phy_data / (is_cm ? 100 : 1);
+ break;
+ case M88E1340M_E_PHY_ID:
+ case I347AT4_E_PHY_ID:
+ /* Remember the original page select and set it to 7 */
+ ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT,
+ &default_page);
+ if (ret_val)
+ return ret_val;
+
+ ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x07);
+ if (ret_val)
+ return ret_val;
+
+ /* Get cable length from PHY Cable Diagnostics Control Reg */
+ ret_val = phy->ops.read_reg(hw, (I347AT4_PCDL + phy->addr),
+ &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ /* Check if the unit of cable length is meters or cm */
+ ret_val = phy->ops.read_reg(hw, I347AT4_PCDC, &phy_data2);
+ if (ret_val)
+ return ret_val;
+
+ is_cm = !(phy_data2 & I347AT4_PCDC_CABLE_LENGTH_UNIT);
+
+ /* Populate the phy structure with cable length in meters */
+ phy->min_cable_length = phy_data / (is_cm ? 100 : 1);
+ phy->max_cable_length = phy_data / (is_cm ? 100 : 1);
+ phy->cable_length = phy_data / (is_cm ? 100 : 1);
+
+ /* Reset the page select to its original value */
+ ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT,
+ default_page);
+ if (ret_val)
+ return ret_val;
+ break;
+
+ case M88E1112_E_PHY_ID:
+ /* Remember the original page select and set it to 5 */
+ ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT,
+ &default_page);
+ if (ret_val)
+ return ret_val;
+
+ ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x05);
+ if (ret_val)
+ return ret_val;
+
+ ret_val = phy->ops.read_reg(hw, M88E1112_VCT_DSP_DISTANCE,
+ &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
+ M88E1000_PSSR_CABLE_LENGTH_SHIFT;
+
+ if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1)
+ return -E1000_ERR_PHY;
+
+ phy->min_cable_length = e1000_m88_cable_length_table[index];
+ phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
+
+ phy->cable_length = (phy->min_cable_length +
+ phy->max_cable_length) / 2;
+
+ /* Reset the page select to its original value */
+ ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT,
+ default_page);
+ if (ret_val)
+ return ret_val;
+
+ break;
+ default:
+ return -E1000_ERR_PHY;
+ }
+
return ret_val;
}
@@ -2156,15 +2536,16 @@ out:
s32 e1000_get_cable_length_igp_2(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val = E1000_SUCCESS;
+ s32 ret_val;
u16 phy_data, i, agc_value = 0;
u16 cur_agc_index, max_agc_index = 0;
u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
- u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] =
- {IGP02E1000_PHY_AGC_A,
- IGP02E1000_PHY_AGC_B,
- IGP02E1000_PHY_AGC_C,
- IGP02E1000_PHY_AGC_D};
+ static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {
+ IGP02E1000_PHY_AGC_A,
+ IGP02E1000_PHY_AGC_B,
+ IGP02E1000_PHY_AGC_C,
+ IGP02E1000_PHY_AGC_D
+ };
DEBUGFUNC("e1000_get_cable_length_igp_2");
@@ -2172,23 +2553,20 @@ s32 e1000_get_cable_length_igp_2(struct e1000_hw *hw)
for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
ret_val = phy->ops.read_reg(hw, agc_reg_array[i], &phy_data);
if (ret_val)
- goto out;
+ return ret_val;
- /*
- * Getting bits 15:9, which represent the combination of
+ /* Getting bits 15:9, which represent the combination of
* coarse and fine gain values. The result is a number
* that can be put into the lookup table to obtain the
* approximate cable length.
*/
cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
- IGP02E1000_AGC_LENGTH_MASK;
+ IGP02E1000_AGC_LENGTH_MASK;
/* Array index bound check. */
if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
- (cur_agc_index == 0)) {
- ret_val = -E1000_ERR_PHY;
- goto out;
- }
+ (cur_agc_index == 0))
+ return -E1000_ERR_PHY;
/* Remove min & max AGC values from calculation. */
if (e1000_igp_2_cable_length_table[min_agc_index] >
@@ -2202,18 +2580,17 @@ s32 e1000_get_cable_length_igp_2(struct e1000_hw *hw)
}
agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
- e1000_igp_2_cable_length_table[max_agc_index]);
+ e1000_igp_2_cable_length_table[max_agc_index]);
agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
/* Calculate cable length with the error range of +/- 10 meters. */
phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
- (agc_value - IGP02E1000_AGC_RANGE) : 0;
+ (agc_value - IGP02E1000_AGC_RANGE) : 0;
phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
-out:
- return ret_val;
+ return E1000_SUCCESS;
}
/**
@@ -2237,53 +2614,51 @@ s32 e1000_get_phy_info_m88(struct e1000_hw *hw)
if (phy->media_type != e1000_media_type_copper) {
DEBUGOUT("Phy info is only valid for copper media\n");
- ret_val = -E1000_ERR_CONFIG;
- goto out;
+ return -E1000_ERR_CONFIG;
}
ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
if (ret_val)
- goto out;
+ return ret_val;
if (!link) {
DEBUGOUT("Phy info is only valid if link is up\n");
- ret_val = -E1000_ERR_CONFIG;
- goto out;
+ return -E1000_ERR_CONFIG;
}
ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
if (ret_val)
- goto out;
+ return ret_val;
- phy->polarity_correction = (phy_data & M88E1000_PSCR_POLARITY_REVERSAL)
- ? TRUE : FALSE;
+ phy->polarity_correction = !!(phy_data &
+ M88E1000_PSCR_POLARITY_REVERSAL);
ret_val = e1000_check_polarity_m88(hw);
if (ret_val)
- goto out;
+ return ret_val;
ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
if (ret_val)
- goto out;
+ return ret_val;
- phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX) ? TRUE : FALSE;
+ phy->is_mdix = !!(phy_data & M88E1000_PSSR_MDIX);
if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
ret_val = hw->phy.ops.get_cable_length(hw);
if (ret_val)
- goto out;
+ return ret_val;
ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &phy_data);
if (ret_val)
- goto out;
+ return ret_val;
phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
- ? e1000_1000t_rx_status_ok
- : e1000_1000t_rx_status_not_ok;
+ ? e1000_1000t_rx_status_ok
+ : e1000_1000t_rx_status_not_ok;
phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
- ? e1000_1000t_rx_status_ok
- : e1000_1000t_rx_status_not_ok;
+ ? e1000_1000t_rx_status_ok
+ : e1000_1000t_rx_status_not_ok;
} else {
/* Set values to "undefined" */
phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
@@ -2291,7 +2666,6 @@ s32 e1000_get_phy_info_m88(struct e1000_hw *hw)
phy->remote_rx = e1000_1000t_rx_status_undefined;
}
-out:
return ret_val;
}
@@ -2315,50 +2689,48 @@ s32 e1000_get_phy_info_igp(struct e1000_hw *hw)
ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
if (ret_val)
- goto out;
+ return ret_val;
if (!link) {
DEBUGOUT("Phy info is only valid if link is up\n");
- ret_val = -E1000_ERR_CONFIG;
- goto out;
+ return -E1000_ERR_CONFIG;
}
phy->polarity_correction = TRUE;
ret_val = e1000_check_polarity_igp(hw);
if (ret_val)
- goto out;
+ return ret_val;
ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
if (ret_val)
- goto out;
+ return ret_val;
- phy->is_mdix = (data & IGP01E1000_PSSR_MDIX) ? TRUE : FALSE;
+ phy->is_mdix = !!(data & IGP01E1000_PSSR_MDIX);
if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
IGP01E1000_PSSR_SPEED_1000MBPS) {
ret_val = phy->ops.get_cable_length(hw);
if (ret_val)
- goto out;
+ return ret_val;
ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
if (ret_val)
- goto out;
+ return ret_val;
phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
- ? e1000_1000t_rx_status_ok
- : e1000_1000t_rx_status_not_ok;
+ ? e1000_1000t_rx_status_ok
+ : e1000_1000t_rx_status_not_ok;
phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
- ? e1000_1000t_rx_status_ok
- : e1000_1000t_rx_status_not_ok;
+ ? e1000_1000t_rx_status_ok
+ : e1000_1000t_rx_status_not_ok;
} else {
phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
phy->local_rx = e1000_1000t_rx_status_undefined;
phy->remote_rx = e1000_1000t_rx_status_undefined;
}
-out:
return ret_val;
}
@@ -2379,44 +2751,41 @@ s32 e1000_get_phy_info_ife(struct e1000_hw *hw)
ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
if (ret_val)
- goto out;
+ return ret_val;
if (!link) {
DEBUGOUT("Phy info is only valid if link is up\n");
- ret_val = -E1000_ERR_CONFIG;
- goto out;
+ return -E1000_ERR_CONFIG;
}
ret_val = phy->ops.read_reg(hw, IFE_PHY_SPECIAL_CONTROL, &data);
if (ret_val)
- goto out;
- phy->polarity_correction = (data & IFE_PSC_AUTO_POLARITY_DISABLE)
- ? FALSE : TRUE;
+ return ret_val;
+ phy->polarity_correction = !(data & IFE_PSC_AUTO_POLARITY_DISABLE);
if (phy->polarity_correction) {
ret_val = e1000_check_polarity_ife(hw);
if (ret_val)
- goto out;
+ return ret_val;
} else {
/* Polarity is forced */
phy->cable_polarity = (data & IFE_PSC_FORCE_POLARITY)
- ? e1000_rev_polarity_reversed
- : e1000_rev_polarity_normal;
+ ? e1000_rev_polarity_reversed
+ : e1000_rev_polarity_normal;
}
ret_val = phy->ops.read_reg(hw, IFE_PHY_MDIX_CONTROL, &data);
if (ret_val)
- goto out;
+ return ret_val;
- phy->is_mdix = (data & IFE_PMC_MDIX_STATUS) ? TRUE : FALSE;
+ phy->is_mdix = !!(data & IFE_PMC_MDIX_STATUS);
/* The following parameters are undefined for 10/100 operation. */
phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
phy->local_rx = e1000_1000t_rx_status_undefined;
phy->remote_rx = e1000_1000t_rx_status_undefined;
-out:
- return ret_val;
+ return E1000_SUCCESS;
}
/**
@@ -2428,26 +2797,25 @@ out:
**/
s32 e1000_phy_sw_reset_generic(struct e1000_hw *hw)
{
- s32 ret_val = E1000_SUCCESS;
+ s32 ret_val;
u16 phy_ctrl;
DEBUGFUNC("e1000_phy_sw_reset_generic");
- if (!(hw->phy.ops.read_reg))
- goto out;
+ if (!hw->phy.ops.read_reg)
+ return E1000_SUCCESS;
ret_val = hw->phy.ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
if (ret_val)
- goto out;
+ return ret_val;
phy_ctrl |= MII_CR_RESET;
ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
if (ret_val)
- goto out;
+ return ret_val;
usec_delay(1);
-out:
return ret_val;
}
@@ -2463,20 +2831,20 @@ out:
s32 e1000_phy_hw_reset_generic(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val = E1000_SUCCESS;
+ s32 ret_val;
u32 ctrl;
DEBUGFUNC("e1000_phy_hw_reset_generic");
- ret_val = phy->ops.check_reset_block(hw);
- if (ret_val) {
- ret_val = E1000_SUCCESS;
- goto out;
+ if (phy->ops.check_reset_block) {
+ ret_val = phy->ops.check_reset_block(hw);
+ if (ret_val)
+ return E1000_SUCCESS;
}
ret_val = phy->ops.acquire(hw);
if (ret_val)
- goto out;
+ return ret_val;
ctrl = E1000_READ_REG(hw, E1000_CTRL);
E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_PHY_RST);
@@ -2491,10 +2859,7 @@ s32 e1000_phy_hw_reset_generic(struct e1000_hw *hw)
phy->ops.release(hw);
- ret_val = phy->ops.get_cfg_done(hw);
-
-out:
- return ret_val;
+ return phy->ops.get_cfg_done(hw);
}
/**
@@ -2576,15 +2941,13 @@ s32 e1000_phy_init_script_igp3(struct e1000_hw *hw)
hw->phy.ops.write_reg(hw, 0x1796, 0x0008);
/* Change cg_icount + enable integbp for channels BCD */
hw->phy.ops.write_reg(hw, 0x1798, 0xD008);
- /*
- * Change cg_icount + enable integbp + change prop_factor_master
+ /* Change cg_icount + enable integbp + change prop_factor_master
* to 8 for channel A
*/
hw->phy.ops.write_reg(hw, 0x1898, 0xD918);
/* Disable AHT in Slave mode on channel A */
hw->phy.ops.write_reg(hw, 0x187A, 0x0800);
- /*
- * Enable LPLU and disable AN to 1000 in non-D0a states,
+ /* Enable LPLU and disable AN to 1000 in non-D0a states,
* Enable SPD+B2B
*/
hw->phy.ops.write_reg(hw, 0x0019, 0x008D);
@@ -2613,6 +2976,9 @@ enum e1000_phy_type e1000_get_phy_type_from_id(u32 phy_id)
case M88E1000_E_PHY_ID:
case M88E1111_I_PHY_ID:
case M88E1011_I_PHY_ID:
+ case I347AT4_E_PHY_ID:
+ case M88E1112_E_PHY_ID:
+ case M88E1340M_E_PHY_ID:
phy_type = e1000_phy_m88;
break;
case IGP01E1000_I_PHY_ID: /* IGP 1 & 2 share this */
@@ -2642,9 +3008,15 @@ enum e1000_phy_type e1000_get_phy_type_from_id(u32 phy_id)
case I82579_E_PHY_ID:
phy_type = e1000_phy_82579;
break;
+ case I217_E_PHY_ID:
+ phy_type = e1000_phy_i217;
+ break;
case I82580_I_PHY_ID:
phy_type = e1000_phy_82580;
break;
+ case I210_I_PHY_ID:
+ phy_type = e1000_phy_i210;
+ break;
default:
phy_type = e1000_phy_unknown;
break;
@@ -2662,7 +3034,6 @@ enum e1000_phy_type e1000_get_phy_type_from_id(u32 phy_id)
**/
s32 e1000_determine_phy_address(struct e1000_hw *hw)
{
- s32 ret_val = -E1000_ERR_PHY_TYPE;
u32 phy_addr = 0;
u32 i;
enum e1000_phy_type phy_type = e1000_phy_unknown;
@@ -2677,21 +3048,18 @@ s32 e1000_determine_phy_address(struct e1000_hw *hw)
e1000_get_phy_id(hw);
phy_type = e1000_get_phy_type_from_id(hw->phy.id);
- /*
- * If phy_type is valid, break - we found our
+ /* If phy_type is valid, break - we found our
* PHY address
*/
- if (phy_type != e1000_phy_unknown) {
- ret_val = E1000_SUCCESS;
- goto out;
- }
+ if (phy_type != e1000_phy_unknown)
+ return E1000_SUCCESS;
+
msec_delay(1);
i++;
} while (i < 10);
}
-out:
- return ret_val;
+ return -E1000_ERR_PHY_TYPE;
}
/**
@@ -2722,9 +3090,7 @@ static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg)
s32 e1000_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data)
{
s32 ret_val;
- u32 page_select = 0;
u32 page = offset >> IGP_PAGE_SHIFT;
- u32 page_shift = 0;
DEBUGFUNC("e1000_write_phy_reg_bm");
@@ -2735,15 +3101,16 @@ s32 e1000_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data)
/* Page 800 works differently than the rest so it has its own func */
if (page == BM_WUC_PAGE) {
ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
- FALSE);
- goto out;
+ FALSE, FALSE);
+ goto release;
}
hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
if (offset > MAX_PHY_MULTI_PAGE_REG) {
- /*
- * Page select is register 31 for phy address 1 and 22 for
+ u32 page_shift, page_select;
+
+ /* Page select is register 31 for phy address 1 and 22 for
* phy address 2 and 3. Page select is shifted only for
* phy address 1.
*/
@@ -2757,15 +3124,15 @@ s32 e1000_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data)
/* Page is shifted left, PHY expects (page x 32) */
ret_val = e1000_write_phy_reg_mdic(hw, page_select,
- (page << page_shift));
+ (page << page_shift));
if (ret_val)
- goto out;
+ goto release;
}
ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
- data);
+ data);
-out:
+release:
hw->phy.ops.release(hw);
return ret_val;
}
@@ -2783,9 +3150,7 @@ out:
s32 e1000_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data)
{
s32 ret_val;
- u32 page_select = 0;
u32 page = offset >> IGP_PAGE_SHIFT;
- u32 page_shift = 0;
DEBUGFUNC("e1000_read_phy_reg_bm");
@@ -2796,15 +3161,16 @@ s32 e1000_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data)
/* Page 800 works differently than the rest so it has its own func */
if (page == BM_WUC_PAGE) {
ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
- TRUE);
- goto out;
+ TRUE, FALSE);
+ goto release;
}
hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
if (offset > MAX_PHY_MULTI_PAGE_REG) {
- /*
- * Page select is register 31 for phy address 1 and 22 for
+ u32 page_shift, page_select;
+
+ /* Page select is register 31 for phy address 1 and 22 for
* phy address 2 and 3. Page select is shifted only for
* phy address 1.
*/
@@ -2818,14 +3184,14 @@ s32 e1000_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data)
/* Page is shifted left, PHY expects (page x 32) */
ret_val = e1000_write_phy_reg_mdic(hw, page_select,
- (page << page_shift));
+ (page << page_shift));
if (ret_val)
- goto out;
+ goto release;
}
ret_val = e1000_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
- data);
-out:
+ data);
+release:
hw->phy.ops.release(hw);
return ret_val;
}
@@ -2845,7 +3211,7 @@ s32 e1000_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data)
s32 ret_val;
u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
- DEBUGFUNC("e1000_write_phy_reg_bm2");
+ DEBUGFUNC("e1000_read_phy_reg_bm2");
ret_val = hw->phy.ops.acquire(hw);
if (ret_val)
@@ -2854,25 +3220,24 @@ s32 e1000_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data)
/* Page 800 works differently than the rest so it has its own func */
if (page == BM_WUC_PAGE) {
ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
- TRUE);
- goto out;
+ TRUE, FALSE);
+ goto release;
}
hw->phy.addr = 1;
if (offset > MAX_PHY_MULTI_PAGE_REG) {
-
/* Page is shifted left, PHY expects (page x 32) */
ret_val = e1000_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
- page);
+ page);
if (ret_val)
- goto out;
+ goto release;
}
ret_val = e1000_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
- data);
-out:
+ data);
+release:
hw->phy.ops.release(hw);
return ret_val;
}
@@ -2900,8 +3265,8 @@ s32 e1000_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data)
/* Page 800 works differently than the rest so it has its own func */
if (page == BM_WUC_PAGE) {
ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
- FALSE);
- goto out;
+ FALSE, FALSE);
+ goto release;
}
hw->phy.addr = 1;
@@ -2909,124 +3274,188 @@ s32 e1000_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data)
if (offset > MAX_PHY_MULTI_PAGE_REG) {
/* Page is shifted left, PHY expects (page x 32) */
ret_val = e1000_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
- page);
+ page);
if (ret_val)
- goto out;
+ goto release;
}
ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
- data);
+ data);
-out:
+release:
hw->phy.ops.release(hw);
return ret_val;
}
/**
- * e1000_access_phy_wakeup_reg_bm - Read BM PHY wakeup register
+ * e1000_enable_phy_wakeup_reg_access_bm - enable access to BM wakeup registers
+ * @hw: pointer to the HW structure
+ * @phy_reg: pointer to store original contents of BM_WUC_ENABLE_REG
+ *
+ * Assumes semaphore already acquired and phy_reg points to a valid memory
+ * address to store contents of the BM_WUC_ENABLE_REG register.
+ **/
+s32 e1000_enable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
+{
+ s32 ret_val;
+ u16 temp;
+
+ DEBUGFUNC("e1000_enable_phy_wakeup_reg_access_bm");
+
+ if (!phy_reg)
+ return -E1000_ERR_PARAM;
+
+ /* All page select, port ctrl and wakeup registers use phy address 1 */
+ hw->phy.addr = 1;
+
+ /* Select Port Control Registers page */
+ ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
+ if (ret_val) {
+ DEBUGOUT("Could not set Port Control page\n");
+ return ret_val;
+ }
+
+ ret_val = e1000_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
+ if (ret_val) {
+ DEBUGOUT2("Could not read PHY register %d.%d\n",
+ BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
+ return ret_val;
+ }
+
+ /* Enable both PHY wakeup mode and Wakeup register page writes.
+ * Prevent a power state change by disabling ME and Host PHY wakeup.
+ */
+ temp = *phy_reg;
+ temp |= BM_WUC_ENABLE_BIT;
+ temp &= ~(BM_WUC_ME_WU_BIT | BM_WUC_HOST_WU_BIT);
+
+ ret_val = e1000_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, temp);
+ if (ret_val) {
+ DEBUGOUT2("Could not write PHY register %d.%d\n",
+ BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
+ return ret_val;
+ }
+
+ /* Select Host Wakeup Registers page - caller now able to write
+ * registers on the Wakeup registers page
+ */
+ return e1000_set_page_igp(hw, (BM_WUC_PAGE << IGP_PAGE_SHIFT));
+}
+
+/**
+ * e1000_disable_phy_wakeup_reg_access_bm - disable access to BM wakeup regs
+ * @hw: pointer to the HW structure
+ * @phy_reg: pointer to original contents of BM_WUC_ENABLE_REG
+ *
+ * Restore BM_WUC_ENABLE_REG to its original value.
+ *
+ * Assumes semaphore already acquired and *phy_reg is the contents of the
+ * BM_WUC_ENABLE_REG before register(s) on BM_WUC_PAGE were accessed by
+ * caller.
+ **/
+s32 e1000_disable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
+{
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_disable_phy_wakeup_reg_access_bm");
+
+ if (!phy_reg)
+ return -E1000_ERR_PARAM;
+
+ /* Select Port Control Registers page */
+ ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
+ if (ret_val) {
+ DEBUGOUT("Could not set Port Control page\n");
+ return ret_val;
+ }
+
+ /* Restore 769.17 to its original value */
+ ret_val = e1000_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, *phy_reg);
+ if (ret_val)
+ DEBUGOUT2("Could not restore PHY register %d.%d\n",
+ BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
+
+ return ret_val;
+}
+
+/**
+ * e1000_access_phy_wakeup_reg_bm - Read/write BM PHY wakeup register
* @hw: pointer to the HW structure
* @offset: register offset to be read or written
* @data: pointer to the data to read or write
* @read: determines if operation is read or write
+ * @page_set: BM_WUC_PAGE already set and access enabled
*
- * Acquires semaphore, if necessary, then reads the PHY register at offset
- * and storing the retrieved information in data. Release any acquired
- * semaphores before exiting. Note that procedure to read the wakeup
- * registers are different. It works as such:
- * 1) Set page 769, register 17, bit 2 = 1
+ * Read the PHY register at offset and store the retrieved information in
+ * data, or write data to PHY register at offset. Note the procedure to
+ * access the PHY wakeup registers is different than reading the other PHY
+ * registers. It works as such:
+ * 1) Set 769.17.2 (page 769, register 17, bit 2) = 1
* 2) Set page to 800 for host (801 if we were manageability)
* 3) Write the address using the address opcode (0x11)
* 4) Read or write the data using the data opcode (0x12)
- * 5) Restore 769_17.2 to its original value
+ * 5) Restore 769.17.2 to its original value
*
- * Assumes semaphore already acquired.
+ * Steps 1 and 2 are done by e1000_enable_phy_wakeup_reg_access_bm() and
+ * step 5 is done by e1000_disable_phy_wakeup_reg_access_bm().
+ *
+ * Assumes semaphore is already acquired. When page_set==TRUE, assumes
+ * the PHY page is set to BM_WUC_PAGE (i.e. a function in the call stack
+ * is responsible for calls to e1000_[enable|disable]_phy_wakeup_reg_bm()).
**/
static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
- u16 *data, bool read)
+ u16 *data, bool read, bool page_set)
{
s32 ret_val;
u16 reg = BM_PHY_REG_NUM(offset);
+ u16 page = BM_PHY_REG_PAGE(offset);
u16 phy_reg = 0;
DEBUGFUNC("e1000_access_phy_wakeup_reg_bm");
- /* Gig must be disabled for MDIO accesses to page 800 */
+ /* Gig must be disabled for MDIO accesses to Host Wakeup reg page */
if ((hw->mac.type == e1000_pchlan) &&
(!(E1000_READ_REG(hw, E1000_PHY_CTRL) & E1000_PHY_CTRL_GBE_DISABLE)))
- DEBUGOUT("Attempting to access page 800 while gig enabled.\n");
-
- /* All operations in this function are phy address 1 */
- hw->phy.addr = 1;
+ DEBUGOUT1("Attempting to access page %d while gig enabled.\n",
+ page);
- /* Set page 769 */
- e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
- (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));
-
- ret_val = e1000_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &phy_reg);
- if (ret_val) {
- DEBUGOUT("Could not read PHY page 769\n");
- goto out;
- }
-
- /* First clear bit 4 to avoid a power state change */
- phy_reg &= ~(BM_WUC_HOST_WU_BIT);
- ret_val = e1000_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
- if (ret_val) {
- DEBUGOUT("Could not clear PHY page 769 bit 4\n");
- goto out;
- }
-
- /* Write bit 2 = 1, and clear bit 4 to 769_17 */
- ret_val = e1000_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG,
- phy_reg | BM_WUC_ENABLE_BIT);
- if (ret_val) {
- DEBUGOUT("Could not write PHY page 769 bit 2\n");
- goto out;
+ if (!page_set) {
+ /* Enable access to PHY wakeup registers */
+ ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
+ if (ret_val) {
+ DEBUGOUT("Could not enable PHY wakeup reg access\n");
+ return ret_val;
+ }
}
- /* Select page 800 */
- ret_val = e1000_write_phy_reg_mdic(hw,
- IGP01E1000_PHY_PAGE_SELECT,
- (BM_WUC_PAGE << IGP_PAGE_SHIFT));
+ DEBUGOUT2("Accessing PHY page %d reg 0x%x\n", page, reg);
- /* Write the page 800 offset value using opcode 0x11 */
+ /* Write the Wakeup register page offset value using opcode 0x11 */
ret_val = e1000_write_phy_reg_mdic(hw, BM_WUC_ADDRESS_OPCODE, reg);
if (ret_val) {
- DEBUGOUT("Could not write address opcode to page 800\n");
- goto out;
+ DEBUGOUT1("Could not write address opcode to page %d\n", page);
+ return ret_val;
}
if (read) {
- /* Read the page 800 value using opcode 0x12 */
+ /* Read the Wakeup register page value using opcode 0x12 */
ret_val = e1000_read_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
- data);
+ data);
} else {
- /* Write the page 800 value using opcode 0x12 */
+ /* Write the Wakeup register page value using opcode 0x12 */
ret_val = e1000_write_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
- *data);
+ *data);
}
if (ret_val) {
- DEBUGOUT("Could not access data value from page 800\n");
- goto out;
+ DEBUGOUT2("Could not access PHY reg %d.%d\n", page, reg);
+ return ret_val;
}
- /*
- * Restore 769_17.2 to its original value
- * Set page 769
- */
- e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
- (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));
-
- /* Clear 769_17.2 */
- ret_val = e1000_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
- if (ret_val) {
- DEBUGOUT("Could not clear PHY page 769 bit 2\n");
- goto out;
- }
+ if (!page_set)
+ ret_val = e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
-out:
return ret_val;
}
@@ -3041,10 +3470,16 @@ out:
void e1000_power_up_phy_copper(struct e1000_hw *hw)
{
u16 mii_reg = 0;
+ u16 power_reg = 0;
/* The PHY will retain its settings across a power down/up cycle */
hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
mii_reg &= ~MII_CR_POWER_DOWN;
+ if (hw->phy.type == e1000_phy_i210) {
+ hw->phy.ops.read_reg(hw, GS40G_COPPER_SPEC, &power_reg);
+ power_reg &= ~GS40G_CS_POWER_DOWN;
+ hw->phy.ops.write_reg(hw, GS40G_COPPER_SPEC, power_reg);
+ }
hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
}
@@ -3059,10 +3494,17 @@ void e1000_power_up_phy_copper(struct e1000_hw *hw)
void e1000_power_down_phy_copper(struct e1000_hw *hw)
{
u16 mii_reg = 0;
+ u16 power_reg = 0;
/* The PHY will retain its settings across a power down/up cycle */
hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
mii_reg |= MII_CR_POWER_DOWN;
+ /* i210 Phy requires an additional bit for power up/down */
+ if (hw->phy.type == e1000_phy_i210) {
+ hw->phy.ops.read_reg(hw, GS40G_COPPER_SPEC, &power_reg);
+ power_reg |= GS40G_CS_POWER_DOWN;
+ hw->phy.ops.write_reg(hw, GS40G_COPPER_SPEC, power_reg);
+ }
hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
msec_delay(1);
}
@@ -3079,11 +3521,12 @@ void e1000_power_down_phy_copper(struct e1000_hw *hw)
* semaphore before exiting.
**/
static s32 __e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data,
- bool locked)
+ bool locked, bool page_set)
{
s32 ret_val;
u16 page = BM_PHY_REG_PAGE(offset);
u16 reg = BM_PHY_REG_NUM(offset);
+ u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
DEBUGFUNC("__e1000_read_phy_reg_hv");
@@ -3095,39 +3538,38 @@ static s32 __e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data,
/* Page 800 works differently than the rest so it has its own func */
if (page == BM_WUC_PAGE) {
- ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset,
- data, TRUE);
+ ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
+ TRUE, page_set);
goto out;
}
if (page > 0 && page < HV_INTC_FC_PAGE_START) {
ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
- data, TRUE);
+ data, TRUE);
goto out;
}
- hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
+ if (!page_set) {
+ if (page == HV_INTC_FC_PAGE_START)
+ page = 0;
- if (page == HV_INTC_FC_PAGE_START)
- page = 0;
+ if (reg > MAX_PHY_MULTI_PAGE_REG) {
+ /* Page is shifted left, PHY expects (page x 32) */
+ ret_val = e1000_set_page_igp(hw,
+ (page << IGP_PAGE_SHIFT));
- if (reg > MAX_PHY_MULTI_PAGE_REG) {
- u32 phy_addr = hw->phy.addr;
+ hw->phy.addr = phy_addr;
- hw->phy.addr = 1;
-
- /* Page is shifted left, PHY expects (page x 32) */
- ret_val = e1000_write_phy_reg_mdic(hw,
- IGP01E1000_PHY_PAGE_SELECT,
- (page << IGP_PAGE_SHIFT));
- hw->phy.addr = phy_addr;
-
- if (ret_val)
- goto out;
+ if (ret_val)
+ goto out;
+ }
}
+ DEBUGOUT3("reading PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
+ page << IGP_PAGE_SHIFT, reg);
+
ret_val = e1000_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
- data);
+ data);
out:
if (!locked)
hw->phy.ops.release(hw);
@@ -3147,7 +3589,7 @@ out:
**/
s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data)
{
- return __e1000_read_phy_reg_hv(hw, offset, data, FALSE);
+ return __e1000_read_phy_reg_hv(hw, offset, data, FALSE, FALSE);
}
/**
@@ -3161,7 +3603,21 @@ s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data)
**/
s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data)
{
- return __e1000_read_phy_reg_hv(hw, offset, data, TRUE);
+ return __e1000_read_phy_reg_hv(hw, offset, data, TRUE, FALSE);
+}
+
+/**
+ * e1000_read_phy_reg_page_hv - Read HV PHY register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to write to
+ * @data: data to write at register offset
+ *
+ * Reads the PHY register at offset and stores the retrieved information
+ * in data. Assumes semaphore already acquired and page already set.
+ **/
+s32 e1000_read_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+ return __e1000_read_phy_reg_hv(hw, offset, data, TRUE, true);
}
/**
@@ -3175,11 +3631,12 @@ s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data)
* at the offset. Release any acquired semaphores before exiting.
**/
static s32 __e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data,
- bool locked)
+ bool locked, bool page_set)
{
s32 ret_val;
u16 page = BM_PHY_REG_PAGE(offset);
u16 reg = BM_PHY_REG_NUM(offset);
+ u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
DEBUGFUNC("__e1000_write_phy_reg_hv");
@@ -3191,55 +3648,54 @@ static s32 __e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data,
/* Page 800 works differently than the rest so it has its own func */
if (page == BM_WUC_PAGE) {
- ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset,
- &data, FALSE);
+ ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
+ FALSE, page_set);
goto out;
}
if (page > 0 && page < HV_INTC_FC_PAGE_START) {
ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
- &data, FALSE);
+ &data, FALSE);
goto out;
}
- hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
-
- if (page == HV_INTC_FC_PAGE_START)
- page = 0;
-
- /*
- * Workaround MDIO accesses being disabled after entering IEEE Power
- * Down (whenever bit 11 of the PHY Control register is set)
- */
- if ((hw->phy.type == e1000_phy_82578) &&
- (hw->phy.revision >= 1) &&
- (hw->phy.addr == 2) &&
- ((MAX_PHY_REG_ADDRESS & reg) == 0) &&
- (data & (1 << 11))) {
- u16 data2 = 0x7EFF;
- ret_val = e1000_access_phy_debug_regs_hv(hw, (1 << 6) | 0x3,
- &data2, FALSE);
- if (ret_val)
- goto out;
- }
+ if (!page_set) {
+ if (page == HV_INTC_FC_PAGE_START)
+ page = 0;
- if (reg > MAX_PHY_MULTI_PAGE_REG) {
- u32 phy_addr = hw->phy.addr;
+ /* Workaround MDIO accesses being disabled after entering IEEE
+ * Power Down (when bit 11 of the PHY Control register is set)
+ */
+ if ((hw->phy.type == e1000_phy_82578) &&
+ (hw->phy.revision >= 1) &&
+ (hw->phy.addr == 2) &&
+ !(MAX_PHY_REG_ADDRESS & reg) &&
+ (data & (1 << 11))) {
+ u16 data2 = 0x7EFF;
+ ret_val = e1000_access_phy_debug_regs_hv(hw,
+ (1 << 6) | 0x3,
+ &data2, FALSE);
+ if (ret_val)
+ goto out;
+ }
- hw->phy.addr = 1;
+ if (reg > MAX_PHY_MULTI_PAGE_REG) {
+ /* Page is shifted left, PHY expects (page x 32) */
+ ret_val = e1000_set_page_igp(hw,
+ (page << IGP_PAGE_SHIFT));
- /* Page is shifted left, PHY expects (page x 32) */
- ret_val = e1000_write_phy_reg_mdic(hw,
- IGP01E1000_PHY_PAGE_SELECT,
- (page << IGP_PAGE_SHIFT));
- hw->phy.addr = phy_addr;
+ hw->phy.addr = phy_addr;
- if (ret_val)
- goto out;
+ if (ret_val)
+ goto out;
+ }
}
+ DEBUGOUT3("writing PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
+ page << IGP_PAGE_SHIFT, reg);
+
ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
- data);
+ data);
out:
if (!locked)
@@ -3259,7 +3715,7 @@ out:
**/
s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data)
{
- return __e1000_write_phy_reg_hv(hw, offset, data, FALSE);
+ return __e1000_write_phy_reg_hv(hw, offset, data, FALSE, FALSE);
}
/**
@@ -3273,7 +3729,21 @@ s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data)
**/
s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data)
{
- return __e1000_write_phy_reg_hv(hw, offset, data, TRUE);
+ return __e1000_write_phy_reg_hv(hw, offset, data, TRUE, FALSE);
+}
+
+/**
+ * e1000_write_phy_reg_page_hv - Write HV PHY register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to write to
+ * @data: data to write at register offset
+ *
+ * Writes the data to PHY register at the offset. Assumes semaphore
+ * already acquired and page already set.
+ **/
+s32 e1000_write_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 data)
+{
+ return __e1000_write_phy_reg_hv(hw, offset, data, TRUE, true);
}
/**
@@ -3295,24 +3765,25 @@ static u32 e1000_get_phy_addr_for_hv_page(u32 page)
* @hw: pointer to the HW structure
* @offset: register offset to be read or written
* @data: pointer to the data to be read or written
- * @read: determines if operation is read or written
+ * @read: determines if operation is read or write
*
* Reads the PHY register at offset and stores the retreived information
* in data. Assumes semaphore already acquired. Note that the procedure
- * to read these regs uses the address port and data port to read/write.
+ * to access these regs uses the address port and data port to read/write.
+ * These accesses done with PHY address 2 and without using pages.
**/
static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
- u16 *data, bool read)
+ u16 *data, bool read)
{
s32 ret_val;
- u32 addr_reg = 0;
- u32 data_reg = 0;
+ u32 addr_reg;
+ u32 data_reg;
DEBUGFUNC("e1000_access_phy_debug_regs_hv");
/* This takes care of the difference with desktop vs mobile phy */
addr_reg = (hw->phy.type == e1000_phy_82578) ?
- I82578_ADDR_REG : I82577_ADDR_REG;
+ I82578_ADDR_REG : I82577_ADDR_REG;
data_reg = addr_reg + 1;
/* All operations in this function are phy address 2 */
@@ -3321,8 +3792,8 @@ static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
/* masking with 0x3F to remove the page from offset */
ret_val = e1000_write_phy_reg_mdic(hw, addr_reg, (u16)offset & 0x3F);
if (ret_val) {
- DEBUGOUT("Could not write PHY the HV address register\n");
- goto out;
+ DEBUGOUT("Could not write the Address Offset port register\n");
+ return ret_val;
}
/* Read or write the data value next */
@@ -3331,12 +3802,9 @@ static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
else
ret_val = e1000_write_phy_reg_mdic(hw, data_reg, *data);
- if (ret_val) {
- DEBUGOUT("Could not read data value from HV data register\n");
- goto out;
- }
+ if (ret_val)
+ DEBUGOUT("Could not access the Data port register\n");
-out:
return ret_val;
}
@@ -3359,41 +3827,36 @@ s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw)
DEBUGFUNC("e1000_link_stall_workaround_hv");
if (hw->phy.type != e1000_phy_82578)
- goto out;
+ return E1000_SUCCESS;
/* Do not apply workaround if in PHY loopback bit 14 set */
hw->phy.ops.read_reg(hw, PHY_CONTROL, &data);
if (data & PHY_CONTROL_LB)
- goto out;
+ return E1000_SUCCESS;
/* check if link is up and at 1Gbps */
ret_val = hw->phy.ops.read_reg(hw, BM_CS_STATUS, &data);
if (ret_val)
- goto out;
+ return ret_val;
- data &= BM_CS_STATUS_LINK_UP |
- BM_CS_STATUS_RESOLVED |
- BM_CS_STATUS_SPEED_MASK;
+ data &= BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
+ BM_CS_STATUS_SPEED_MASK;
- if (data != (BM_CS_STATUS_LINK_UP |
- BM_CS_STATUS_RESOLVED |
- BM_CS_STATUS_SPEED_1000))
- goto out;
+ if (data != (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
+ BM_CS_STATUS_SPEED_1000))
+ return E1000_SUCCESS;
msec_delay(200);
/* flush the packets in the fifo buffer */
ret_val = hw->phy.ops.write_reg(hw, HV_MUX_DATA_CTRL,
- HV_MUX_DATA_CTRL_GEN_TO_MAC |
- HV_MUX_DATA_CTRL_FORCE_SPEED);
+ (HV_MUX_DATA_CTRL_GEN_TO_MAC |
+ HV_MUX_DATA_CTRL_FORCE_SPEED));
if (ret_val)
- goto out;
-
- ret_val = hw->phy.ops.write_reg(hw, HV_MUX_DATA_CTRL,
- HV_MUX_DATA_CTRL_GEN_TO_MAC);
+ return ret_val;
-out:
- return ret_val;
+ return hw->phy.ops.write_reg(hw, HV_MUX_DATA_CTRL,
+ HV_MUX_DATA_CTRL_GEN_TO_MAC);
}
/**
@@ -3416,8 +3879,8 @@ s32 e1000_check_polarity_82577(struct e1000_hw *hw)
if (!ret_val)
phy->cable_polarity = (data & I82577_PHY_STATUS2_REV_POLARITY)
- ? e1000_rev_polarity_reversed
- : e1000_rev_polarity_normal;
+ ? e1000_rev_polarity_reversed
+ : e1000_rev_polarity_normal;
return ret_val;
}
@@ -3439,39 +3902,32 @@ s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw)
ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
if (ret_val)
- goto out;
+ return ret_val;
e1000_phy_force_speed_duplex_setup(hw, &phy_data);
ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
if (ret_val)
- goto out;
+ return ret_val;
usec_delay(1);
if (phy->autoneg_wait_to_complete) {
DEBUGOUT("Waiting for forced speed/duplex link on 82577 phy\n");
- ret_val = e1000_phy_has_link_generic(hw,
- PHY_FORCE_LIMIT,
- 100000,
- &link);
+ ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
+ 100000, &link);
if (ret_val)
- goto out;
+ return ret_val;
if (!link)
DEBUGOUT("Link taking longer than expected.\n");
/* Try once more */
- ret_val = e1000_phy_has_link_generic(hw,
- PHY_FORCE_LIMIT,
- 100000,
- &link);
- if (ret_val)
- goto out;
+ ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
+ 100000, &link);
}
-out:
return ret_val;
}
@@ -3495,51 +3951,49 @@ s32 e1000_get_phy_info_82577(struct e1000_hw *hw)
ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
if (ret_val)
- goto out;
+ return ret_val;
if (!link) {
DEBUGOUT("Phy info is only valid if link is up\n");
- ret_val = -E1000_ERR_CONFIG;
- goto out;
+ return -E1000_ERR_CONFIG;
}
phy->polarity_correction = TRUE;
ret_val = e1000_check_polarity_82577(hw);
if (ret_val)
- goto out;
+ return ret_val;
ret_val = phy->ops.read_reg(hw, I82577_PHY_STATUS_2, &data);
if (ret_val)
- goto out;
+ return ret_val;
- phy->is_mdix = (data & I82577_PHY_STATUS2_MDIX) ? TRUE : FALSE;
+ phy->is_mdix = !!(data & I82577_PHY_STATUS2_MDIX);
if ((data & I82577_PHY_STATUS2_SPEED_MASK) ==
I82577_PHY_STATUS2_SPEED_1000MBPS) {
ret_val = hw->phy.ops.get_cable_length(hw);
if (ret_val)
- goto out;
+ return ret_val;
ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
if (ret_val)
- goto out;
+ return ret_val;
phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
- ? e1000_1000t_rx_status_ok
- : e1000_1000t_rx_status_not_ok;
+ ? e1000_1000t_rx_status_ok
+ : e1000_1000t_rx_status_not_ok;
phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
- ? e1000_1000t_rx_status_ok
- : e1000_1000t_rx_status_not_ok;
+ ? e1000_1000t_rx_status_ok
+ : e1000_1000t_rx_status_not_ok;
} else {
phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
phy->local_rx = e1000_1000t_rx_status_undefined;
phy->remote_rx = e1000_1000t_rx_status_undefined;
}
-out:
- return ret_val;
+ return E1000_SUCCESS;
}
/**
@@ -3559,16 +4013,79 @@ s32 e1000_get_cable_length_82577(struct e1000_hw *hw)
ret_val = phy->ops.read_reg(hw, I82577_PHY_DIAG_STATUS, &phy_data);
if (ret_val)
- goto out;
+ return ret_val;
length = (phy_data & I82577_DSTATUS_CABLE_LENGTH) >>
- I82577_DSTATUS_CABLE_LENGTH_SHIFT;
+ I82577_DSTATUS_CABLE_LENGTH_SHIFT;
if (length == E1000_CABLE_LENGTH_UNDEFINED)
- ret_val = -E1000_ERR_PHY;
+ return -E1000_ERR_PHY;
phy->cable_length = length;
-out:
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_write_phy_reg_gs40g - Write GS40G PHY register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to write to
+ * @data: data to write at register offset
+ *
+ * Acquires semaphore, if necessary, then writes the data to PHY register
+ * at the offset. Release any acquired semaphores before exiting.
+ **/
+s32 e1000_write_phy_reg_gs40g(struct e1000_hw *hw, u32 offset, u16 data)
+{
+ s32 ret_val;
+ u16 page = offset >> GS40G_PAGE_SHIFT;
+
+ DEBUGFUNC("e1000_write_phy_reg_gs40g");
+
+ offset = offset & GS40G_OFFSET_MASK;
+ ret_val = hw->phy.ops.acquire(hw);
+ if (ret_val)
+ return ret_val;
+
+ ret_val = e1000_write_phy_reg_mdic(hw, GS40G_PAGE_SELECT, page);
+ if (ret_val)
+ goto release;
+ ret_val = e1000_write_phy_reg_mdic(hw, offset, data);
+
+release:
+ hw->phy.ops.release(hw);
return ret_val;
}
+
+/**
+ * e1000_read_phy_reg_gs40g - Read GS40G PHY register
+ * @hw: pointer to the HW structure
+ * @offset: lower half is register offset to read to
+ * upper half is page to use.
+ * @data: data to read at register offset
+ *
+ * Acquires semaphore, if necessary, then reads the data in the PHY register
+ * at the offset. Release any acquired semaphores before exiting.
+ **/
+s32 e1000_read_phy_reg_gs40g(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+ s32 ret_val;
+ u16 page = offset >> GS40G_PAGE_SHIFT;
+
+ DEBUGFUNC("e1000_read_phy_reg_gs40g");
+
+ offset = offset & GS40G_OFFSET_MASK;
+ ret_val = hw->phy.ops.acquire(hw);
+ if (ret_val)
+ return ret_val;
+
+ ret_val = e1000_write_phy_reg_mdic(hw, GS40G_PAGE_SELECT, page);
+ if (ret_val)
+ goto release;
+ ret_val = e1000_read_phy_reg_mdic(hw, offset, data);
+
+release:
+ hw->phy.ops.release(hw);
+ return ret_val;
+}
+
diff --git a/freebsd/sys/dev/e1000/e1000_phy.h b/freebsd/sys/dev/e1000/e1000_phy.h
index c42ef6c6..9911df77 100644
--- a/freebsd/sys/dev/e1000/e1000_phy.h
+++ b/freebsd/sys/dev/e1000/e1000_phy.h
@@ -1,6 +1,6 @@
/******************************************************************************
- Copyright (c) 2001-2010, Intel Corporation
+ Copyright (c) 2001-2013, Intel Corporation
All rights reserved.
Redistribution and use in source and binary forms, with or without
@@ -40,6 +40,11 @@ s32 e1000_null_read_reg(struct e1000_hw *hw, u32 offset, u16 *data);
void e1000_null_phy_generic(struct e1000_hw *hw);
s32 e1000_null_lplu_state(struct e1000_hw *hw, bool active);
s32 e1000_null_write_reg(struct e1000_hw *hw, u32 offset, u16 data);
+s32 e1000_null_set_page(struct e1000_hw *hw, u16 data);
+s32 e1000_read_i2c_byte_null(struct e1000_hw *hw, u8 byte_offset,
+ u8 dev_addr, u8 *data);
+s32 e1000_write_i2c_byte_null(struct e1000_hw *hw, u8 byte_offset,
+ u8 dev_addr, u8 data);
s32 e1000_check_downshift_generic(struct e1000_hw *hw);
s32 e1000_check_polarity_m88(struct e1000_hw *hw);
s32 e1000_check_polarity_igp(struct e1000_hw *hw);
@@ -49,10 +54,12 @@ s32 e1000_phy_setup_autoneg(struct e1000_hw *hw);
s32 e1000_copper_link_autoneg(struct e1000_hw *hw);
s32 e1000_copper_link_setup_igp(struct e1000_hw *hw);
s32 e1000_copper_link_setup_m88(struct e1000_hw *hw);
+s32 e1000_copper_link_setup_m88_gen2(struct e1000_hw *hw);
s32 e1000_phy_force_speed_duplex_igp(struct e1000_hw *hw);
s32 e1000_phy_force_speed_duplex_m88(struct e1000_hw *hw);
s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw);
s32 e1000_get_cable_length_m88(struct e1000_hw *hw);
+s32 e1000_get_cable_length_m88_gen2(struct e1000_hw *hw);
s32 e1000_get_cable_length_igp_2(struct e1000_hw *hw);
s32 e1000_get_cfg_done_generic(struct e1000_hw *hw);
s32 e1000_get_phy_id(struct e1000_hw *hw);
@@ -65,25 +72,26 @@ s32 e1000_phy_hw_reset_generic(struct e1000_hw *hw);
s32 e1000_phy_reset_dsp_generic(struct e1000_hw *hw);
s32 e1000_read_kmrn_reg_generic(struct e1000_hw *hw, u32 offset, u16 *data);
s32 e1000_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data);
+s32 e1000_set_page_igp(struct e1000_hw *hw, u16 page);
s32 e1000_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data);
s32 e1000_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data);
s32 e1000_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data);
s32 e1000_set_d3_lplu_state_generic(struct e1000_hw *hw, bool active);
s32 e1000_setup_copper_link_generic(struct e1000_hw *hw);
-s32 e1000_wait_autoneg_generic(struct e1000_hw *hw);
s32 e1000_write_kmrn_reg_generic(struct e1000_hw *hw, u32 offset, u16 data);
s32 e1000_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data);
s32 e1000_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data);
s32 e1000_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data);
s32 e1000_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data);
-s32 e1000_phy_reset_dsp(struct e1000_hw *hw);
s32 e1000_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
- u32 usec_interval, bool *success);
+ u32 usec_interval, bool *success);
s32 e1000_phy_init_script_igp3(struct e1000_hw *hw);
enum e1000_phy_type e1000_get_phy_type_from_id(u32 phy_id);
s32 e1000_determine_phy_address(struct e1000_hw *hw);
s32 e1000_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data);
s32 e1000_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data);
+s32 e1000_enable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg);
+s32 e1000_disable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg);
s32 e1000_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data);
s32 e1000_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data);
void e1000_power_up_phy_copper(struct e1000_hw *hw);
@@ -92,44 +100,60 @@ s32 e1000_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data);
s32 e1000_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data);
s32 e1000_read_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 *data);
s32 e1000_write_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 data);
+s32 e1000_read_sfp_data_byte(struct e1000_hw *hw, u16 offset, u8 *data);
+s32 e1000_write_sfp_data_byte(struct e1000_hw *hw, u16 offset, u8 data);
s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data);
s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data);
+s32 e1000_read_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 *data);
s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data);
s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data);
+s32 e1000_write_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 data);
s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw);
s32 e1000_copper_link_setup_82577(struct e1000_hw *hw);
s32 e1000_check_polarity_82577(struct e1000_hw *hw);
s32 e1000_get_phy_info_82577(struct e1000_hw *hw);
s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw);
s32 e1000_get_cable_length_82577(struct e1000_hw *hw);
+s32 e1000_write_phy_reg_gs40g(struct e1000_hw *hw, u32 offset, u16 data);
+s32 e1000_read_phy_reg_gs40g(struct e1000_hw *hw, u32 offset, u16 *data);
-#define E1000_MAX_PHY_ADDR 4
+#define E1000_MAX_PHY_ADDR 8
/* IGP01E1000 Specific Registers */
-#define IGP01E1000_PHY_PORT_CONFIG 0x10 /* Port Config */
-#define IGP01E1000_PHY_PORT_STATUS 0x11 /* Status */
-#define IGP01E1000_PHY_PORT_CTRL 0x12 /* Control */
-#define IGP01E1000_PHY_LINK_HEALTH 0x13 /* PHY Link Health */
-#define IGP01E1000_GMII_FIFO 0x14 /* GMII FIFO */
-#define IGP01E1000_PHY_CHANNEL_QUALITY 0x15 /* PHY Channel Quality */
-#define IGP02E1000_PHY_POWER_MGMT 0x19 /* Power Management */
-#define IGP01E1000_PHY_PAGE_SELECT 0x1F /* Page Select */
-#define BM_PHY_PAGE_SELECT 22 /* Page Select for BM */
-#define IGP_PAGE_SHIFT 5
-#define PHY_REG_MASK 0x1F
+#define IGP01E1000_PHY_PORT_CONFIG 0x10 /* Port Config */
+#define IGP01E1000_PHY_PORT_STATUS 0x11 /* Status */
+#define IGP01E1000_PHY_PORT_CTRL 0x12 /* Control */
+#define IGP01E1000_PHY_LINK_HEALTH 0x13 /* PHY Link Health */
+#define IGP01E1000_GMII_FIFO 0x14 /* GMII FIFO */
+#define IGP02E1000_PHY_POWER_MGMT 0x19 /* Power Management */
+#define IGP01E1000_PHY_PAGE_SELECT 0x1F /* Page Select */
+#define BM_PHY_PAGE_SELECT 22 /* Page Select for BM */
+#define IGP_PAGE_SHIFT 5
+#define PHY_REG_MASK 0x1F
+
+/* GS40G - I210 PHY defines */
+#define GS40G_PAGE_SELECT 0x16
+#define GS40G_PAGE_SHIFT 16
+#define GS40G_OFFSET_MASK 0xFFFF
+#define GS40G_PAGE_2 0x20000
+#define GS40G_MAC_REG2 0x15
+#define GS40G_MAC_LB 0x4140
+#define GS40G_MAC_SPEED_1G 0X0006
+#define GS40G_COPPER_SPEC 0x0010
+#define GS40G_CS_POWER_DOWN 0x0002
/* BM/HV Specific Registers */
-#define BM_PORT_CTRL_PAGE 769
-#define BM_PCIE_PAGE 770
-#define BM_WUC_PAGE 800
-#define BM_WUC_ADDRESS_OPCODE 0x11
-#define BM_WUC_DATA_OPCODE 0x12
-#define BM_WUC_ENABLE_PAGE BM_PORT_CTRL_PAGE
-#define BM_WUC_ENABLE_REG 17
-#define BM_WUC_ENABLE_BIT (1 << 2)
-#define BM_WUC_HOST_WU_BIT (1 << 4)
-
-#define PHY_UPPER_SHIFT 21
+#define BM_PORT_CTRL_PAGE 769
+#define BM_WUC_PAGE 800
+#define BM_WUC_ADDRESS_OPCODE 0x11
+#define BM_WUC_DATA_OPCODE 0x12
+#define BM_WUC_ENABLE_PAGE BM_PORT_CTRL_PAGE
+#define BM_WUC_ENABLE_REG 17
+#define BM_WUC_ENABLE_BIT (1 << 2)
+#define BM_WUC_HOST_WU_BIT (1 << 4)
+#define BM_WUC_ME_WU_BIT (1 << 5)
+
+#define PHY_UPPER_SHIFT 21
#define BM_PHY_REG(page, reg) \
(((reg) & MAX_PHY_REG_ADDRESS) |\
(((page) & 0xFFFF) << PHY_PAGE_SHIFT) |\
@@ -141,125 +165,151 @@ s32 e1000_get_cable_length_82577(struct e1000_hw *hw);
(((offset) >> (PHY_UPPER_SHIFT - PHY_PAGE_SHIFT)) &\
~MAX_PHY_REG_ADDRESS)))
-#define HV_INTC_FC_PAGE_START 768
-#define I82578_ADDR_REG 29
-#define I82577_ADDR_REG 16
-#define I82577_CFG_REG 22
-#define I82577_CFG_ASSERT_CRS_ON_TX (1 << 15)
-#define I82577_CFG_ENABLE_DOWNSHIFT (3 << 10) /* auto downshift 100/10 */
-#define I82577_CTRL_REG 23
+#define HV_INTC_FC_PAGE_START 768
+#define I82578_ADDR_REG 29
+#define I82577_ADDR_REG 16
+#define I82577_CFG_REG 22
+#define I82577_CFG_ASSERT_CRS_ON_TX (1 << 15)
+#define I82577_CFG_ENABLE_DOWNSHIFT (3 << 10) /* auto downshift 100/10 */
+#define I82577_CTRL_REG 23
/* 82577 specific PHY registers */
-#define I82577_PHY_CTRL_2 18
-#define I82577_PHY_LBK_CTRL 19
-#define I82577_PHY_STATUS_2 26
-#define I82577_PHY_DIAG_STATUS 31
+#define I82577_PHY_CTRL_2 18
+#define I82577_PHY_LBK_CTRL 19
+#define I82577_PHY_STATUS_2 26
+#define I82577_PHY_DIAG_STATUS 31
/* I82577 PHY Status 2 */
-#define I82577_PHY_STATUS2_REV_POLARITY 0x0400
-#define I82577_PHY_STATUS2_MDIX 0x0800
-#define I82577_PHY_STATUS2_SPEED_MASK 0x0300
-#define I82577_PHY_STATUS2_SPEED_1000MBPS 0x0200
-#define I82577_PHY_STATUS2_SPEED_100MBPS 0x0100
+#define I82577_PHY_STATUS2_REV_POLARITY 0x0400
+#define I82577_PHY_STATUS2_MDIX 0x0800
+#define I82577_PHY_STATUS2_SPEED_MASK 0x0300
+#define I82577_PHY_STATUS2_SPEED_1000MBPS 0x0200
/* I82577 PHY Control 2 */
-#define I82577_PHY_CTRL2_AUTO_MDIX 0x0400
-#define I82577_PHY_CTRL2_FORCE_MDI_MDIX 0x0200
+#define I82577_PHY_CTRL2_MANUAL_MDIX 0x0200
+#define I82577_PHY_CTRL2_AUTO_MDI_MDIX 0x0400
+#define I82577_PHY_CTRL2_MDIX_CFG_MASK 0x0600
/* I82577 PHY Diagnostics Status */
-#define I82577_DSTATUS_CABLE_LENGTH 0x03FC
-#define I82577_DSTATUS_CABLE_LENGTH_SHIFT 2
+#define I82577_DSTATUS_CABLE_LENGTH 0x03FC
+#define I82577_DSTATUS_CABLE_LENGTH_SHIFT 2
+
+/* 82580 PHY Power Management */
+#define E1000_82580_PHY_POWER_MGMT 0xE14
+#define E1000_82580_PM_SPD 0x0001 /* Smart Power Down */
+#define E1000_82580_PM_D0_LPLU 0x0002 /* For D0a states */
+#define E1000_82580_PM_D3_LPLU 0x0004 /* For all other states */
+#define E1000_82580_PM_GO_LINKD 0x0020 /* Go Link Disconnect */
/* BM PHY Copper Specific Control 1 */
-#define BM_CS_CTRL1 16
-#define BM_CS_CTRL1_ENERGY_DETECT 0x0300 /* Enable Energy Detect */
+#define BM_CS_CTRL1 16
/* BM PHY Copper Specific Status */
-#define BM_CS_STATUS 17
-#define BM_CS_STATUS_ENERGY_DETECT 0x0010 /* Energy Detect Status */
-#define BM_CS_STATUS_LINK_UP 0x0400
-#define BM_CS_STATUS_RESOLVED 0x0800
-#define BM_CS_STATUS_SPEED_MASK 0xC000
-#define BM_CS_STATUS_SPEED_1000 0x8000
+#define BM_CS_STATUS 17
+#define BM_CS_STATUS_LINK_UP 0x0400
+#define BM_CS_STATUS_RESOLVED 0x0800
+#define BM_CS_STATUS_SPEED_MASK 0xC000
+#define BM_CS_STATUS_SPEED_1000 0x8000
/* 82577 Mobile Phy Status Register */
-#define HV_M_STATUS 26
-#define HV_M_STATUS_AUTONEG_COMPLETE 0x1000
-#define HV_M_STATUS_SPEED_MASK 0x0300
-#define HV_M_STATUS_SPEED_1000 0x0200
-#define HV_M_STATUS_LINK_UP 0x0040
+#define HV_M_STATUS 26
+#define HV_M_STATUS_AUTONEG_COMPLETE 0x1000
+#define HV_M_STATUS_SPEED_MASK 0x0300
+#define HV_M_STATUS_SPEED_1000 0x0200
+#define HV_M_STATUS_LINK_UP 0x0040
-#define IGP01E1000_PHY_PCS_INIT_REG 0x00B4
-#define IGP01E1000_PHY_POLARITY_MASK 0x0078
+#define IGP01E1000_PHY_PCS_INIT_REG 0x00B4
+#define IGP01E1000_PHY_POLARITY_MASK 0x0078
-#define IGP01E1000_PSCR_AUTO_MDIX 0x1000
-#define IGP01E1000_PSCR_FORCE_MDI_MDIX 0x2000 /* 0=MDI, 1=MDIX */
+#define IGP01E1000_PSCR_AUTO_MDIX 0x1000
+#define IGP01E1000_PSCR_FORCE_MDI_MDIX 0x2000 /* 0=MDI, 1=MDIX */
-#define IGP01E1000_PSCFR_SMART_SPEED 0x0080
+#define IGP01E1000_PSCFR_SMART_SPEED 0x0080
/* Enable flexible speed on link-up */
-#define IGP01E1000_GMII_FLEX_SPD 0x0010
-#define IGP01E1000_GMII_SPD 0x0020 /* Enable SPD */
-
-#define IGP02E1000_PM_SPD 0x0001 /* Smart Power Down */
-#define IGP02E1000_PM_D0_LPLU 0x0002 /* For D0a states */
-#define IGP02E1000_PM_D3_LPLU 0x0004 /* For all other states */
-
-#define IGP01E1000_PLHR_SS_DOWNGRADE 0x8000
-
-#define IGP01E1000_PSSR_POLARITY_REVERSED 0x0002
-#define IGP01E1000_PSSR_MDIX 0x0800
-#define IGP01E1000_PSSR_SPEED_MASK 0xC000
-#define IGP01E1000_PSSR_SPEED_1000MBPS 0xC000
-
-#define IGP02E1000_PHY_CHANNEL_NUM 4
-#define IGP02E1000_PHY_AGC_A 0x11B1
-#define IGP02E1000_PHY_AGC_B 0x12B1
-#define IGP02E1000_PHY_AGC_C 0x14B1
-#define IGP02E1000_PHY_AGC_D 0x18B1
-
-#define IGP02E1000_AGC_LENGTH_SHIFT 9 /* Course - 15:13, Fine - 12:9 */
-#define IGP02E1000_AGC_LENGTH_MASK 0x7F
-#define IGP02E1000_AGC_RANGE 15
-
-#define IGP03E1000_PHY_MISC_CTRL 0x1B
-#define IGP03E1000_PHY_MISC_DUPLEX_MANUAL_SET 0x1000 /* Manually Set Duplex */
-
-#define E1000_CABLE_LENGTH_UNDEFINED 0xFF
-
-#define E1000_KMRNCTRLSTA_OFFSET 0x001F0000
-#define E1000_KMRNCTRLSTA_OFFSET_SHIFT 16
-#define E1000_KMRNCTRLSTA_REN 0x00200000
-#define E1000_KMRNCTRLSTA_CTRL_OFFSET 0x1 /* Kumeran Control */
-#define E1000_KMRNCTRLSTA_DIAG_OFFSET 0x3 /* Kumeran Diagnostic */
-#define E1000_KMRNCTRLSTA_TIMEOUTS 0x4 /* Kumeran Timeouts */
-#define E1000_KMRNCTRLSTA_INBAND_PARAM 0x9 /* Kumeran InBand Parameters */
-#define E1000_KMRNCTRLSTA_DIAG_NELPBK 0x1000 /* Nearend Loopback mode */
-#define E1000_KMRNCTRLSTA_K1_CONFIG 0x7
-#define E1000_KMRNCTRLSTA_K1_ENABLE 0x0002
-#define E1000_KMRNCTRLSTA_HD_CTRL 0x10 /* Kumeran HD Control */
-
-#define IFE_PHY_EXTENDED_STATUS_CONTROL 0x10
-#define IFE_PHY_SPECIAL_CONTROL 0x11 /* 100BaseTx PHY Special Control */
-#define IFE_PHY_SPECIAL_CONTROL_LED 0x1B /* PHY Special and LED Control */
-#define IFE_PHY_MDIX_CONTROL 0x1C /* MDI/MDI-X Control */
+#define IGP01E1000_GMII_FLEX_SPD 0x0010
+#define IGP01E1000_GMII_SPD 0x0020 /* Enable SPD */
+
+#define IGP02E1000_PM_SPD 0x0001 /* Smart Power Down */
+#define IGP02E1000_PM_D0_LPLU 0x0002 /* For D0a states */
+#define IGP02E1000_PM_D3_LPLU 0x0004 /* For all other states */
+
+#define IGP01E1000_PLHR_SS_DOWNGRADE 0x8000
+
+#define IGP01E1000_PSSR_POLARITY_REVERSED 0x0002
+#define IGP01E1000_PSSR_MDIX 0x0800
+#define IGP01E1000_PSSR_SPEED_MASK 0xC000
+#define IGP01E1000_PSSR_SPEED_1000MBPS 0xC000
+
+#define IGP02E1000_PHY_CHANNEL_NUM 4
+#define IGP02E1000_PHY_AGC_A 0x11B1
+#define IGP02E1000_PHY_AGC_B 0x12B1
+#define IGP02E1000_PHY_AGC_C 0x14B1
+#define IGP02E1000_PHY_AGC_D 0x18B1
+
+#define IGP02E1000_AGC_LENGTH_SHIFT 9 /* Course - 15:13, Fine - 12:9 */
+#define IGP02E1000_AGC_LENGTH_MASK 0x7F
+#define IGP02E1000_AGC_RANGE 15
+
+#define E1000_CABLE_LENGTH_UNDEFINED 0xFF
+
+#define E1000_KMRNCTRLSTA_OFFSET 0x001F0000
+#define E1000_KMRNCTRLSTA_OFFSET_SHIFT 16
+#define E1000_KMRNCTRLSTA_REN 0x00200000
+#define E1000_KMRNCTRLSTA_CTRL_OFFSET 0x1 /* Kumeran Control */
+#define E1000_KMRNCTRLSTA_DIAG_OFFSET 0x3 /* Kumeran Diagnostic */
+#define E1000_KMRNCTRLSTA_TIMEOUTS 0x4 /* Kumeran Timeouts */
+#define E1000_KMRNCTRLSTA_INBAND_PARAM 0x9 /* Kumeran InBand Parameters */
+#define E1000_KMRNCTRLSTA_IBIST_DISABLE 0x0200 /* Kumeran IBIST Disable */
+#define E1000_KMRNCTRLSTA_DIAG_NELPBK 0x1000 /* Nearend Loopback mode */
+#define E1000_KMRNCTRLSTA_K1_CONFIG 0x7
+#define E1000_KMRNCTRLSTA_K1_ENABLE 0x0002 /* enable K1 */
+#define E1000_KMRNCTRLSTA_HD_CTRL 0x10 /* Kumeran HD Control */
+
+#define IFE_PHY_EXTENDED_STATUS_CONTROL 0x10
+#define IFE_PHY_SPECIAL_CONTROL 0x11 /* 100BaseTx PHY Special Control */
+#define IFE_PHY_SPECIAL_CONTROL_LED 0x1B /* PHY Special and LED Control */
+#define IFE_PHY_MDIX_CONTROL 0x1C /* MDI/MDI-X Control */
/* IFE PHY Extended Status Control */
-#define IFE_PESC_POLARITY_REVERSED 0x0100
+#define IFE_PESC_POLARITY_REVERSED 0x0100
/* IFE PHY Special Control */
-#define IFE_PSC_AUTO_POLARITY_DISABLE 0x0010
-#define IFE_PSC_FORCE_POLARITY 0x0020
-#define IFE_PSC_DISABLE_DYNAMIC_POWER_DOWN 0x0100
+#define IFE_PSC_AUTO_POLARITY_DISABLE 0x0010
+#define IFE_PSC_FORCE_POLARITY 0x0020
/* IFE PHY Special Control and LED Control */
-#define IFE_PSCL_PROBE_MODE 0x0020
-#define IFE_PSCL_PROBE_LEDS_OFF 0x0006 /* Force LEDs 0 and 2 off */
-#define IFE_PSCL_PROBE_LEDS_ON 0x0007 /* Force LEDs 0 and 2 on */
+#define IFE_PSCL_PROBE_MODE 0x0020
+#define IFE_PSCL_PROBE_LEDS_OFF 0x0006 /* Force LEDs 0 and 2 off */
+#define IFE_PSCL_PROBE_LEDS_ON 0x0007 /* Force LEDs 0 and 2 on */
/* IFE PHY MDIX Control */
-#define IFE_PMC_MDIX_STATUS 0x0020 /* 1=MDI-X, 0=MDI */
-#define IFE_PMC_FORCE_MDIX 0x0040 /* 1=force MDI-X, 0=force MDI */
-#define IFE_PMC_AUTO_MDIX 0x0080 /* 1=enable auto MDI/MDI-X, 0=disable */
+#define IFE_PMC_MDIX_STATUS 0x0020 /* 1=MDI-X, 0=MDI */
+#define IFE_PMC_FORCE_MDIX 0x0040 /* 1=force MDI-X, 0=force MDI */
+#define IFE_PMC_AUTO_MDIX 0x0080 /* 1=enable auto, 0=disable */
+
+/* SFP modules ID memory locations */
+#define E1000_SFF_IDENTIFIER_OFFSET 0x00
+#define E1000_SFF_IDENTIFIER_SFF 0x02
+#define E1000_SFF_IDENTIFIER_SFP 0x03
+
+#define E1000_SFF_ETH_FLAGS_OFFSET 0x06
+/* Flags for SFP modules compatible with ETH up to 1Gb */
+struct sfp_e1000_flags {
+ u8 e1000_base_sx:1;
+ u8 e1000_base_lx:1;
+ u8 e1000_base_cx:1;
+ u8 e1000_base_t:1;
+ u8 e100_base_lx:1;
+ u8 e100_base_fx:1;
+ u8 e10_base_bx10:1;
+ u8 e10_base_px:1;
+};
+
+/* Vendor OUIs: format of OUI is 0x[byte0][byte1][byte2][00] */
+#define E1000_SFF_VENDOR_OUI_TYCO 0x00407600
+#define E1000_SFF_VENDOR_OUI_FTL 0x00906500
+#define E1000_SFF_VENDOR_OUI_AVAGO 0x00176A00
+#define E1000_SFF_VENDOR_OUI_INTEL 0x001B2100
#endif
diff --git a/freebsd/sys/dev/e1000/e1000_regs.h b/freebsd/sys/dev/e1000/e1000_regs.h
index 38ccff32..516d377a 100644
--- a/freebsd/sys/dev/e1000/e1000_regs.h
+++ b/freebsd/sys/dev/e1000/e1000_regs.h
@@ -1,6 +1,6 @@
/******************************************************************************
- Copyright (c) 2001-2010, Intel Corporation
+ Copyright (c) 2001-2013, Intel Corporation
All rights reserved.
Redistribution and use in source and binary forms, with or without
@@ -35,514 +35,642 @@
#ifndef _E1000_REGS_H_
#define _E1000_REGS_H_
-#define E1000_CTRL 0x00000 /* Device Control - RW */
-#define E1000_CTRL_DUP 0x00004 /* Device Control Duplicate (Shadow) - RW */
-#define E1000_STATUS 0x00008 /* Device Status - RO */
-#define E1000_EECD 0x00010 /* EEPROM/Flash Control - RW */
-#define E1000_EERD 0x00014 /* EEPROM Read - RW */
-#define E1000_CTRL_EXT 0x00018 /* Extended Device Control - RW */
-#define E1000_FLA 0x0001C /* Flash Access - RW */
-#define E1000_MDIC 0x00020 /* MDI Control - RW */
-#define E1000_MDICNFG 0x00E04 /* MDI Config - RW */
-#define E1000_REGISTER_SET_SIZE 0x20000 /* CSR Size */
-#define E1000_EEPROM_INIT_CTRL_WORD_2 0x0F /* EEPROM Init Ctrl Word 2 */
-#define E1000_BARCTRL 0x5BBC /* BAR ctrl reg */
-#define E1000_BARCTRL_FLSIZE 0x0700 /* BAR ctrl Flsize */
-#define E1000_BARCTRL_CSRSIZE 0x2000 /* BAR ctrl CSR size */
-#define E1000_SCTL 0x00024 /* SerDes Control - RW */
-#define E1000_FCAL 0x00028 /* Flow Control Address Low - RW */
-#define E1000_FCAH 0x0002C /* Flow Control Address High -RW */
-#define E1000_FEXT 0x0002C /* Future Extended - RW */
-#define E1000_FEXTNVM4 0x00024 /* Future Extended NVM 4 - RW */
-#define E1000_FEXTNVM 0x00028 /* Future Extended NVM - RW */
-#define E1000_FCT 0x00030 /* Flow Control Type - RW */
-#define E1000_CONNSW 0x00034 /* Copper/Fiber switch control - RW */
-#define E1000_VET 0x00038 /* VLAN Ether Type - RW */
-#define E1000_ICR 0x000C0 /* Interrupt Cause Read - R/clr */
-#define E1000_ITR 0x000C4 /* Interrupt Throttling Rate - RW */
-#define E1000_ICS 0x000C8 /* Interrupt Cause Set - WO */
-#define E1000_IMS 0x000D0 /* Interrupt Mask Set - RW */
-#define E1000_IMC 0x000D8 /* Interrupt Mask Clear - WO */
-#define E1000_IAM 0x000E0 /* Interrupt Acknowledge Auto Mask */
-#define E1000_IVAR 0x000E4 /* Interrupt Vector Allocation Register - RW */
-#define E1000_SVCR 0x000F0
-#define E1000_SVT 0x000F4
-#define E1000_RCTL 0x00100 /* Rx Control - RW */
-#define E1000_FCTTV 0x00170 /* Flow Control Transmit Timer Value - RW */
-#define E1000_TXCW 0x00178 /* Tx Configuration Word - RW */
-#define E1000_RXCW 0x00180 /* Rx Configuration Word - RO */
-#define E1000_PBA_ECC 0x01100 /* PBA ECC Register */
-#define E1000_EICR 0x01580 /* Ext. Interrupt Cause Read - R/clr */
-#define E1000_EITR(_n) (0x01680 + (0x4 * (_n)))
-#define E1000_EICS 0x01520 /* Ext. Interrupt Cause Set - W0 */
-#define E1000_EIMS 0x01524 /* Ext. Interrupt Mask Set/Read - RW */
-#define E1000_EIMC 0x01528 /* Ext. Interrupt Mask Clear - WO */
-#define E1000_EIAC 0x0152C /* Ext. Interrupt Auto Clear - RW */
-#define E1000_EIAM 0x01530 /* Ext. Interrupt Ack Auto Clear Mask - RW */
-#define E1000_GPIE 0x01514 /* General Purpose Interrupt Enable - RW */
-#define E1000_IVAR0 0x01700 /* Interrupt Vector Allocation (array) - RW */
-#define E1000_IVAR_MISC 0x01740 /* IVAR for "other" causes - RW */
-#define E1000_TCTL 0x00400 /* Tx Control - RW */
-#define E1000_TCTL_EXT 0x00404 /* Extended Tx Control - RW */
-#define E1000_TIPG 0x00410 /* Tx Inter-packet gap -RW */
-#define E1000_TBT 0x00448 /* Tx Burst Timer - RW */
-#define E1000_AIT 0x00458 /* Adaptive Interframe Spacing Throttle - RW */
-#define E1000_LEDCTL 0x00E00 /* LED Control - RW */
-#define E1000_EXTCNF_CTRL 0x00F00 /* Extended Configuration Control */
-#define E1000_EXTCNF_SIZE 0x00F08 /* Extended Configuration Size */
-#define E1000_PHY_CTRL 0x00F10 /* PHY Control Register in CSR */
-#define E1000_PBA 0x01000 /* Packet Buffer Allocation - RW */
-#define E1000_PBS 0x01008 /* Packet Buffer Size */
-#define E1000_EEMNGCTL 0x01010 /* MNG EEprom Control */
-#define E1000_EEARBC 0x01024 /* EEPROM Auto Read Bus Control */
-#define E1000_FLASHT 0x01028 /* FLASH Timer Register */
-#define E1000_EEWR 0x0102C /* EEPROM Write Register - RW */
-#define E1000_FLSWCTL 0x01030 /* FLASH control register */
-#define E1000_FLSWDATA 0x01034 /* FLASH data register */
-#define E1000_FLSWCNT 0x01038 /* FLASH Access Counter */
-#define E1000_FLOP 0x0103C /* FLASH Opcode Register */
-#define E1000_I2CCMD 0x01028 /* SFPI2C Command Register - RW */
-#define E1000_I2CPARAMS 0x0102C /* SFPI2C Parameters Register - RW */
-#define E1000_WDSTP 0x01040 /* Watchdog Setup - RW */
-#define E1000_SWDSTS 0x01044 /* SW Device Status - RW */
-#define E1000_FRTIMER 0x01048 /* Free Running Timer - RW */
-#define E1000_TCPTIMER 0x0104C /* TCP Timer - RW */
-#define E1000_VPDDIAG 0x01060 /* VPD Diagnostic - RO */
-#define E1000_ICR_V2 0x01500 /* Interrupt Cause - new location - RC */
-#define E1000_ICS_V2 0x01504 /* Interrupt Cause Set - new location - WO */
-#define E1000_IMS_V2 0x01508 /* Interrupt Mask Set/Read - new location - RW */
-#define E1000_IMC_V2 0x0150C /* Interrupt Mask Clear - new location - WO */
-#define E1000_IAM_V2 0x01510 /* Interrupt Ack Auto Mask - new location - RW */
-#define E1000_ERT 0x02008 /* Early Rx Threshold - RW */
-#define E1000_FCRTL 0x02160 /* Flow Control Receive Threshold Low - RW */
-#define E1000_FCRTH 0x02168 /* Flow Control Receive Threshold High - RW */
-#define E1000_PSRCTL 0x02170 /* Packet Split Receive Control - RW */
-#define E1000_RDFPCQ(_n) (0x02430 + (0x4 * (_n)))
-#define E1000_PBRTH 0x02458 /* PB Rx Arbitration Threshold - RW */
-#define E1000_FCRTV 0x02460 /* Flow Control Refresh Timer Value - RW */
+#define E1000_CTRL 0x00000 /* Device Control - RW */
+#define E1000_CTRL_DUP 0x00004 /* Device Control Duplicate (Shadow) - RW */
+#define E1000_STATUS 0x00008 /* Device Status - RO */
+#define E1000_EECD 0x00010 /* EEPROM/Flash Control - RW */
+#define E1000_EERD 0x00014 /* EEPROM Read - RW */
+#define E1000_CTRL_EXT 0x00018 /* Extended Device Control - RW */
+#define E1000_FLA 0x0001C /* Flash Access - RW */
+#define E1000_MDIC 0x00020 /* MDI Control - RW */
+#define E1000_MDICNFG 0x00E04 /* MDI Config - RW */
+#define E1000_REGISTER_SET_SIZE 0x20000 /* CSR Size */
+#define E1000_EEPROM_INIT_CTRL_WORD_2 0x0F /* EEPROM Init Ctrl Word 2 */
+#define E1000_EEPROM_PCIE_CTRL_WORD_2 0x28 /* EEPROM PCIe Ctrl Word 2 */
+#define E1000_BARCTRL 0x5BBC /* BAR ctrl reg */
+#define E1000_BARCTRL_FLSIZE 0x0700 /* BAR ctrl Flsize */
+#define E1000_BARCTRL_CSRSIZE 0x2000 /* BAR ctrl CSR size */
+#define E1000_I350_BARCTRL 0x5BFC /* BAR ctrl reg */
+#define E1000_I350_DTXMXPKTSZ 0x355C /* Maximum sent packet size reg*/
+#define E1000_SCTL 0x00024 /* SerDes Control - RW */
+#define E1000_FCAL 0x00028 /* Flow Control Address Low - RW */
+#define E1000_FCAH 0x0002C /* Flow Control Address High -RW */
+#define E1000_FEXTNVM 0x00028 /* Future Extended NVM - RW */
+#define E1000_FEXTNVM3 0x0003C /* Future Extended NVM 3 - RW */
+#define E1000_FEXTNVM4 0x00024 /* Future Extended NVM 4 - RW */
+#define E1000_FEXTNVM6 0x00010 /* Future Extended NVM 6 - RW */
+#define E1000_FEXTNVM7 0x000E4 /* Future Extended NVM 7 - RW */
+#define E1000_FCT 0x00030 /* Flow Control Type - RW */
+#define E1000_CONNSW 0x00034 /* Copper/Fiber switch control - RW */
+#define E1000_VET 0x00038 /* VLAN Ether Type - RW */
+#define E1000_ICR 0x000C0 /* Interrupt Cause Read - R/clr */
+#define E1000_ITR 0x000C4 /* Interrupt Throttling Rate - RW */
+#define E1000_ICS 0x000C8 /* Interrupt Cause Set - WO */
+#define E1000_IMS 0x000D0 /* Interrupt Mask Set - RW */
+#define E1000_IMC 0x000D8 /* Interrupt Mask Clear - WO */
+#define E1000_IAM 0x000E0 /* Interrupt Acknowledge Auto Mask */
+#define E1000_IVAR 0x000E4 /* Interrupt Vector Allocation Register - RW */
+#define E1000_SVCR 0x000F0
+#define E1000_SVT 0x000F4
+#define E1000_LPIC 0x000FC /* Low Power IDLE control */
+#define E1000_RCTL 0x00100 /* Rx Control - RW */
+#define E1000_FCTTV 0x00170 /* Flow Control Transmit Timer Value - RW */
+#define E1000_TXCW 0x00178 /* Tx Configuration Word - RW */
+#define E1000_RXCW 0x00180 /* Rx Configuration Word - RO */
+#define E1000_PBA_ECC 0x01100 /* PBA ECC Register */
+#define E1000_EICR 0x01580 /* Ext. Interrupt Cause Read - R/clr */
+#define E1000_EITR(_n) (0x01680 + (0x4 * (_n)))
+#define E1000_EICS 0x01520 /* Ext. Interrupt Cause Set - W0 */
+#define E1000_EIMS 0x01524 /* Ext. Interrupt Mask Set/Read - RW */
+#define E1000_EIMC 0x01528 /* Ext. Interrupt Mask Clear - WO */
+#define E1000_EIAC 0x0152C /* Ext. Interrupt Auto Clear - RW */
+#define E1000_EIAM 0x01530 /* Ext. Interrupt Ack Auto Clear Mask - RW */
+#define E1000_GPIE 0x01514 /* General Purpose Interrupt Enable - RW */
+#define E1000_IVAR0 0x01700 /* Interrupt Vector Allocation (array) - RW */
+#define E1000_IVAR_MISC 0x01740 /* IVAR for "other" causes - RW */
+#define E1000_TCTL 0x00400 /* Tx Control - RW */
+#define E1000_TCTL_EXT 0x00404 /* Extended Tx Control - RW */
+#define E1000_TIPG 0x00410 /* Tx Inter-packet gap -RW */
+#define E1000_TBT 0x00448 /* Tx Burst Timer - RW */
+#define E1000_AIT 0x00458 /* Adaptive Interframe Spacing Throttle - RW */
+#define E1000_LEDCTL 0x00E00 /* LED Control - RW */
+#define E1000_EXTCNF_CTRL 0x00F00 /* Extended Configuration Control */
+#define E1000_EXTCNF_SIZE 0x00F08 /* Extended Configuration Size */
+#define E1000_PHY_CTRL 0x00F10 /* PHY Control Register in CSR */
+#define E1000_POEMB E1000_PHY_CTRL /* PHY OEM Bits */
+#define E1000_PBA 0x01000 /* Packet Buffer Allocation - RW */
+#define E1000_PBS 0x01008 /* Packet Buffer Size */
+#define E1000_PBECCSTS 0x0100C /* Packet Buffer ECC Status - RW */
+#define E1000_EEMNGCTL 0x01010 /* MNG EEprom Control */
+#define E1000_EEARBC 0x01024 /* EEPROM Auto Read Bus Control */
+#define E1000_FLASHT 0x01028 /* FLASH Timer Register */
+#define E1000_EEWR 0x0102C /* EEPROM Write Register - RW */
+#define E1000_FLSWCTL 0x01030 /* FLASH control register */
+#define E1000_FLSWDATA 0x01034 /* FLASH data register */
+#define E1000_FLSWCNT 0x01038 /* FLASH Access Counter */
+#define E1000_FLOP 0x0103C /* FLASH Opcode Register */
+#define E1000_I2CCMD 0x01028 /* SFPI2C Command Register - RW */
+#define E1000_I2CPARAMS 0x0102C /* SFPI2C Parameters Register - RW */
+#define E1000_I2CBB_EN 0x00000100 /* I2C - Bit Bang Enable */
+#define E1000_I2C_CLK_OUT 0x00000200 /* I2C- Clock */
+#define E1000_I2C_DATA_OUT 0x00000400 /* I2C- Data Out */
+#define E1000_I2C_DATA_OE_N 0x00000800 /* I2C- Data Output Enable */
+#define E1000_I2C_DATA_IN 0x00001000 /* I2C- Data In */
+#define E1000_I2C_CLK_OE_N 0x00002000 /* I2C- Clock Output Enable */
+#define E1000_I2C_CLK_IN 0x00004000 /* I2C- Clock In */
+#define E1000_I2C_CLK_STRETCH_DIS 0x00008000 /* I2C- Dis Clk Stretching */
+#define E1000_WDSTP 0x01040 /* Watchdog Setup - RW */
+#define E1000_SWDSTS 0x01044 /* SW Device Status - RW */
+#define E1000_FRTIMER 0x01048 /* Free Running Timer - RW */
+#define E1000_TCPTIMER 0x0104C /* TCP Timer - RW */
+#define E1000_VPDDIAG 0x01060 /* VPD Diagnostic - RO */
+#define E1000_ICR_V2 0x01500 /* Intr Cause - new location - RC */
+#define E1000_ICS_V2 0x01504 /* Intr Cause Set - new location - WO */
+#define E1000_IMS_V2 0x01508 /* Intr Mask Set/Read - new location - RW */
+#define E1000_IMC_V2 0x0150C /* Intr Mask Clear - new location - WO */
+#define E1000_IAM_V2 0x01510 /* Intr Ack Auto Mask - new location - RW */
+#define E1000_ERT 0x02008 /* Early Rx Threshold - RW */
+#define E1000_FCRTL 0x02160 /* Flow Control Receive Threshold Low - RW */
+#define E1000_FCRTH 0x02168 /* Flow Control Receive Threshold High - RW */
+#define E1000_PSRCTL 0x02170 /* Packet Split Receive Control - RW */
+#define E1000_RDFH 0x02410 /* Rx Data FIFO Head - RW */
+#define E1000_RDFT 0x02418 /* Rx Data FIFO Tail - RW */
+#define E1000_RDFHS 0x02420 /* Rx Data FIFO Head Saved - RW */
+#define E1000_RDFTS 0x02428 /* Rx Data FIFO Tail Saved - RW */
+#define E1000_RDFPC 0x02430 /* Rx Data FIFO Packet Count - RW */
+#define E1000_PBRTH 0x02458 /* PB Rx Arbitration Threshold - RW */
+#define E1000_FCRTV 0x02460 /* Flow Control Refresh Timer Value - RW */
/* Split and Replication Rx Control - RW */
-#define E1000_RDPUMB 0x025CC /* DMA Rx Descriptor uC Mailbox - RW */
-#define E1000_RDPUAD 0x025D0 /* DMA Rx Descriptor uC Addr Command - RW */
-#define E1000_RDPUWD 0x025D4 /* DMA Rx Descriptor uC Data Write - RW */
-#define E1000_RDPURD 0x025D8 /* DMA Rx Descriptor uC Data Read - RW */
-#define E1000_RDPUCTL 0x025DC /* DMA Rx Descriptor uC Control - RW */
-#define E1000_PBDIAG 0x02458 /* Packet Buffer Diagnostic - RW */
-#define E1000_RXPBS 0x02404 /* Rx Packet Buffer Size - RW */
-#define E1000_IRPBS 0x02404 /* Same as RXPBS, renamed for newer adapters - RW */
-#define E1000_RDTR 0x02820 /* Rx Delay Timer - RW */
-#define E1000_RADV 0x0282C /* Rx Interrupt Absolute Delay Timer - RW */
-/*
- * Convenience macros
+#define E1000_RDPUMB 0x025CC /* DMA Rx Descriptor uC Mailbox - RW */
+#define E1000_RDPUAD 0x025D0 /* DMA Rx Descriptor uC Addr Command - RW */
+#define E1000_RDPUWD 0x025D4 /* DMA Rx Descriptor uC Data Write - RW */
+#define E1000_RDPURD 0x025D8 /* DMA Rx Descriptor uC Data Read - RW */
+#define E1000_RDPUCTL 0x025DC /* DMA Rx Descriptor uC Control - RW */
+#define E1000_PBDIAG 0x02458 /* Packet Buffer Diagnostic - RW */
+#define E1000_RXPBS 0x02404 /* Rx Packet Buffer Size - RW */
+#define E1000_IRPBS 0x02404 /* Same as RXPBS, renamed for newer Si - RW */
+#define E1000_PBRWAC 0x024E8 /* Rx packet buffer wrap around counter - RO */
+#define E1000_RDTR 0x02820 /* Rx Delay Timer - RW */
+#define E1000_RADV 0x0282C /* Rx Interrupt Absolute Delay Timer - RW */
+#define E1000_SRWR 0x12018 /* Shadow Ram Write Register - RW */
+#define E1000_I210_FLMNGCTL 0x12038
+#define E1000_I210_FLMNGDATA 0x1203C
+#define E1000_I210_FLMNGCNT 0x12040
+
+#define E1000_I210_FLSWCTL 0x12048
+#define E1000_I210_FLSWDATA 0x1204C
+#define E1000_I210_FLSWCNT 0x12050
+
+#define E1000_I210_FLA 0x1201C
+
+#define E1000_INVM_DATA_REG(_n) (0x12120 + 4*(_n))
+#define E1000_INVM_SIZE 64 /* Number of INVM Data Registers */
+
+/* QAV Tx mode control register */
+#define E1000_I210_TQAVCTRL 0x3570
+
+/* QAV Tx mode control register bitfields masks */
+/* QAV enable */
+#define E1000_TQAVCTRL_MODE (1 << 0)
+/* Fetching arbitration type */
+#define E1000_TQAVCTRL_FETCH_ARB (1 << 4)
+/* Fetching timer enable */
+#define E1000_TQAVCTRL_FETCH_TIMER_ENABLE (1 << 5)
+/* Launch arbitration type */
+#define E1000_TQAVCTRL_LAUNCH_ARB (1 << 8)
+/* Launch timer enable */
+#define E1000_TQAVCTRL_LAUNCH_TIMER_ENABLE (1 << 9)
+/* SP waits for SR enable */
+#define E1000_TQAVCTRL_SP_WAIT_SR (1 << 10)
+/* Fetching timer correction */
+#define E1000_TQAVCTRL_FETCH_TIMER_DELTA_OFFSET 16
+#define E1000_TQAVCTRL_FETCH_TIMER_DELTA \
+ (0xFFFF << E1000_TQAVCTRL_FETCH_TIMER_DELTA_OFFSET)
+
+/* High credit registers where _n can be 0 or 1. */
+#define E1000_I210_TQAVHC(_n) (0x300C + 0x40 * (_n))
+
+/* Queues fetch arbitration priority control register */
+#define E1000_I210_TQAVARBCTRL 0x3574
+/* Queues priority masks where _n and _p can be 0-3. */
+#define E1000_TQAVARBCTRL_QUEUE_PRI(_n, _p) ((_p) << (2 * _n))
+/* QAV Tx mode control registers where _n can be 0 or 1. */
+#define E1000_I210_TQAVCC(_n) (0x3004 + 0x40 * (_n))
+
+/* QAV Tx mode control register bitfields masks */
+#define E1000_TQAVCC_IDLE_SLOPE 0xFFFF /* Idle slope */
+#define E1000_TQAVCC_KEEP_CREDITS (1 << 30) /* Keep credits opt enable */
+#define E1000_TQAVCC_QUEUE_MODE (1 << 31) /* SP vs. SR Tx mode */
+
+/* Good transmitted packets counter registers */
+#define E1000_PQGPTC(_n) (0x010014 + (0x100 * (_n)))
+
+/* Queues packet buffer size masks where _n can be 0-3 and _s 0-63 [kB] */
+#define E1000_I210_TXPBS_SIZE(_n, _s) ((_s) << (6 * _n))
+
+/* Convenience macros
*
* Note: "_n" is the queue number of the register to be written to.
*
* Example usage:
* E1000_RDBAL_REG(current_rx_queue)
*/
-#define E1000_RDBAL(_n) ((_n) < 4 ? (0x02800 + ((_n) * 0x100)) : \
- (0x0C000 + ((_n) * 0x40)))
-#define E1000_RDBAH(_n) ((_n) < 4 ? (0x02804 + ((_n) * 0x100)) : \
- (0x0C004 + ((_n) * 0x40)))
-#define E1000_RDLEN(_n) ((_n) < 4 ? (0x02808 + ((_n) * 0x100)) : \
- (0x0C008 + ((_n) * 0x40)))
-#define E1000_SRRCTL(_n) ((_n) < 4 ? (0x0280C + ((_n) * 0x100)) : \
- (0x0C00C + ((_n) * 0x40)))
-#define E1000_RDH(_n) ((_n) < 4 ? (0x02810 + ((_n) * 0x100)) : \
- (0x0C010 + ((_n) * 0x40)))
-#define E1000_RXCTL(_n) ((_n) < 4 ? (0x02814 + ((_n) * 0x100)) : \
- (0x0C014 + ((_n) * 0x40)))
-#define E1000_DCA_RXCTRL(_n) E1000_RXCTL(_n)
-#define E1000_RDT(_n) ((_n) < 4 ? (0x02818 + ((_n) * 0x100)) : \
- (0x0C018 + ((_n) * 0x40)))
-#define E1000_RXDCTL(_n) ((_n) < 4 ? (0x02828 + ((_n) * 0x100)) : \
- (0x0C028 + ((_n) * 0x40)))
-#define E1000_RQDPC(_n) ((_n) < 4 ? (0x02830 + ((_n) * 0x100)) : \
- (0x0C030 + ((_n) * 0x40)))
-#define E1000_TDBAL(_n) ((_n) < 4 ? (0x03800 + ((_n) * 0x100)) : \
- (0x0E000 + ((_n) * 0x40)))
-#define E1000_TDBAH(_n) ((_n) < 4 ? (0x03804 + ((_n) * 0x100)) : \
- (0x0E004 + ((_n) * 0x40)))
-#define E1000_TDLEN(_n) ((_n) < 4 ? (0x03808 + ((_n) * 0x100)) : \
- (0x0E008 + ((_n) * 0x40)))
-#define E1000_TDH(_n) ((_n) < 4 ? (0x03810 + ((_n) * 0x100)) : \
- (0x0E010 + ((_n) * 0x40)))
-#define E1000_TXCTL(_n) ((_n) < 4 ? (0x03814 + ((_n) * 0x100)) : \
- (0x0E014 + ((_n) * 0x40)))
+#define E1000_RDBAL(_n) ((_n) < 4 ? (0x02800 + ((_n) * 0x100)) : \
+ (0x0C000 + ((_n) * 0x40)))
+#define E1000_RDBAH(_n) ((_n) < 4 ? (0x02804 + ((_n) * 0x100)) : \
+ (0x0C004 + ((_n) * 0x40)))
+#define E1000_RDLEN(_n) ((_n) < 4 ? (0x02808 + ((_n) * 0x100)) : \
+ (0x0C008 + ((_n) * 0x40)))
+#define E1000_SRRCTL(_n) ((_n) < 4 ? (0x0280C + ((_n) * 0x100)) : \
+ (0x0C00C + ((_n) * 0x40)))
+#define E1000_RDH(_n) ((_n) < 4 ? (0x02810 + ((_n) * 0x100)) : \
+ (0x0C010 + ((_n) * 0x40)))
+#define E1000_RXCTL(_n) ((_n) < 4 ? (0x02814 + ((_n) * 0x100)) : \
+ (0x0C014 + ((_n) * 0x40)))
+#define E1000_DCA_RXCTRL(_n) E1000_RXCTL(_n)
+#define E1000_RDT(_n) ((_n) < 4 ? (0x02818 + ((_n) * 0x100)) : \
+ (0x0C018 + ((_n) * 0x40)))
+#define E1000_RXDCTL(_n) ((_n) < 4 ? (0x02828 + ((_n) * 0x100)) : \
+ (0x0C028 + ((_n) * 0x40)))
+#define E1000_RQDPC(_n) ((_n) < 4 ? (0x02830 + ((_n) * 0x100)) : \
+ (0x0C030 + ((_n) * 0x40)))
+#define E1000_TDBAL(_n) ((_n) < 4 ? (0x03800 + ((_n) * 0x100)) : \
+ (0x0E000 + ((_n) * 0x40)))
+#define E1000_TDBAH(_n) ((_n) < 4 ? (0x03804 + ((_n) * 0x100)) : \
+ (0x0E004 + ((_n) * 0x40)))
+#define E1000_TDLEN(_n) ((_n) < 4 ? (0x03808 + ((_n) * 0x100)) : \
+ (0x0E008 + ((_n) * 0x40)))
+#define E1000_TDH(_n) ((_n) < 4 ? (0x03810 + ((_n) * 0x100)) : \
+ (0x0E010 + ((_n) * 0x40)))
+#define E1000_TXCTL(_n) ((_n) < 4 ? (0x03814 + ((_n) * 0x100)) : \
+ (0x0E014 + ((_n) * 0x40)))
#define E1000_DCA_TXCTRL(_n) E1000_TXCTL(_n)
-#define E1000_TDT(_n) ((_n) < 4 ? (0x03818 + ((_n) * 0x100)) : \
- (0x0E018 + ((_n) * 0x40)))
-#define E1000_TXDCTL(_n) ((_n) < 4 ? (0x03828 + ((_n) * 0x100)) : \
- (0x0E028 + ((_n) * 0x40)))
-#define E1000_TDWBAL(_n) ((_n) < 4 ? (0x03838 + ((_n) * 0x100)) : \
- (0x0E038 + ((_n) * 0x40)))
-#define E1000_TDWBAH(_n) ((_n) < 4 ? (0x0383C + ((_n) * 0x100)) : \
- (0x0E03C + ((_n) * 0x40)))
-#define E1000_TARC(_n) (0x03840 + ((_n) * 0x100))
-#define E1000_RSRPD 0x02C00 /* Rx Small Packet Detect - RW */
-#define E1000_RAID 0x02C08 /* Receive Ack Interrupt Delay - RW */
-#define E1000_TXDMAC 0x03000 /* Tx DMA Control - RW */
-#define E1000_KABGTXD 0x03004 /* AFE Band Gap Transmit Ref Data */
-#define E1000_PSRTYPE(_i) (0x05480 + ((_i) * 4))
-#define E1000_RAL(_i) (((_i) <= 15) ? (0x05400 + ((_i) * 8)) : \
- (0x054E0 + ((_i - 16) * 8)))
-#define E1000_RAH(_i) (((_i) <= 15) ? (0x05404 + ((_i) * 8)) : \
- (0x054E4 + ((_i - 16) * 8)))
-#define E1000_SHRAL(_i) (0x05438 + ((_i) * 8))
-#define E1000_SHRAH(_i) (0x0543C + ((_i) * 8))
-#define E1000_IP4AT_REG(_i) (0x05840 + ((_i) * 8))
-#define E1000_IP6AT_REG(_i) (0x05880 + ((_i) * 4))
-#define E1000_WUPM_REG(_i) (0x05A00 + ((_i) * 4))
-#define E1000_FFMT_REG(_i) (0x09000 + ((_i) * 8))
-#define E1000_FFVT_REG(_i) (0x09800 + ((_i) * 8))
-#define E1000_FFLT_REG(_i) (0x05F00 + ((_i) * 8))
-#define E1000_PBSLAC 0x03100 /* Packet Buffer Slave Access Control */
-#define E1000_PBSLAD(_n) (0x03110 + (0x4 * (_n))) /* Packet Buffer DWORD (_n) */
-#define E1000_TXPBS 0x03404 /* Tx Packet Buffer Size - RW */
-#define E1000_ITPBS 0x03404 /* Same as TXPBS, renamed for newer adpaters - RW */
-#define E1000_TDFH 0x03410 /* Tx Data FIFO Head - RW */
-#define E1000_TDFT 0x03418 /* Tx Data FIFO Tail - RW */
-#define E1000_TDFHS 0x03420 /* Tx Data FIFO Head Saved - RW */
-#define E1000_TDFTS 0x03428 /* Tx Data FIFO Tail Saved - RW */
-#define E1000_TDFPC 0x03430 /* Tx Data FIFO Packet Count - RW */
-#define E1000_TDPUMB 0x0357C /* DMA Tx Descriptor uC Mail Box - RW */
-#define E1000_TDPUAD 0x03580 /* DMA Tx Descriptor uC Addr Command - RW */
-#define E1000_TDPUWD 0x03584 /* DMA Tx Descriptor uC Data Write - RW */
-#define E1000_TDPURD 0x03588 /* DMA Tx Descriptor uC Data Read - RW */
-#define E1000_TDPUCTL 0x0358C /* DMA Tx Descriptor uC Control - RW */
-#define E1000_DTXCTL 0x03590 /* DMA Tx Control - RW */
-#define E1000_DTXTCPFLGL 0x0359C /* DMA Tx Control flag low - RW */
-#define E1000_DTXTCPFLGH 0x035A0 /* DMA Tx Control flag high - RW */
-#define E1000_DTXMXSZRQ 0x03540 /* DMA Tx Max Total Allow Size Requests - RW */
-#define E1000_TIDV 0x03820 /* Tx Interrupt Delay Value - RW */
-#define E1000_TADV 0x0382C /* Tx Interrupt Absolute Delay Val - RW */
-#define E1000_TSPMT 0x03830 /* TCP Segmentation PAD & Min Threshold - RW */
-#define E1000_CRCERRS 0x04000 /* CRC Error Count - R/clr */
-#define E1000_ALGNERRC 0x04004 /* Alignment Error Count - R/clr */
-#define E1000_SYMERRS 0x04008 /* Symbol Error Count - R/clr */
-#define E1000_RXERRC 0x0400C /* Receive Error Count - R/clr */
-#define E1000_MPC 0x04010 /* Missed Packet Count - R/clr */
-#define E1000_SCC 0x04014 /* Single Collision Count - R/clr */
-#define E1000_ECOL 0x04018 /* Excessive Collision Count - R/clr */
-#define E1000_MCC 0x0401C /* Multiple Collision Count - R/clr */
-#define E1000_LATECOL 0x04020 /* Late Collision Count - R/clr */
-#define E1000_COLC 0x04028 /* Collision Count - R/clr */
-#define E1000_DC 0x04030 /* Defer Count - R/clr */
-#define E1000_TNCRS 0x04034 /* Tx-No CRS - R/clr */
-#define E1000_SEC 0x04038 /* Sequence Error Count - R/clr */
-#define E1000_CEXTERR 0x0403C /* Carrier Extension Error Count - R/clr */
-#define E1000_RLEC 0x04040 /* Receive Length Error Count - R/clr */
-#define E1000_XONRXC 0x04048 /* XON Rx Count - R/clr */
-#define E1000_XONTXC 0x0404C /* XON Tx Count - R/clr */
-#define E1000_XOFFRXC 0x04050 /* XOFF Rx Count - R/clr */
-#define E1000_XOFFTXC 0x04054 /* XOFF Tx Count - R/clr */
-#define E1000_FCRUC 0x04058 /* Flow Control Rx Unsupported Count- R/clr */
-#define E1000_PRC64 0x0405C /* Packets Rx (64 bytes) - R/clr */
-#define E1000_PRC127 0x04060 /* Packets Rx (65-127 bytes) - R/clr */
-#define E1000_PRC255 0x04064 /* Packets Rx (128-255 bytes) - R/clr */
-#define E1000_PRC511 0x04068 /* Packets Rx (255-511 bytes) - R/clr */
-#define E1000_PRC1023 0x0406C /* Packets Rx (512-1023 bytes) - R/clr */
-#define E1000_PRC1522 0x04070 /* Packets Rx (1024-1522 bytes) - R/clr */
-#define E1000_GPRC 0x04074 /* Good Packets Rx Count - R/clr */
-#define E1000_BPRC 0x04078 /* Broadcast Packets Rx Count - R/clr */
-#define E1000_MPRC 0x0407C /* Multicast Packets Rx Count - R/clr */
-#define E1000_GPTC 0x04080 /* Good Packets Tx Count - R/clr */
-#define E1000_GORCL 0x04088 /* Good Octets Rx Count Low - R/clr */
-#define E1000_GORCH 0x0408C /* Good Octets Rx Count High - R/clr */
-#define E1000_GOTCL 0x04090 /* Good Octets Tx Count Low - R/clr */
-#define E1000_GOTCH 0x04094 /* Good Octets Tx Count High - R/clr */
-#define E1000_RNBC 0x040A0 /* Rx No Buffers Count - R/clr */
-#define E1000_RUC 0x040A4 /* Rx Undersize Count - R/clr */
-#define E1000_RFC 0x040A8 /* Rx Fragment Count - R/clr */
-#define E1000_ROC 0x040AC /* Rx Oversize Count - R/clr */
-#define E1000_RJC 0x040B0 /* Rx Jabber Count - R/clr */
-#define E1000_MGTPRC 0x040B4 /* Management Packets Rx Count - R/clr */
-#define E1000_MGTPDC 0x040B8 /* Management Packets Dropped Count - R/clr */
-#define E1000_MGTPTC 0x040BC /* Management Packets Tx Count - R/clr */
-#define E1000_TORL 0x040C0 /* Total Octets Rx Low - R/clr */
-#define E1000_TORH 0x040C4 /* Total Octets Rx High - R/clr */
-#define E1000_TOTL 0x040C8 /* Total Octets Tx Low - R/clr */
-#define E1000_TOTH 0x040CC /* Total Octets Tx High - R/clr */
-#define E1000_TPR 0x040D0 /* Total Packets Rx - R/clr */
-#define E1000_TPT 0x040D4 /* Total Packets Tx - R/clr */
-#define E1000_PTC64 0x040D8 /* Packets Tx (64 bytes) - R/clr */
-#define E1000_PTC127 0x040DC /* Packets Tx (65-127 bytes) - R/clr */
-#define E1000_PTC255 0x040E0 /* Packets Tx (128-255 bytes) - R/clr */
-#define E1000_PTC511 0x040E4 /* Packets Tx (256-511 bytes) - R/clr */
-#define E1000_PTC1023 0x040E8 /* Packets Tx (512-1023 bytes) - R/clr */
-#define E1000_PTC1522 0x040EC /* Packets Tx (1024-1522 Bytes) - R/clr */
-#define E1000_MPTC 0x040F0 /* Multicast Packets Tx Count - R/clr */
-#define E1000_BPTC 0x040F4 /* Broadcast Packets Tx Count - R/clr */
-#define E1000_TSCTC 0x040F8 /* TCP Segmentation Context Tx - R/clr */
-#define E1000_TSCTFC 0x040FC /* TCP Segmentation Context Tx Fail - R/clr */
-#define E1000_IAC 0x04100 /* Interrupt Assertion Count */
-#define E1000_ICRXPTC 0x04104 /* Interrupt Cause Rx Pkt Timer Expire Count */
-#define E1000_ICRXATC 0x04108 /* Interrupt Cause Rx Abs Timer Expire Count */
-#define E1000_ICTXPTC 0x0410C /* Interrupt Cause Tx Pkt Timer Expire Count */
-#define E1000_ICTXATC 0x04110 /* Interrupt Cause Tx Abs Timer Expire Count */
-#define E1000_ICTXQEC 0x04118 /* Interrupt Cause Tx Queue Empty Count */
-#define E1000_ICTXQMTC 0x0411C /* Interrupt Cause Tx Queue Min Thresh Count */
-#define E1000_ICRXDMTC 0x04120 /* Interrupt Cause Rx Desc Min Thresh Count */
-#define E1000_ICRXOC 0x04124 /* Interrupt Cause Receiver Overrun Count */
-#define E1000_CRC_OFFSET 0x05F50 /* CRC Offset register */
+#define E1000_TDT(_n) ((_n) < 4 ? (0x03818 + ((_n) * 0x100)) : \
+ (0x0E018 + ((_n) * 0x40)))
+#define E1000_TXDCTL(_n) ((_n) < 4 ? (0x03828 + ((_n) * 0x100)) : \
+ (0x0E028 + ((_n) * 0x40)))
+#define E1000_TDWBAL(_n) ((_n) < 4 ? (0x03838 + ((_n) * 0x100)) : \
+ (0x0E038 + ((_n) * 0x40)))
+#define E1000_TDWBAH(_n) ((_n) < 4 ? (0x0383C + ((_n) * 0x100)) : \
+ (0x0E03C + ((_n) * 0x40)))
+#define E1000_TARC(_n) (0x03840 + ((_n) * 0x100))
+#define E1000_RSRPD 0x02C00 /* Rx Small Packet Detect - RW */
+#define E1000_RAID 0x02C08 /* Receive Ack Interrupt Delay - RW */
+#define E1000_TXDMAC 0x03000 /* Tx DMA Control - RW */
+#define E1000_KABGTXD 0x03004 /* AFE Band Gap Transmit Ref Data */
+#define E1000_PSRTYPE(_i) (0x05480 + ((_i) * 4))
+#define E1000_RAL(_i) (((_i) <= 15) ? (0x05400 + ((_i) * 8)) : \
+ (0x054E0 + ((_i - 16) * 8)))
+#define E1000_RAH(_i) (((_i) <= 15) ? (0x05404 + ((_i) * 8)) : \
+ (0x054E4 + ((_i - 16) * 8)))
+#define E1000_SHRAL(_i) (0x05438 + ((_i) * 8))
+#define E1000_SHRAH(_i) (0x0543C + ((_i) * 8))
+#define E1000_IP4AT_REG(_i) (0x05840 + ((_i) * 8))
+#define E1000_IP6AT_REG(_i) (0x05880 + ((_i) * 4))
+#define E1000_WUPM_REG(_i) (0x05A00 + ((_i) * 4))
+#define E1000_FFMT_REG(_i) (0x09000 + ((_i) * 8))
+#define E1000_FFVT_REG(_i) (0x09800 + ((_i) * 8))
+#define E1000_FFLT_REG(_i) (0x05F00 + ((_i) * 8))
+#define E1000_PBSLAC 0x03100 /* Pkt Buffer Slave Access Control */
+#define E1000_PBSLAD(_n) (0x03110 + (0x4 * (_n))) /* Pkt Buffer DWORD */
+#define E1000_TXPBS 0x03404 /* Tx Packet Buffer Size - RW */
+/* Same as TXPBS, renamed for newer Si - RW */
+#define E1000_ITPBS 0x03404
+#define E1000_TDFH 0x03410 /* Tx Data FIFO Head - RW */
+#define E1000_TDFT 0x03418 /* Tx Data FIFO Tail - RW */
+#define E1000_TDFHS 0x03420 /* Tx Data FIFO Head Saved - RW */
+#define E1000_TDFTS 0x03428 /* Tx Data FIFO Tail Saved - RW */
+#define E1000_TDFPC 0x03430 /* Tx Data FIFO Packet Count - RW */
+#define E1000_TDPUMB 0x0357C /* DMA Tx Desc uC Mail Box - RW */
+#define E1000_TDPUAD 0x03580 /* DMA Tx Desc uC Addr Command - RW */
+#define E1000_TDPUWD 0x03584 /* DMA Tx Desc uC Data Write - RW */
+#define E1000_TDPURD 0x03588 /* DMA Tx Desc uC Data Read - RW */
+#define E1000_TDPUCTL 0x0358C /* DMA Tx Desc uC Control - RW */
+#define E1000_DTXCTL 0x03590 /* DMA Tx Control - RW */
+#define E1000_DTXTCPFLGL 0x0359C /* DMA Tx Control flag low - RW */
+#define E1000_DTXTCPFLGH 0x035A0 /* DMA Tx Control flag high - RW */
+/* DMA Tx Max Total Allow Size Reqs - RW */
+#define E1000_DTXMXSZRQ 0x03540
+#define E1000_TIDV 0x03820 /* Tx Interrupt Delay Value - RW */
+#define E1000_TADV 0x0382C /* Tx Interrupt Absolute Delay Val - RW */
+#define E1000_TSPMT 0x03830 /* TCP Segmentation PAD & Min Threshold - RW */
+#define E1000_CRCERRS 0x04000 /* CRC Error Count - R/clr */
+#define E1000_ALGNERRC 0x04004 /* Alignment Error Count - R/clr */
+#define E1000_SYMERRS 0x04008 /* Symbol Error Count - R/clr */
+#define E1000_RXERRC 0x0400C /* Receive Error Count - R/clr */
+#define E1000_MPC 0x04010 /* Missed Packet Count - R/clr */
+#define E1000_SCC 0x04014 /* Single Collision Count - R/clr */
+#define E1000_ECOL 0x04018 /* Excessive Collision Count - R/clr */
+#define E1000_MCC 0x0401C /* Multiple Collision Count - R/clr */
+#define E1000_LATECOL 0x04020 /* Late Collision Count - R/clr */
+#define E1000_COLC 0x04028 /* Collision Count - R/clr */
+#define E1000_DC 0x04030 /* Defer Count - R/clr */
+#define E1000_TNCRS 0x04034 /* Tx-No CRS - R/clr */
+#define E1000_SEC 0x04038 /* Sequence Error Count - R/clr */
+#define E1000_CEXTERR 0x0403C /* Carrier Extension Error Count - R/clr */
+#define E1000_RLEC 0x04040 /* Receive Length Error Count - R/clr */
+#define E1000_XONRXC 0x04048 /* XON Rx Count - R/clr */
+#define E1000_XONTXC 0x0404C /* XON Tx Count - R/clr */
+#define E1000_XOFFRXC 0x04050 /* XOFF Rx Count - R/clr */
+#define E1000_XOFFTXC 0x04054 /* XOFF Tx Count - R/clr */
+#define E1000_FCRUC 0x04058 /* Flow Control Rx Unsupported Count- R/clr */
+#define E1000_PRC64 0x0405C /* Packets Rx (64 bytes) - R/clr */
+#define E1000_PRC127 0x04060 /* Packets Rx (65-127 bytes) - R/clr */
+#define E1000_PRC255 0x04064 /* Packets Rx (128-255 bytes) - R/clr */
+#define E1000_PRC511 0x04068 /* Packets Rx (255-511 bytes) - R/clr */
+#define E1000_PRC1023 0x0406C /* Packets Rx (512-1023 bytes) - R/clr */
+#define E1000_PRC1522 0x04070 /* Packets Rx (1024-1522 bytes) - R/clr */
+#define E1000_GPRC 0x04074 /* Good Packets Rx Count - R/clr */
+#define E1000_BPRC 0x04078 /* Broadcast Packets Rx Count - R/clr */
+#define E1000_MPRC 0x0407C /* Multicast Packets Rx Count - R/clr */
+#define E1000_GPTC 0x04080 /* Good Packets Tx Count - R/clr */
+#define E1000_GORCL 0x04088 /* Good Octets Rx Count Low - R/clr */
+#define E1000_GORCH 0x0408C /* Good Octets Rx Count High - R/clr */
+#define E1000_GOTCL 0x04090 /* Good Octets Tx Count Low - R/clr */
+#define E1000_GOTCH 0x04094 /* Good Octets Tx Count High - R/clr */
+#define E1000_RNBC 0x040A0 /* Rx No Buffers Count - R/clr */
+#define E1000_RUC 0x040A4 /* Rx Undersize Count - R/clr */
+#define E1000_RFC 0x040A8 /* Rx Fragment Count - R/clr */
+#define E1000_ROC 0x040AC /* Rx Oversize Count - R/clr */
+#define E1000_RJC 0x040B0 /* Rx Jabber Count - R/clr */
+#define E1000_MGTPRC 0x040B4 /* Management Packets Rx Count - R/clr */
+#define E1000_MGTPDC 0x040B8 /* Management Packets Dropped Count - R/clr */
+#define E1000_MGTPTC 0x040BC /* Management Packets Tx Count - R/clr */
+#define E1000_TORL 0x040C0 /* Total Octets Rx Low - R/clr */
+#define E1000_TORH 0x040C4 /* Total Octets Rx High - R/clr */
+#define E1000_TOTL 0x040C8 /* Total Octets Tx Low - R/clr */
+#define E1000_TOTH 0x040CC /* Total Octets Tx High - R/clr */
+#define E1000_TPR 0x040D0 /* Total Packets Rx - R/clr */
+#define E1000_TPT 0x040D4 /* Total Packets Tx - R/clr */
+#define E1000_PTC64 0x040D8 /* Packets Tx (64 bytes) - R/clr */
+#define E1000_PTC127 0x040DC /* Packets Tx (65-127 bytes) - R/clr */
+#define E1000_PTC255 0x040E0 /* Packets Tx (128-255 bytes) - R/clr */
+#define E1000_PTC511 0x040E4 /* Packets Tx (256-511 bytes) - R/clr */
+#define E1000_PTC1023 0x040E8 /* Packets Tx (512-1023 bytes) - R/clr */
+#define E1000_PTC1522 0x040EC /* Packets Tx (1024-1522 Bytes) - R/clr */
+#define E1000_MPTC 0x040F0 /* Multicast Packets Tx Count - R/clr */
+#define E1000_BPTC 0x040F4 /* Broadcast Packets Tx Count - R/clr */
+#define E1000_TSCTC 0x040F8 /* TCP Segmentation Context Tx - R/clr */
+#define E1000_TSCTFC 0x040FC /* TCP Segmentation Context Tx Fail - R/clr */
+#define E1000_IAC 0x04100 /* Interrupt Assertion Count */
+#define E1000_ICRXPTC 0x04104 /* Interrupt Cause Rx Pkt Timer Expire Count */
+#define E1000_ICRXATC 0x04108 /* Interrupt Cause Rx Abs Timer Expire Count */
+#define E1000_ICTXPTC 0x0410C /* Interrupt Cause Tx Pkt Timer Expire Count */
+#define E1000_ICTXATC 0x04110 /* Interrupt Cause Tx Abs Timer Expire Count */
+#define E1000_ICTXQEC 0x04118 /* Interrupt Cause Tx Queue Empty Count */
+#define E1000_ICTXQMTC 0x0411C /* Interrupt Cause Tx Queue Min Thresh Count */
+#define E1000_ICRXDMTC 0x04120 /* Interrupt Cause Rx Desc Min Thresh Count */
+#define E1000_ICRXOC 0x04124 /* Interrupt Cause Receiver Overrun Count */
+#define E1000_CRC_OFFSET 0x05F50 /* CRC Offset register */
-#define E1000_VFGPRC 0x00F10
-#define E1000_VFGORC 0x00F18
-#define E1000_VFMPRC 0x00F3C
-#define E1000_VFGPTC 0x00F14
-#define E1000_VFGOTC 0x00F34
-#define E1000_VFGOTLBC 0x00F50
-#define E1000_VFGPTLBC 0x00F44
-#define E1000_VFGORLBC 0x00F48
-#define E1000_VFGPRLBC 0x00F40
+#define E1000_VFGPRC 0x00F10
+#define E1000_VFGORC 0x00F18
+#define E1000_VFMPRC 0x00F3C
+#define E1000_VFGPTC 0x00F14
+#define E1000_VFGOTC 0x00F34
+#define E1000_VFGOTLBC 0x00F50
+#define E1000_VFGPTLBC 0x00F44
+#define E1000_VFGORLBC 0x00F48
+#define E1000_VFGPRLBC 0x00F40
/* Virtualization statistical counters */
-#define E1000_PFVFGPRC(_n) (0x010010 + (0x100 * (_n)))
-#define E1000_PFVFGPTC(_n) (0x010014 + (0x100 * (_n)))
-#define E1000_PFVFGORC(_n) (0x010018 + (0x100 * (_n)))
-#define E1000_PFVFGOTC(_n) (0x010034 + (0x100 * (_n)))
-#define E1000_PFVFMPRC(_n) (0x010038 + (0x100 * (_n)))
-#define E1000_PFVFGPRLBC(_n) (0x010040 + (0x100 * (_n)))
-#define E1000_PFVFGPTLBC(_n) (0x010044 + (0x100 * (_n)))
-#define E1000_PFVFGORLBC(_n) (0x010048 + (0x100 * (_n)))
-#define E1000_PFVFGOTLBC(_n) (0x010050 + (0x100 * (_n)))
+#define E1000_PFVFGPRC(_n) (0x010010 + (0x100 * (_n)))
+#define E1000_PFVFGPTC(_n) (0x010014 + (0x100 * (_n)))
+#define E1000_PFVFGORC(_n) (0x010018 + (0x100 * (_n)))
+#define E1000_PFVFGOTC(_n) (0x010034 + (0x100 * (_n)))
+#define E1000_PFVFMPRC(_n) (0x010038 + (0x100 * (_n)))
+#define E1000_PFVFGPRLBC(_n) (0x010040 + (0x100 * (_n)))
+#define E1000_PFVFGPTLBC(_n) (0x010044 + (0x100 * (_n)))
+#define E1000_PFVFGORLBC(_n) (0x010048 + (0x100 * (_n)))
+#define E1000_PFVFGOTLBC(_n) (0x010050 + (0x100 * (_n)))
-#define E1000_LSECTXUT 0x04300 /* LinkSec Tx Untagged Packet Count - OutPktsUntagged */
-#define E1000_LSECTXPKTE 0x04304 /* LinkSec Encrypted Tx Packets Count - OutPktsEncrypted */
-#define E1000_LSECTXPKTP 0x04308 /* LinkSec Protected Tx Packet Count - OutPktsProtected */
-#define E1000_LSECTXOCTE 0x0430C /* LinkSec Encrypted Tx Octets Count - OutOctetsEncrypted */
-#define E1000_LSECTXOCTP 0x04310 /* LinkSec Protected Tx Octets Count - OutOctetsProtected */
-#define E1000_LSECRXUT 0x04314 /* LinkSec Untagged non-Strict Rx Packet Count - InPktsUntagged/InPktsNoTag */
-#define E1000_LSECRXOCTD 0x0431C /* LinkSec Rx Octets Decrypted Count - InOctetsDecrypted */
-#define E1000_LSECRXOCTV 0x04320 /* LinkSec Rx Octets Validated - InOctetsValidated */
-#define E1000_LSECRXBAD 0x04324 /* LinkSec Rx Bad Tag - InPktsBadTag */
-#define E1000_LSECRXNOSCI 0x04328 /* LinkSec Rx Packet No SCI Count - InPktsNoSci */
-#define E1000_LSECRXUNSCI 0x0432C /* LinkSec Rx Packet Unknown SCI Count - InPktsUnknownSci */
-#define E1000_LSECRXUNCH 0x04330 /* LinkSec Rx Unchecked Packets Count - InPktsUnchecked */
-#define E1000_LSECRXDELAY 0x04340 /* LinkSec Rx Delayed Packet Count - InPktsDelayed */
-#define E1000_LSECRXLATE 0x04350 /* LinkSec Rx Late Packets Count - InPktsLate */
-#define E1000_LSECRXOK(_n) (0x04360 + (0x04 * (_n))) /* LinkSec Rx Packet OK Count - InPktsOk */
-#define E1000_LSECRXINV(_n) (0x04380 + (0x04 * (_n))) /* LinkSec Rx Invalid Count - InPktsInvalid */
-#define E1000_LSECRXNV(_n) (0x043A0 + (0x04 * (_n))) /* LinkSec Rx Not Valid Count - InPktsNotValid */
-#define E1000_LSECRXUNSA 0x043C0 /* LinkSec Rx Unused SA Count - InPktsUnusedSa */
-#define E1000_LSECRXNUSA 0x043D0 /* LinkSec Rx Not Using SA Count - InPktsNotUsingSa */
-#define E1000_LSECTXCAP 0x0B000 /* LinkSec Tx Capabilities Register - RO */
-#define E1000_LSECRXCAP 0x0B300 /* LinkSec Rx Capabilities Register - RO */
-#define E1000_LSECTXCTRL 0x0B004 /* LinkSec Tx Control - RW */
-#define E1000_LSECRXCTRL 0x0B304 /* LinkSec Rx Control - RW */
-#define E1000_LSECTXSCL 0x0B008 /* LinkSec Tx SCI Low - RW */
-#define E1000_LSECTXSCH 0x0B00C /* LinkSec Tx SCI High - RW */
-#define E1000_LSECTXSA 0x0B010 /* LinkSec Tx SA0 - RW */
-#define E1000_LSECTXPN0 0x0B018 /* LinkSec Tx SA PN 0 - RW */
-#define E1000_LSECTXPN1 0x0B01C /* LinkSec Tx SA PN 1 - RW */
-#define E1000_LSECRXSCL 0x0B3D0 /* LinkSec Rx SCI Low - RW */
-#define E1000_LSECRXSCH 0x0B3E0 /* LinkSec Rx SCI High - RW */
-#define E1000_LSECTXKEY0(_n) (0x0B020 + (0x04 * (_n))) /* LinkSec Tx 128-bit Key 0 - WO */
-#define E1000_LSECTXKEY1(_n) (0x0B030 + (0x04 * (_n))) /* LinkSec Tx 128-bit Key 1 - WO */
-#define E1000_LSECRXSA(_n) (0x0B310 + (0x04 * (_n))) /* LinkSec Rx SAs - RW */
-#define E1000_LSECRXPN(_n) (0x0B330 + (0x04 * (_n))) /* LinkSec Rx SAs - RW */
-/*
- * LinkSec Rx Keys - where _n is the SA no. and _m the 4 dwords of the 128 bit
+/* LinkSec */
+#define E1000_LSECTXUT 0x04300 /* Tx Untagged Pkt Cnt */
+#define E1000_LSECTXPKTE 0x04304 /* Encrypted Tx Pkts Cnt */
+#define E1000_LSECTXPKTP 0x04308 /* Protected Tx Pkt Cnt */
+#define E1000_LSECTXOCTE 0x0430C /* Encrypted Tx Octets Cnt */
+#define E1000_LSECTXOCTP 0x04310 /* Protected Tx Octets Cnt */
+#define E1000_LSECRXUT 0x04314 /* Untagged non-Strict Rx Pkt Cnt */
+#define E1000_LSECRXOCTD 0x0431C /* Rx Octets Decrypted Count */
+#define E1000_LSECRXOCTV 0x04320 /* Rx Octets Validated */
+#define E1000_LSECRXBAD 0x04324 /* Rx Bad Tag */
+#define E1000_LSECRXNOSCI 0x04328 /* Rx Packet No SCI Count */
+#define E1000_LSECRXUNSCI 0x0432C /* Rx Packet Unknown SCI Count */
+#define E1000_LSECRXUNCH 0x04330 /* Rx Unchecked Packets Count */
+#define E1000_LSECRXDELAY 0x04340 /* Rx Delayed Packet Count */
+#define E1000_LSECRXLATE 0x04350 /* Rx Late Packets Count */
+#define E1000_LSECRXOK(_n) (0x04360 + (0x04 * (_n))) /* Rx Pkt OK Cnt */
+#define E1000_LSECRXINV(_n) (0x04380 + (0x04 * (_n))) /* Rx Invalid Cnt */
+#define E1000_LSECRXNV(_n) (0x043A0 + (0x04 * (_n))) /* Rx Not Valid Cnt */
+#define E1000_LSECRXUNSA 0x043C0 /* Rx Unused SA Count */
+#define E1000_LSECRXNUSA 0x043D0 /* Rx Not Using SA Count */
+#define E1000_LSECTXCAP 0x0B000 /* Tx Capabilities Register - RO */
+#define E1000_LSECRXCAP 0x0B300 /* Rx Capabilities Register - RO */
+#define E1000_LSECTXCTRL 0x0B004 /* Tx Control - RW */
+#define E1000_LSECRXCTRL 0x0B304 /* Rx Control - RW */
+#define E1000_LSECTXSCL 0x0B008 /* Tx SCI Low - RW */
+#define E1000_LSECTXSCH 0x0B00C /* Tx SCI High - RW */
+#define E1000_LSECTXSA 0x0B010 /* Tx SA0 - RW */
+#define E1000_LSECTXPN0 0x0B018 /* Tx SA PN 0 - RW */
+#define E1000_LSECTXPN1 0x0B01C /* Tx SA PN 1 - RW */
+#define E1000_LSECRXSCL 0x0B3D0 /* Rx SCI Low - RW */
+#define E1000_LSECRXSCH 0x0B3E0 /* Rx SCI High - RW */
+/* LinkSec Tx 128-bit Key 0 - WO */
+#define E1000_LSECTXKEY0(_n) (0x0B020 + (0x04 * (_n)))
+/* LinkSec Tx 128-bit Key 1 - WO */
+#define E1000_LSECTXKEY1(_n) (0x0B030 + (0x04 * (_n)))
+#define E1000_LSECRXSA(_n) (0x0B310 + (0x04 * (_n))) /* Rx SAs - RW */
+#define E1000_LSECRXPN(_n) (0x0B330 + (0x04 * (_n))) /* Rx SAs - RW */
+/* LinkSec Rx Keys - where _n is the SA no. and _m the 4 dwords of the 128 bit
* key - RW.
*/
-#define E1000_LSECRXKEY(_n, _m) (0x0B350 + (0x10 * (_n)) + (0x04 * (_m)))
+#define E1000_LSECRXKEY(_n, _m) (0x0B350 + (0x10 * (_n)) + (0x04 * (_m)))
-#define E1000_SSVPC 0x041A0 /* Switch Security Violation Packet Count */
-#define E1000_IPSCTRL 0xB430 /* IpSec Control Register */
-#define E1000_IPSRXCMD 0x0B408 /* IPSec Rx Command Register - RW */
-#define E1000_IPSRXIDX 0x0B400 /* IPSec Rx Index - RW */
-#define E1000_IPSRXIPADDR(_n) (0x0B420+ (0x04 * (_n))) /* IPSec Rx IPv4/v6 Address - RW */
-#define E1000_IPSRXKEY(_n) (0x0B410 + (0x04 * (_n))) /* IPSec Rx 128-bit Key - RW */
-#define E1000_IPSRXSALT 0x0B404 /* IPSec Rx Salt - RW */
-#define E1000_IPSRXSPI 0x0B40C /* IPSec Rx SPI - RW */
-#define E1000_IPSTXKEY(_n) (0x0B460 + (0x04 * (_n))) /* IPSec Tx 128-bit Key - RW */
-#define E1000_IPSTXSALT 0x0B454 /* IPSec Tx Salt - RW */
-#define E1000_IPSTXIDX 0x0B450 /* IPSec Tx SA IDX - RW */
-#define E1000_PCS_CFG0 0x04200 /* PCS Configuration 0 - RW */
-#define E1000_PCS_LCTL 0x04208 /* PCS Link Control - RW */
-#define E1000_PCS_LSTAT 0x0420C /* PCS Link Status - RO */
-#define E1000_CBTMPC 0x0402C /* Circuit Breaker Tx Packet Count */
-#define E1000_HTDPMC 0x0403C /* Host Transmit Discarded Packets */
-#define E1000_CBRDPC 0x04044 /* Circuit Breaker Rx Dropped Count */
-#define E1000_CBRMPC 0x040FC /* Circuit Breaker Rx Packet Count */
-#define E1000_RPTHC 0x04104 /* Rx Packets To Host */
-#define E1000_HGPTC 0x04118 /* Host Good Packets Tx Count */
-#define E1000_HTCBDPC 0x04124 /* Host Tx Circuit Breaker Dropped Count */
-#define E1000_HGORCL 0x04128 /* Host Good Octets Received Count Low */
-#define E1000_HGORCH 0x0412C /* Host Good Octets Received Count High */
-#define E1000_HGOTCL 0x04130 /* Host Good Octets Transmit Count Low */
-#define E1000_HGOTCH 0x04134 /* Host Good Octets Transmit Count High */
-#define E1000_LENERRS 0x04138 /* Length Errors Count */
-#define E1000_SCVPC 0x04228 /* SerDes/SGMII Code Violation Pkt Count */
-#define E1000_HRMPC 0x0A018 /* Header Redirection Missed Packet Count */
-#define E1000_PCS_ANADV 0x04218 /* AN advertisement - RW */
-#define E1000_PCS_LPAB 0x0421C /* Link Partner Ability - RW */
-#define E1000_PCS_NPTX 0x04220 /* AN Next Page Transmit - RW */
-#define E1000_PCS_LPABNP 0x04224 /* Link Partner Ability Next Page - RW */
-#define E1000_1GSTAT_RCV 0x04228 /* 1GSTAT Code Violation Packet Count - RW */
-#define E1000_RXCSUM 0x05000 /* Rx Checksum Control - RW */
-#define E1000_RLPML 0x05004 /* Rx Long Packet Max Length */
-#define E1000_RFCTL 0x05008 /* Receive Filter Control*/
-#define E1000_MTA 0x05200 /* Multicast Table Array - RW Array */
-#define E1000_RA 0x05400 /* Receive Address - RW Array */
-#define E1000_RA2 0x054E0 /* 2nd half of receive address array - RW Array */
-#define E1000_VFTA 0x05600 /* VLAN Filter Table Array - RW Array */
-#define E1000_VT_CTL 0x0581C /* VMDq Control - RW */
-#define E1000_VFQA0 0x0B000 /* VLAN Filter Queue Array 0 - RW Array */
-#define E1000_VFQA1 0x0B200 /* VLAN Filter Queue Array 1 - RW Array */
-#define E1000_WUC 0x05800 /* Wakeup Control - RW */
-#define E1000_WUFC 0x05808 /* Wakeup Filter Control - RW */
-#define E1000_WUS 0x05810 /* Wakeup Status - RO */
-#define E1000_MANC 0x05820 /* Management Control - RW */
-#define E1000_IPAV 0x05838 /* IP Address Valid - RW */
-#define E1000_IP4AT 0x05840 /* IPv4 Address Table - RW Array */
-#define E1000_IP6AT 0x05880 /* IPv6 Address Table - RW Array */
-#define E1000_WUPL 0x05900 /* Wakeup Packet Length - RW */
-#define E1000_WUPM 0x05A00 /* Wakeup Packet Memory - RO A */
-#define E1000_PBACL 0x05B68 /* MSIx PBA Clear - Read/Write 1's to clear */
-#define E1000_FFLT 0x05F00 /* Flexible Filter Length Table - RW Array */
-#define E1000_HOST_IF 0x08800 /* Host Interface */
-#define E1000_FFMT 0x09000 /* Flexible Filter Mask Table - RW Array */
-#define E1000_FFVT 0x09800 /* Flexible Filter Value Table - RW Array */
-#define E1000_FHFT(_n) (0x09000 + (_n * 0x100)) /* Flexible Host Filter Table */
-#define E1000_FHFT_EXT(_n) (0x09A00 + (_n * 0x100)) /* Ext Flexible Host Filter Table */
+#define E1000_SSVPC 0x041A0 /* Switch Security Violation Pkt Cnt */
+#define E1000_IPSCTRL 0xB430 /* IpSec Control Register */
+#define E1000_IPSRXCMD 0x0B408 /* IPSec Rx Command Register - RW */
+#define E1000_IPSRXIDX 0x0B400 /* IPSec Rx Index - RW */
+/* IPSec Rx IPv4/v6 Address - RW */
+#define E1000_IPSRXIPADDR(_n) (0x0B420 + (0x04 * (_n)))
+/* IPSec Rx 128-bit Key - RW */
+#define E1000_IPSRXKEY(_n) (0x0B410 + (0x04 * (_n)))
+#define E1000_IPSRXSALT 0x0B404 /* IPSec Rx Salt - RW */
+#define E1000_IPSRXSPI 0x0B40C /* IPSec Rx SPI - RW */
+/* IPSec Tx 128-bit Key - RW */
+#define E1000_IPSTXKEY(_n) (0x0B460 + (0x04 * (_n)))
+#define E1000_IPSTXSALT 0x0B454 /* IPSec Tx Salt - RW */
+#define E1000_IPSTXIDX 0x0B450 /* IPSec Tx SA IDX - RW */
+#define E1000_PCS_CFG0 0x04200 /* PCS Configuration 0 - RW */
+#define E1000_PCS_LCTL 0x04208 /* PCS Link Control - RW */
+#define E1000_PCS_LSTAT 0x0420C /* PCS Link Status - RO */
+#define E1000_CBTMPC 0x0402C /* Circuit Breaker Tx Packet Count */
+#define E1000_HTDPMC 0x0403C /* Host Transmit Discarded Packets */
+#define E1000_CBRDPC 0x04044 /* Circuit Breaker Rx Dropped Count */
+#define E1000_CBRMPC 0x040FC /* Circuit Breaker Rx Packet Count */
+#define E1000_RPTHC 0x04104 /* Rx Packets To Host */
+#define E1000_HGPTC 0x04118 /* Host Good Packets Tx Count */
+#define E1000_HTCBDPC 0x04124 /* Host Tx Circuit Breaker Dropped Count */
+#define E1000_HGORCL 0x04128 /* Host Good Octets Received Count Low */
+#define E1000_HGORCH 0x0412C /* Host Good Octets Received Count High */
+#define E1000_HGOTCL 0x04130 /* Host Good Octets Transmit Count Low */
+#define E1000_HGOTCH 0x04134 /* Host Good Octets Transmit Count High */
+#define E1000_LENERRS 0x04138 /* Length Errors Count */
+#define E1000_SCVPC 0x04228 /* SerDes/SGMII Code Violation Pkt Count */
+#define E1000_HRMPC 0x0A018 /* Header Redirection Missed Packet Count */
+#define E1000_PCS_ANADV 0x04218 /* AN advertisement - RW */
+#define E1000_PCS_LPAB 0x0421C /* Link Partner Ability - RW */
+#define E1000_PCS_NPTX 0x04220 /* AN Next Page Transmit - RW */
+#define E1000_PCS_LPABNP 0x04224 /* Link Partner Ability Next Pg - RW */
+#define E1000_RXCSUM 0x05000 /* Rx Checksum Control - RW */
+#define E1000_RLPML 0x05004 /* Rx Long Packet Max Length */
+#define E1000_RFCTL 0x05008 /* Receive Filter Control*/
+#define E1000_MTA 0x05200 /* Multicast Table Array - RW Array */
+#define E1000_RA 0x05400 /* Receive Address - RW Array */
+#define E1000_RA2 0x054E0 /* 2nd half of Rx address array - RW Array */
+#define E1000_VFTA 0x05600 /* VLAN Filter Table Array - RW Array */
+#define E1000_VT_CTL 0x0581C /* VMDq Control - RW */
+#define E1000_CIAA 0x05B88 /* Config Indirect Access Address - RW */
+#define E1000_CIAD 0x05B8C /* Config Indirect Access Data - RW */
+#define E1000_VFQA0 0x0B000 /* VLAN Filter Queue Array 0 - RW Array */
+#define E1000_VFQA1 0x0B200 /* VLAN Filter Queue Array 1 - RW Array */
+#define E1000_WUC 0x05800 /* Wakeup Control - RW */
+#define E1000_WUFC 0x05808 /* Wakeup Filter Control - RW */
+#define E1000_WUS 0x05810 /* Wakeup Status - RO */
+#define E1000_MANC 0x05820 /* Management Control - RW */
+#define E1000_IPAV 0x05838 /* IP Address Valid - RW */
+#define E1000_IP4AT 0x05840 /* IPv4 Address Table - RW Array */
+#define E1000_IP6AT 0x05880 /* IPv6 Address Table - RW Array */
+#define E1000_WUPL 0x05900 /* Wakeup Packet Length - RW */
+#define E1000_WUPM 0x05A00 /* Wakeup Packet Memory - RO A */
+#define E1000_PBACL 0x05B68 /* MSIx PBA Clear - Read/Write 1's to clear */
+#define E1000_FFLT 0x05F00 /* Flexible Filter Length Table - RW Array */
+#define E1000_HOST_IF 0x08800 /* Host Interface */
+#define E1000_FFMT 0x09000 /* Flexible Filter Mask Table - RW Array */
+#define E1000_FFVT 0x09800 /* Flexible Filter Value Table - RW Array */
+#define E1000_HIBBA 0x8F40 /* Host Interface Buffer Base Address */
+/* Flexible Host Filter Table */
+#define E1000_FHFT(_n) (0x09000 + ((_n) * 0x100))
+/* Ext Flexible Host Filter Table */
+#define E1000_FHFT_EXT(_n) (0x09A00 + ((_n) * 0x100))
-#define E1000_KMRNCTRLSTA 0x00034 /* MAC-PHY interface - RW */
-#define E1000_MDPHYA 0x0003C /* PHY address - RW */
-#define E1000_MANC2H 0x05860 /* Management Control To Host - RW */
-#define E1000_MDEF(_n) (0x05890 + (4 * (_n))) /* Mngmt Decision Filters */
-#define E1000_SW_FW_SYNC 0x05B5C /* Software-Firmware Synchronization - RW */
-#define E1000_CCMCTL 0x05B48 /* CCM Control Register */
-#define E1000_GIOCTL 0x05B44 /* GIO Analog Control Register */
-#define E1000_SCCTL 0x05B4C /* PCIc PLL Configuration Register */
-#define E1000_GCR 0x05B00 /* PCI-Ex Control */
-#define E1000_GCR2 0x05B64 /* PCI-Ex Control #2 */
-#define E1000_GSCL_1 0x05B10 /* PCI-Ex Statistic Control #1 */
-#define E1000_GSCL_2 0x05B14 /* PCI-Ex Statistic Control #2 */
-#define E1000_GSCL_3 0x05B18 /* PCI-Ex Statistic Control #3 */
-#define E1000_GSCL_4 0x05B1C /* PCI-Ex Statistic Control #4 */
-#define E1000_FACTPS 0x05B30 /* Function Active and Power State to MNG */
-#define E1000_SWSM 0x05B50 /* SW Semaphore */
-#define E1000_FWSM 0x05B54 /* FW Semaphore */
-#define E1000_SWSM2 0x05B58 /* Driver-only SW semaphore (not used by BOOT agents) */
-#define E1000_DCA_ID 0x05B70 /* DCA Requester ID Information - RO */
-#define E1000_DCA_CTRL 0x05B74 /* DCA Control - RW */
-#define E1000_UFUSE 0x05B78 /* UFUSE - RO */
-#define E1000_FFLT_DBG 0x05F04 /* Debug Register */
-#define E1000_HICR 0x08F00 /* Host Interface Control */
+#define E1000_KMRNCTRLSTA 0x00034 /* MAC-PHY interface - RW */
+#define E1000_MANC2H 0x05860 /* Management Control To Host - RW */
+/* Management Decision Filters */
+#define E1000_MDEF(_n) (0x05890 + (4 * (_n)))
+#define E1000_SW_FW_SYNC 0x05B5C /* SW-FW Synchronization - RW */
+#define E1000_CCMCTL 0x05B48 /* CCM Control Register */
+#define E1000_GIOCTL 0x05B44 /* GIO Analog Control Register */
+#define E1000_SCCTL 0x05B4C /* PCIc PLL Configuration Register */
+#define E1000_GCR 0x05B00 /* PCI-Ex Control */
+#define E1000_GCR2 0x05B64 /* PCI-Ex Control #2 */
+#define E1000_GSCL_1 0x05B10 /* PCI-Ex Statistic Control #1 */
+#define E1000_GSCL_2 0x05B14 /* PCI-Ex Statistic Control #2 */
+#define E1000_GSCL_3 0x05B18 /* PCI-Ex Statistic Control #3 */
+#define E1000_GSCL_4 0x05B1C /* PCI-Ex Statistic Control #4 */
+#define E1000_FACTPS 0x05B30 /* Function Active and Power State to MNG */
+#define E1000_SWSM 0x05B50 /* SW Semaphore */
+#define E1000_FWSM 0x05B54 /* FW Semaphore */
+/* Driver-only SW semaphore (not used by BOOT agents) */
+#define E1000_SWSM2 0x05B58
+#define E1000_DCA_ID 0x05B70 /* DCA Requester ID Information - RO */
+#define E1000_DCA_CTRL 0x05B74 /* DCA Control - RW */
+#define E1000_UFUSE 0x05B78 /* UFUSE - RO */
+#define E1000_FFLT_DBG 0x05F04 /* Debug Register */
+#define E1000_HICR 0x08F00 /* Host Interface Control */
+#define E1000_FWSTS 0x08F0C /* FW Status */
/* RSS registers */
-#define E1000_CPUVEC 0x02C10 /* CPU Vector Register - RW */
-#define E1000_MRQC 0x05818 /* Multiple Receive Control - RW */
-#define E1000_IMIR(_i) (0x05A80 + ((_i) * 4)) /* Immediate Interrupt */
-#define E1000_IMIREXT(_i) (0x05AA0 + ((_i) * 4)) /* Immediate Interrupt Ext*/
-#define E1000_IMIRVP 0x05AC0 /* Immediate Interrupt Rx VLAN Priority - RW */
-#define E1000_MSIXBM(_i) (0x01600 + ((_i) * 4)) /* MSI-X Allocation Register
- * (_i) - RW */
-#define E1000_MSIXTADD(_i) (0x0C000 + ((_i) * 0x10)) /* MSI-X Table entry addr
- * low reg - RW */
-#define E1000_MSIXTUADD(_i) (0x0C004 + ((_i) * 0x10)) /* MSI-X Table entry addr
- * upper reg - RW */
-#define E1000_MSIXTMSG(_i) (0x0C008 + ((_i) * 0x10)) /* MSI-X Table entry
- * message reg - RW */
-#define E1000_MSIXVCTRL(_i) (0x0C00C + ((_i) * 0x10)) /* MSI-X Table entry
- * vector ctrl reg - RW */
-#define E1000_MSIXPBA 0x0E000 /* MSI-X Pending bit array */
-#define E1000_RETA(_i) (0x05C00 + ((_i) * 4)) /* Redirection Table - RW */
-#define E1000_RSSRK(_i) (0x05C80 + ((_i) * 4)) /* RSS Random Key - RW */
-#define E1000_RSSIM 0x05864 /* RSS Interrupt Mask */
-#define E1000_RSSIR 0x05868 /* RSS Interrupt Request */
+#define E1000_CPUVEC 0x02C10 /* CPU Vector Register - RW */
+#define E1000_MRQC 0x05818 /* Multiple Receive Control - RW */
+#define E1000_IMIR(_i) (0x05A80 + ((_i) * 4)) /* Immediate Interrupt */
+#define E1000_IMIREXT(_i) (0x05AA0 + ((_i) * 4)) /* Immediate INTR Ext*/
+#define E1000_IMIRVP 0x05AC0 /* Immediate INT Rx VLAN Priority -RW */
+#define E1000_MSIXBM(_i) (0x01600 + ((_i) * 4)) /* MSI-X Alloc Reg -RW */
+#define E1000_RETA(_i) (0x05C00 + ((_i) * 4)) /* Redirection Table - RW */
+#define E1000_RSSRK(_i) (0x05C80 + ((_i) * 4)) /* RSS Random Key - RW */
+#define E1000_RSSIM 0x05864 /* RSS Interrupt Mask */
+#define E1000_RSSIR 0x05868 /* RSS Interrupt Request */
/* VT Registers */
-#define E1000_SWPBS 0x03004 /* Switch Packet Buffer Size - RW */
-#define E1000_MBVFICR 0x00C80 /* Mailbox VF Cause - RWC */
-#define E1000_MBVFIMR 0x00C84 /* Mailbox VF int Mask - RW */
-#define E1000_VFLRE 0x00C88 /* VF Register Events - RWC */
-#define E1000_VFRE 0x00C8C /* VF Receive Enables */
-#define E1000_VFTE 0x00C90 /* VF Transmit Enables */
-#define E1000_QDE 0x02408 /* Queue Drop Enable - RW */
-#define E1000_DTXSWC 0x03500 /* DMA Tx Switch Control - RW */
-#define E1000_WVBR 0x03554 /* VM Wrong Behavior - RWS */
-#define E1000_RPLOLR 0x05AF0 /* Replication Offload - RW */
-#define E1000_UTA 0x0A000 /* Unicast Table Array - RW */
-#define E1000_IOVTCL 0x05BBC /* IOV Control Register */
-#define E1000_VMRCTL 0X05D80 /* Virtual Mirror Rule Control */
+#define E1000_SWPBS 0x03004 /* Switch Packet Buffer Size - RW */
+#define E1000_MBVFICR 0x00C80 /* Mailbox VF Cause - RWC */
+#define E1000_MBVFIMR 0x00C84 /* Mailbox VF int Mask - RW */
+#define E1000_VFLRE 0x00C88 /* VF Register Events - RWC */
+#define E1000_VFRE 0x00C8C /* VF Receive Enables */
+#define E1000_VFTE 0x00C90 /* VF Transmit Enables */
+#define E1000_QDE 0x02408 /* Queue Drop Enable - RW */
+#define E1000_DTXSWC 0x03500 /* DMA Tx Switch Control - RW */
+#define E1000_WVBR 0x03554 /* VM Wrong Behavior - RWS */
+#define E1000_RPLOLR 0x05AF0 /* Replication Offload - RW */
+#define E1000_UTA 0x0A000 /* Unicast Table Array - RW */
+#define E1000_IOVTCL 0x05BBC /* IOV Control Register */
+#define E1000_VMRCTL 0X05D80 /* Virtual Mirror Rule Control */
+#define E1000_VMRVLAN 0x05D90 /* Virtual Mirror Rule VLAN */
+#define E1000_VMRVM 0x05DA0 /* Virtual Mirror Rule VM */
+#define E1000_MDFB 0x03558 /* Malicious Driver free block */
+#define E1000_LVMMC 0x03548 /* Last VM Misbehavior cause */
+#define E1000_TXSWC 0x05ACC /* Tx Switch Control */
+#define E1000_SCCRL 0x05DB0 /* Storm Control Control */
+#define E1000_BSCTRH 0x05DB8 /* Broadcast Storm Control Threshold */
+#define E1000_MSCTRH 0x05DBC /* Multicast Storm Control Threshold */
/* These act per VF so an array friendly macro is used */
-#define E1000_V2PMAILBOX(_n) (0x00C40 + (4 * (_n)))
-#define E1000_P2VMAILBOX(_n) (0x00C00 + (4 * (_n)))
-#define E1000_VMBMEM(_n) (0x00800 + (64 * (_n)))
-#define E1000_VFVMBMEM(_n) (0x00800 + (_n))
-#define E1000_VMOLR(_n) (0x05AD0 + (4 * (_n)))
-#define E1000_VLVF(_n) (0x05D00 + (4 * (_n))) /* VLAN Virtual Machine
- * Filter - RW */
-#define E1000_VMVIR(_n) (0x03700 + (4 * (_n)))
-/* Time Sync */
-#define E1000_TSYNCRXCTL 0x0B620 /* Rx Time Sync Control register - RW */
-#define E1000_TSYNCTXCTL 0x0B614 /* Tx Time Sync Control register - RW */
-#define E1000_TSYNCRXCFG 0x05F50 /* Time Sync Rx Configuration - RW */
-#define E1000_RXSTMPL 0x0B624 /* Rx timestamp Low - RO */
-#define E1000_RXSTMPH 0x0B628 /* Rx timestamp High - RO */
-#define E1000_RXSATRL 0x0B62C /* Rx timestamp attribute low - RO */
-#define E1000_RXSATRH 0x0B630 /* Rx timestamp attribute high - RO */
-#define E1000_TXSTMPL 0x0B618 /* Tx timestamp value Low - RO */
-#define E1000_TXSTMPH 0x0B61C /* Tx timestamp value High - RO */
-#define E1000_SYSTIML 0x0B600 /* System time register Low - RO */
-#define E1000_SYSTIMH 0x0B604 /* System time register High - RO */
-#define E1000_TIMINCA 0x0B608 /* Increment attributes register - RW */
-#define E1000_TSAUXC 0x0B640 /* Timesync Auxiliary Control register */
-#define E1000_SYSTIMR 0x0B6F8 /* System time register Residue */
-#define E1000_RXMTRL 0x0B634 /* Time sync Rx EtherType and Msg Type - RW */
-#define E1000_RXUDP 0x0B638 /* Time Sync Rx UDP Port - RW */
+#define E1000_V2PMAILBOX(_n) (0x00C40 + (4 * (_n)))
+#define E1000_P2VMAILBOX(_n) (0x00C00 + (4 * (_n)))
+#define E1000_VMBMEM(_n) (0x00800 + (64 * (_n)))
+#define E1000_VFVMBMEM(_n) (0x00800 + (_n))
+#define E1000_VMOLR(_n) (0x05AD0 + (4 * (_n)))
+/* VLAN Virtual Machine Filter - RW */
+#define E1000_VLVF(_n) (0x05D00 + (4 * (_n)))
+#define E1000_VMVIR(_n) (0x03700 + (4 * (_n)))
+#define E1000_DVMOLR(_n) (0x0C038 + (0x40 * (_n))) /* DMA VM offload */
+#define E1000_VTCTRL(_n) (0x10000 + (0x100 * (_n))) /* VT Control */
+#define E1000_TSYNCRXCTL 0x0B620 /* Rx Time Sync Control register - RW */
+#define E1000_TSYNCTXCTL 0x0B614 /* Tx Time Sync Control register - RW */
+#define E1000_TSYNCRXCFG 0x05F50 /* Time Sync Rx Configuration - RW */
+#define E1000_RXSTMPL 0x0B624 /* Rx timestamp Low - RO */
+#define E1000_RXSTMPH 0x0B628 /* Rx timestamp High - RO */
+#define E1000_RXSATRL 0x0B62C /* Rx timestamp attribute low - RO */
+#define E1000_RXSATRH 0x0B630 /* Rx timestamp attribute high - RO */
+#define E1000_TXSTMPL 0x0B618 /* Tx timestamp value Low - RO */
+#define E1000_TXSTMPH 0x0B61C /* Tx timestamp value High - RO */
+#define E1000_SYSTIML 0x0B600 /* System time register Low - RO */
+#define E1000_SYSTIMH 0x0B604 /* System time register High - RO */
+#define E1000_TIMINCA 0x0B608 /* Increment attributes register - RW */
+#define E1000_TIMADJL 0x0B60C /* Time sync time adjustment offset Low - RW */
+#define E1000_TIMADJH 0x0B610 /* Time sync time adjustment offset High - RW */
+#define E1000_TSAUXC 0x0B640 /* Timesync Auxiliary Control register */
+#define E1000_SYSTIMR 0x0B6F8 /* System time register Residue */
+#define E1000_TSICR 0x0B66C /* Interrupt Cause Register */
+#define E1000_TSIM 0x0B674 /* Interrupt Mask Register */
+#define E1000_RXMTRL 0x0B634 /* Time sync Rx EtherType and Msg Type - RW */
+#define E1000_RXUDP 0x0B638 /* Time Sync Rx UDP Port - RW */
/* Filtering Registers */
-#define E1000_SAQF(_n) (0x05980 + (4 * (_n))) /* Source Address Queue Fltr */
-#define E1000_DAQF(_n) (0x059A0 + (4 * (_n))) /* Dest Address Queue Fltr */
-#define E1000_SPQF(_n) (0x059C0 + (4 * (_n))) /* Source Port Queue Fltr */
-#define E1000_FTQF(_n) (0x059E0 + (4 * (_n))) /* 5-tuple Queue Fltr */
-#define E1000_TTQF(_n) (0x059E0 + (4 * (_n))) /* 2-tuple Queue Fltr */
-#define E1000_SYNQF(_n) (0x055FC + (4 * (_n))) /* SYN Packet Queue Fltr */
-#define E1000_ETQF(_n) (0x05CB0 + (4 * (_n))) /* EType Queue Fltr */
+#define E1000_SAQF(_n) (0x05980 + (4 * (_n))) /* Source Address Queue Fltr */
+#define E1000_DAQF(_n) (0x059A0 + (4 * (_n))) /* Dest Address Queue Fltr */
+#define E1000_SPQF(_n) (0x059C0 + (4 * (_n))) /* Source Port Queue Fltr */
+#define E1000_FTQF(_n) (0x059E0 + (4 * (_n))) /* 5-tuple Queue Fltr */
+#define E1000_TTQF(_n) (0x059E0 + (4 * (_n))) /* 2-tuple Queue Fltr */
+#define E1000_SYNQF(_n) (0x055FC + (4 * (_n))) /* SYN Packet Queue Fltr */
+#define E1000_ETQF(_n) (0x05CB0 + (4 * (_n))) /* EType Queue Fltr */
-#define E1000_RTTDCS 0x3600 /* Reedtown Tx Desc plane control and status */
-#define E1000_RTTPCS 0x3474 /* Reedtown Tx Packet Plane control and status */
-#define E1000_RTRPCS 0x2474 /* Rx packet plane control and status */
-#define E1000_RTRUP2TC 0x05AC4 /* Rx User Priority to Traffic Class */
-#define E1000_RTTUP2TC 0x0418 /* Transmit User Priority to Traffic Class */
-#define E1000_RTTDTCRC(_n) (0x3610 + ((_n) * 4)) /* Tx Desc plane TC Rate-scheduler config */
-#define E1000_RTTPTCRC(_n) (0x3480 + ((_n) * 4)) /* Tx Packet plane TC Rate-Scheduler Config */
-#define E1000_RTRPTCRC(_n) (0x2480 + ((_n) * 4)) /* Rx Packet plane TC Rate-Scheduler Config */
-#define E1000_RTTDTCRS(_n) (0x3630 + ((_n) * 4)) /* Tx Desc Plane TC Rate-Scheduler Status */
-#define E1000_RTTDTCRM(_n) (0x3650 + ((_n) * 4)) /* Tx Desc Plane TC Rate-Scheduler MMW */
-#define E1000_RTTPTCRS(_n) (0x34A0 + ((_n) * 4)) /* Tx Packet plane TC Rate-Scheduler Status */
-#define E1000_RTTPTCRM(_n) (0x34C0 + ((_n) * 4)) /* Tx Packet plane TC Rate-scheduler MMW */
-#define E1000_RTRPTCRS(_n) (0x24A0 + ((_n) * 4)) /* Rx Packet plane TC Rate-Scheduler Status */
-#define E1000_RTRPTCRM(_n) (0x24C0 + ((_n) * 4)) /* Rx Packet plane TC Rate-Scheduler MMW */
-#define E1000_RTTDVMRM(_n) (0x3670 + ((_n) * 4)) /* Tx Desc plane VM Rate-Scheduler MMW*/
-#define E1000_RTTBCNRM(_n) (0x3690 + ((_n) * 4)) /* Tx BCN Rate-Scheduler MMW */
-#define E1000_RTTDQSEL 0x3604 /* Tx Desc Plane Queue Select */
-#define E1000_RTTDVMRC 0x3608 /* Tx Desc Plane VM Rate-Scheduler Config */
-#define E1000_RTTDVMRS 0x360C /* Tx Desc Plane VM Rate-Scheduler Status */
-#define E1000_RTTBCNRC 0x36B0 /* Tx BCN Rate-Scheduler Config */
-#define E1000_RTTBCNRS 0x36B4 /* Tx BCN Rate-Scheduler Status */
-#define E1000_RTTBCNCR 0xB200 /* Tx BCN Control Register */
-#define E1000_RTTBCNTG 0x35A4 /* Tx BCN Tagging */
-#define E1000_RTTBCNCP 0xB208 /* Tx BCN Congestion point */
-#define E1000_RTRBCNCR 0xB20C /* Rx BCN Control Register */
-#define E1000_RTTBCNRD 0x36B8 /* Tx BCN Rate Drift */
-#define E1000_PFCTOP 0x1080 /* Priority Flow Control Type and Opcode */
-#define E1000_RTTBCNIDX 0xB204 /* Tx BCN Congestion Point */
-#define E1000_RTTBCNACH 0x0B214 /* Tx BCN Control High */
-#define E1000_RTTBCNACL 0x0B210 /* Tx BCN Control Low */
+#define E1000_RTTDCS 0x3600 /* Reedtown Tx Desc plane control and status */
+#define E1000_RTTPCS 0x3474 /* Reedtown Tx Packet Plane control and status */
+#define E1000_RTRPCS 0x2474 /* Rx packet plane control and status */
+#define E1000_RTRUP2TC 0x05AC4 /* Rx User Priority to Traffic Class */
+#define E1000_RTTUP2TC 0x0418 /* Transmit User Priority to Traffic Class */
+/* Tx Desc plane TC Rate-scheduler config */
+#define E1000_RTTDTCRC(_n) (0x3610 + ((_n) * 4))
+/* Tx Packet plane TC Rate-Scheduler Config */
+#define E1000_RTTPTCRC(_n) (0x3480 + ((_n) * 4))
+/* Rx Packet plane TC Rate-Scheduler Config */
+#define E1000_RTRPTCRC(_n) (0x2480 + ((_n) * 4))
+/* Tx Desc Plane TC Rate-Scheduler Status */
+#define E1000_RTTDTCRS(_n) (0x3630 + ((_n) * 4))
+/* Tx Desc Plane TC Rate-Scheduler MMW */
+#define E1000_RTTDTCRM(_n) (0x3650 + ((_n) * 4))
+/* Tx Packet plane TC Rate-Scheduler Status */
+#define E1000_RTTPTCRS(_n) (0x34A0 + ((_n) * 4))
+/* Tx Packet plane TC Rate-scheduler MMW */
+#define E1000_RTTPTCRM(_n) (0x34C0 + ((_n) * 4))
+/* Rx Packet plane TC Rate-Scheduler Status */
+#define E1000_RTRPTCRS(_n) (0x24A0 + ((_n) * 4))
+/* Rx Packet plane TC Rate-Scheduler MMW */
+#define E1000_RTRPTCRM(_n) (0x24C0 + ((_n) * 4))
+/* Tx Desc plane VM Rate-Scheduler MMW*/
+#define E1000_RTTDVMRM(_n) (0x3670 + ((_n) * 4))
+/* Tx BCN Rate-Scheduler MMW */
+#define E1000_RTTBCNRM(_n) (0x3690 + ((_n) * 4))
+#define E1000_RTTDQSEL 0x3604 /* Tx Desc Plane Queue Select */
+#define E1000_RTTDVMRC 0x3608 /* Tx Desc Plane VM Rate-Scheduler Config */
+#define E1000_RTTDVMRS 0x360C /* Tx Desc Plane VM Rate-Scheduler Status */
+#define E1000_RTTBCNRC 0x36B0 /* Tx BCN Rate-Scheduler Config */
+#define E1000_RTTBCNRS 0x36B4 /* Tx BCN Rate-Scheduler Status */
+#define E1000_RTTBCNCR 0xB200 /* Tx BCN Control Register */
+#define E1000_RTTBCNTG 0x35A4 /* Tx BCN Tagging */
+#define E1000_RTTBCNCP 0xB208 /* Tx BCN Congestion point */
+#define E1000_RTRBCNCR 0xB20C /* Rx BCN Control Register */
+#define E1000_RTTBCNRD 0x36B8 /* Tx BCN Rate Drift */
+#define E1000_PFCTOP 0x1080 /* Priority Flow Control Type and Opcode */
+#define E1000_RTTBCNIDX 0xB204 /* Tx BCN Congestion Point */
+#define E1000_RTTBCNACH 0x0B214 /* Tx BCN Control High */
+#define E1000_RTTBCNACL 0x0B210 /* Tx BCN Control Low */
/* DMA Coalescing registers */
-#define E1000_DMACR 0x02508 /* Control Register */
-#define E1000_DMCTXTH 0x03550 /* Transmit Threshold */
-#define E1000_DMCTLX 0x02514 /* Time to Lx Request */
-#define E1000_DMCRTRH 0x05DD0 /* Receive Packet Rate Threshold */
-#define E1000_DMCCNT 0x05DD4 /* Current RX Count */
-#define E1000_FCRTC 0x02170 /* Flow Control Rx high watermark */
-#define E1000_PCIEMISC 0x05BB8 /* PCIE misc config register */
+#define E1000_DMACR 0x02508 /* Control Register */
+#define E1000_DMCTXTH 0x03550 /* Transmit Threshold */
+#define E1000_DMCTLX 0x02514 /* Time to Lx Request */
+#define E1000_DMCRTRH 0x05DD0 /* Receive Packet Rate Threshold */
+#define E1000_DMCCNT 0x05DD4 /* Current Rx Count */
+#define E1000_FCRTC 0x02170 /* Flow Control Rx high watermark */
+#define E1000_PCIEMISC 0x05BB8 /* PCIE misc config register */
/* PCIe Parity Status Register */
-#define E1000_PCIEERRSTS 0x05BA8
+#define E1000_PCIEERRSTS 0x05BA8
+
+#define E1000_PROXYS 0x5F64 /* Proxying Status */
+#define E1000_PROXYFC 0x5F60 /* Proxying Filter Control */
+/* Thermal sensor configuration and status registers */
+#define E1000_THMJT 0x08100 /* Junction Temperature */
+#define E1000_THLOWTC 0x08104 /* Low Threshold Control */
+#define E1000_THMIDTC 0x08108 /* Mid Threshold Control */
+#define E1000_THHIGHTC 0x0810C /* High Threshold Control */
+#define E1000_THSTAT 0x08110 /* Thermal Sensor Status */
+
+/* Energy Efficient Ethernet "EEE" registers */
+#define E1000_IPCNFG 0x0E38 /* Internal PHY Configuration */
+#define E1000_LTRC 0x01A0 /* Latency Tolerance Reporting Control */
+#define E1000_EEER 0x0E30 /* Energy Efficient Ethernet "EEE"*/
+#define E1000_EEE_SU 0x0E34 /* EEE Setup */
+#define E1000_TLPIC 0x4148 /* EEE Tx LPI Count - TLPIC */
+#define E1000_RLPIC 0x414C /* EEE Rx LPI Count - RLPIC */
+
+/* OS2BMC Registers */
+#define E1000_B2OSPC 0x08FE0 /* BMC2OS packets sent by BMC */
+#define E1000_B2OGPRC 0x04158 /* BMC2OS packets received by host */
+#define E1000_O2BGPTC 0x08FE4 /* OS2BMC packets received by BMC */
+#define E1000_O2BSPC 0x0415C /* OS2BMC packets transmitted by host */
+
+#define E1000_DOBFFCTL 0x3F24 /* DMA OBFF Control Register */
#endif
diff --git a/freebsd/sys/dev/e1000/e1000_vf.c b/freebsd/sys/dev/e1000/e1000_vf.c
index de6feb6a..c5fab9b3 100644
--- a/freebsd/sys/dev/e1000/e1000_vf.c
+++ b/freebsd/sys/dev/e1000/e1000_vf.c
@@ -2,7 +2,7 @@
/******************************************************************************
- Copyright (c) 2001-2010, Intel Corporation
+ Copyright (c) 2001-2011, Intel Corporation
All rights reserved.
Redistribution and use in source and binary forms, with or without
@@ -40,21 +40,21 @@
#include <rtems/bsd/local/e1000_api.h>
#endif
-static s32 e1000_init_phy_params_vf(struct e1000_hw *hw);
-static s32 e1000_init_nvm_params_vf(struct e1000_hw *hw);
-static void e1000_release_vf(struct e1000_hw *hw);
-static s32 e1000_acquire_vf(struct e1000_hw *hw);
-static s32 e1000_setup_link_vf(struct e1000_hw *hw);
-static s32 e1000_get_bus_info_pcie_vf(struct e1000_hw *hw);
-static s32 e1000_init_mac_params_vf(struct e1000_hw *hw);
-static s32 e1000_check_for_link_vf(struct e1000_hw *hw);
-static s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed,
- u16 *duplex);
-static s32 e1000_init_hw_vf(struct e1000_hw *hw);
-static s32 e1000_reset_hw_vf(struct e1000_hw *hw);
-static void e1000_update_mc_addr_list_vf(struct e1000_hw *hw, u8 *, u32);
-static void e1000_rar_set_vf(struct e1000_hw *, u8 *, u32);
-static s32 e1000_read_mac_addr_vf(struct e1000_hw *);
+static s32 e1000_init_phy_params_vf(struct e1000_hw *hw);
+static s32 e1000_init_nvm_params_vf(struct e1000_hw *hw);
+static void e1000_release_vf(struct e1000_hw *hw);
+static s32 e1000_acquire_vf(struct e1000_hw *hw);
+static s32 e1000_setup_link_vf(struct e1000_hw *hw);
+static s32 e1000_get_bus_info_pcie_vf(struct e1000_hw *hw);
+static s32 e1000_init_mac_params_vf(struct e1000_hw *hw);
+static s32 e1000_check_for_link_vf(struct e1000_hw *hw);
+static s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed,
+ u16 *duplex);
+static s32 e1000_init_hw_vf(struct e1000_hw *hw);
+static s32 e1000_reset_hw_vf(struct e1000_hw *hw);
+static void e1000_update_mc_addr_list_vf(struct e1000_hw *hw, u8 *, u32);
+static void e1000_rar_set_vf(struct e1000_hw *, u8 *, u32);
+static s32 e1000_read_mac_addr_vf(struct e1000_hw *);
/**
* e1000_init_phy_params_vf - Inits PHY params
@@ -223,7 +223,7 @@ static s32 e1000_get_bus_info_pcie_vf(struct e1000_hw *hw)
* the status register's data which is often stale and inaccurate.
**/
static s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed,
- u16 *duplex)
+ u16 *duplex)
{
s32 status;
@@ -292,7 +292,7 @@ static s32 e1000_reset_hw_vf(struct e1000_hw *hw)
ret_val = mbx->ops.read_posted(hw, msgbuf, 3, 0);
if (!ret_val) {
if (msgbuf[0] == (E1000_VF_RESET |
- E1000_VT_MSGTYPE_ACK))
+ E1000_VT_MSGTYPE_ACK))
memcpy(hw->mac.perm_addr, addr, 6);
else
ret_val = -E1000_ERR_MAC_INIT;
@@ -373,11 +373,22 @@ static u32 e1000_hash_mc_addr_vf(struct e1000_hw *hw, u8 *mc_addr)
bit_shift++;
hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
- (((u16) mc_addr[5]) << bit_shift)));
+ (((u16) mc_addr[5]) << bit_shift)));
return hash_value;
}
+static void e1000_write_msg_read_ack(struct e1000_hw *hw,
+ u32 *msg, u16 size)
+{
+ struct e1000_mbx_info *mbx = &hw->mbx;
+ u32 retmsg[E1000_VFMAILBOX_SIZE];
+ s32 retval = mbx->ops.write_posted(hw, msg, size, 0);
+
+ if (!retval)
+ mbx->ops.read_posted(hw, retmsg, E1000_VFMAILBOX_SIZE, 0);
+}
+
/**
* e1000_update_mc_addr_list_vf - Update Multicast addresses
* @hw: pointer to the HW structure
@@ -388,9 +399,8 @@ static u32 e1000_hash_mc_addr_vf(struct e1000_hw *hw, u8 *mc_addr)
* The caller must have a packed mc_addr_list of multicast addresses.
**/
void e1000_update_mc_addr_list_vf(struct e1000_hw *hw,
- u8 *mc_addr_list, u32 mc_addr_count)
+ u8 *mc_addr_list, u32 mc_addr_count)
{
- struct e1000_mbx_info *mbx = &hw->mbx;
u32 msgbuf[E1000_VFMAILBOX_SIZE];
u16 *hash_list = (u16 *)&msgbuf[1];
u32 hash_value;
@@ -424,7 +434,7 @@ void e1000_update_mc_addr_list_vf(struct e1000_hw *hw,
mc_addr_list += ETH_ADDR_LEN;
}
- mbx->ops.write_posted(hw, msgbuf, E1000_VFMAILBOX_SIZE, 0);
+ e1000_write_msg_read_ack(hw, msgbuf, E1000_VFMAILBOX_SIZE);
}
/**
@@ -435,7 +445,6 @@ void e1000_update_mc_addr_list_vf(struct e1000_hw *hw,
**/
void e1000_vfta_set_vf(struct e1000_hw *hw, u16 vid, bool set)
{
- struct e1000_mbx_info *mbx = &hw->mbx;
u32 msgbuf[2];
msgbuf[0] = E1000_VF_SET_VLAN;
@@ -444,7 +453,7 @@ void e1000_vfta_set_vf(struct e1000_hw *hw, u16 vid, bool set)
if (set)
msgbuf[0] |= E1000_VF_SET_VLAN_ADD;
- mbx->ops.write_posted(hw, msgbuf, 2, 0);
+ e1000_write_msg_read_ack(hw, msgbuf, 2);
}
/** e1000_rlpml_set_vf - Set the maximum receive packet length
@@ -453,13 +462,12 @@ void e1000_vfta_set_vf(struct e1000_hw *hw, u16 vid, bool set)
**/
void e1000_rlpml_set_vf(struct e1000_hw *hw, u16 max_size)
{
- struct e1000_mbx_info *mbx = &hw->mbx;
u32 msgbuf[2];
msgbuf[0] = E1000_VF_SET_LPE;
msgbuf[1] = max_size;
- mbx->ops.write_posted(hw, msgbuf, 2, 0);
+ e1000_write_msg_read_ack(hw, msgbuf, 2);
}
/**
@@ -536,8 +544,8 @@ static s32 e1000_check_for_link_vf(struct e1000_hw *hw)
* or a virtual function reset
*/
- /* If we were hit with a reset drop the link */
- if (!mbx->ops.check_for_rst(hw, 0))
+ /* If we were hit with a reset or timeout drop the link */
+ if (!mbx->ops.check_for_rst(hw, 0) || !mbx->timeout)
mac->get_link_status = TRUE;
if (!mac->get_link_status)
diff --git a/freebsd/sys/dev/e1000/e1000_vf.h b/freebsd/sys/dev/e1000/e1000_vf.h
index 8d02eda3..a07c1e3e 100644
--- a/freebsd/sys/dev/e1000/e1000_vf.h
+++ b/freebsd/sys/dev/e1000/e1000_vf.h
@@ -48,6 +48,7 @@
struct e1000_hw;
#define E1000_DEV_ID_82576_VF 0x10CA
+#define E1000_DEV_ID_I350_VF 0x1520
#define E1000_VF_INIT_TIMEOUT 200 /* Number of retries to clear RSTI */
@@ -94,9 +95,10 @@ union e1000_adv_rx_desc {
union {
u32 data;
struct {
- u16 pkt_info; /* RSS type, Packet type */
- u16 hdr_info; /* Split Header,
- * header buffer length */
+ /* RSS type, Packet type */
+ u16 pkt_info;
+ /* Split Header, header buffer len */
+ u16 hdr_info;
} hs_rss;
} lo_dword;
union {
@@ -160,6 +162,7 @@ struct e1000_adv_tx_context_desc {
enum e1000_mac_type {
e1000_undefined = 0,
e1000_vfadapt,
+ e1000_vfadapt_i350,
e1000_num_macs /* List is 1-based, so subtract 1 for TRUE count. */
};
@@ -259,8 +262,8 @@ struct e1000_mbx_info {
};
struct e1000_dev_spec_vf {
- u32 vf_number;
- u32 v2p_mailbox;
+ u32 vf_number;
+ u32 v2p_mailbox;
};
struct e1000_hw {
@@ -274,7 +277,7 @@ struct e1000_hw {
struct e1000_mbx_info mbx;
union {
- struct e1000_dev_spec_vf vf;
+ struct e1000_dev_spec_vf vf;
} dev_spec;
u16 device_id;
diff --git a/freebsd/sys/dev/e1000/if_em.c b/freebsd/sys/dev/e1000/if_em.c
index c0fffc30..330b67bf 100644
--- a/freebsd/sys/dev/e1000/if_em.c
+++ b/freebsd/sys/dev/e1000/if_em.c
@@ -2,7 +2,7 @@
/******************************************************************************
- Copyright (c) 2001-2010, Intel Corporation
+ Copyright (c) 2001-2013, Intel Corporation
All rights reserved.
Redistribution and use in source and binary forms, with or without
@@ -37,6 +37,7 @@
#ifdef HAVE_KERNEL_OPTION_HEADERS
#include <rtems/bsd/local/opt_device_polling.h>
#include <rtems/bsd/local/opt_inet.h>
+#include <rtems/bsd/local/opt_inet6.h>
#endif
#include <rtems/bsd/sys/param.h>
@@ -101,7 +102,7 @@ int em_display_debug_stats = 0;
/*********************************************************************
* Driver version:
*********************************************************************/
-char em_driver_version[] = "7.1.9";
+char em_driver_version[] = "7.3.7";
/*********************************************************************
* PCI Device ID Table
@@ -179,6 +180,12 @@ static em_vendor_info_t em_vendor_info_array[] =
{ 0x8086, E1000_DEV_ID_PCH_D_HV_DC, PCI_ANY_ID, PCI_ANY_ID, 0},
{ 0x8086, E1000_DEV_ID_PCH2_LV_LM, PCI_ANY_ID, PCI_ANY_ID, 0},
{ 0x8086, E1000_DEV_ID_PCH2_LV_V, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_PCH_LPT_I217_LM, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_PCH_LPT_I217_V, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_PCH_LPTLP_I218_LM,
+ PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_PCH_LPTLP_I218_V,
+ PCI_ANY_ID, PCI_ANY_ID, 0},
/* required last entry */
{ 0, 0, 0, 0, 0}
};
@@ -200,13 +207,14 @@ static int em_detach(device_t);
static int em_shutdown(device_t);
static int em_suspend(device_t);
static int em_resume(device_t);
-static void em_start(struct ifnet *);
-static void em_start_locked(struct ifnet *, struct tx_ring *);
#ifdef EM_MULTIQUEUE
static int em_mq_start(struct ifnet *, struct mbuf *);
static int em_mq_start_locked(struct ifnet *,
struct tx_ring *, struct mbuf *);
static void em_qflush(struct ifnet *);
+#else
+static void em_start(struct ifnet *);
+static void em_start_locked(struct ifnet *, struct tx_ring *);
#endif
static int em_ioctl(struct ifnet *, u_long, caddr_t);
static void em_init(void *);
@@ -241,7 +249,7 @@ static void em_enable_intr(struct adapter *);
static void em_disable_intr(struct adapter *);
static void em_update_stats_counters(struct adapter *);
static void em_add_hw_stats(struct adapter *adapter);
-static bool em_txeof(struct tx_ring *);
+static void em_txeof(struct tx_ring *);
static bool em_rxeof(struct rx_ring *, int, int *);
#ifndef __NO_STRICT_ALIGNMENT
static int em_fixup_rx(struct rx_ring *);
@@ -292,10 +300,10 @@ static void em_handle_tx(void *context, int pending);
static void em_handle_rx(void *context, int pending);
static void em_handle_link(void *context, int pending);
-static void em_add_rx_process_limit(struct adapter *, const char *,
- const char *, int *, int);
-static void em_set_flow_cntrl(struct adapter *, const char *,
+static void em_set_sysctl_value(struct adapter *, const char *,
const char *, int *, int);
+static int em_set_flowcntl(SYSCTL_HANDLER_ARGS);
+static int em_sysctl_eee(SYSCTL_HANDLER_ARGS);
static __inline void em_rx_discard(struct rx_ring *, int);
@@ -315,7 +323,7 @@ static device_method_t em_methods[] = {
DEVMETHOD(device_shutdown, em_shutdown),
DEVMETHOD(device_suspend, em_suspend),
DEVMETHOD(device_resume, em_resume),
- {0, 0}
+ DEVMETHOD_END
};
static driver_t em_driver = {
@@ -340,42 +348,74 @@ MODULE_DEPEND(em, ether, 1, 1, 1);
#define CSUM_TSO 0
#endif
+static SYSCTL_NODE(_hw, OID_AUTO, em, CTLFLAG_RD, 0, "EM driver parameters");
+
static int em_tx_int_delay_dflt = EM_TICKS_TO_USECS(EM_TIDV);
static int em_rx_int_delay_dflt = EM_TICKS_TO_USECS(EM_RDTR);
TUNABLE_INT("hw.em.tx_int_delay", &em_tx_int_delay_dflt);
TUNABLE_INT("hw.em.rx_int_delay", &em_rx_int_delay_dflt);
+SYSCTL_INT(_hw_em, OID_AUTO, tx_int_delay, CTLFLAG_RDTUN, &em_tx_int_delay_dflt,
+ 0, "Default transmit interrupt delay in usecs");
+SYSCTL_INT(_hw_em, OID_AUTO, rx_int_delay, CTLFLAG_RDTUN, &em_rx_int_delay_dflt,
+ 0, "Default receive interrupt delay in usecs");
static int em_tx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_TADV);
static int em_rx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_RADV);
TUNABLE_INT("hw.em.tx_abs_int_delay", &em_tx_abs_int_delay_dflt);
TUNABLE_INT("hw.em.rx_abs_int_delay", &em_rx_abs_int_delay_dflt);
+SYSCTL_INT(_hw_em, OID_AUTO, tx_abs_int_delay, CTLFLAG_RDTUN,
+ &em_tx_abs_int_delay_dflt, 0,
+ "Default transmit interrupt delay limit in usecs");
+SYSCTL_INT(_hw_em, OID_AUTO, rx_abs_int_delay, CTLFLAG_RDTUN,
+ &em_rx_abs_int_delay_dflt, 0,
+ "Default receive interrupt delay limit in usecs");
static int em_rxd = EM_DEFAULT_RXD;
static int em_txd = EM_DEFAULT_TXD;
TUNABLE_INT("hw.em.rxd", &em_rxd);
TUNABLE_INT("hw.em.txd", &em_txd);
+SYSCTL_INT(_hw_em, OID_AUTO, rxd, CTLFLAG_RDTUN, &em_rxd, 0,
+ "Number of receive descriptors per queue");
+SYSCTL_INT(_hw_em, OID_AUTO, txd, CTLFLAG_RDTUN, &em_txd, 0,
+ "Number of transmit descriptors per queue");
static int em_smart_pwr_down = FALSE;
TUNABLE_INT("hw.em.smart_pwr_down", &em_smart_pwr_down);
+SYSCTL_INT(_hw_em, OID_AUTO, smart_pwr_down, CTLFLAG_RDTUN, &em_smart_pwr_down,
+ 0, "Set to true to leave smart power down enabled on newer adapters");
/* Controls whether promiscuous also shows bad packets */
static int em_debug_sbp = FALSE;
TUNABLE_INT("hw.em.sbp", &em_debug_sbp);
+SYSCTL_INT(_hw_em, OID_AUTO, sbp, CTLFLAG_RDTUN, &em_debug_sbp, 0,
+ "Show bad packets in promiscuous mode");
static int em_enable_msix = TRUE;
TUNABLE_INT("hw.em.enable_msix", &em_enable_msix);
+SYSCTL_INT(_hw_em, OID_AUTO, enable_msix, CTLFLAG_RDTUN, &em_enable_msix, 0,
+ "Enable MSI-X interrupts");
/* How many packets rxeof tries to clean at a time */
static int em_rx_process_limit = 100;
TUNABLE_INT("hw.em.rx_process_limit", &em_rx_process_limit);
+SYSCTL_INT(_hw_em, OID_AUTO, rx_process_limit, CTLFLAG_RDTUN,
+ &em_rx_process_limit, 0,
+ "Maximum number of received packets to process "
+ "at a time, -1 means unlimited");
-/* Flow control setting - default to FULL */
-static int em_fc_setting = e1000_fc_full;
-TUNABLE_INT("hw.em.fc_setting", &em_fc_setting);
+/* Energy efficient ethernet - default to OFF */
+static int eee_setting = 1;
+TUNABLE_INT("hw.em.eee_setting", &eee_setting);
+SYSCTL_INT(_hw_em, OID_AUTO, eee_setting, CTLFLAG_RDTUN, &eee_setting, 0,
+ "Enable Energy Efficient Ethernet");
/* Global used in WOL setup with multiport cards */
static int global_quad_port_a = 0;
+#ifdef DEV_NETMAP /* see ixgbe.c for details */
+#include <dev/netmap/if_em_netmap.h>
+#endif /* DEV_NETMAP */
+
/*********************************************************************
* Device identification routine
*
@@ -441,12 +481,19 @@ static int
em_attach(device_t dev)
{
struct adapter *adapter;
+ struct e1000_hw *hw;
int error = 0;
INIT_DEBUGOUT("em_attach: begin");
+ if (resource_disabled("em", device_get_unit(dev))) {
+ device_printf(dev, "Disabled by device hint\n");
+ return (ENXIO);
+ }
+
adapter = device_get_softc(dev);
adapter->dev = adapter->osdep.dev = dev;
+ hw = &adapter->hw;
EM_CORE_LOCK_INIT(adapter, device_get_nameunit(dev));
/* SYSCTL stuff */
@@ -460,6 +507,11 @@ em_attach(device_t dev)
OID_AUTO, "debug", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
em_sysctl_debug_info, "I", "Debug Information");
+ SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
+ SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
+ OID_AUTO, "fc", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
+ em_set_flowcntl, "I", "Flow Control");
+
callout_init_mtx(&adapter->timer, &adapter->core_mtx, 0);
/* Determine hardware and mac info */
@@ -478,11 +530,12 @@ em_attach(device_t dev)
** must happen after the MAC is
** identified
*/
- if ((adapter->hw.mac.type == e1000_ich8lan) ||
- (adapter->hw.mac.type == e1000_ich9lan) ||
- (adapter->hw.mac.type == e1000_ich10lan) ||
- (adapter->hw.mac.type == e1000_pchlan) ||
- (adapter->hw.mac.type == e1000_pch2lan)) {
+ if ((hw->mac.type == e1000_ich8lan) ||
+ (hw->mac.type == e1000_ich9lan) ||
+ (hw->mac.type == e1000_ich10lan) ||
+ (hw->mac.type == e1000_pchlan) ||
+ (hw->mac.type == e1000_pch2lan) ||
+ (hw->mac.type == e1000_pch_lpt)) {
int rid = EM_BAR_TYPE_FLASH;
adapter->flash = bus_alloc_resource_any(dev,
SYS_RES_MEMORY, &rid, RF_ACTIVE);
@@ -492,7 +545,7 @@ em_attach(device_t dev)
goto err_pci;
}
/* This is used in the shared code */
- adapter->hw.flash_address = (u8 *)adapter->flash;
+ hw->flash_address = (u8 *)adapter->flash;
adapter->osdep.flash_bus_space_tag =
rman_get_bustag(adapter->flash);
adapter->osdep.flash_bus_space_handle =
@@ -500,42 +553,37 @@ em_attach(device_t dev)
}
/* Do Shared Code initialization */
- if (e1000_setup_init_funcs(&adapter->hw, TRUE)) {
+ if (e1000_setup_init_funcs(hw, TRUE)) {
device_printf(dev, "Setup of Shared code failed\n");
error = ENXIO;
goto err_pci;
}
- e1000_get_bus_info(&adapter->hw);
+ e1000_get_bus_info(hw);
/* Set up some sysctls for the tunable interrupt delays */
em_add_int_delay_sysctl(adapter, "rx_int_delay",
"receive interrupt delay in usecs", &adapter->rx_int_delay,
- E1000_REGISTER(&adapter->hw, E1000_RDTR), em_rx_int_delay_dflt);
+ E1000_REGISTER(hw, E1000_RDTR), em_rx_int_delay_dflt);
em_add_int_delay_sysctl(adapter, "tx_int_delay",
"transmit interrupt delay in usecs", &adapter->tx_int_delay,
- E1000_REGISTER(&adapter->hw, E1000_TIDV), em_tx_int_delay_dflt);
+ E1000_REGISTER(hw, E1000_TIDV), em_tx_int_delay_dflt);
em_add_int_delay_sysctl(adapter, "rx_abs_int_delay",
"receive interrupt delay limit in usecs",
&adapter->rx_abs_int_delay,
- E1000_REGISTER(&adapter->hw, E1000_RADV),
+ E1000_REGISTER(hw, E1000_RADV),
em_rx_abs_int_delay_dflt);
em_add_int_delay_sysctl(adapter, "tx_abs_int_delay",
"transmit interrupt delay limit in usecs",
&adapter->tx_abs_int_delay,
- E1000_REGISTER(&adapter->hw, E1000_TADV),
+ E1000_REGISTER(hw, E1000_TADV),
em_tx_abs_int_delay_dflt);
/* Sysctl for limiting the amount of work done in the taskqueue */
- em_add_rx_process_limit(adapter, "rx_processing_limit",
+ em_set_sysctl_value(adapter, "rx_processing_limit",
"max number of rx packets to process", &adapter->rx_process_limit,
em_rx_process_limit);
- /* Sysctl for setting the interface flow control */
- em_set_flow_cntrl(adapter, "flow_control",
- "configure flow control",
- &adapter->fc_setting, em_fc_setting);
-
/*
* Validate number of transmit and receive descriptors. It
* must not exceed hardware maximum, and must be multiple
@@ -557,29 +605,29 @@ em_attach(device_t dev)
} else
adapter->num_rx_desc = em_rxd;
- adapter->hw.mac.autoneg = DO_AUTO_NEG;
- adapter->hw.phy.autoneg_wait_to_complete = FALSE;
- adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
+ hw->mac.autoneg = DO_AUTO_NEG;
+ hw->phy.autoneg_wait_to_complete = FALSE;
+ hw->phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
/* Copper options */
- if (adapter->hw.phy.media_type == e1000_media_type_copper) {
- adapter->hw.phy.mdix = AUTO_ALL_MODES;
- adapter->hw.phy.disable_polarity_correction = FALSE;
- adapter->hw.phy.ms_type = EM_MASTER_SLAVE;
+ if (hw->phy.media_type == e1000_media_type_copper) {
+ hw->phy.mdix = AUTO_ALL_MODES;
+ hw->phy.disable_polarity_correction = FALSE;
+ hw->phy.ms_type = EM_MASTER_SLAVE;
}
/*
* Set the frame limits assuming
* standard ethernet sized frames.
*/
- adapter->max_frame_size = ETHERMTU + ETHER_HDR_LEN + ETHERNET_FCS_SIZE;
- adapter->min_frame_size = ETH_ZLEN + ETHERNET_FCS_SIZE;
+ adapter->hw.mac.max_frame_size =
+ ETHERMTU + ETHER_HDR_LEN + ETHERNET_FCS_SIZE;
/*
* This controls when hardware reports transmit completion
* status.
*/
- adapter->hw.mac.report_tx_early = 1;
+ hw->mac.report_tx_early = 1;
/*
** Get queue/ring memory
@@ -599,25 +647,34 @@ em_attach(device_t dev)
}
/* Check SOL/IDER usage */
- if (e1000_check_reset_block(&adapter->hw))
+ if (e1000_check_reset_block(hw))
device_printf(dev, "PHY reset is blocked"
" due to SOL/IDER session.\n");
+ /* Sysctl for setting Energy Efficient Ethernet */
+ hw->dev_spec.ich8lan.eee_disable = eee_setting;
+ SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
+ SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
+ OID_AUTO, "eee_control", CTLTYPE_INT|CTLFLAG_RW,
+ adapter, 0, em_sysctl_eee, "I",
+ "Disable Energy Efficient Ethernet");
+
/*
** Start from a known state, this is
** important in reading the nvm and
** mac from that.
*/
- e1000_reset_hw(&adapter->hw);
+ e1000_reset_hw(hw);
+
/* Make sure we have a good EEPROM before we read from it */
- if (e1000_validate_nvm_checksum(&adapter->hw) < 0) {
+ if (e1000_validate_nvm_checksum(hw) < 0) {
/*
** Some PCI-E parts fail the first check due to
** the link being in sleep state, call it again,
** if it fails a second time its a real issue.
*/
- if (e1000_validate_nvm_checksum(&adapter->hw) < 0) {
+ if (e1000_validate_nvm_checksum(hw) < 0) {
device_printf(dev,
"The EEPROM Checksum Is Not Valid\n");
error = EIO;
@@ -626,14 +683,14 @@ em_attach(device_t dev)
}
/* Copy the permanent MAC address out of the EEPROM */
- if (e1000_read_mac_addr(&adapter->hw) < 0) {
+ if (e1000_read_mac_addr(hw) < 0) {
device_printf(dev, "EEPROM read error while reading MAC"
" address\n");
error = EIO;
goto err_late;
}
- if (!em_is_valid_ether_addr(adapter->hw.mac.addr)) {
+ if (!em_is_valid_ether_addr(hw->mac.addr)) {
device_printf(dev, "Invalid MAC address\n");
error = EIO;
goto err_late;
@@ -663,7 +720,7 @@ em_attach(device_t dev)
/* Initialize statistics */
em_update_stats_counters(adapter);
- adapter->hw.mac.get_link_status = 1;
+ hw->mac.get_link_status = 1;
em_update_link_status(adapter);
/* Register for VLAN events */
@@ -679,10 +736,14 @@ em_attach(device_t dev)
em_get_hw_control(adapter);
/* Tell the stack that the interface is not active */
- adapter->ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
+ adapter->ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
+ adapter->ifp->if_drv_flags |= IFF_DRV_OACTIVE;
adapter->led_dev = led_create(em_led_func, adapter,
device_get_nameunit(dev));
+#ifdef DEV_NETMAP
+ em_netmap_attach(adapter);
+#endif /* DEV_NETMAP */
INIT_DEBUGOUT("em_attach: end");
@@ -754,6 +815,10 @@ em_detach(device_t dev)
ether_ifdetach(adapter->ifp);
callout_drain(&adapter->timer);
+#ifdef DEV_NETMAP
+ netmap_detach(ifp);
+#endif /* DEV_NETMAP */
+
em_free_pci_resources(adapter);
bus_generic_detach(dev);
if_free(ifp);
@@ -802,29 +867,44 @@ static int
em_resume(device_t dev)
{
struct adapter *adapter = device_get_softc(dev);
+ struct tx_ring *txr = adapter->tx_rings;
struct ifnet *ifp = adapter->ifp;
EM_CORE_LOCK(adapter);
+ if (adapter->hw.mac.type == e1000_pch2lan)
+ e1000_resume_workarounds_pchlan(&adapter->hw);
em_init_locked(adapter);
em_init_manageability(adapter);
+
+ if ((ifp->if_flags & IFF_UP) &&
+ (ifp->if_drv_flags & IFF_DRV_RUNNING) && adapter->link_active) {
+ for (int i = 0; i < adapter->num_queues; i++, txr++) {
+ EM_TX_LOCK(txr);
+#ifdef EM_MULTIQUEUE
+ if (!drbr_empty(ifp, txr->br))
+ em_mq_start_locked(ifp, txr, NULL);
+#else
+ if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
+ em_start_locked(ifp, txr);
+#endif
+ EM_TX_UNLOCK(txr);
+ }
+ }
EM_CORE_UNLOCK(adapter);
- em_start(ifp);
return bus_generic_resume(dev);
}
+#ifdef EM_MULTIQUEUE
/*********************************************************************
- * Transmit entry point
+ * Multiqueue Transmit routines
*
- * em_start is called by the stack to initiate a transmit.
- * The driver will remain in this routine as long as there are
- * packets to transmit and transmit resources are available.
- * In case resources are not available stack is notified and
- * the packet is requeued.
+ * em_mq_start is called by the stack to initiate a transmit.
+ * however, if busy the driver can queue the request rather
+ * than do an immediate send. It is this that is an advantage
+ * in this driver, rather than also having multiple tx queues.
**********************************************************************/
-
-#ifdef EM_MULTIQUEUE
static int
em_mq_start_locked(struct ifnet *ifp, struct tx_ring *txr, struct mbuf *m)
{
@@ -839,37 +919,30 @@ em_mq_start_locked(struct ifnet *ifp, struct tx_ring *txr, struct mbuf *m)
return (err);
}
- /* Call cleanup if number of TX descriptors low */
- if (txr->tx_avail <= EM_TX_CLEANUP_THRESHOLD)
- em_txeof(txr);
-
enq = 0;
- if (m == NULL) {
- next = drbr_dequeue(ifp, txr->br);
- } else if (drbr_needs_enqueue(ifp, txr->br)) {
- if ((err = drbr_enqueue(ifp, txr->br, m)) != 0)
+ if (m != NULL) {
+ err = drbr_enqueue(ifp, txr->br, m);
+ if (err)
return (err);
- next = drbr_dequeue(ifp, txr->br);
- } else
- next = m;
+ }
/* Process the queue */
- while (next != NULL) {
+ while ((next = drbr_peek(ifp, txr->br)) != NULL) {
if ((err = em_xmit(txr, &next)) != 0) {
- if (next != NULL)
- err = drbr_enqueue(ifp, txr->br, next);
- break;
+ if (next == NULL)
+ drbr_advance(ifp, txr->br);
+ else
+ drbr_putback(ifp, txr->br, next);
+ break;
}
+ drbr_advance(ifp, txr->br);
enq++;
- drbr_stats_update(ifp, next->m_pkthdr.len, next->m_flags);
+ ifp->if_obytes += next->m_pkthdr.len;
+ if (next->m_flags & M_MCAST)
+ ifp->if_omcasts++;
ETHER_BPF_MTAP(ifp, next);
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
break;
- if (txr->tx_avail < EM_MAX_SCATTER) {
- ifp->if_drv_flags |= IFF_DRV_OACTIVE;
- break;
- }
- next = drbr_dequeue(ifp, txr->br);
}
if (enq > 0) {
@@ -877,6 +950,11 @@ em_mq_start_locked(struct ifnet *ifp, struct tx_ring *txr, struct mbuf *m)
txr->queue_status = EM_QUEUE_WORKING;
txr->watchdog_time = ticks;
}
+
+ if (txr->tx_avail < EM_MAX_SCATTER)
+ em_txeof(txr);
+ if (txr->tx_avail < EM_MAX_SCATTER)
+ ifp->if_drv_flags |= IFF_DRV_OACTIVE;
return (err);
}
@@ -917,8 +995,7 @@ em_qflush(struct ifnet *ifp)
}
if_qflush(ifp);
}
-
-#endif /* EM_MULTIQUEUE */
+#else /* !EM_MULTIQUEUE */
static void
em_start_locked(struct ifnet *ifp, struct tx_ring *txr)
@@ -935,11 +1012,10 @@ em_start_locked(struct ifnet *ifp, struct tx_ring *txr)
if (!adapter->link_active)
return;
- /* Call cleanup if number of TX descriptors low */
- if (txr->tx_avail <= EM_TX_CLEANUP_THRESHOLD)
- em_txeof(txr);
-
while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
+ /* Call cleanup if number of TX descriptors low */
+ if (txr->tx_avail <= EM_TX_CLEANUP_THRESHOLD)
+ em_txeof(txr);
if (txr->tx_avail < EM_MAX_SCATTER) {
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
break;
@@ -954,7 +1030,6 @@ em_start_locked(struct ifnet *ifp, struct tx_ring *txr)
if (em_xmit(txr, &m_head)) {
if (m_head == NULL)
break;
- ifp->if_drv_flags |= IFF_DRV_OACTIVE;
IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
break;
}
@@ -983,6 +1058,7 @@ em_start(struct ifnet *ifp)
}
return;
}
+#endif /* EM_MULTIQUEUE */
/*********************************************************************
* Ioctl entry point
@@ -997,11 +1073,12 @@ static int
em_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
{
struct adapter *adapter = ifp->if_softc;
- struct ifreq *ifr = (struct ifreq *)data;
-#ifdef INET
- struct ifaddr *ifa = (struct ifaddr *)data;
+ struct ifreq *ifr = (struct ifreq *)data;
+#if defined(INET) || defined(INET6)
+ struct ifaddr *ifa = (struct ifaddr *)data;
#endif
- int error = 0;
+ bool avoid_reset = FALSE;
+ int error = 0;
if (adapter->in_detach)
return (error);
@@ -1009,23 +1086,26 @@ em_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
switch (command) {
case SIOCSIFADDR:
#ifdef INET
- if (ifa->ifa_addr->sa_family == AF_INET) {
- /*
- * XXX
- * Since resetting hardware takes a very long time
- * and results in link renegotiation we only
- * initialize the hardware only when it is absolutely
- * required.
- */
+ if (ifa->ifa_addr->sa_family == AF_INET)
+ avoid_reset = TRUE;
+#endif
+#ifdef INET6
+ if (ifa->ifa_addr->sa_family == AF_INET6)
+ avoid_reset = TRUE;
+#endif
+ /*
+ ** Calling init results in link renegotiation,
+ ** so we avoid doing it when possible.
+ */
+ if (avoid_reset) {
ifp->if_flags |= IFF_UP;
- if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
- EM_CORE_LOCK(adapter);
- em_init_locked(adapter);
- EM_CORE_UNLOCK(adapter);
- }
- arp_ifinit(ifp, ifa);
- } else
+ if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
+ em_init(adapter);
+#ifdef INET
+ if (!(ifp->if_flags & IFF_NOARP))
+ arp_ifinit(ifp, ifa);
#endif
+ } else
error = ether_ioctl(ifp, command, data);
break;
case SIOCSIFMTU:
@@ -1041,7 +1121,9 @@ em_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
case e1000_ich9lan:
case e1000_ich10lan:
case e1000_pch2lan:
+ case e1000_pch_lpt:
case e1000_82574:
+ case e1000_82583:
case e1000_80003es2lan: /* 9K Jumbo Frame size */
max_frame_size = 9234;
break;
@@ -1049,7 +1131,6 @@ em_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
max_frame_size = 4096;
break;
/* Adapters that do not support jumbo frames */
- case e1000_82583:
case e1000_ich8lan:
max_frame_size = ETHER_MAX_LEN;
break;
@@ -1064,7 +1145,7 @@ em_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
}
ifp->if_mtu = ifr->ifr_mtu;
- adapter->max_frame_size =
+ adapter->hw.mac.max_frame_size =
ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
em_init_locked(adapter);
EM_CORE_UNLOCK(adapter);
@@ -1104,11 +1185,6 @@ em_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
}
break;
case SIOCSIFMEDIA:
- /*
- ** As the speed/duplex settings are being
- ** changed, we need to reset the PHY.
- */
- adapter->hw.phy.reset_disable = FALSE;
/* Check SOL/IDER usage */
EM_CORE_LOCK(adapter);
if (e1000_check_reset_block(&adapter->hw)) {
@@ -1167,6 +1243,10 @@ em_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
ifp->if_capenable ^= IFCAP_VLAN_HWFILTER;
reinit = 1;
}
+ if (mask & IFCAP_VLAN_HWTSO) {
+ ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
+ reinit = 1;
+ }
if ((mask & IFCAP_WOL) &&
(ifp->if_capabilities & IFCAP_WOL) != 0) {
if (mask & IFCAP_WOL_MCAST)
@@ -1205,7 +1285,6 @@ em_init_locked(struct adapter *adapter)
{
struct ifnet *ifp = adapter->ifp;
device_t dev = adapter->dev;
- u32 pba;
INIT_DEBUGOUT("em_init: begin");
@@ -1214,46 +1293,6 @@ em_init_locked(struct adapter *adapter)
em_disable_intr(adapter);
callout_stop(&adapter->timer);
- /*
- * Packet Buffer Allocation (PBA)
- * Writing PBA sets the receive portion of the buffer
- * the remainder is used for the transmit buffer.
- */
- switch (adapter->hw.mac.type) {
- /* Total Packet Buffer on these is 48K */
- case e1000_82571:
- case e1000_82572:
- case e1000_80003es2lan:
- pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
- break;
- case e1000_82573: /* 82573: Total Packet Buffer is 32K */
- pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
- break;
- case e1000_82574:
- case e1000_82583:
- pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
- break;
- case e1000_ich8lan:
- pba = E1000_PBA_8K;
- break;
- case e1000_ich9lan:
- case e1000_ich10lan:
- pba = E1000_PBA_10K;
- break;
- case e1000_pchlan:
- case e1000_pch2lan:
- pba = E1000_PBA_26K;
- break;
- default:
- if (adapter->max_frame_size > 8192)
- pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
- else
- pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
- }
-
- INIT_DEBUGOUT1("em_init: pba=%dK",pba);
- E1000_WRITE_REG(&adapter->hw, E1000_PBA, pba);
-
/* Get the latest mac address, User can use a LAA */
bcopy(IF_LLADDR(adapter->ifp), adapter->hw.mac.addr,
ETHER_ADDR_LEN);
@@ -1301,9 +1340,9 @@ em_init_locked(struct adapter *adapter)
** Figure out the desired mbuf
** pool for doing jumbos
*/
- if (adapter->max_frame_size <= 2048)
+ if (adapter->hw.mac.max_frame_size <= 2048)
adapter->rx_mbuf_sz = MCLBYTES;
- else if (adapter->max_frame_size <= 4096)
+ else if (adapter->hw.mac.max_frame_size <= 4096)
adapter->rx_mbuf_sz = MJUMPAGESIZE;
else
adapter->rx_mbuf_sz = MJUM9BYTES;
@@ -1332,6 +1371,7 @@ em_init_locked(struct adapter *adapter)
/* Don't lose promiscuous settings */
em_set_promisc(adapter);
+ /* Set the interface as ACTIVE */
ifp->if_drv_flags |= IFF_DRV_RUNNING;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
@@ -1362,9 +1402,6 @@ em_init_locked(struct adapter *adapter)
/* AMT based hardware can now take control from firmware */
if (adapter->has_manage && adapter->has_amt)
em_get_hw_control(adapter);
-
- /* Don't reset the phy next time init gets called */
- adapter->hw.phy.reset_disable = TRUE;
}
static void
@@ -1483,12 +1520,10 @@ em_handle_que(void *context, int pending)
struct ifnet *ifp = adapter->ifp;
struct tx_ring *txr = adapter->tx_rings;
struct rx_ring *rxr = adapter->rx_rings;
- bool more;
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
- more = em_rxeof(rxr, adapter->rx_process_limit, NULL);
-
+ bool more = em_rxeof(rxr, adapter->rx_process_limit, NULL);
EM_TX_LOCK(txr);
em_txeof(txr);
#ifdef EM_MULTIQUEUE
@@ -1498,7 +1533,6 @@ em_handle_que(void *context, int pending)
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
em_start_locked(ifp, txr);
#endif
- em_txeof(txr);
EM_TX_UNLOCK(txr);
if (more) {
taskqueue_enqueue(adapter->tq, &adapter->que_task);
@@ -1521,17 +1555,21 @@ em_msix_tx(void *arg)
{
struct tx_ring *txr = arg;
struct adapter *adapter = txr->adapter;
- bool more;
+ struct ifnet *ifp = adapter->ifp;
++txr->tx_irq;
EM_TX_LOCK(txr);
- more = em_txeof(txr);
+ em_txeof(txr);
+#ifdef EM_MULTIQUEUE
+ if (!drbr_empty(ifp, txr->br))
+ em_mq_start_locked(ifp, txr, NULL);
+#else
+ if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
+ em_start_locked(ifp, txr);
+#endif
+ /* Reenable this interrupt */
+ E1000_WRITE_REG(&adapter->hw, E1000_IMS, txr->ims);
EM_TX_UNLOCK(txr);
- if (more)
- taskqueue_enqueue(txr->tq, &txr->tx_task);
- else
- /* Reenable this interrupt */
- E1000_WRITE_REG(&adapter->hw, E1000_IMS, txr->ims);
return;
}
@@ -1549,6 +1587,8 @@ em_msix_rx(void *arg)
bool more;
++rxr->rx_irq;
+ if (!(adapter->ifp->if_drv_flags & IFF_DRV_RUNNING))
+ return;
more = em_rxeof(rxr, adapter->rx_process_limit, NULL);
if (more)
taskqueue_enqueue(rxr->tq, &rxr->rx_task);
@@ -1612,7 +1652,6 @@ em_handle_tx(void *context, int pending)
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
em_start_locked(ifp, txr);
#endif
- em_txeof(txr);
E1000_WRITE_REG(&adapter->hw, E1000_IMS, txr->ims);
EM_TX_UNLOCK(txr);
}
@@ -1621,6 +1660,7 @@ static void
em_handle_link(void *context, int pending)
{
struct adapter *adapter = context;
+ struct tx_ring *txr = adapter->tx_rings;
struct ifnet *ifp = adapter->ifp;
if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
@@ -1632,6 +1672,19 @@ em_handle_link(void *context, int pending)
callout_reset(&adapter->timer, hz, em_local_timer, adapter);
E1000_WRITE_REG(&adapter->hw, E1000_IMS,
EM_MSIX_LINK | E1000_IMS_LSC);
+ if (adapter->link_active) {
+ for (int i = 0; i < adapter->num_queues; i++, txr++) {
+ EM_TX_LOCK(txr);
+#ifdef EM_MULTIQUEUE
+ if (!drbr_empty(ifp, txr->br))
+ em_mq_start_locked(ifp, txr, NULL);
+#else
+ if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
+ em_start_locked(ifp, txr);
+#endif
+ EM_TX_UNLOCK(txr);
+ }
+ }
EM_CORE_UNLOCK(adapter);
}
@@ -1767,8 +1820,9 @@ em_xmit(struct tx_ring *txr, struct mbuf **m_headp)
u32 txd_upper, txd_lower, txd_used, txd_saved;
int ip_off, poff;
int nsegs, i, j, first, last = 0;
- int error, do_tso, tso_desc = 0;
+ int error, do_tso, tso_desc = 0, remap = 1;
+retry:
m_head = *m_headp;
txd_upper = txd_lower = txd_used = txd_saved = 0;
do_tso = ((m_head->m_pkthdr.csum_flags & CSUM_TSO) != 0);
@@ -1792,7 +1846,7 @@ em_xmit(struct tx_ring *txr, struct mbuf **m_headp)
if (do_tso || (m_head->m_next != NULL &&
m_head->m_pkthdr.csum_flags & CSUM_OFFLOAD)) {
if (M_WRITABLE(*m_headp) == 0) {
- m_head = m_dup(*m_headp, M_DONTWAIT);
+ m_head = m_dup(*m_headp, M_NOWAIT);
m_freem(*m_headp);
if (m_head == NULL) {
*m_headp = NULL;
@@ -1906,10 +1960,10 @@ em_xmit(struct tx_ring *txr, struct mbuf **m_headp)
* All other errors, in particular EINVAL, are fatal and prevent the
* mbuf chain from ever going through. Drop it and report error.
*/
- if (error == EFBIG) {
+ if (error == EFBIG && remap) {
struct mbuf *m;
- m = m_defrag(*m_headp, M_DONTWAIT);
+ m = m_defrag(*m_headp, M_NOWAIT);
if (m == NULL) {
adapter->mbuf_alloc_failed++;
m_freem(*m_headp);
@@ -1918,20 +1972,9 @@ em_xmit(struct tx_ring *txr, struct mbuf **m_headp)
}
*m_headp = m;
- /* Try it again */
- error = bus_dmamap_load_mbuf_sg(txr->txtag, map,
- *m_headp, segs, &nsegs, BUS_DMA_NOWAIT);
-
- if (error == ENOMEM) {
- adapter->no_tx_dma_setup++;
- return (error);
- } else if (error != 0) {
- adapter->no_tx_dma_setup++;
- m_freem(*m_headp);
- *m_headp = NULL;
- return (error);
- }
-
+ /* Try it again, but only once */
+ remap = 0;
+ goto retry;
} else if (error == ENOMEM) {
adapter->no_tx_dma_setup++;
return (error);
@@ -1971,6 +2014,14 @@ em_xmit(struct tx_ring *txr, struct mbuf **m_headp)
em_transmit_checksum_setup(txr, m_head,
ip_off, ip, &txd_upper, &txd_lower);
+ if (m_head->m_flags & M_VLANTAG) {
+ /* Set the vlan id. */
+ txd_upper |=
+ (htole16(m_head->m_pkthdr.ether_vtag) << 16);
+ /* Tell hardware to add tag */
+ txd_lower |= htole32(E1000_TXD_CMD_VLE);
+ }
+
i = txr->next_avail_desc;
/* Set up our transmit descriptors */
@@ -2028,15 +2079,13 @@ em_xmit(struct tx_ring *txr, struct mbuf **m_headp)
if (tso_desc) /* TSO used an extra for sentinel */
txr->tx_avail -= txd_used;
- if (m_head->m_flags & M_VLANTAG) {
- /* Set the vlan id. */
- ctxd->upper.fields.special =
- htole16(m_head->m_pkthdr.ether_vtag);
- /* Tell hardware to add tag */
- ctxd->lower.data |= htole32(E1000_TXD_CMD_VLE);
- }
-
tx_buffer->m_head = m_head;
+ /*
+ ** Here we swap the map so the last descriptor,
+ ** which gets the completion interrupt has the
+ ** real map, and the first descriptor gets the
+ ** unused map from this descriptor.
+ */
tx_buffer_mapped->map = tx_buffer->map;
tx_buffer->map = map;
bus_dmamap_sync(txr->txtag, map, BUS_DMASYNC_PREWRITE);
@@ -2187,6 +2236,8 @@ em_local_timer(void *arg)
struct adapter *adapter = arg;
struct ifnet *ifp = adapter->ifp;
struct tx_ring *txr = adapter->tx_rings;
+ struct rx_ring *rxr = adapter->rx_rings;
+ u32 trigger;
EM_CORE_LOCK_ASSERT(adapter);
@@ -2198,23 +2249,32 @@ em_local_timer(void *arg)
e1000_get_laa_state_82571(&adapter->hw))
e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
- /*
- ** Don't do TX watchdog check if we've been paused
- */
- if (adapter->pause_frames) {
- adapter->pause_frames = 0;
- goto out;
- }
+ /* Mask to use in the irq trigger */
+ if (adapter->msix_mem)
+ trigger = rxr->ims; /* RX for 82574 */
+ else
+ trigger = E1000_ICS_RXDMT0;
+
/*
** Check on the state of the TX queue(s), this
** can be done without the lock because its RO
** and the HUNG state will be static if set.
*/
- for (int i = 0; i < adapter->num_queues; i++, txr++)
- if (txr->queue_status == EM_QUEUE_HUNG)
+ for (int i = 0; i < adapter->num_queues; i++, txr++) {
+ if ((txr->queue_status == EM_QUEUE_HUNG) &&
+ (adapter->pause_frames == 0))
goto hung;
-out:
+ /* Schedule a TX tasklet if needed */
+ if (txr->tx_avail <= EM_MAX_SCATTER)
+ taskqueue_enqueue(txr->tq, &txr->tx_task);
+ }
+
+ adapter->pause_frames = 0;
callout_reset(&adapter->timer, hz, em_local_timer, adapter);
+#ifndef DEVICE_POLLING
+ /* Trigger an RX interrupt to guarantee mbuf refresh */
+ E1000_WRITE_REG(&adapter->hw, E1000_ICS, trigger);
+#endif
return;
hung:
/* Looks like we're hung */
@@ -2228,6 +2288,7 @@ hung:
txr->me, txr->tx_avail, txr->next_to_clean);
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
adapter->watchdog_events++;
+ adapter->pause_frames = 0;
em_init_locked(adapter);
}
@@ -2326,7 +2387,8 @@ em_stop(void *arg)
callout_stop(&adapter->timer);
/* Tell the stack that the interface is no longer active */
- ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
+ ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
+ ifp->if_drv_flags |= IFF_DRV_OACTIVE;
/* Unarm watchdog timer. */
for (int i = 0; i < adapter->num_queues; i++, txr++) {
@@ -2422,6 +2484,7 @@ int
em_allocate_legacy(struct adapter *adapter)
{
device_t dev = adapter->dev;
+ struct tx_ring *txr = adapter->tx_rings;
int error, rid = 0;
/* Manually turn off all interrupts */
@@ -2443,11 +2506,17 @@ em_allocate_legacy(struct adapter *adapter)
* deferred processing contexts.
*/
TASK_INIT(&adapter->que_task, 0, em_handle_que, adapter);
- TASK_INIT(&adapter->link_task, 0, em_handle_link, adapter);
adapter->tq = taskqueue_create_fast("em_taskq", M_NOWAIT,
taskqueue_thread_enqueue, &adapter->tq);
- taskqueue_start_threads(&adapter->tq, 1, PI_NET, "%s taskq",
+ taskqueue_start_threads(&adapter->tq, 1, PI_NET, "%s que",
device_get_nameunit(adapter->dev));
+ /* Use a TX only tasklet for local timer */
+ TASK_INIT(&txr->tx_task, 0, em_handle_tx, txr);
+ txr->tq = taskqueue_create_fast("em_txq", M_NOWAIT,
+ taskqueue_thread_enqueue, &txr->tq);
+ taskqueue_start_threads(&txr->tq, 1, PI_NET, "%s txq",
+ device_get_nameunit(adapter->dev));
+ TASK_INIT(&adapter->link_task, 0, em_handle_link, adapter);
if ((error = bus_setup_intr(dev, adapter->res, INTR_TYPE_NET,
em_irq_fast, NULL, adapter, &adapter->tag)) != 0) {
device_printf(dev, "Failed to register fast interrupt "
@@ -2464,7 +2533,8 @@ em_allocate_legacy(struct adapter *adapter)
*
* Setup the MSIX Interrupt handlers
* This is not really Multiqueue, rather
- * its just multiple interrupt vectors.
+ * its just seperate interrupt vectors
+ * for TX, RX, and Link.
*
**********************************************************************/
int
@@ -2656,7 +2726,6 @@ em_setup_msix(struct adapter *adapter)
device_t dev = adapter->dev;
int val = 0;
-
/*
** Setup MSI/X for Hartwell: tests have shown
** use of two queues to be unstable, and to
@@ -2676,16 +2745,18 @@ em_setup_msix(struct adapter *adapter)
goto msi;
}
val = pci_msix_count(dev);
- if (val < 3) {
+ /* We only need 3 vectors */
+ if (val > 3)
+ val = 3;
+ if ((val != 3) && (val != 5)) {
bus_release_resource(dev, SYS_RES_MEMORY,
PCIR_BAR(EM_MSIX_BAR), adapter->msix_mem);
adapter->msix_mem = NULL;
device_printf(adapter->dev,
- "MSIX: insufficient vectors, using MSI\n");
+ "MSIX: incorrect vectors, using MSI\n");
goto msi;
}
- val = 3;
- adapter->num_queues = 1;
+
if (pci_alloc_msix(dev, &val) == 0) {
device_printf(adapter->dev,
"Using MSIX interrupts "
@@ -2720,6 +2791,7 @@ em_reset(struct adapter *adapter)
struct ifnet *ifp = adapter->ifp;
struct e1000_hw *hw = &adapter->hw;
u16 rx_buffer_size;
+ u32 pba;
INIT_DEBUGOUT("em_reset: begin");
@@ -2735,6 +2807,49 @@ em_reset(struct adapter *adapter)
}
/*
+ * Packet Buffer Allocation (PBA)
+ * Writing PBA sets the receive portion of the buffer
+ * the remainder is used for the transmit buffer.
+ */
+ switch (hw->mac.type) {
+ /* Total Packet Buffer on these is 48K */
+ case e1000_82571:
+ case e1000_82572:
+ case e1000_80003es2lan:
+ pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
+ break;
+ case e1000_82573: /* 82573: Total Packet Buffer is 32K */
+ pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
+ break;
+ case e1000_82574:
+ case e1000_82583:
+ pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
+ break;
+ case e1000_ich8lan:
+ pba = E1000_PBA_8K;
+ break;
+ case e1000_ich9lan:
+ case e1000_ich10lan:
+ /* Boost Receive side for jumbo frames */
+ if (adapter->hw.mac.max_frame_size > 4096)
+ pba = E1000_PBA_14K;
+ else
+ pba = E1000_PBA_10K;
+ break;
+ case e1000_pchlan:
+ case e1000_pch2lan:
+ case e1000_pch_lpt:
+ pba = E1000_PBA_26K;
+ break;
+ default:
+ if (adapter->hw.mac.max_frame_size > 8192)
+ pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
+ else
+ pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
+ }
+ E1000_WRITE_REG(&adapter->hw, E1000_PBA, pba);
+
+ /*
* These parameters control the automatic generation (Tx) and
* response (Rx) to Ethernet PAUSE frames.
* - High water mark should allow for at least two frames to be
@@ -2749,11 +2864,15 @@ em_reset(struct adapter *adapter)
* - The pause time is fairly large at 1000 x 512ns = 512 usec.
*/
rx_buffer_size = ((E1000_READ_REG(hw, E1000_PBA) & 0xffff) << 10 );
-
hw->fc.high_water = rx_buffer_size -
- roundup2(adapter->max_frame_size, 1024);
+ roundup2(adapter->hw.mac.max_frame_size, 1024);
hw->fc.low_water = hw->fc.high_water - 1500;
+ if (adapter->fc) /* locally set flow control value? */
+ hw->fc.requested_mode = adapter->fc;
+ else
+ hw->fc.requested_mode = e1000_fc_full;
+
if (hw->mac.type == e1000_80003es2lan)
hw->fc.pause_time = 0xFFFF;
else
@@ -2761,15 +2880,23 @@ em_reset(struct adapter *adapter)
hw->fc.send_xon = TRUE;
- /* Set Flow control, use the tunable location if sane */
- hw->fc.requested_mode = adapter->fc_setting;
-
- /* Workaround: no TX flow ctrl for PCH */
- if (hw->mac.type == e1000_pchlan)
+ /* Device specific overrides/settings */
+ switch (hw->mac.type) {
+ case e1000_pchlan:
+ /* Workaround: no TX flow ctrl for PCH */
hw->fc.requested_mode = e1000_fc_rx_pause;
-
- /* Override - settings for PCH2LAN, ya its magic :) */
- if (hw->mac.type == e1000_pch2lan) {
+ hw->fc.pause_time = 0xFFFF; /* override */
+ if (ifp->if_mtu > ETHERMTU) {
+ hw->fc.high_water = 0x3500;
+ hw->fc.low_water = 0x1500;
+ } else {
+ hw->fc.high_water = 0x5000;
+ hw->fc.low_water = 0x3000;
+ }
+ hw->fc.refresh_time = 0x1000;
+ break;
+ case e1000_pch2lan:
+ case e1000_pch_lpt:
hw->fc.high_water = 0x5C20;
hw->fc.low_water = 0x5048;
hw->fc.pause_time = 0x0650;
@@ -2779,13 +2906,26 @@ em_reset(struct adapter *adapter)
E1000_WRITE_REG(hw, E1000_PBA, 12);
else
E1000_WRITE_REG(hw, E1000_PBA, 26);
+ break;
+ case e1000_ich9lan:
+ case e1000_ich10lan:
+ if (ifp->if_mtu > ETHERMTU) {
+ hw->fc.high_water = 0x2800;
+ hw->fc.low_water = hw->fc.high_water - 8;
+ break;
+ }
+ /* else fall thru */
+ default:
+ if (hw->mac.type == e1000_80003es2lan)
+ hw->fc.pause_time = 0xFFFF;
+ break;
}
/* Issue a global reset */
e1000_reset_hw(hw);
E1000_WRITE_REG(hw, E1000_WUC, 0);
em_disable_aspm(adapter);
-
+ /* and a re-init */
if (e1000_init_hw(hw) < 0) {
device_printf(dev, "Hardware Initialization Failed\n");
return;
@@ -2815,43 +2955,40 @@ em_setup_interface(device_t dev, struct adapter *adapter)
return (-1);
}
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
- ifp->if_mtu = ETHERMTU;
ifp->if_init = em_init;
ifp->if_softc = adapter;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = em_ioctl;
+#ifdef EM_MULTIQUEUE
+ /* Multiqueue stack interface */
+ ifp->if_transmit = em_mq_start;
+ ifp->if_qflush = em_qflush;
+#else
ifp->if_start = em_start;
IFQ_SET_MAXLEN(&ifp->if_snd, adapter->num_tx_desc - 1);
ifp->if_snd.ifq_drv_maxlen = adapter->num_tx_desc - 1;
IFQ_SET_READY(&ifp->if_snd);
+#endif
ether_ifattach(ifp, adapter->hw.mac.addr);
ifp->if_capabilities = ifp->if_capenable = 0;
-#ifdef EM_MULTIQUEUE
- /* Multiqueue tx functions */
- ifp->if_transmit = em_mq_start;
- ifp->if_qflush = em_qflush;
-#endif
ifp->if_capabilities |= IFCAP_HWCSUM | IFCAP_VLAN_HWCSUM;
- ifp->if_capenable |= IFCAP_HWCSUM | IFCAP_VLAN_HWCSUM;
-
- /* Enable TSO by default, can disable with ifconfig */
ifp->if_capabilities |= IFCAP_TSO4;
- ifp->if_capenable |= IFCAP_TSO4;
-
/*
* Tell the upper layer(s) we
* support full VLAN capability
*/
ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
- ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
- ifp->if_capenable |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
+ ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING
+ | IFCAP_VLAN_HWTSO
+ | IFCAP_VLAN_MTU;
+ ifp->if_capenable = ifp->if_capabilities;
/*
- ** Dont turn this on by default, if vlans are
+ ** Don't turn this on by default, if vlans are
** created on another pseudo device (eg. lagg)
** then vlan events are not passed thru, breaking
** operation, but with HW FILTER off it works. If
@@ -3188,9 +3325,17 @@ em_setup_transmit_ring(struct tx_ring *txr)
struct adapter *adapter = txr->adapter;
struct em_buffer *txbuf;
int i;
+#ifdef DEV_NETMAP
+ struct netmap_adapter *na = NA(adapter->ifp);
+ struct netmap_slot *slot;
+#endif /* DEV_NETMAP */
/* Clear the old descriptor contents */
EM_TX_LOCK(txr);
+#ifdef DEV_NETMAP
+ slot = netmap_reset(na, NR_TX, txr->me, 0);
+#endif /* DEV_NETMAP */
+
bzero((void *)txr->tx_base,
(sizeof(struct e1000_tx_desc)) * adapter->num_tx_desc);
/* Reset indices */
@@ -3207,6 +3352,19 @@ em_setup_transmit_ring(struct tx_ring *txr)
m_freem(txbuf->m_head);
txbuf->m_head = NULL;
}
+#ifdef DEV_NETMAP
+ if (slot) {
+ int si = netmap_idx_n2k(&na->tx_rings[txr->me], i);
+ uint64_t paddr;
+ void *addr;
+
+ addr = PNMB(slot + si, &paddr);
+ txr->tx_base[i].buffer_addr = htole64(paddr);
+ /* reload the map for netmap mode */
+ netmap_load_map(txr->txtag, txbuf->map, addr);
+ }
+#endif /* DEV_NETMAP */
+
/* clear the watch index */
txbuf->next_eop = -1;
}
@@ -3279,11 +3437,6 @@ em_initialize_transmit_unit(struct adapter *adapter)
/* Set the default values for the Tx Inter Packet Gap timer */
switch (adapter->hw.mac.type) {
- case e1000_82542:
- tipg = DEFAULT_82542_TIPG_IPGT;
- tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
- tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
- break;
case e1000_80003es2lan:
tipg = DEFAULT_82543_TIPG_IPGR1;
tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
@@ -3647,7 +3800,7 @@ em_tso_setup(struct tx_ring *txr, struct mbuf *mp, int ip_off,
* tx_buffer is put back on the free queue.
*
**********************************************************************/
-static bool
+static void
em_txeof(struct tx_ring *txr)
{
struct adapter *adapter = txr->adapter;
@@ -3657,11 +3810,24 @@ em_txeof(struct tx_ring *txr)
struct ifnet *ifp = adapter->ifp;
EM_TX_LOCK_ASSERT(txr);
+#ifdef DEV_NETMAP
+ if (ifp->if_capenable & IFCAP_NETMAP) {
+ struct netmap_adapter *na = NA(ifp);
+
+ selwakeuppri(&na->tx_rings[txr->me].si, PI_NET);
+ EM_TX_UNLOCK(txr);
+ EM_CORE_LOCK(adapter);
+ selwakeuppri(&na->tx_si, PI_NET);
+ EM_CORE_UNLOCK(adapter);
+ EM_TX_LOCK(txr);
+ return;
+ }
+#endif /* DEV_NETMAP */
/* No work, make sure watchdog is off */
if (txr->tx_avail == adapter->num_tx_desc) {
txr->queue_status = EM_QUEUE_IDLE;
- return (FALSE);
+ return;
}
processed = 0;
@@ -3738,19 +3904,19 @@ em_txeof(struct tx_ring *txr)
txr->queue_status = EM_QUEUE_HUNG;
/*
- * If we have enough room, clear IFF_DRV_OACTIVE
+ * If we have a minimum free, clear IFF_DRV_OACTIVE
* to tell the stack that it is OK to send packets.
+ * Notice that all writes of OACTIVE happen under the
+ * TX lock which, with a single queue, guarantees
+ * sanity.
*/
- if (txr->tx_avail > EM_TX_CLEANUP_THRESHOLD) {
- ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
- /* Disable watchdog if all clean */
- if (txr->tx_avail == adapter->num_tx_desc) {
- txr->queue_status = EM_QUEUE_IDLE;
- return (FALSE);
- }
- }
+ if (txr->tx_avail >= EM_MAX_SCATTER)
+ ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
- return (TRUE);
+ /* Disable watchdog if all clean */
+ if (txr->tx_avail == adapter->num_tx_desc) {
+ txr->queue_status = EM_QUEUE_IDLE;
+ }
}
@@ -3766,14 +3932,22 @@ em_refresh_mbufs(struct rx_ring *rxr, int limit)
struct mbuf *m;
bus_dma_segment_t segs[1];
struct em_buffer *rxbuf;
- int i, error, nsegs, cleaned;
+ int i, j, error, nsegs;
+ bool cleaned = FALSE;
+
+ i = j = rxr->next_to_refresh;
+ /*
+ ** Get one descriptor beyond
+ ** our work mark to control
+ ** the loop.
+ */
+ if (++j == adapter->num_rx_desc)
+ j = 0;
- i = rxr->next_to_refresh;
- cleaned = -1;
- while (i != limit) {
+ while (j != limit) {
rxbuf = &rxr->rx_buffers[i];
if (rxbuf->m_head == NULL) {
- m = m_getjcl(M_DONTWAIT, MT_DATA,
+ m = m_getjcl(M_NOWAIT, MT_DATA,
M_PKTHDR, adapter->rx_mbuf_sz);
/*
** If we have a temporary resource shortage
@@ -3804,21 +3978,22 @@ em_refresh_mbufs(struct rx_ring *rxr, int limit)
bus_dmamap_sync(rxr->rxtag,
rxbuf->map, BUS_DMASYNC_PREREAD);
rxr->rx_base[i].buffer_addr = htole64(segs[0].ds_addr);
+ cleaned = TRUE;
- cleaned = i;
- /* Calculate next index */
- if (++i == adapter->num_rx_desc)
- i = 0;
+ i = j; /* Next is precalulated for us */
rxr->next_to_refresh = i;
+ /* Calculate next controlling index */
+ if (++j == adapter->num_rx_desc)
+ j = 0;
}
update:
/*
** Update the tail pointer only if,
** and as far as we have refreshed.
*/
- if (cleaned != -1) /* Update tail index */
+ if (cleaned)
E1000_WRITE_REG(&adapter->hw,
- E1000_RDT(rxr->me), cleaned);
+ E1000_RDT(rxr->me), rxr->next_to_refresh);
return;
}
@@ -3896,7 +4071,11 @@ em_setup_receive_ring(struct rx_ring *rxr)
struct adapter *adapter = rxr->adapter;
struct em_buffer *rxbuf;
bus_dma_segment_t seg[1];
- int rsize, nsegs, error;
+ int rsize, nsegs, error = 0;
+#ifdef DEV_NETMAP
+ struct netmap_adapter *na = NA(adapter->ifp);
+ struct netmap_slot *slot;
+#endif
/* Clear the ring contents */
@@ -3904,6 +4083,9 @@ em_setup_receive_ring(struct rx_ring *rxr)
rsize = roundup2(adapter->num_rx_desc *
sizeof(struct e1000_rx_desc), EM_DBA_ALIGN);
bzero((void *)rxr->rx_base, rsize);
+#ifdef DEV_NETMAP
+ slot = netmap_reset(na, NR_RX, 0, 0);
+#endif
/*
** Free current RX buffer structs and their mbufs
@@ -3915,17 +4097,32 @@ em_setup_receive_ring(struct rx_ring *rxr)
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(rxr->rxtag, rxbuf->map);
m_freem(rxbuf->m_head);
+ rxbuf->m_head = NULL; /* mark as freed */
}
}
/* Now replenish the mbufs */
- for (int j = 0; j != adapter->num_rx_desc; ++j) {
-
+ for (int j = 0; j != adapter->num_rx_desc; ++j) {
rxbuf = &rxr->rx_buffers[j];
- rxbuf->m_head = m_getjcl(M_DONTWAIT, MT_DATA,
+#ifdef DEV_NETMAP
+ if (slot) {
+ int si = netmap_idx_n2k(&na->rx_rings[rxr->me], j);
+ uint64_t paddr;
+ void *addr;
+
+ addr = PNMB(slot + si, &paddr);
+ netmap_load_map(rxr->rxtag, rxbuf->map, addr);
+ /* Update descriptor */
+ rxr->rx_base[j].buffer_addr = htole64(paddr);
+ continue;
+ }
+#endif /* DEV_NETMAP */
+ rxbuf->m_head = m_getjcl(M_NOWAIT, MT_DATA,
M_PKTHDR, adapter->rx_mbuf_sz);
- if (rxbuf->m_head == NULL)
- return (ENOBUFS);
+ if (rxbuf->m_head == NULL) {
+ error = ENOBUFS;
+ goto fail;
+ }
rxbuf->m_head->m_len = adapter->rx_mbuf_sz;
rxbuf->m_head->m_flags &= ~M_HASFCS; /* we strip it */
rxbuf->m_head->m_pkthdr.len = adapter->rx_mbuf_sz;
@@ -3937,7 +4134,7 @@ em_setup_receive_ring(struct rx_ring *rxr)
if (error != 0) {
m_freem(rxbuf->m_head);
rxbuf->m_head = NULL;
- return (error);
+ goto fail;
}
bus_dmamap_sync(rxr->rxtag,
rxbuf->map, BUS_DMASYNC_PREREAD);
@@ -3945,17 +4142,14 @@ em_setup_receive_ring(struct rx_ring *rxr)
/* Update descriptor */
rxr->rx_base[j].buffer_addr = htole64(seg[0].ds_addr);
}
-
-
- /* Setup our descriptor indices */
rxr->next_to_check = 0;
rxr->next_to_refresh = 0;
-
bus_dmamap_sync(rxr->rxdma.dma_tag, rxr->rxdma.dma_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
+fail:
EM_RX_UNLOCK(rxr);
- return (0);
+ return (error);
}
/*********************************************************************
@@ -3967,9 +4161,9 @@ static int
em_setup_receive_structures(struct adapter *adapter)
{
struct rx_ring *rxr = adapter->rx_rings;
- int j;
+ int q;
- for (j = 0; j < adapter->num_queues; j++, rxr++)
+ for (q = 0; q < adapter->num_queues; q++, rxr++)
if (em_setup_receive_ring(rxr))
goto fail;
@@ -3978,9 +4172,9 @@ fail:
/*
* Free RX buffers allocated so far, we will only handle
* the rings that completed, the failing case will have
- * cleaned up for itself. 'j' failed, so its the terminus.
+ * cleaned up for itself. 'q' failed, so its the terminus.
*/
- for (int i = 0; i < j; ++i) {
+ for (int i = 0; i < q; ++i) {
rxr = &adapter->rx_rings[i];
for (int n = 0; n < adapter->num_rx_desc; n++) {
struct em_buffer *rxbuf;
@@ -3993,6 +4187,8 @@ fail:
rxbuf->m_head = NULL;
}
}
+ rxr->next_to_check = 0;
+ rxr->next_to_refresh = 0;
}
return (ENOBUFS);
@@ -4048,6 +4244,8 @@ em_free_receive_buffers(struct rx_ring *rxr)
}
free(rxr->rx_buffers, M_DEVBUF);
rxr->rx_buffers = NULL;
+ rxr->next_to_check = 0;
+ rxr->next_to_refresh = 0;
}
if (rxr->rxtag != NULL) {
@@ -4083,7 +4281,9 @@ em_initialize_receive_unit(struct adapter *adapter)
* up the descriptor ring
*/
rctl = E1000_READ_REG(hw, E1000_RCTL);
- E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
+ /* Do not disable if ever enabled on this hardware */
+ if ((hw->mac.type != e1000_82574) && (hw->mac.type != e1000_82583))
+ E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
E1000_WRITE_REG(&adapter->hw, E1000_RADV,
adapter->rx_abs_int_delay.value);
@@ -4097,14 +4297,13 @@ em_initialize_receive_unit(struct adapter *adapter)
** When using MSIX interrupts we need to throttle
** using the EITR register (82574 only)
*/
- if (hw->mac.type == e1000_82574)
+ if (hw->mac.type == e1000_82574) {
for (int i = 0; i < 4; i++)
E1000_WRITE_REG(hw, E1000_EITR_82574(i),
DEFAULT_ITR);
-
- /* Disable accelerated ackknowledge */
- if (adapter->hw.mac.type == e1000_82574)
+ /* Disable accelerated acknowledge */
E1000_WRITE_REG(hw, E1000_RFCTL, E1000_RFCTL_ACK_DIS);
+ }
if (ifp->if_capenable & IFCAP_RXCSUM) {
rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
@@ -4131,20 +4330,34 @@ em_initialize_receive_unit(struct adapter *adapter)
E1000_WRITE_REG(hw, E1000_RDBAL(i), (u32)bus_addr);
/* Setup the Head and Tail Descriptor Pointers */
E1000_WRITE_REG(hw, E1000_RDH(i), 0);
+#ifdef DEV_NETMAP
+ /*
+ * an init() while a netmap client is active must
+ * preserve the rx buffers passed to userspace.
+ * In this driver it means we adjust RDT to
+ * something different from na->num_rx_desc - 1.
+ */
+ if (ifp->if_capenable & IFCAP_NETMAP) {
+ struct netmap_adapter *na = NA(adapter->ifp);
+ struct netmap_kring *kring = &na->rx_rings[i];
+ int t = na->num_rx_desc - 1 - kring->nr_hwavail;
+
+ E1000_WRITE_REG(hw, E1000_RDT(i), t);
+ } else
+#endif /* DEV_NETMAP */
E1000_WRITE_REG(hw, E1000_RDT(i), adapter->num_rx_desc - 1);
}
- /* Set early receive threshold on appropriate hw */
+ /* Set PTHRESH for improved jumbo performance */
if (((adapter->hw.mac.type == e1000_ich9lan) ||
(adapter->hw.mac.type == e1000_pch2lan) ||
(adapter->hw.mac.type == e1000_ich10lan)) &&
(ifp->if_mtu > ETHERMTU)) {
u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(0));
E1000_WRITE_REG(hw, E1000_RXDCTL(0), rxdctl | 3);
- E1000_WRITE_REG(hw, E1000_ERT, 0x100 | (1 << 13));
}
- if (adapter->hw.mac.type == e1000_pch2lan) {
+ if (adapter->hw.mac.type >= e1000_pch2lan) {
if (ifp->if_mtu > ETHERMTU)
e1000_lv_jumbo_workaround_ich8lan(hw, TRUE);
else
@@ -4208,6 +4421,20 @@ em_rxeof(struct rx_ring *rxr, int count, int *done)
EM_RX_LOCK(rxr);
+#ifdef DEV_NETMAP
+ if (ifp->if_capenable & IFCAP_NETMAP) {
+ struct netmap_adapter *na = NA(ifp);
+
+ na->rx_rings[rxr->me].nr_kflags |= NKR_PENDINTR;
+ selwakeuppri(&na->rx_rings[rxr->me].si, PI_NET);
+ EM_RX_UNLOCK(rxr);
+ EM_CORE_LOCK(adapter);
+ selwakeuppri(&na->rx_si, PI_NET);
+ EM_CORE_UNLOCK(adapter);
+ return (0);
+ }
+#endif /* DEV_NETMAP */
+
for (i = rxr->next_to_check, processed = 0; count != 0;) {
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
@@ -4228,7 +4455,7 @@ em_rxeof(struct rx_ring *rxr, int count, int *done)
if ((cur->errors & E1000_RXD_ERR_FRAME_ERR_MASK) ||
(rxr->discard == TRUE)) {
- ifp->if_ierrors++;
+ adapter->dropped_pkts++;
++rxr->rx_discarded;
if (!eop) /* Catch subsequent segs */
rxr->discard = TRUE;
@@ -4264,21 +4491,16 @@ em_rxeof(struct rx_ring *rxr, int count, int *done)
ifp->if_ipackets++;
em_receive_checksum(cur, sendmp);
#ifndef __NO_STRICT_ALIGNMENT
- if (adapter->max_frame_size >
+ if (adapter->hw.mac.max_frame_size >
(MCLBYTES - ETHER_ALIGN) &&
em_fixup_rx(rxr) != 0)
goto skip;
#endif
if (status & E1000_RXD_STAT_VP) {
sendmp->m_pkthdr.ether_vtag =
- (le16toh(cur->special) &
- E1000_RXD_SPC_VLAN_MASK);
+ le16toh(cur->special);
sendmp->m_flags |= M_VLANTAG;
}
-#ifdef EM_MULTIQUEUE
- sendmp->m_pkthdr.flowid = rxr->msix;
- sendmp->m_flags |= M_FLOWID;
-#endif
#ifndef __NO_STRICT_ALIGNMENT
skip:
#endif
@@ -4311,7 +4533,8 @@ next_desc:
}
/* Catch any remaining refresh work */
- em_refresh_mbufs(rxr, i);
+ if (e1000_rx_unrefreshed(rxr))
+ em_refresh_mbufs(rxr, i);
rxr->next_to_check = i;
if (done != NULL)
@@ -4373,7 +4596,7 @@ em_fixup_rx(struct rx_ring *rxr)
bcopy(m->m_data, m->m_data + ETHER_HDR_LEN, m->m_len);
m->m_data += ETHER_HDR_LEN;
} else {
- MGETHDR(n, M_DONTWAIT, MT_DATA);
+ MGETHDR(n, M_NOWAIT, MT_DATA);
if (n != NULL) {
bcopy(m->m_data, n->m_data, ETHER_HDR_LEN);
m->m_data += ETHER_HDR_LEN;
@@ -4739,7 +4962,7 @@ em_enable_wakeup(device_t dev)
u32 pmc, ctrl, ctrl_ext, rctl;
u16 status;
- if ((pci_find_extcap(dev, PCIY_PMG, &pmc) != 0))
+ if ((pci_find_cap(dev, PCIY_PMG, &pmc) != 0))
return;
/* Advertise the wakeup capability */
@@ -4751,10 +4974,8 @@ em_enable_wakeup(device_t dev)
if ((adapter->hw.mac.type == e1000_ich8lan) ||
(adapter->hw.mac.type == e1000_pchlan) ||
(adapter->hw.mac.type == e1000_ich9lan) ||
- (adapter->hw.mac.type == e1000_ich10lan)) {
- e1000_disable_gig_wol_ich8lan(&adapter->hw);
- e1000_hv_phy_powerdown_workaround_ich8lan(&adapter->hw);
- }
+ (adapter->hw.mac.type == e1000_ich10lan))
+ e1000_suspend_workarounds_ich8lan(&adapter->hw);
/* Keep the laser running on Fiber adapters */
if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
@@ -4909,15 +5130,15 @@ em_disable_aspm(struct adapter *adapter)
default:
return;
}
- if (pci_find_extcap(dev, PCIY_EXPRESS, &base) != 0)
+ if (pci_find_cap(dev, PCIY_EXPRESS, &base) != 0)
return;
- reg = base + PCIR_EXPRESS_LINK_CAP;
+ reg = base + PCIER_LINK_CAP;
link_cap = pci_read_config(dev, reg, 2);
- if ((link_cap & PCIM_LINK_CAP_ASPM) == 0)
+ if ((link_cap & PCIEM_LINK_CAP_ASPM) == 0)
return;
- reg = base + PCIR_EXPRESS_LINK_CTL;
+ reg = base + PCIER_LINK_CTL;
link_ctrl = pci_read_config(dev, reg, 2);
- link_ctrl &= 0xFFFC; /* turn off bit 1 and 2 */
+ link_ctrl &= ~PCIEM_LINK_CTL_ASPMC;
pci_write_config(dev, reg, link_ctrl, 2);
return;
}
@@ -5072,8 +5293,8 @@ em_add_hw_stats(struct adapter *adapter)
char namebuf[QUEUE_NAME_LEN];
/* Driver Statistics */
- SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "link_irq",
- CTLFLAG_RD, &adapter->link_irq, 0,
+ SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "link_irq",
+ CTLFLAG_RD, &adapter->link_irq,
"Link MSIX IRQ Handled");
SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "mbuf_alloc_fail",
CTLFLAG_RD, &adapter->mbuf_alloc_failed,
@@ -5095,11 +5316,11 @@ em_add_hw_stats(struct adapter *adapter)
"Watchdog timeouts");
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "device_control",
- CTLFLAG_RD, adapter, E1000_CTRL,
+ CTLTYPE_UINT | CTLFLAG_RD, adapter, E1000_CTRL,
em_sysctl_reg_handler, "IU",
"Device Control Register");
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rx_control",
- CTLFLAG_RD, adapter, E1000_RCTL,
+ CTLTYPE_UINT | CTLFLAG_RD, adapter, E1000_RCTL,
em_sysctl_reg_handler, "IU",
"Receiver Control Register");
SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_high_water",
@@ -5116,11 +5337,13 @@ em_add_hw_stats(struct adapter *adapter)
queue_list = SYSCTL_CHILDREN(queue_node);
SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_head",
- CTLFLAG_RD, adapter, E1000_TDH(txr->me),
+ CTLTYPE_UINT | CTLFLAG_RD, adapter,
+ E1000_TDH(txr->me),
em_sysctl_reg_handler, "IU",
"Transmit Descriptor Head");
SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_tail",
- CTLFLAG_RD, adapter, E1000_TDT(txr->me),
+ CTLTYPE_UINT | CTLFLAG_RD, adapter,
+ E1000_TDT(txr->me),
em_sysctl_reg_handler, "IU",
"Transmit Descriptor Tail");
SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "tx_irq",
@@ -5131,11 +5354,13 @@ em_add_hw_stats(struct adapter *adapter)
"Queue No Descriptor Available");
SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_head",
- CTLFLAG_RD, adapter, E1000_RDH(rxr->me),
+ CTLTYPE_UINT | CTLFLAG_RD, adapter,
+ E1000_RDH(rxr->me),
em_sysctl_reg_handler, "IU",
"Receive Descriptor Head");
SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_tail",
- CTLFLAG_RD, adapter, E1000_RDT(rxr->me),
+ CTLTYPE_UINT | CTLFLAG_RD, adapter,
+ E1000_RDT(rxr->me),
em_sysctl_reg_handler, "IU",
"Receive Descriptor Tail");
SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "rx_irq",
@@ -5149,147 +5374,147 @@ em_add_hw_stats(struct adapter *adapter)
CTLFLAG_RD, NULL, "Statistics");
stat_list = SYSCTL_CHILDREN(stat_node);
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "excess_coll",
+ SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "excess_coll",
CTLFLAG_RD, &stats->ecol,
"Excessive collisions");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "single_coll",
+ SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "single_coll",
CTLFLAG_RD, &stats->scc,
"Single collisions");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "multiple_coll",
+ SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "multiple_coll",
CTLFLAG_RD, &stats->mcc,
"Multiple collisions");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "late_coll",
+ SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "late_coll",
CTLFLAG_RD, &stats->latecol,
"Late collisions");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "collision_count",
+ SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "collision_count",
CTLFLAG_RD, &stats->colc,
"Collision Count");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "symbol_errors",
+ SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "symbol_errors",
CTLFLAG_RD, &adapter->stats.symerrs,
"Symbol Errors");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "sequence_errors",
+ SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "sequence_errors",
CTLFLAG_RD, &adapter->stats.sec,
"Sequence Errors");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "defer_count",
+ SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "defer_count",
CTLFLAG_RD, &adapter->stats.dc,
"Defer Count");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "missed_packets",
+ SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "missed_packets",
CTLFLAG_RD, &adapter->stats.mpc,
"Missed Packets");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "recv_no_buff",
+ SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_no_buff",
CTLFLAG_RD, &adapter->stats.rnbc,
"Receive No Buffers");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "recv_undersize",
+ SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_undersize",
CTLFLAG_RD, &adapter->stats.ruc,
"Receive Undersize");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "recv_fragmented",
+ SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_fragmented",
CTLFLAG_RD, &adapter->stats.rfc,
"Fragmented Packets Received ");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "recv_oversize",
+ SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_oversize",
CTLFLAG_RD, &adapter->stats.roc,
"Oversized Packets Received");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "recv_jabber",
+ SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_jabber",
CTLFLAG_RD, &adapter->stats.rjc,
"Recevied Jabber");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "recv_errs",
+ SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_errs",
CTLFLAG_RD, &adapter->stats.rxerrc,
"Receive Errors");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "crc_errs",
+ SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "crc_errs",
CTLFLAG_RD, &adapter->stats.crcerrs,
"CRC errors");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "alignment_errs",
+ SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "alignment_errs",
CTLFLAG_RD, &adapter->stats.algnerrc,
"Alignment Errors");
/* On 82575 these are collision counts */
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "coll_ext_errs",
+ SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "coll_ext_errs",
CTLFLAG_RD, &adapter->stats.cexterr,
"Collision/Carrier extension errors");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "xon_recvd",
+ SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xon_recvd",
CTLFLAG_RD, &adapter->stats.xonrxc,
"XON Received");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "xon_txd",
+ SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xon_txd",
CTLFLAG_RD, &adapter->stats.xontxc,
"XON Transmitted");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "xoff_recvd",
+ SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xoff_recvd",
CTLFLAG_RD, &adapter->stats.xoffrxc,
"XOFF Received");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "xoff_txd",
+ SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xoff_txd",
CTLFLAG_RD, &adapter->stats.xofftxc,
"XOFF Transmitted");
/* Packet Reception Stats */
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "total_pkts_recvd",
+ SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "total_pkts_recvd",
CTLFLAG_RD, &adapter->stats.tpr,
"Total Packets Received ");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "good_pkts_recvd",
+ SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_pkts_recvd",
CTLFLAG_RD, &adapter->stats.gprc,
"Good Packets Received");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_recvd",
+ SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_recvd",
CTLFLAG_RD, &adapter->stats.bprc,
"Broadcast Packets Received");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_recvd",
+ SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_recvd",
CTLFLAG_RD, &adapter->stats.mprc,
"Multicast Packets Received");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "rx_frames_64",
+ SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_64",
CTLFLAG_RD, &adapter->stats.prc64,
"64 byte frames received ");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "rx_frames_65_127",
+ SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_65_127",
CTLFLAG_RD, &adapter->stats.prc127,
"65-127 byte frames received");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "rx_frames_128_255",
+ SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_128_255",
CTLFLAG_RD, &adapter->stats.prc255,
"128-255 byte frames received");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "rx_frames_256_511",
+ SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_256_511",
CTLFLAG_RD, &adapter->stats.prc511,
"256-511 byte frames received");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "rx_frames_512_1023",
+ SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_512_1023",
CTLFLAG_RD, &adapter->stats.prc1023,
"512-1023 byte frames received");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "rx_frames_1024_1522",
+ SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_1024_1522",
CTLFLAG_RD, &adapter->stats.prc1522,
"1023-1522 byte frames received");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "good_octets_recvd",
+ SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_octets_recvd",
CTLFLAG_RD, &adapter->stats.gorc,
"Good Octets Received");
/* Packet Transmission Stats */
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "good_octets_txd",
+ SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_octets_txd",
CTLFLAG_RD, &adapter->stats.gotc,
"Good Octets Transmitted");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "total_pkts_txd",
+ SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "total_pkts_txd",
CTLFLAG_RD, &adapter->stats.tpt,
"Total Packets Transmitted");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "good_pkts_txd",
+ SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_pkts_txd",
CTLFLAG_RD, &adapter->stats.gptc,
"Good Packets Transmitted");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_txd",
+ SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_txd",
CTLFLAG_RD, &adapter->stats.bptc,
"Broadcast Packets Transmitted");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_txd",
+ SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_txd",
CTLFLAG_RD, &adapter->stats.mptc,
"Multicast Packets Transmitted");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "tx_frames_64",
+ SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_64",
CTLFLAG_RD, &adapter->stats.ptc64,
"64 byte frames transmitted ");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "tx_frames_65_127",
+ SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_65_127",
CTLFLAG_RD, &adapter->stats.ptc127,
"65-127 byte frames transmitted");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "tx_frames_128_255",
+ SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_128_255",
CTLFLAG_RD, &adapter->stats.ptc255,
"128-255 byte frames transmitted");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "tx_frames_256_511",
+ SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_256_511",
CTLFLAG_RD, &adapter->stats.ptc511,
"256-511 byte frames transmitted");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "tx_frames_512_1023",
+ SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_512_1023",
CTLFLAG_RD, &adapter->stats.ptc1023,
"512-1023 byte frames transmitted");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "tx_frames_1024_1522",
+ SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_1024_1522",
CTLFLAG_RD, &adapter->stats.ptc1522,
"1024-1522 byte frames transmitted");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "tso_txd",
+ SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tso_txd",
CTLFLAG_RD, &adapter->stats.tsctc,
"TSO Contexts Transmitted");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "tso_ctx_fail",
+ SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tso_ctx_fail",
CTLFLAG_RD, &adapter->stats.tsctfc,
"TSO Contexts Failed");
@@ -5300,39 +5525,39 @@ em_add_hw_stats(struct adapter *adapter)
CTLFLAG_RD, NULL, "Interrupt Statistics");
int_list = SYSCTL_CHILDREN(int_node);
- SYSCTL_ADD_QUAD(ctx, int_list, OID_AUTO, "asserts",
+ SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "asserts",
CTLFLAG_RD, &adapter->stats.iac,
"Interrupt Assertion Count");
- SYSCTL_ADD_QUAD(ctx, int_list, OID_AUTO, "rx_pkt_timer",
+ SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_pkt_timer",
CTLFLAG_RD, &adapter->stats.icrxptc,
"Interrupt Cause Rx Pkt Timer Expire Count");
- SYSCTL_ADD_QUAD(ctx, int_list, OID_AUTO, "rx_abs_timer",
+ SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_abs_timer",
CTLFLAG_RD, &adapter->stats.icrxatc,
"Interrupt Cause Rx Abs Timer Expire Count");
- SYSCTL_ADD_QUAD(ctx, int_list, OID_AUTO, "tx_pkt_timer",
+ SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_pkt_timer",
CTLFLAG_RD, &adapter->stats.ictxptc,
"Interrupt Cause Tx Pkt Timer Expire Count");
- SYSCTL_ADD_QUAD(ctx, int_list, OID_AUTO, "tx_abs_timer",
+ SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_abs_timer",
CTLFLAG_RD, &adapter->stats.ictxatc,
"Interrupt Cause Tx Abs Timer Expire Count");
- SYSCTL_ADD_QUAD(ctx, int_list, OID_AUTO, "tx_queue_empty",
+ SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_queue_empty",
CTLFLAG_RD, &adapter->stats.ictxqec,
"Interrupt Cause Tx Queue Empty Count");
- SYSCTL_ADD_QUAD(ctx, int_list, OID_AUTO, "tx_queue_min_thresh",
+ SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_queue_min_thresh",
CTLFLAG_RD, &adapter->stats.ictxqmtc,
"Interrupt Cause Tx Queue Min Thresh Count");
- SYSCTL_ADD_QUAD(ctx, int_list, OID_AUTO, "rx_desc_min_thresh",
+ SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_desc_min_thresh",
CTLFLAG_RD, &adapter->stats.icrxdmtc,
"Interrupt Cause Rx Desc Min Thresh Count");
- SYSCTL_ADD_QUAD(ctx, int_list, OID_AUTO, "rx_overrun",
+ SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_overrun",
CTLFLAG_RD, &adapter->stats.icrxoc,
"Interrupt Cause Receiver Overrun Count");
}
@@ -5347,7 +5572,7 @@ em_add_hw_stats(struct adapter *adapter)
static int
em_sysctl_nvm_info(SYSCTL_HANDLER_ARGS)
{
- struct adapter *adapter;
+ struct adapter *adapter = (struct adapter *)arg1;
int error;
int result;
@@ -5362,10 +5587,8 @@ em_sysctl_nvm_info(SYSCTL_HANDLER_ARGS)
* first 32 16-bit words of the EEPROM to
* the screen.
*/
- if (result == 1) {
- adapter = (struct adapter *)arg1;
+ if (result == 1)
em_print_nvm_info(adapter);
- }
return (error);
}
@@ -5446,7 +5669,7 @@ em_add_int_delay_sysctl(struct adapter *adapter, const char *name,
}
static void
-em_add_rx_process_limit(struct adapter *adapter, const char *name,
+em_set_sysctl_value(struct adapter *adapter, const char *name,
const char *description, int *limit, int value)
{
*limit = value;
@@ -5455,14 +5678,68 @@ em_add_rx_process_limit(struct adapter *adapter, const char *name,
OID_AUTO, name, CTLTYPE_INT|CTLFLAG_RW, limit, value, description);
}
-static void
-em_set_flow_cntrl(struct adapter *adapter, const char *name,
- const char *description, int *limit, int value)
+
+/*
+** Set flow control using sysctl:
+** Flow control values:
+** 0 - off
+** 1 - rx pause
+** 2 - tx pause
+** 3 - full
+*/
+static int
+em_set_flowcntl(SYSCTL_HANDLER_ARGS)
+{
+ int error;
+ static int input = 3; /* default is full */
+ struct adapter *adapter = (struct adapter *) arg1;
+
+ error = sysctl_handle_int(oidp, &input, 0, req);
+
+ if ((error) || (req->newptr == NULL))
+ return (error);
+
+ if (input == adapter->fc) /* no change? */
+ return (error);
+
+ switch (input) {
+ case e1000_fc_rx_pause:
+ case e1000_fc_tx_pause:
+ case e1000_fc_full:
+ case e1000_fc_none:
+ adapter->hw.fc.requested_mode = input;
+ adapter->fc = input;
+ break;
+ default:
+ /* Do nothing */
+ return (error);
+ }
+
+ adapter->hw.fc.current_mode = adapter->hw.fc.requested_mode;
+ e1000_force_mac_fc(&adapter->hw);
+ return (error);
+}
+
+/*
+** Manage Energy Efficient Ethernet:
+** Control values:
+** 0/1 - enabled/disabled
+*/
+static int
+em_sysctl_eee(SYSCTL_HANDLER_ARGS)
{
- *limit = value;
- SYSCTL_ADD_INT(device_get_sysctl_ctx(adapter->dev),
- SYSCTL_CHILDREN(device_get_sysctl_tree(adapter->dev)),
- OID_AUTO, name, CTLTYPE_INT|CTLFLAG_RW, limit, value, description);
+ struct adapter *adapter = (struct adapter *) arg1;
+ int error, value;
+
+ value = adapter->hw.dev_spec.ich8lan.eee_disable;
+ error = sysctl_handle_int(oidp, &value, 0, req);
+ if (error || req->newptr == NULL)
+ return (error);
+ EM_CORE_LOCK(adapter);
+ adapter->hw.dev_spec.ich8lan.eee_disable = (value != 0);
+ em_init_locked(adapter);
+ EM_CORE_UNLOCK(adapter);
+ return (0);
}
static int
@@ -5501,10 +5778,11 @@ em_print_debug_info(struct adapter *adapter)
printf("Interface is RUNNING ");
else
printf("Interface is NOT RUNNING\n");
+
if (adapter->ifp->if_drv_flags & IFF_DRV_OACTIVE)
- printf("and ACTIVE\n");
- else
printf("and INACTIVE\n");
+ else
+ printf("and ACTIVE\n");
device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
E1000_READ_REG(&adapter->hw, E1000_TDH(0)),
diff --git a/freebsd/sys/dev/e1000/if_em.h b/freebsd/sys/dev/e1000/if_em.h
index 19ccf0a6..20ba1267 100644
--- a/freebsd/sys/dev/e1000/if_em.h
+++ b/freebsd/sys/dev/e1000/if_em.h
@@ -1,6 +1,6 @@
/******************************************************************************
- Copyright (c) 2001-2010, Intel Corporation
+ Copyright (c) 2001-2011, Intel Corporation
All rights reserved.
Redistribution and use in source and binary forms, with or without
@@ -212,6 +212,11 @@
#define EM_BAR_MEM_TYPE_64BIT 0x00000004
#define EM_MSIX_BAR 3 /* On 82575 */
+/* More backward compatibility */
+#if __FreeBSD_version < 900000
+#define SYSCTL_ADD_UQUAD SYSCTL_ADD_QUAD
+#endif
+
/* Defines for printing debug information */
#define DEBUG_INIT 0
#define DEBUG_IOCTL 0
@@ -414,11 +419,11 @@ struct adapter {
u32 shadow_vfta[EM_VFTA_SIZE];
/* Info about the interface */
- u8 link_active;
+ u16 link_active;
+ u16 fc;
u16 link_speed;
u16 link_duplex;
u32 smartspeed;
- u32 fc_setting;
struct em_int_delay_info tx_int_delay;
struct em_int_delay_info tx_abs_int_delay;
@@ -459,6 +464,22 @@ struct em_buffer {
bus_dmamap_t map; /* bus_dma map for packet */
};
+
+/*
+** Find the number of unrefreshed RX descriptors
+*/
+static inline u16
+e1000_rx_unrefreshed(struct rx_ring *rxr)
+{
+ struct adapter *adapter = rxr->adapter;
+
+ if (rxr->next_to_check > rxr->next_to_refresh)
+ return (rxr->next_to_check - rxr->next_to_refresh - 1);
+ else
+ return ((adapter->num_rx_desc + rxr->next_to_check) -
+ rxr->next_to_refresh - 1);
+}
+
#define EM_CORE_LOCK_INIT(_sc, _name) \
mtx_init(&(_sc)->core_mtx, _name, "EM Core Lock", MTX_DEF)
#define EM_TX_LOCK_INIT(_sc, _name) \
diff --git a/freebsd/sys/dev/e1000/if_igb.c b/freebsd/sys/dev/e1000/if_igb.c
index 27d9c92b..bf88f60f 100644
--- a/freebsd/sys/dev/e1000/if_igb.c
+++ b/freebsd/sys/dev/e1000/if_igb.c
@@ -2,7 +2,7 @@
/******************************************************************************
- Copyright (c) 2001-2010, Intel Corporation
+ Copyright (c) 2001-2013, Intel Corporation
All rights reserved.
Redistribution and use in source and binary forms, with or without
@@ -38,6 +38,7 @@
#ifdef HAVE_KERNEL_OPTION_HEADERS
#include <rtems/bsd/local/opt_device_polling.h>
#include <rtems/bsd/local/opt_inet.h>
+#include <rtems/bsd/local/opt_inet6.h>
#include <rtems/bsd/local/opt_altq.h>
#endif
@@ -107,7 +108,7 @@ int igb_display_debug_stats = 0;
/*********************************************************************
* Driver version:
*********************************************************************/
-char igb_driver_version[] = "version - 2.0.7";
+char igb_driver_version[] = "version - 2.3.9 - 8";
/*********************************************************************
@@ -149,6 +150,22 @@ static igb_vendor_info_t igb_vendor_info_array[] =
PCI_ANY_ID, PCI_ANY_ID, 0},
{ 0x8086, E1000_DEV_ID_DH89XXCC_SERDES, PCI_ANY_ID, PCI_ANY_ID, 0},
{ 0x8086, E1000_DEV_ID_DH89XXCC_SGMII, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_DH89XXCC_SFP, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_DH89XXCC_BACKPLANE,
+ PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_I350_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_I350_FIBER, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_I350_SERDES, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_I350_SGMII, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_I350_VF, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_I210_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_I210_COPPER_IT, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_I210_COPPER_OEM1,
+ PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_I210_FIBER, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_I210_SERDES, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_I210_SGMII, PCI_ANY_ID, PCI_ANY_ID, 0},
+ { 0x8086, E1000_DEV_ID_I211_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0},
/* required last entry */
{ 0, 0, 0, 0, 0}
};
@@ -170,13 +187,14 @@ static int igb_detach(device_t);
static int igb_shutdown(device_t);
static int igb_suspend(device_t);
static int igb_resume(device_t);
-static void igb_start(struct ifnet *);
-static void igb_start_locked(struct tx_ring *, struct ifnet *ifp);
#if __FreeBSD_version >= 800000
static int igb_mq_start(struct ifnet *, struct mbuf *);
-static int igb_mq_start_locked(struct ifnet *,
- struct tx_ring *, struct mbuf *);
+static int igb_mq_start_locked(struct ifnet *, struct tx_ring *);
static void igb_qflush(struct ifnet *);
+static void igb_deferred_mq_start(void *, int);
+#else
+static void igb_start(struct ifnet *);
+static void igb_start_locked(struct tx_ring *, struct ifnet *ifp);
#endif
static int igb_ioctl(struct ifnet *, u_long, caddr_t);
static void igb_init(void *);
@@ -220,19 +238,11 @@ static __inline void igb_rx_discard(struct rx_ring *, int);
static __inline void igb_rx_input(struct rx_ring *,
struct ifnet *, struct mbuf *, u32);
-#ifdef __rtems__
-/* XXX report inconsistent proto/body to FreeBSD */
static bool igb_rxeof(struct igb_queue *, int, int *);
-#else
-static boolean_t igb_rxeof(struct igb_queue *, int, int *);
-#endif
static void igb_rx_checksum(u32, struct mbuf *, u32);
-#ifdef __rtems__
-/* XXX report inconsistent proto/body to FreeBSD */
static bool igb_tx_ctx_setup(struct tx_ring *, struct mbuf *);
-#else
-#endif
-static boolean_t igb_tso_setup(struct tx_ring *, struct mbuf *, u32 *);
+static bool igb_tso_setup(struct tx_ring *, struct mbuf *, int,
+ struct ip *, struct tcphdr *);
static void igb_set_promisc(struct adapter *);
static void igb_disable_promisc(struct adapter *);
static void igb_set_multi(struct adapter *);
@@ -264,14 +274,17 @@ static void igb_enable_wakeup(device_t);
static void igb_led_func(void *, int);
static int igb_irq_fast(void *);
-static void igb_add_rx_process_limit(struct adapter *, const char *,
- const char *, int *, int);
+static void igb_msix_que(void *);
+static void igb_msix_link(void *);
static void igb_handle_que(void *context, int pending);
static void igb_handle_link(void *context, int pending);
+static void igb_handle_link_locked(struct adapter *);
-/* These are MSIX only irq handlers */
-static void igb_msix_que(void *);
-static void igb_msix_link(void *);
+static void igb_set_sysctl_value(struct adapter *, const char *,
+ const char *, int *, int);
+static int igb_set_flowcntl(SYSCTL_HANDLER_ARGS);
+static int igb_sysctl_dmac(SYSCTL_HANDLER_ARGS);
+static int igb_sysctl_eee(SYSCTL_HANDLER_ARGS);
#ifdef DEVICE_POLLING
static poll_handler_t igb_poll;
@@ -289,7 +302,7 @@ static device_method_t igb_methods[] = {
DEVMETHOD(device_shutdown, igb_shutdown),
DEVMETHOD(device_suspend, igb_suspend),
DEVMETHOD(device_resume, igb_resume),
- {0, 0}
+ DEVMETHOD_END
};
static driver_t igb_driver = {
@@ -305,11 +318,17 @@ MODULE_DEPEND(igb, ether, 1, 1, 1);
* Tunable default values.
*********************************************************************/
+static SYSCTL_NODE(_hw, OID_AUTO, igb, CTLFLAG_RD, 0, "IGB driver parameters");
+
/* Descriptor defaults */
static int igb_rxd = IGB_DEFAULT_RXD;
static int igb_txd = IGB_DEFAULT_TXD;
TUNABLE_INT("hw.igb.rxd", &igb_rxd);
TUNABLE_INT("hw.igb.txd", &igb_txd);
+SYSCTL_INT(_hw_igb, OID_AUTO, rxd, CTLFLAG_RDTUN, &igb_rxd, 0,
+ "Number of receive descriptors per queue");
+SYSCTL_INT(_hw_igb, OID_AUTO, txd, CTLFLAG_RDTUN, &igb_txd, 0,
+ "Number of transmit descriptors per queue");
/*
** AIM: Adaptive Interrupt Moderation
@@ -319,6 +338,8 @@ TUNABLE_INT("hw.igb.txd", &igb_txd);
*/
static int igb_enable_aim = TRUE;
TUNABLE_INT("hw.igb.enable_aim", &igb_enable_aim);
+SYSCTL_INT(_hw_igb, OID_AUTO, enable_aim, CTLFLAG_RW, &igb_enable_aim, 0,
+ "Enable adaptive interrupt moderation");
/*
* MSIX should be the default for best performance,
@@ -326,12 +347,26 @@ TUNABLE_INT("hw.igb.enable_aim", &igb_enable_aim);
*/
static int igb_enable_msix = 1;
TUNABLE_INT("hw.igb.enable_msix", &igb_enable_msix);
+SYSCTL_INT(_hw_igb, OID_AUTO, enable_msix, CTLFLAG_RDTUN, &igb_enable_msix, 0,
+ "Enable MSI-X interrupts");
/*
** Tuneable Interrupt rate
*/
static int igb_max_interrupt_rate = 8000;
TUNABLE_INT("hw.igb.max_interrupt_rate", &igb_max_interrupt_rate);
+SYSCTL_INT(_hw_igb, OID_AUTO, max_interrupt_rate, CTLFLAG_RDTUN,
+ &igb_max_interrupt_rate, 0, "Maximum interrupts per second");
+
+#if __FreeBSD_version >= 800000
+/*
+** Tuneable number of buffers in the buf-ring (drbr_xxx)
+*/
+static int igb_buf_ring_size = IGB_BR_SIZE;
+TUNABLE_INT("hw.igb.buf_ring_size", &igb_buf_ring_size);
+SYSCTL_INT(_hw_igb, OID_AUTO, buf_ring_size, CTLFLAG_RDTUN,
+ &igb_buf_ring_size, 0, "Size of the bufring");
+#endif
/*
** Header split causes the packet header to
@@ -341,8 +376,10 @@ TUNABLE_INT("hw.igb.max_interrupt_rate", &igb_max_interrupt_rate);
** into the header and thus use no cluster. Its
** a very workload dependent type feature.
*/
-static bool igb_header_split = FALSE;
+static int igb_header_split = FALSE;
TUNABLE_INT("hw.igb.hdr_split", &igb_header_split);
+SYSCTL_INT(_hw_igb, OID_AUTO, header_split, CTLFLAG_RDTUN, &igb_header_split, 0,
+ "Enable receive mbuf header split");
/*
** This will autoconfigure based on
@@ -350,15 +387,26 @@ TUNABLE_INT("hw.igb.hdr_split", &igb_header_split);
*/
static int igb_num_queues = 0;
TUNABLE_INT("hw.igb.num_queues", &igb_num_queues);
+SYSCTL_INT(_hw_igb, OID_AUTO, num_queues, CTLFLAG_RDTUN, &igb_num_queues, 0,
+ "Number of queues to configure, 0 indicates autoconfigure");
+
+/*
+** Global variable to store last used CPU when binding queues
+** to CPUs in igb_allocate_msix. Starts at CPU_FIRST and increments when a
+** queue is bound to a cpu.
+*/
+static int igb_last_bind_cpu = -1;
/* How many packets rxeof tries to clean at a time */
static int igb_rx_process_limit = 100;
TUNABLE_INT("hw.igb.rx_process_limit", &igb_rx_process_limit);
+SYSCTL_INT(_hw_igb, OID_AUTO, rx_process_limit, CTLFLAG_RDTUN,
+ &igb_rx_process_limit, 0,
+ "Maximum number of received packets to process at a time, -1 means unlimited");
-/* Flow control setting - default to FULL */
-static int igb_fc_setting = e1000_fc_full;
-TUNABLE_INT("hw.igb.fc_setting", &igb_fc_setting);
-
+#ifdef DEV_NETMAP /* see ixgbe.c for details */
+#include <dev/netmap/if_igb_netmap.h>
+#endif /* DEV_NETMAP */
/*********************************************************************
* Device identification routine
*
@@ -429,6 +477,11 @@ igb_attach(device_t dev)
INIT_DEBUGOUT("igb_attach: begin");
+ if (resource_disabled("igb", device_get_unit(dev))) {
+ device_printf(dev, "Disabled by device hint\n");
+ return (ENXIO);
+ }
+
adapter = device_get_softc(dev);
adapter->dev = adapter->osdep.dev = dev;
IGB_CORE_LOCK_INIT(adapter, device_get_nameunit(dev));
@@ -439,15 +492,14 @@ igb_attach(device_t dev)
OID_AUTO, "nvm", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
igb_sysctl_nvm_info, "I", "NVM Information");
- SYSCTL_ADD_INT(device_get_sysctl_ctx(adapter->dev),
- SYSCTL_CHILDREN(device_get_sysctl_tree(adapter->dev)),
- OID_AUTO, "flow_control", CTLTYPE_INT|CTLFLAG_RW,
- &igb_fc_setting, 0, "Flow Control");
+ igb_set_sysctl_value(adapter, "enable_aim",
+ "Interrupt Moderation", &adapter->enable_aim,
+ igb_enable_aim);
- SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
+ SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
- OID_AUTO, "enable_aim", CTLTYPE_INT|CTLFLAG_RW,
- &igb_enable_aim, 1, "Interrupt Moderation");
+ OID_AUTO, "fc", CTLTYPE_INT|CTLFLAG_RW,
+ adapter, 0, igb_set_flowcntl, "I", "Flow Control");
callout_init_mtx(&adapter->timer, &adapter->core_mtx, 0);
@@ -470,10 +522,10 @@ igb_attach(device_t dev)
e1000_get_bus_info(&adapter->hw);
- /* Sysctls for limiting the amount of work done in the taskqueue */
- igb_add_rx_process_limit(adapter, "rx_processing_limit",
- "max number of rx packets to process", &adapter->rx_process_limit,
- igb_rx_process_limit);
+ /* Sysctl for limiting the amount of work done in the taskqueue */
+ igb_set_sysctl_value(adapter, "rx_processing_limit",
+ "max number of rx packets to process",
+ &adapter->rx_process_limit, igb_rx_process_limit);
/*
* Validate number of transmit and receive descriptors. It
@@ -522,7 +574,7 @@ igb_attach(device_t dev)
}
/* Allocate the appropriate stats memory */
- if (adapter->hw.mac.type == e1000_vfadapt) {
+ if (adapter->vf_ifp) {
adapter->stats =
(struct e1000_vf_stats *)malloc(sizeof \
(struct e1000_vf_stats), M_DEVBUF, M_NOWAIT | M_ZERO);
@@ -546,6 +598,21 @@ igb_attach(device_t dev)
goto err_late;
}
+ /* Some adapter-specific advanced features */
+ if (adapter->hw.mac.type >= e1000_i350) {
+ SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
+ SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
+ OID_AUTO, "dmac", CTLTYPE_INT|CTLFLAG_RW,
+ adapter, 0, igb_sysctl_dmac, "I", "DMA Coalesce");
+ SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
+ SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
+ OID_AUTO, "eee_disabled", CTLTYPE_INT|CTLFLAG_RW,
+ adapter, 0, igb_sysctl_eee, "I",
+ "Disable Energy Efficient Ethernet");
+ if (adapter->hw.phy.media_type == e1000_media_type_copper)
+ e1000_set_eee_i350(&adapter->hw);
+ }
+
/*
** Start from a known state, this is
** important in reading the nvm and
@@ -554,7 +621,9 @@ igb_attach(device_t dev)
e1000_reset_hw(&adapter->hw);
/* Make sure we have a good EEPROM before we read from it */
- if (e1000_validate_nvm_checksum(&adapter->hw) < 0) {
+ if (((adapter->hw.mac.type != e1000_i210) &&
+ (adapter->hw.mac.type != e1000_i211)) &&
+ (e1000_validate_nvm_checksum(&adapter->hw) < 0)) {
/*
** Some PCI-E parts fail the first check due to
** the link being in sleep state, call it again,
@@ -584,16 +653,6 @@ igb_attach(device_t dev)
goto err_late;
}
- /*
- ** Configure Interrupts
- */
- if ((adapter->msix > 1) && (igb_enable_msix))
- error = igb_allocate_msix(adapter);
- else /* MSI or Legacy */
- error = igb_allocate_legacy(adapter);
- if (error)
- goto err_late;
-
/* Setup OS specific network interface */
if (igb_setup_interface(dev, adapter) != 0)
goto err_late;
@@ -632,23 +691,38 @@ igb_attach(device_t dev)
igb_add_hw_stats(adapter);
/* Tell the stack that the interface is not active */
- adapter->ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
+ adapter->ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
+ adapter->ifp->if_drv_flags |= IFF_DRV_OACTIVE;
adapter->led_dev = led_create(igb_led_func, adapter,
device_get_nameunit(dev));
+ /*
+ ** Configure Interrupts
+ */
+ if ((adapter->msix > 1) && (igb_enable_msix))
+ error = igb_allocate_msix(adapter);
+ else /* MSI or Legacy */
+ error = igb_allocate_legacy(adapter);
+ if (error)
+ goto err_late;
+
+#ifdef DEV_NETMAP
+ igb_netmap_attach(adapter);
+#endif /* DEV_NETMAP */
INIT_DEBUGOUT("igb_attach: end");
return (0);
err_late:
+ igb_detach(dev);
igb_free_transmit_structures(adapter);
igb_free_receive_structures(adapter);
igb_release_hw_control(adapter);
- if (adapter->ifp != NULL)
- if_free(adapter->ifp);
err_pci:
igb_free_pci_resources(adapter);
+ if (adapter->ifp != NULL)
+ if_free(adapter->ifp);
free(adapter->mta, M_DEVBUF);
IGB_CORE_LOCK_DESTROY(adapter);
@@ -679,6 +753,8 @@ igb_detach(device_t dev)
return (EBUSY);
}
+ ether_ifdetach(adapter->ifp);
+
if (adapter->led_dev != NULL)
led_destroy(adapter->led_dev);
@@ -710,17 +786,19 @@ igb_detach(device_t dev)
if (adapter->vlan_detach != NULL)
EVENTHANDLER_DEREGISTER(vlan_unconfig, adapter->vlan_detach);
- ether_ifdetach(adapter->ifp);
-
callout_drain(&adapter->timer);
+#ifdef DEV_NETMAP
+ netmap_detach(adapter->ifp);
+#endif /* DEV_NETMAP */
igb_free_pci_resources(adapter);
bus_generic_detach(dev);
if_free(ifp);
igb_free_transmit_structures(adapter);
igb_free_receive_structures(adapter);
- free(adapter->mta, M_DEVBUF);
+ if (adapter->mta != NULL)
+ free(adapter->mta, M_DEVBUF);
IGB_CORE_LOCK_DESTROY(adapter);
@@ -769,6 +847,7 @@ static int
igb_resume(device_t dev)
{
struct adapter *adapter = device_get_softc(dev);
+ struct tx_ring *txr = adapter->tx_rings;
struct ifnet *ifp = adapter->ifp;
IGB_CORE_LOCK(adapter);
@@ -776,15 +855,29 @@ igb_resume(device_t dev)
igb_init_manageability(adapter);
if ((ifp->if_flags & IFF_UP) &&
- (ifp->if_drv_flags & IFF_DRV_RUNNING))
- igb_start(ifp);
-
+ (ifp->if_drv_flags & IFF_DRV_RUNNING) && adapter->link_active) {
+ for (int i = 0; i < adapter->num_queues; i++, txr++) {
+ IGB_TX_LOCK(txr);
+#if __FreeBSD_version >= 800000
+ /* Process the stack queue only if not depleted */
+ if (((txr->queue_status & IGB_QUEUE_DEPLETED) == 0) &&
+ !drbr_empty(ifp, txr->br))
+ igb_mq_start_locked(ifp, txr);
+#else
+ if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
+ igb_start_locked(txr, ifp);
+#endif
+ IGB_TX_UNLOCK(txr);
+ }
+ }
IGB_CORE_UNLOCK(adapter);
return bus_generic_resume(dev);
}
+#if __FreeBSD_version < 800000
+
/*********************************************************************
* Transmit entry point
*
@@ -814,8 +907,8 @@ igb_start_locked(struct tx_ring *txr, struct ifnet *ifp)
igb_txeof(txr);
while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
- if (txr->tx_avail <= IGB_TX_OP_THRESHOLD) {
- ifp->if_drv_flags |= IFF_DRV_OACTIVE;
+ if (txr->tx_avail <= IGB_MAX_SCATTER) {
+ txr->queue_status |= IGB_QUEUE_DEPLETED;
break;
}
IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
@@ -826,10 +919,10 @@ igb_start_locked(struct tx_ring *txr, struct ifnet *ifp)
* NULL on failure. In that event, we can't requeue.
*/
if (igb_xmit(txr, &m_head)) {
- if (m_head == NULL)
- break;
- ifp->if_drv_flags |= IFF_DRV_OACTIVE;
- IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
+ if (m_head != NULL)
+ IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
+ if (txr->tx_avail <= IGB_MAX_SCATTER)
+ txr->queue_status |= IGB_QUEUE_DEPLETED;
break;
}
@@ -838,7 +931,7 @@ igb_start_locked(struct tx_ring *txr, struct ifnet *ifp)
/* Set watchdog on */
txr->watchdog_time = ticks;
- txr->queue_status = IGB_QUEUE_WORKING;
+ txr->queue_status |= IGB_QUEUE_WORKING;
}
}
@@ -861,9 +954,11 @@ igb_start(struct ifnet *ifp)
return;
}
-#if __FreeBSD_version >= 800000
+#else /* __FreeBSD_version >= 800000 */
+
/*
-** Multiqueue Transmit driver
+** Multiqueue Transmit Entry:
+** quick turnaround to the stack
**
*/
static int
@@ -872,83 +967,81 @@ igb_mq_start(struct ifnet *ifp, struct mbuf *m)
struct adapter *adapter = ifp->if_softc;
struct igb_queue *que;
struct tx_ring *txr;
- int i = 0, err = 0;
+ int i, err = 0;
/* Which queue to use */
if ((m->m_flags & M_FLOWID) != 0)
i = m->m_pkthdr.flowid % adapter->num_queues;
-
+ else
+ i = curcpu % adapter->num_queues;
txr = &adapter->tx_rings[i];
que = &adapter->queues[i];
- if (IGB_TX_TRYLOCK(txr)) {
- err = igb_mq_start_locked(ifp, txr, m);
- IGB_TX_UNLOCK(txr);
- } else {
- err = drbr_enqueue(ifp, txr->br, m);
- taskqueue_enqueue(que->tq, &que->que_task);
- }
+ err = drbr_enqueue(ifp, txr->br, m);
+ taskqueue_enqueue(que->tq, &txr->txq_task);
return (err);
}
static int
-igb_mq_start_locked(struct ifnet *ifp, struct tx_ring *txr, struct mbuf *m)
+igb_mq_start_locked(struct ifnet *ifp, struct tx_ring *txr)
{
struct adapter *adapter = txr->adapter;
- struct mbuf *next;
- int err = 0, enq;
+ struct mbuf *buf;
+ int err = 0, enq = 0;
IGB_TX_LOCK_ASSERT(txr);
- if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
- IFF_DRV_RUNNING || adapter->link_active == 0) {
- if (m != NULL)
- err = drbr_enqueue(ifp, txr->br, m);
- return (err);
- }
-
- /* Call cleanup if number of TX descriptors low */
- if (txr->tx_avail <= IGB_TX_CLEANUP_THRESHOLD)
- igb_txeof(txr);
-
- enq = 0;
- if (m == NULL) {
- next = drbr_dequeue(ifp, txr->br);
- } else if (drbr_needs_enqueue(ifp, txr->br)) {
- if ((err = drbr_enqueue(ifp, txr->br, m)) != 0)
- return (err);
- next = drbr_dequeue(ifp, txr->br);
- } else
- next = m;
+ if (((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) ||
+ adapter->link_active == 0)
+ return (ENETDOWN);
/* Process the queue */
- while (next != NULL) {
- if ((err = igb_xmit(txr, &next)) != 0) {
- if (next != NULL)
- err = drbr_enqueue(ifp, txr->br, next);
+ buf = drbr_dequeue(ifp, txr->br);
+ while (buf != NULL) {
+ if ((err = igb_xmit(txr, &buf)) != 0) {
+ if (buf != NULL)
+ err = drbr_enqueue(ifp, txr->br, buf);
break;
}
enq++;
- drbr_stats_update(ifp, next->m_pkthdr.len, next->m_flags);
- ETHER_BPF_MTAP(ifp, next);
+ ifp->if_obytes += buf->m_pkthdr.len;
+ if (buf->m_flags & M_MCAST)
+ ifp->if_omcasts++;
+ ETHER_BPF_MTAP(ifp, buf);
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
break;
- if (txr->tx_avail <= IGB_TX_OP_THRESHOLD) {
- ifp->if_drv_flags |= IFF_DRV_OACTIVE;
- break;
- }
- next = drbr_dequeue(ifp, txr->br);
+ buf = drbr_dequeue(ifp, txr->br);
}
if (enq > 0) {
/* Set the watchdog */
- txr->queue_status = IGB_QUEUE_WORKING;
+ txr->queue_status |= IGB_QUEUE_WORKING;
txr->watchdog_time = ticks;
}
+ if (txr->tx_avail <= IGB_TX_CLEANUP_THRESHOLD)
+ igb_txeof(txr);
+ if (txr->tx_avail <= IGB_MAX_SCATTER)
+ txr->queue_status |= IGB_QUEUE_DEPLETED;
return (err);
}
/*
+ * Called from a taskqueue to drain queued transmit packets.
+ */
+static void
+igb_deferred_mq_start(void *arg, int pending)
+{
+ struct tx_ring *txr = arg;
+ struct adapter *adapter = txr->adapter;
+ struct ifnet *ifp = adapter->ifp;
+
+ IGB_TX_LOCK(txr);
+ if (!drbr_empty(ifp, txr->br))
+ igb_mq_start_locked(ifp, txr);
+ IGB_TX_UNLOCK(txr);
+}
+
+/*
** Flush all ring buffers
*/
static void
@@ -981,11 +1074,12 @@ static int
igb_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
{
struct adapter *adapter = ifp->if_softc;
- struct ifreq *ifr = (struct ifreq *)data;
-#ifdef INET
- struct ifaddr *ifa = (struct ifaddr *)data;
+ struct ifreq *ifr = (struct ifreq *)data;
+#if defined(INET) || defined(INET6)
+ struct ifaddr *ifa = (struct ifaddr *)data;
#endif
- int error = 0;
+ bool avoid_reset = FALSE;
+ int error = 0;
if (adapter->in_detach)
return (error);
@@ -993,24 +1087,26 @@ igb_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
switch (command) {
case SIOCSIFADDR:
#ifdef INET
- if (ifa->ifa_addr->sa_family == AF_INET) {
- /*
- * XXX
- * Since resetting hardware takes a very long time
- * and results in link renegotiation we only
- * initialize the hardware only when it is absolutely
- * required.
- */
+ if (ifa->ifa_addr->sa_family == AF_INET)
+ avoid_reset = TRUE;
+#endif
+#ifdef INET6
+ if (ifa->ifa_addr->sa_family == AF_INET6)
+ avoid_reset = TRUE;
+#endif
+ /*
+ ** Calling init results in link renegotiation,
+ ** so we avoid doing it when possible.
+ */
+ if (avoid_reset) {
ifp->if_flags |= IFF_UP;
- if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
- IGB_CORE_LOCK(adapter);
- igb_init_locked(adapter);
- IGB_CORE_UNLOCK(adapter);
- }
+ if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
+ igb_init(adapter);
+#ifdef INET
if (!(ifp->if_flags & IFF_NOARP))
arp_ifinit(ifp, ifa);
- } else
#endif
+ } else
error = ether_ioctl(ifp, command, data);
break;
case SIOCSIFMTU:
@@ -1069,11 +1165,6 @@ igb_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
}
break;
case SIOCSIFMEDIA:
- /*
- ** As the speed/duplex settings are being
- ** changed, we need toreset the PHY.
- */
- adapter->hw.phy.reset_disable = FALSE;
/* Check SOL/IDER usage */
IGB_CORE_LOCK(adapter);
if (e1000_check_reset_block(&adapter->hw)) {
@@ -1131,6 +1222,10 @@ igb_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
ifp->if_capenable ^= IFCAP_VLAN_HWFILTER;
reinit = 1;
}
+ if (mask & IFCAP_VLAN_HWTSO) {
+ ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
+ reinit = 1;
+ }
if (mask & IFCAP_LRO) {
ifp->if_capenable ^= IFCAP_LRO;
reinit = 1;
@@ -1227,18 +1322,9 @@ igb_init_locked(struct adapter *adapter)
}
igb_initialize_receive_units(adapter);
- /* Use real VLAN Filter support? */
- if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
- if (ifp->if_capenable & IFCAP_VLAN_HWFILTER)
- /* Use real VLAN Filter support */
- igb_setup_vlan_hw_support(adapter);
- else {
- u32 ctrl;
- ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL);
- ctrl |= E1000_CTRL_VME;
- E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl);
- }
- }
+ /* Enable VLAN support */
+ if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
+ igb_setup_vlan_hw_support(adapter);
/* Don't lose promiscuous settings */
igb_set_promisc(adapter);
@@ -1264,12 +1350,13 @@ igb_init_locked(struct adapter *adapter)
else
#endif /* DEVICE_POLLING */
{
- igb_enable_intr(adapter);
- E1000_WRITE_REG(&adapter->hw, E1000_ICS, E1000_ICS_LSC);
+ igb_enable_intr(adapter);
+ E1000_WRITE_REG(&adapter->hw, E1000_ICS, E1000_ICS_LSC);
}
- /* Don't reset the phy next time init gets called */
- adapter->hw.phy.reset_disable = TRUE;
+ /* Set Energy Efficient Ethernet */
+ if (adapter->hw.phy.media_type == e1000_media_type_copper)
+ e1000_set_eee_i350(&adapter->hw);
}
static void
@@ -1294,19 +1381,21 @@ igb_handle_que(void *context, int pending)
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
bool more;
- more = igb_rxeof(que, -1, NULL);
+ more = igb_rxeof(que, adapter->rx_process_limit, NULL);
IGB_TX_LOCK(txr);
- if (igb_txeof(txr))
- more = TRUE;
+ igb_txeof(txr);
#if __FreeBSD_version >= 800000
- if (!drbr_empty(ifp, txr->br))
- igb_mq_start_locked(ifp, txr, NULL);
+ /* Process the stack queue only if not depleted */
+ if (((txr->queue_status & IGB_QUEUE_DEPLETED) == 0) &&
+ !drbr_empty(ifp, txr->br))
+ igb_mq_start_locked(ifp, txr);
#else
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
igb_start_locked(txr, ifp);
#endif
IGB_TX_UNLOCK(txr);
+ /* Do we need another? */
if (more) {
taskqueue_enqueue(que->tq, &que->que_task);
return;
@@ -1330,8 +1419,35 @@ igb_handle_link(void *context, int pending)
{
struct adapter *adapter = context;
+ IGB_CORE_LOCK(adapter);
+ igb_handle_link_locked(adapter);
+ IGB_CORE_UNLOCK(adapter);
+}
+
+static void
+igb_handle_link_locked(struct adapter *adapter)
+{
+ struct tx_ring *txr = adapter->tx_rings;
+ struct ifnet *ifp = adapter->ifp;
+
+ IGB_CORE_LOCK_ASSERT(adapter);
adapter->hw.mac.get_link_status = 1;
igb_update_link_status(adapter);
+ if ((ifp->if_drv_flags & IFF_DRV_RUNNING) && adapter->link_active) {
+ for (int i = 0; i < adapter->num_queues; i++, txr++) {
+ IGB_TX_LOCK(txr);
+#if __FreeBSD_version >= 800000
+ /* Process the stack queue only if not depleted */
+ if (((txr->queue_status & IGB_QUEUE_DEPLETED) == 0) &&
+ !drbr_empty(ifp, txr->br))
+ igb_mq_start_locked(ifp, txr);
+#else
+ if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
+ igb_start_locked(txr, ifp);
+#endif
+ IGB_TX_UNLOCK(txr);
+ }
+ }
}
/*********************************************************************
@@ -1379,12 +1495,6 @@ igb_irq_fast(void *arg)
}
#ifdef DEVICE_POLLING
-/*********************************************************************
- *
- * Legacy polling routine : if using this code you MUST be sure that
- * multiqueue is not defined, ie, set igb_num_queues to 1.
- *
- *********************************************************************/
#if __FreeBSD_version >= 800000
#define POLL_RETURN_COUNT(a) (a)
static int
@@ -1395,8 +1505,8 @@ static void
igb_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
{
struct adapter *adapter = ifp->if_softc;
- struct igb_queue *que = adapter->queues;
- struct tx_ring *txr = adapter->tx_rings;
+ struct igb_queue *que;
+ struct tx_ring *txr;
u32 reg_icr, rx_done = 0;
u32 loop = IGB_MAX_LOOP;
bool more;
@@ -1411,34 +1521,40 @@ igb_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
/* Link status change */
if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))
- igb_handle_link(adapter, 0);
+ igb_handle_link_locked(adapter);
if (reg_icr & E1000_ICR_RXO)
adapter->rx_overruns++;
}
IGB_CORE_UNLOCK(adapter);
- igb_rxeof(que, count, &rx_done);
+ for (int i = 0; i < adapter->num_queues; i++) {
+ que = &adapter->queues[i];
+ txr = que->txr;
- IGB_TX_LOCK(txr);
- do {
- more = igb_txeof(txr);
- } while (loop-- && more);
+ igb_rxeof(que, count, &rx_done);
+
+ IGB_TX_LOCK(txr);
+ do {
+ more = igb_txeof(txr);
+ } while (loop-- && more);
#if __FreeBSD_version >= 800000
- if (!drbr_empty(ifp, txr->br))
- igb_mq_start_locked(ifp, txr, NULL);
+ if (!drbr_empty(ifp, txr->br))
+ igb_mq_start_locked(ifp, txr);
#else
- if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
- igb_start_locked(txr, ifp);
+ if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
+ igb_start_locked(txr, ifp);
#endif
- IGB_TX_UNLOCK(txr);
+ IGB_TX_UNLOCK(txr);
+ }
+
return POLL_RETURN_COUNT(rx_done);
}
#endif /* DEVICE_POLLING */
/*********************************************************************
*
- * MSIX TX Interrupt Service routine
+ * MSIX Que Interrupt Service routine
*
**********************************************************************/
static void
@@ -1446,21 +1562,31 @@ igb_msix_que(void *arg)
{
struct igb_queue *que = arg;
struct adapter *adapter = que->adapter;
+ struct ifnet *ifp = adapter->ifp;
struct tx_ring *txr = que->txr;
struct rx_ring *rxr = que->rxr;
u32 newitr = 0;
- bool more_tx, more_rx;
+ bool more_rx;
E1000_WRITE_REG(&adapter->hw, E1000_EIMC, que->eims);
++que->irqs;
IGB_TX_LOCK(txr);
- more_tx = igb_txeof(txr);
+ igb_txeof(txr);
+#if __FreeBSD_version >= 800000
+ /* Process the stack queue only if not depleted */
+ if (((txr->queue_status & IGB_QUEUE_DEPLETED) == 0) &&
+ !drbr_empty(ifp, txr->br))
+ igb_mq_start_locked(ifp, txr);
+#else
+ if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
+ igb_start_locked(txr, ifp);
+#endif
IGB_TX_UNLOCK(txr);
more_rx = igb_rxeof(que, adapter->rx_process_limit, NULL);
- if (igb_enable_aim == FALSE)
+ if (adapter->enable_aim == FALSE)
goto no_calc;
/*
** Do Adaptive Interrupt Moderation:
@@ -1513,7 +1639,7 @@ igb_msix_que(void *arg)
no_calc:
/* Schedule a clean task if needed*/
- if (more_tx || more_rx)
+ if (more_rx)
taskqueue_enqueue(que->tq, &que->que_task);
else
/* Reenable this interrupt */
@@ -1560,7 +1686,6 @@ static void
igb_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct adapter *adapter = ifp->if_softc;
- u_char fiber_type = IFM_1000_SX;
INIT_DEBUGOUT("igb_media_status: begin");
@@ -1577,26 +1702,31 @@ igb_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
ifmr->ifm_status |= IFM_ACTIVE;
- if ((adapter->hw.phy.media_type == e1000_media_type_fiber) ||
- (adapter->hw.phy.media_type == e1000_media_type_internal_serdes))
- ifmr->ifm_active |= fiber_type | IFM_FDX;
- else {
- switch (adapter->link_speed) {
- case 10:
- ifmr->ifm_active |= IFM_10_T;
- break;
- case 100:
- ifmr->ifm_active |= IFM_100_TX;
- break;
- case 1000:
- ifmr->ifm_active |= IFM_1000_T;
- break;
- }
- if (adapter->link_duplex == FULL_DUPLEX)
- ifmr->ifm_active |= IFM_FDX;
+ switch (adapter->link_speed) {
+ case 10:
+ ifmr->ifm_active |= IFM_10_T;
+ break;
+ case 100:
+ /*
+ ** Support for 100Mb SFP - these are Fiber
+ ** but the media type appears as serdes
+ */
+ if (adapter->hw.phy.media_type ==
+ e1000_media_type_internal_serdes)
+ ifmr->ifm_active |= IFM_100_FX;
else
- ifmr->ifm_active |= IFM_HDX;
+ ifmr->ifm_active |= IFM_100_TX;
+ break;
+ case 1000:
+ ifmr->ifm_active |= IFM_1000_T;
+ break;
}
+
+ if (adapter->link_duplex == FULL_DUPLEX)
+ ifmr->ifm_active |= IFM_FDX;
+ else
+ ifmr->ifm_active |= IFM_HDX;
+
IGB_CORE_UNLOCK(adapter);
}
@@ -1661,10 +1791,8 @@ igb_media_change(struct ifnet *ifp)
/*********************************************************************
*
* This routine maps the mbufs to Advanced TX descriptors.
- * used by the 82575 adapter.
*
**********************************************************************/
-
static int
igb_xmit(struct tx_ring *txr, struct mbuf **m_headp)
{
@@ -1673,35 +1801,123 @@ igb_xmit(struct tx_ring *txr, struct mbuf **m_headp)
bus_dmamap_t map;
struct igb_tx_buffer *tx_buffer, *tx_buffer_mapped;
union e1000_adv_tx_desc *txd = NULL;
- struct mbuf *m_head;
- u32 olinfo_status = 0, cmd_type_len = 0;
- int nsegs, i, j, error, first, last = 0;
- u32 hdrlen = 0;
-
- m_head = *m_headp;
-
+ struct mbuf *m_head = *m_headp;
+ struct ether_vlan_header *eh = NULL;
+ struct ip *ip = NULL;
+ struct tcphdr *th = NULL;
+ u32 hdrlen, cmd_type_len, olinfo_status = 0;
+ int ehdrlen, poff;
+ int nsegs, i, first, last = 0;
+ int error, do_tso, remap = 1;
/* Set basic descriptor constants */
- cmd_type_len |= E1000_ADVTXD_DTYP_DATA;
+ cmd_type_len = E1000_ADVTXD_DTYP_DATA;
cmd_type_len |= E1000_ADVTXD_DCMD_IFCS | E1000_ADVTXD_DCMD_DEXT;
if (m_head->m_flags & M_VLANTAG)
cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
- /*
- * Force a cleanup if number of TX descriptors
- * available hits the threshold
- */
- if (txr->tx_avail <= IGB_TX_CLEANUP_THRESHOLD) {
- igb_txeof(txr);
- /* Now do we at least have a minimal? */
- if (txr->tx_avail <= IGB_TX_OP_THRESHOLD) {
- txr->no_desc_avail++;
+retry:
+ m_head = *m_headp;
+ do_tso = ((m_head->m_pkthdr.csum_flags & CSUM_TSO) != 0);
+ hdrlen = ehdrlen = poff = 0;
+
+ /*
+ * Intel recommends entire IP/TCP header length reside in a single
+ * buffer. If multiple descriptors are used to describe the IP and
+ * TCP header, each descriptor should describe one or more
+ * complete headers; descriptors referencing only parts of headers
+ * are not supported. If all layer headers are not coalesced into
+ * a single buffer, each buffer should not cross a 4KB boundary,
+ * or be larger than the maximum read request size.
+ * Controller also requires modifing IP/TCP header to make TSO work
+ * so we firstly get a writable mbuf chain then coalesce ethernet/
+ * IP/TCP header into a single buffer to meet the requirement of
+ * controller. This also simplifies IP/TCP/UDP checksum offloading
+ * which also has similiar restrictions.
+ */
+ if (do_tso || m_head->m_pkthdr.csum_flags & CSUM_OFFLOAD) {
+ if (do_tso || (m_head->m_next != NULL &&
+ m_head->m_pkthdr.csum_flags & CSUM_OFFLOAD)) {
+ if (M_WRITABLE(*m_headp) == 0) {
+ m_head = m_dup(*m_headp, M_NOWAIT);
+ m_freem(*m_headp);
+ if (m_head == NULL) {
+ *m_headp = NULL;
+ return (ENOBUFS);
+ }
+ *m_headp = m_head;
+ }
+ }
+ /*
+ * Assume IPv4, we don't have TSO/checksum offload support
+ * for IPv6 yet.
+ */
+ ehdrlen = sizeof(struct ether_header);
+ m_head = m_pullup(m_head, ehdrlen);
+ if (m_head == NULL) {
+ *m_headp = NULL;
return (ENOBUFS);
}
+ eh = mtod(m_head, struct ether_vlan_header *);
+ if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
+ ehdrlen = sizeof(struct ether_vlan_header);
+ m_head = m_pullup(m_head, ehdrlen);
+ if (m_head == NULL) {
+ *m_headp = NULL;
+ return (ENOBUFS);
+ }
+ }
+ m_head = m_pullup(m_head, ehdrlen + sizeof(struct ip));
+ if (m_head == NULL) {
+ *m_headp = NULL;
+ return (ENOBUFS);
+ }
+ ip = (struct ip *)(mtod(m_head, char *) + ehdrlen);
+ poff = ehdrlen + (ip->ip_hl << 2);
+ if (do_tso) {
+ m_head = m_pullup(m_head, poff + sizeof(struct tcphdr));
+ if (m_head == NULL) {
+ *m_headp = NULL;
+ return (ENOBUFS);
+ }
+ /*
+ * The pseudo TCP checksum does not include TCP payload
+ * length so driver should recompute the checksum here
+ * what hardware expect to see. This is adherence of
+ * Microsoft's Large Send specification.
+ */
+ th = (struct tcphdr *)(mtod(m_head, char *) + poff);
+ th->th_sum = in_pseudo(ip->ip_src.s_addr,
+ ip->ip_dst.s_addr, htons(IPPROTO_TCP));
+ /* Keep track of the full header length */
+ hdrlen = poff + (th->th_off << 2);
+ } else if (m_head->m_pkthdr.csum_flags & CSUM_TCP) {
+ m_head = m_pullup(m_head, poff + sizeof(struct tcphdr));
+ if (m_head == NULL) {
+ *m_headp = NULL;
+ return (ENOBUFS);
+ }
+ th = (struct tcphdr *)(mtod(m_head, char *) + poff);
+ m_head = m_pullup(m_head, poff + (th->th_off << 2));
+ if (m_head == NULL) {
+ *m_headp = NULL;
+ return (ENOBUFS);
+ }
+ ip = (struct ip *)(mtod(m_head, char *) + ehdrlen);
+ th = (struct tcphdr *)(mtod(m_head, char *) + poff);
+ } else if (m_head->m_pkthdr.csum_flags & CSUM_UDP) {
+ m_head = m_pullup(m_head, poff + sizeof(struct udphdr));
+ if (m_head == NULL) {
+ *m_headp = NULL;
+ return (ENOBUFS);
+ }
+ ip = (struct ip *)(mtod(m_head, char *) + ehdrlen);
+ }
+ *m_headp = m_head;
}
/*
- * Map the packet for DMA.
+ * Map the packet for DMA
*
* Capture the first descriptor index,
* this descriptor will have the index
@@ -1716,10 +1932,19 @@ igb_xmit(struct tx_ring *txr, struct mbuf **m_headp)
error = bus_dmamap_load_mbuf_sg(txr->txtag, map,
*m_headp, segs, &nsegs, BUS_DMA_NOWAIT);
- if (error == EFBIG) {
+ /*
+ * There are two types of errors we can (try) to handle:
+ * - EFBIG means the mbuf chain was too long and bus_dma ran
+ * out of segments. Defragment the mbuf chain and try again.
+ * - ENOMEM means bus_dma could not obtain enough bounce buffers
+ * at this point in time. Defer sending and try again later.
+ * All other errors, in particular EINVAL, are fatal and prevent the
+ * mbuf chain from ever going through. Drop it and report error.
+ */
+ if (error == EFBIG && remap) {
struct mbuf *m;
- m = m_defrag(*m_headp, M_DONTWAIT);
+ m = m_defrag(*m_headp, M_NOWAIT);
if (m == NULL) {
adapter->mbuf_defrag_failed++;
m_freem(*m_headp);
@@ -1728,19 +1953,9 @@ igb_xmit(struct tx_ring *txr, struct mbuf **m_headp)
}
*m_headp = m;
- /* Try it again */
- error = bus_dmamap_load_mbuf_sg(txr->txtag, map,
- *m_headp, segs, &nsegs, BUS_DMA_NOWAIT);
-
- if (error == ENOMEM) {
- adapter->no_tx_dma_setup++;
- return (error);
- } else if (error != 0) {
- adapter->no_tx_dma_setup++;
- m_freem(*m_headp);
- *m_headp = NULL;
- return (error);
- }
+ /* Try it again, but only once */
+ remap = 0;
+ goto retry;
} else if (error == ENOMEM) {
adapter->no_tx_dma_setup++;
return (error);
@@ -1751,29 +1966,35 @@ igb_xmit(struct tx_ring *txr, struct mbuf **m_headp)
return (error);
}
- /* Check again to be sure we have enough descriptors */
- if (nsegs > (txr->tx_avail - 2)) {
+ /*
+ ** Make sure we don't overrun the ring,
+ ** we need nsegs descriptors and one for
+ ** the context descriptor used for the
+ ** offloads.
+ */
+ if ((nsegs + 1) > (txr->tx_avail - 2)) {
txr->no_desc_avail++;
bus_dmamap_unload(txr->txtag, map);
return (ENOBUFS);
}
m_head = *m_headp;
- /*
- * Set up the context descriptor:
- * used when any hardware offload is done.
- * This includes CSUM, VLAN, and TSO. It
- * will use the first descriptor.
+ /* Do hardware assists:
+ * Set up the context descriptor, used
+ * when any hardware offload is done.
+ * This includes CSUM, VLAN, and TSO.
+ * It will use the first descriptor.
*/
- if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
- if (igb_tso_setup(txr, m_head, &hdrlen)) {
+
+ if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
+ if (igb_tso_setup(txr, m_head, ehdrlen, ip, th)) {
cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
} else
- return (ENXIO);
+ return (ENXIO);
} else if (igb_tx_ctx_setup(txr, m_head))
- olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
+ olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
/* Calculate payload length */
olinfo_status |= ((m_head->m_pkthdr.len - hdrlen)
@@ -1785,7 +2006,7 @@ igb_xmit(struct tx_ring *txr, struct mbuf **m_headp)
/* Set up our transmit descriptors */
i = txr->next_avail_desc;
- for (j = 0; j < nsegs; j++) {
+ for (int j = 0; j < nsegs; j++) {
bus_size_t seg_len;
bus_addr_t seg_addr;
@@ -1806,8 +2027,14 @@ igb_xmit(struct tx_ring *txr, struct mbuf **m_headp)
txr->next_avail_desc = i;
txr->tx_avail -= nsegs;
-
tx_buffer->m_head = m_head;
+
+ /*
+ ** Here we swap the map so the last descriptor,
+ ** which gets the completion interrupt has the
+ ** real map, and the first descriptor gets the
+ ** unused map from this descriptor.
+ */
tx_buffer_mapped->map = tx_buffer->map;
tx_buffer->map = map;
bus_dmamap_sync(txr->txtag, map, BUS_DMASYNC_PREWRITE);
@@ -1825,6 +2052,7 @@ igb_xmit(struct tx_ring *txr, struct mbuf **m_headp)
*/
tx_buffer = &txr->tx_buffers[first];
tx_buffer->next_eop = last;
+ /* Update the watchdog time early and often */
txr->watchdog_time = ticks;
/*
@@ -1837,9 +2065,7 @@ igb_xmit(struct tx_ring *txr, struct mbuf **m_headp)
++txr->tx_packets;
return (0);
-
}
-
static void
igb_set_promisc(struct adapter *adapter)
{
@@ -1847,7 +2073,7 @@ igb_set_promisc(struct adapter *adapter)
struct e1000_hw *hw = &adapter->hw;
u32 reg;
- if (hw->mac.type == e1000_vfadapt) {
+ if (adapter->vf_ifp) {
e1000_promisc_set_vf(hw, e1000_promisc_enabled);
return;
}
@@ -1869,7 +2095,7 @@ igb_disable_promisc(struct adapter *adapter)
struct e1000_hw *hw = &adapter->hw;
u32 reg;
- if (hw->mac.type == e1000_vfadapt) {
+ if (adapter->vf_ifp) {
e1000_promisc_set_vf(hw, e1000_promisc_disabled);
return;
}
@@ -1946,7 +2172,10 @@ igb_local_timer(void *arg)
{
struct adapter *adapter = arg;
device_t dev = adapter->dev;
+ struct ifnet *ifp = adapter->ifp;
struct tx_ring *txr = adapter->tx_rings;
+ struct igb_queue *que = adapter->queues;
+ int hung = 0, busy = 0;
IGB_CORE_LOCK_ASSERT(adapter);
@@ -1954,23 +2183,34 @@ igb_local_timer(void *arg)
igb_update_link_status(adapter);
igb_update_stats_counters(adapter);
- /*
- ** If flow control has paused us since last checking
- ** it invalidates the watchdog timing, so dont run it.
- */
- if (adapter->pause_frames) {
- adapter->pause_frames = 0;
- goto out;
- }
-
/*
- ** Watchdog: check for time since any descriptor was cleaned
+ ** Check the TX queues status
+ ** - central locked handling of OACTIVE
+ ** - watchdog only if all queues show hung
*/
- for (int i = 0; i < adapter->num_queues; i++, txr++)
- if (txr->queue_status == IGB_QUEUE_HUNG)
- goto timeout;
-out:
+ for (int i = 0; i < adapter->num_queues; i++, que++, txr++) {
+ if ((txr->queue_status & IGB_QUEUE_HUNG) &&
+ (adapter->pause_frames == 0))
+ ++hung;
+ if (txr->queue_status & IGB_QUEUE_DEPLETED)
+ ++busy;
+ if ((txr->queue_status & IGB_QUEUE_IDLE) == 0)
+ taskqueue_enqueue(que->tq, &que->que_task);
+ }
+ if (hung == adapter->num_queues)
+ goto timeout;
+ if (busy == adapter->num_queues)
+ ifp->if_drv_flags |= IFF_DRV_OACTIVE;
+ else if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) &&
+ (busy < adapter->num_queues))
+ ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
+
+ adapter->pause_frames = 0;
callout_reset(&adapter->timer, hz, igb_local_timer, adapter);
+#ifndef DEVICE_POLLING
+ /* Schedule all queue interrupts - deadlock protection */
+ E1000_WRITE_REG(&adapter->hw, E1000_EICS, adapter->que_mask);
+#endif
return;
timeout:
@@ -1989,11 +2229,15 @@ timeout:
static void
igb_update_link_status(struct adapter *adapter)
{
- struct e1000_hw *hw = &adapter->hw;
- struct ifnet *ifp = adapter->ifp;
- device_t dev = adapter->dev;
- struct tx_ring *txr = adapter->tx_rings;
- u32 link_check = 0;
+ struct e1000_hw *hw = &adapter->hw;
+ struct e1000_fc_info *fc = &hw->fc;
+ struct ifnet *ifp = adapter->ifp;
+ device_t dev = adapter->dev;
+ struct tx_ring *txr = adapter->tx_rings;
+ u32 link_check, thstat, ctrl;
+ char *flowctl = NULL;
+
+ link_check = thstat = ctrl = 0;
/* Get the cached link value or read for real */
switch (hw->phy.media_type) {
@@ -2023,17 +2267,44 @@ igb_update_link_status(struct adapter *adapter)
break;
}
+ /* Check for thermal downshift or shutdown */
+ if (hw->mac.type == e1000_i350) {
+ thstat = E1000_READ_REG(hw, E1000_THSTAT);
+ ctrl = E1000_READ_REG(hw, E1000_CTRL_EXT);
+ }
+
+ /* Get the flow control for display */
+ switch (fc->current_mode) {
+ case e1000_fc_rx_pause:
+ flowctl = "RX";
+ break;
+ case e1000_fc_tx_pause:
+ flowctl = "TX";
+ break;
+ case e1000_fc_full:
+ flowctl = "Full";
+ break;
+ case e1000_fc_none:
+ default:
+ flowctl = "None";
+ break;
+ }
+
/* Now we check if a transition has happened */
if (link_check && (adapter->link_active == 0)) {
e1000_get_speed_and_duplex(&adapter->hw,
&adapter->link_speed, &adapter->link_duplex);
if (bootverbose)
- device_printf(dev, "Link is up %d Mbps %s\n",
+ device_printf(dev, "Link is up %d Mbps %s,"
+ " Flow Control: %s\n",
adapter->link_speed,
((adapter->link_duplex == FULL_DUPLEX) ?
- "Full Duplex" : "Half Duplex"));
+ "Full Duplex" : "Half Duplex"), flowctl);
adapter->link_active = 1;
ifp->if_baudrate = adapter->link_speed * 1000000;
+ if ((ctrl & E1000_CTRL_EXT_LINK_MODE_GMII) &&
+ (thstat & E1000_THSTAT_LINK_THROTTLE))
+ device_printf(dev, "Link: thermal downshift\n");
/* This can sleep */
if_link_state_change(ifp, LINK_STATE_UP);
} else if (!link_check && (adapter->link_active == 1)) {
@@ -2041,10 +2312,13 @@ igb_update_link_status(struct adapter *adapter)
adapter->link_duplex = 0;
if (bootverbose)
device_printf(dev, "Link is Down\n");
+ if ((ctrl & E1000_CTRL_EXT_LINK_MODE_GMII) &&
+ (thstat & E1000_THSTAT_PWR_DOWN))
+ device_printf(dev, "Link: thermal shutdown\n");
adapter->link_active = 0;
/* This can sleep */
if_link_state_change(ifp, LINK_STATE_DOWN);
- /* Turn off watchdogs */
+ /* Reset queue state */
for (int i = 0; i < adapter->num_queues; i++, txr++)
txr->queue_status = IGB_QUEUE_IDLE;
}
@@ -2073,9 +2347,10 @@ igb_stop(void *arg)
callout_stop(&adapter->timer);
/* Tell the stack that the interface is no longer active */
- ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
+ ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
+ ifp->if_drv_flags |= IFF_DRV_OACTIVE;
- /* Unarm watchdog timer. */
+ /* Disarm watchdog timer. */
for (int i = 0; i < adapter->num_queues; i++, txr++) {
IGB_TX_LOCK(txr);
txr->queue_status = IGB_QUEUE_IDLE;
@@ -2123,6 +2398,13 @@ igb_identify_hardware(struct adapter *adapter)
/* Set MAC type early for PCI setup */
e1000_set_mac_type(&adapter->hw);
+
+ /* Are we a VF device? */
+ if ((adapter->hw.mac.type == e1000_vfadapt) ||
+ (adapter->hw.mac.type == e1000_vfadapt_i350))
+ adapter->vf_ifp = 1;
+ else
+ adapter->vf_ifp = 0;
}
static int
@@ -2163,6 +2445,7 @@ igb_allocate_legacy(struct adapter *adapter)
{
device_t dev = adapter->dev;
struct igb_queue *que = adapter->queues;
+ struct tx_ring *txr = adapter->tx_rings;
int error, rid = 0;
/* Turn off all interrupts */
@@ -2181,6 +2464,10 @@ igb_allocate_legacy(struct adapter *adapter)
return (ENXIO);
}
+#if __FreeBSD_version >= 800000
+ TASK_INIT(&txr->txq_task, 0, igb_deferred_mq_start, txr);
+#endif
+
/*
* Try allocating a fast interrupt and the associated deferred
* processing contexts.
@@ -2218,6 +2505,9 @@ igb_allocate_msix(struct adapter *adapter)
struct igb_queue *que = adapter->queues;
int error, rid, vector = 0;
+ /* Be sure to start with all interrupts disabled */
+ E1000_WRITE_REG(&adapter->hw, E1000_IMC, ~0);
+ E1000_WRITE_FLUSH(&adapter->hw);
for (int i = 0; i < adapter->num_queues; i++, vector++, que++) {
rid = vector +1;
@@ -2249,11 +2539,22 @@ igb_allocate_msix(struct adapter *adapter)
** Bind the msix vector, and thus the
** rings to the corresponding cpu.
*/
- if (adapter->num_queues > 1)
- bus_bind_intr(dev, que->res, i);
+ if (adapter->num_queues > 1) {
+ if (igb_last_bind_cpu < 0)
+ igb_last_bind_cpu = CPU_FIRST();
+ bus_bind_intr(dev, que->res, igb_last_bind_cpu);
+ device_printf(dev,
+ "Bound queue %d to cpu %d\n",
+ i,igb_last_bind_cpu);
+ igb_last_bind_cpu = CPU_NEXT(igb_last_bind_cpu);
+ }
+#if __FreeBSD_version >= 800000
+ TASK_INIT(&que->txr->txq_task, 0, igb_deferred_mq_start,
+ que->txr);
+#endif
/* Make tasklet for deferred handling */
TASK_INIT(&que->que_task, 0, igb_handle_que, que);
- que->tq = taskqueue_create_fast("igb_que", M_NOWAIT,
+ que->tq = taskqueue_create("igb_que", M_NOWAIT,
taskqueue_thread_enqueue, &que->tq);
taskqueue_start_threads(&que->tq, 1, PI_NET, "%s que",
device_get_nameunit(adapter->dev));
@@ -2292,7 +2593,7 @@ igb_configure_queues(struct adapter *adapter)
u32 tmp, ivar = 0, newitr = 0;
/* First turn on RSS capability */
- if (adapter->hw.mac.type > e1000_82575)
+ if (adapter->hw.mac.type != e1000_82575)
E1000_WRITE_REG(hw, E1000_GPIE,
E1000_GPIE_MSIX_MODE | E1000_GPIE_EIAME |
E1000_GPIE_PBA | E1000_GPIE_NSICR);
@@ -2300,7 +2601,11 @@ igb_configure_queues(struct adapter *adapter)
/* Turn on MSIX */
switch (adapter->hw.mac.type) {
case e1000_82580:
+ case e1000_i350:
+ case e1000_i210:
+ case e1000_i211:
case e1000_vfadapt:
+ case e1000_vfadapt_i350:
/* RX entries */
for (int i = 0; i < adapter->num_queues; i++) {
u32 index = i >> 1;
@@ -2328,13 +2633,12 @@ igb_configure_queues(struct adapter *adapter)
ivar |= (que->msix | E1000_IVAR_VALID) << 8;
}
E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
- adapter->eims_mask |= que->eims;
+ adapter->que_mask |= que->eims;
}
/* And for the link interrupt */
ivar = (adapter->linkvec | E1000_IVAR_VALID) << 8;
adapter->link_mask = 1 << adapter->linkvec;
- adapter->eims_mask |= adapter->link_mask;
E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
break;
case e1000_82576:
@@ -2351,7 +2655,7 @@ igb_configure_queues(struct adapter *adapter)
ivar |= (que->msix | E1000_IVAR_VALID) << 16;
}
E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
- adapter->eims_mask |= que->eims;
+ adapter->que_mask |= que->eims;
}
/* TX entries */
for (int i = 0; i < adapter->num_queues; i++) {
@@ -2366,13 +2670,12 @@ igb_configure_queues(struct adapter *adapter)
ivar |= (que->msix | E1000_IVAR_VALID) << 24;
}
E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
- adapter->eims_mask |= que->eims;
+ adapter->que_mask |= que->eims;
}
/* And for the link interrupt */
ivar = (adapter->linkvec | E1000_IVAR_VALID) << 8;
adapter->link_mask = 1 << adapter->linkvec;
- adapter->eims_mask |= adapter->link_mask;
E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
break;
@@ -2393,14 +2696,13 @@ igb_configure_queues(struct adapter *adapter)
que->eims = tmp;
E1000_WRITE_REG_ARRAY(hw, E1000_MSIXBM(0),
i, que->eims);
- adapter->eims_mask |= que->eims;
+ adapter->que_mask |= que->eims;
}
/* Link */
E1000_WRITE_REG(hw, E1000_MSIXBM(adapter->linkvec),
E1000_EIMS_OTHER);
adapter->link_mask |= E1000_EIMS_OTHER;
- adapter->eims_mask |= adapter->link_mask;
default:
break;
}
@@ -2461,13 +2763,24 @@ igb_free_pci_resources(struct adapter *adapter)
else
(adapter->msix != 0) ? (rid = 1):(rid = 0);
+ que = adapter->queues;
if (adapter->tag != NULL) {
+ taskqueue_drain(que->tq, &adapter->link_task);
bus_teardown_intr(dev, adapter->res, adapter->tag);
adapter->tag = NULL;
}
if (adapter->res != NULL)
bus_release_resource(dev, SYS_RES_IRQ, rid, adapter->res);
+ for (int i = 0; i < adapter->num_queues; i++, que++) {
+ if (que->tq != NULL) {
+#if __FreeBSD_version >= 800000
+ taskqueue_drain(que->tq, &que->txr->txq_task);
+#endif
+ taskqueue_drain(que->tq, &que->que_task);
+ taskqueue_free(que->tq);
+ }
+ }
mem:
if (adapter->msix)
pci_release_msi(dev);
@@ -2489,7 +2802,7 @@ static int
igb_setup_msix(struct adapter *adapter)
{
device_t dev = adapter->dev;
- int rid, want, queues, msgs;
+ int rid, want, queues, msgs, maxqueues;
/* tuneable override */
if (igb_enable_msix == 0)
@@ -2520,16 +2833,29 @@ igb_setup_msix(struct adapter *adapter)
/* Manual override */
if (igb_num_queues != 0)
queues = igb_num_queues;
- if (queues > 8) /* max queues */
- queues = 8;
- /* Can have max of 4 queues on 82575 */
- if ((adapter->hw.mac.type == e1000_82575) && (queues > 4))
- queues = 4;
-
- /* Limit the VF adapter to one queue */
- if (adapter->hw.mac.type == e1000_vfadapt)
- queues = 1;
+ /* Sanity check based on HW */
+ switch (adapter->hw.mac.type) {
+ case e1000_82575:
+ maxqueues = 4;
+ break;
+ case e1000_82576:
+ case e1000_82580:
+ case e1000_i350:
+ maxqueues = 8;
+ break;
+ case e1000_i210:
+ maxqueues = 4;
+ break;
+ case e1000_i211:
+ maxqueues = 2;
+ break;
+ default: /* VF interfaces */
+ maxqueues = 1;
+ break;
+ }
+ if (queues > maxqueues)
+ queues = maxqueues;
/*
** One vector (RX/TX pair) per queue
@@ -2543,7 +2869,7 @@ igb_setup_msix(struct adapter *adapter)
"MSIX Configuration Problem, "
"%d vectors configured, but %d queues wanted!\n",
msgs, want);
- return (ENXIO);
+ return (0);
}
if ((msgs) && pci_alloc_msix(dev, &msgs) == 0) {
device_printf(adapter->dev,
@@ -2553,9 +2879,11 @@ igb_setup_msix(struct adapter *adapter)
}
msi:
msgs = pci_msi_count(dev);
- if (msgs == 1 && pci_alloc_msi(dev, &msgs) == 0)
- device_printf(adapter->dev,"Using MSI interrupt\n");
- return (msgs);
+ if (msgs == 1 && pci_alloc_msi(dev, &msgs) == 0) {
+ device_printf(adapter->dev," Using MSI interrupt\n");
+ return (msgs);
+ }
+ return (0);
}
/*********************************************************************
@@ -2589,10 +2917,18 @@ igb_reset(struct adapter *adapter)
break;
case e1000_82576:
case e1000_vfadapt:
- pba = E1000_PBA_64K;
+ pba = E1000_READ_REG(hw, E1000_RXPBS);
+ pba &= E1000_RXPBS_SIZE_MASK_82576;
break;
case e1000_82580:
- pba = E1000_PBA_35K;
+ case e1000_i350:
+ case e1000_vfadapt_i350:
+ pba = E1000_READ_REG(hw, E1000_RXPBS);
+ pba = e1000_rxpbs_adjust_82580(pba);
+ break;
+ case e1000_i210:
+ case e1000_i211:
+ pba = E1000_PBA_34K;
default:
break;
}
@@ -2647,14 +2983,10 @@ igb_reset(struct adapter *adapter)
fc->pause_time = IGB_FC_PAUSE_TIME;
fc->send_xon = TRUE;
-
- /* Set Flow control, use the tunable location if sane */
- if ((igb_fc_setting >= 0) && (igb_fc_setting < 4))
- fc->requested_mode = igb_fc_setting;
+ if (adapter->fc)
+ fc->requested_mode = adapter->fc;
else
- fc->requested_mode = e1000_fc_none;
-
- fc->current_mode = fc->requested_mode;
+ fc->requested_mode = e1000_fc_default;
/* Issue a global reset */
e1000_reset_hw(hw);
@@ -2663,28 +2995,48 @@ igb_reset(struct adapter *adapter)
if (e1000_init_hw(hw) < 0)
device_printf(dev, "Hardware Initialization Failed\n");
- if (hw->mac.type == e1000_82580) {
- u32 reg;
+ /* Setup DMA Coalescing */
+ if ((hw->mac.type > e1000_82580) &&
+ (hw->mac.type != e1000_i211)) {
+ u32 dmac;
+ u32 reg = ~E1000_DMACR_DMAC_EN;
- hwm = (pba << 10) - (2 * adapter->max_frame_size);
- /*
- * 0x80000000 - enable DMA COAL
- * 0x10000000 - use L0s as low power
- * 0x20000000 - use L1 as low power
- * X << 16 - exit dma coal when rx data exceeds X kB
- * Y - upper limit to stay in dma coal in units of 32usecs
- */
- E1000_WRITE_REG(hw, E1000_DMACR,
- 0xA0000006 | ((hwm << 6) & 0x00FF0000));
+ if (adapter->dmac == 0) { /* Disabling it */
+ E1000_WRITE_REG(hw, E1000_DMACR, reg);
+ goto reset_out;
+ }
- /* set hwm to PBA - 2 * max frame size */
- E1000_WRITE_REG(hw, E1000_FCRTC, hwm);
- /*
- * This sets the time to wait before requesting transition to
- * low power state to number of usecs needed to receive 1 512
- * byte frame at gigabit line rate
- */
- E1000_WRITE_REG(hw, E1000_DMCTLX, 4);
+ /* Set starting thresholds */
+ E1000_WRITE_REG(hw, E1000_DMCTXTH, 0);
+ E1000_WRITE_REG(hw, E1000_DMCRTRH, 0);
+
+ hwm = 64 * pba - adapter->max_frame_size / 16;
+ if (hwm < 64 * (pba - 6))
+ hwm = 64 * (pba - 6);
+ reg = E1000_READ_REG(hw, E1000_FCRTC);
+ reg &= ~E1000_FCRTC_RTH_COAL_MASK;
+ reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
+ & E1000_FCRTC_RTH_COAL_MASK);
+ E1000_WRITE_REG(hw, E1000_FCRTC, reg);
+
+
+ dmac = pba - adapter->max_frame_size / 512;
+ if (dmac < pba - 10)
+ dmac = pba - 10;
+ reg = E1000_READ_REG(hw, E1000_DMACR);
+ reg &= ~E1000_DMACR_DMACTHR_MASK;
+ reg = ((dmac << E1000_DMACR_DMACTHR_SHIFT)
+ & E1000_DMACR_DMACTHR_MASK);
+ /* transition to L0x or L1 if available..*/
+ reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
+ /* timer = value in adapter->dmac in 32usec intervals */
+ reg |= (adapter->dmac >> 5);
+ E1000_WRITE_REG(hw, E1000_DMACR, reg);
+
+ /* Set the interval before transition */
+ reg = E1000_READ_REG(hw, E1000_DMCTLX);
+ reg |= 0x80000004;
+ E1000_WRITE_REG(hw, E1000_DMCTLX, reg);
/* free space in tx packet buffer to wake from DMA coal */
E1000_WRITE_REG(hw, E1000_DMCTXTH,
@@ -2692,10 +3044,18 @@ igb_reset(struct adapter *adapter)
/* make low power state decision controlled by DMA coal */
reg = E1000_READ_REG(hw, E1000_PCIEMISC);
+ reg &= ~E1000_PCIEMISC_LX_DECISION;
+ E1000_WRITE_REG(hw, E1000_PCIEMISC, reg);
+ device_printf(dev, "DMA Coalescing enabled\n");
+
+ } else if (hw->mac.type == e1000_82580) {
+ u32 reg = E1000_READ_REG(hw, E1000_PCIEMISC);
+ E1000_WRITE_REG(hw, E1000_DMACR, 0);
E1000_WRITE_REG(hw, E1000_PCIEMISC,
- reg | E1000_PCIEMISC_LX_DECISION);
+ reg & ~E1000_PCIEMISC_LX_DECISION);
}
+reset_out:
E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
e1000_get_phy_info(hw);
e1000_check_for_link(hw);
@@ -2720,19 +3080,19 @@ igb_setup_interface(device_t dev, struct adapter *adapter)
return (-1);
}
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
- ifp->if_mtu = ETHERMTU;
ifp->if_init = igb_init;
ifp->if_softc = adapter;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = igb_ioctl;
- ifp->if_start = igb_start;
#if __FreeBSD_version >= 800000
ifp->if_transmit = igb_mq_start;
ifp->if_qflush = igb_qflush;
-#endif
+#else
+ ifp->if_start = igb_start;
IFQ_SET_MAXLEN(&ifp->if_snd, adapter->num_tx_desc - 1);
ifp->if_snd.ifq_drv_maxlen = adapter->num_tx_desc - 1;
IFQ_SET_READY(&ifp->if_snd);
+#endif
ether_ifattach(ifp, adapter->hw.mac.addr);
@@ -2755,15 +3115,19 @@ igb_setup_interface(device_t dev, struct adapter *adapter)
* support full VLAN capability.
*/
ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
- ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
- ifp->if_capenable |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
+ ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING
+ | IFCAP_VLAN_HWTSO
+ | IFCAP_VLAN_MTU;
+ ifp->if_capenable |= IFCAP_VLAN_HWTAGGING
+ | IFCAP_VLAN_HWTSO
+ | IFCAP_VLAN_MTU;
/*
- ** Dont turn this on by default, if vlans are
+ ** Don't turn this on by default, if vlans are
** created on another pseudo device (eg. lagg)
** then vlan events are not passed thru, breaking
** operation, but with HW FILTER off it works. If
- ** using vlans directly on the em driver you can
+ ** using vlans directly on the igb driver you can
** enable this and get full hardware tag filtering.
*/
ifp->if_capabilities |= IFCAP_VLAN_HWFILTER;
@@ -2837,7 +3201,7 @@ igb_dma_malloc(struct adapter *adapter, bus_size_t size,
}
error = bus_dmamem_alloc(dma->dma_tag, (void**) &dma->dma_vaddr,
- BUS_DMA_NOWAIT, &dma->dma_map);
+ BUS_DMA_NOWAIT | BUS_DMA_COHERENT, &dma->dma_map);
if (error) {
device_printf(adapter->dev,
"%s: bus_dmamem_alloc(%ju) failed: %d\n",
@@ -2966,7 +3330,7 @@ igb_allocate_queues(struct adapter *adapter)
}
#if __FreeBSD_version >= 800000
/* Allocate a buf ring */
- txr->br = buf_ring_alloc(IGB_BR_SIZE, M_DEVBUF,
+ txr->br = buf_ring_alloc(igb_buf_ring_size, M_DEVBUF,
M_WAITOK, &txr->tx_mtx);
#endif
}
@@ -3105,9 +3469,16 @@ igb_setup_transmit_ring(struct tx_ring *txr)
struct adapter *adapter = txr->adapter;
struct igb_tx_buffer *txbuf;
int i;
+#ifdef DEV_NETMAP
+ struct netmap_adapter *na = NA(adapter->ifp);
+ struct netmap_slot *slot;
+#endif /* DEV_NETMAP */
/* Clear the old descriptor contents */
IGB_TX_LOCK(txr);
+#ifdef DEV_NETMAP
+ slot = netmap_reset(na, NR_TX, txr->me, 0);
+#endif /* DEV_NETMAP */
bzero((void *)txr->tx_base,
(sizeof(union e1000_adv_tx_desc)) * adapter->num_tx_desc);
/* Reset indices */
@@ -3124,6 +3495,13 @@ igb_setup_transmit_ring(struct tx_ring *txr)
m_freem(txbuf->m_head);
txbuf->m_head = NULL;
}
+#ifdef DEV_NETMAP
+ if (slot) {
+ int si = netmap_idx_n2k(&na->tx_rings[txr->me], i);
+ /* no need to set the address */
+ netmap_load_map(txr->txtag, txbuf->map, NMB(slot + si));
+ }
+#endif /* DEV_NETMAP */
/* clear the watch index */
txbuf->next_eop = -1;
}
@@ -3195,7 +3573,7 @@ igb_initialize_transmit_units(struct adapter *adapter)
E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl);
}
- if (adapter->hw.mac.type == e1000_vfadapt)
+ if (adapter->vf_ifp)
return;
e1000_config_collision_dist(hw);
@@ -3289,8 +3667,9 @@ igb_free_transmit_buffers(struct tx_ring *txr)
* Setup work for hardware segmentation offload (TSO)
*
**********************************************************************/
-static boolean_t
-igb_tso_setup(struct tx_ring *txr, struct mbuf *mp, u32 *hdrlen)
+static bool
+igb_tso_setup(struct tx_ring *txr, struct mbuf *mp, int ehdrlen,
+ struct ip *ip, struct tcphdr *th)
{
struct adapter *adapter = txr->adapter;
struct e1000_adv_tx_context_desc *TXD;
@@ -3298,45 +3677,15 @@ igb_tso_setup(struct tx_ring *txr, struct mbuf *mp, u32 *hdrlen)
u32 vlan_macip_lens = 0, type_tucmd_mlhl = 0;
u32 mss_l4len_idx = 0;
u16 vtag = 0;
- int ctxd, ehdrlen, ip_hlen, tcp_hlen;
- struct ether_vlan_header *eh;
- struct ip *ip;
- struct tcphdr *th;
-
-
- /*
- * Determine where frame payload starts.
- * Jump over vlan headers if already present
- */
- eh = mtod(mp, struct ether_vlan_header *);
- if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN))
- ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
- else
- ehdrlen = ETHER_HDR_LEN;
-
- /* Ensure we have at least the IP+TCP header in the first mbuf. */
- if (mp->m_len < ehdrlen + sizeof(struct ip) + sizeof(struct tcphdr))
- return FALSE;
+ int ctxd, ip_hlen, tcp_hlen;
- /* Only supports IPV4 for now */
ctxd = txr->next_avail_desc;
tx_buffer = &txr->tx_buffers[ctxd];
TXD = (struct e1000_adv_tx_context_desc *) &txr->tx_base[ctxd];
- ip = (struct ip *)(mp->m_data + ehdrlen);
- if (ip->ip_p != IPPROTO_TCP)
- return FALSE; /* 0 */
ip->ip_sum = 0;
ip_hlen = ip->ip_hl << 2;
- th = (struct tcphdr *)((caddr_t)ip + ip_hlen);
- th->th_sum = in_pseudo(ip->ip_src.s_addr,
- ip->ip_dst.s_addr, htons(IPPROTO_TCP));
tcp_hlen = th->th_off << 2;
- /*
- * Calculate header length, this is used
- * in the transmit desc in igb_xmit
- */
- *hdrlen = ehdrlen + ip_hlen + tcp_hlen;
/* VLAN MACLEN IPLEN */
if (mp->m_flags & M_VLANTAG) {
@@ -3519,6 +3868,19 @@ igb_txeof(struct tx_ring *txr)
IGB_TX_LOCK_ASSERT(txr);
+#ifdef DEV_NETMAP
+ if (ifp->if_capenable & IFCAP_NETMAP) {
+ struct netmap_adapter *na = NA(ifp);
+
+ selwakeuppri(&na->tx_rings[txr->me].si, PI_NET);
+ IGB_TX_UNLOCK(txr);
+ IGB_CORE_LOCK(adapter);
+ selwakeuppri(&na->tx_si, PI_NET);
+ IGB_CORE_UNLOCK(adapter);
+ IGB_TX_LOCK(txr);
+ return FALSE;
+ }
+#endif /* DEV_NETMAP */
if (txr->tx_avail == adapter->num_tx_desc) {
txr->queue_status = IGB_QUEUE_IDLE;
return FALSE;
@@ -3598,25 +3960,23 @@ igb_txeof(struct tx_ring *txr)
** for too long indicates a hang.
*/
if ((!processed) && ((ticks - txr->watchdog_time) > IGB_WATCHDOG))
- txr->queue_status = IGB_QUEUE_HUNG;
-
+ txr->queue_status |= IGB_QUEUE_HUNG;
/*
- * If we have enough room, clear IFF_DRV_OACTIVE
- * to tell the stack that it is OK to send packets.
+ * If we have a minimum free,
+ * clear depleted state bit
*/
- if (txr->tx_avail > IGB_TX_CLEANUP_THRESHOLD) {
- ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
- /* All clean, turn off the watchdog */
- if (txr->tx_avail == adapter->num_tx_desc) {
- txr->queue_status = IGB_QUEUE_IDLE;
- return (FALSE);
- }
+ if (txr->tx_avail >= IGB_QUEUE_THRESHOLD)
+ txr->queue_status &= ~IGB_QUEUE_DEPLETED;
+
+ /* All clean, turn off the watchdog */
+ if (txr->tx_avail == adapter->num_tx_desc) {
+ txr->queue_status = IGB_QUEUE_IDLE;
+ return (FALSE);
}
return (TRUE);
}
-
/*********************************************************************
*
* Refresh mbuf buffers for RX descriptor rings
@@ -3634,17 +3994,25 @@ igb_refresh_mbufs(struct rx_ring *rxr, int limit)
bus_dma_segment_t pseg[1];
struct igb_rx_buf *rxbuf;
struct mbuf *mh, *mp;
- int i, nsegs, error, cleaned;
+ int i, j, nsegs, error;
+ bool refreshed = FALSE;
- i = rxr->next_to_refresh;
- cleaned = -1; /* Signify no completions */
- while (i != limit) {
+ i = j = rxr->next_to_refresh;
+ /*
+ ** Get one descriptor beyond
+ ** our work mark to control
+ ** the loop.
+ */
+ if (++j == adapter->num_rx_desc)
+ j = 0;
+
+ while (j != limit) {
rxbuf = &rxr->rx_buffers[i];
/* No hdr mbuf used with header split off */
if (rxr->hdr_split == FALSE)
goto no_split;
if (rxbuf->m_head == NULL) {
- mh = m_gethdr(M_DONTWAIT, MT_DATA);
+ mh = m_gethdr(M_NOWAIT, MT_DATA);
if (mh == NULL)
goto update;
} else
@@ -3670,7 +4038,7 @@ igb_refresh_mbufs(struct rx_ring *rxr, int limit)
htole64(hseg[0].ds_addr);
no_split:
if (rxbuf->m_pack == NULL) {
- mp = m_getjcl(M_DONTWAIT, MT_DATA,
+ mp = m_getjcl(M_NOWAIT, MT_DATA,
M_PKTHDR, adapter->rx_mbuf_sz);
if (mp == NULL)
goto update;
@@ -3693,18 +4061,17 @@ no_split:
BUS_DMASYNC_PREREAD);
rxr->rx_base[i].read.pkt_addr =
htole64(pseg[0].ds_addr);
+ refreshed = TRUE; /* I feel wefreshed :) */
- cleaned = i;
- /* Calculate next index */
- if (++i == adapter->num_rx_desc)
- i = 0;
- /* This is the work marker for refresh */
+ i = j; /* our next is precalculated */
rxr->next_to_refresh = i;
+ if (++j == adapter->num_rx_desc)
+ j = 0;
}
update:
- if (cleaned != -1) /* If we refreshed some, bump tail */
+ if (refreshed) /* update tail */
E1000_WRITE_REG(&adapter->hw,
- E1000_RDT(rxr->me), cleaned);
+ E1000_RDT(rxr->me), rxr->next_to_refresh);
return;
}
@@ -3796,12 +4163,11 @@ fail:
static void
igb_free_receive_ring(struct rx_ring *rxr)
{
- struct adapter *adapter;
+ struct adapter *adapter = rxr->adapter;
struct igb_rx_buf *rxbuf;
- int i;
- adapter = rxr->adapter;
- for (i = 0; i < adapter->num_rx_desc; i++) {
+
+ for (int i = 0; i < adapter->num_rx_desc; i++) {
rxbuf = &rxr->rx_buffers[i];
if (rxbuf->m_head != NULL) {
bus_dmamap_sync(rxr->htag, rxbuf->hmap,
@@ -3838,6 +4204,10 @@ igb_setup_receive_ring(struct rx_ring *rxr)
bus_dma_segment_t pseg[1], hseg[1];
struct lro_ctrl *lro = &rxr->lro;
int rsize, nsegs, error = 0;
+#ifdef DEV_NETMAP
+ struct netmap_adapter *na = NA(rxr->adapter->ifp);
+ struct netmap_slot *slot;
+#endif /* DEV_NETMAP */
adapter = rxr->adapter;
dev = adapter->dev;
@@ -3845,6 +4215,9 @@ igb_setup_receive_ring(struct rx_ring *rxr)
/* Clear the ring contents */
IGB_RX_LOCK(rxr);
+#ifdef DEV_NETMAP
+ slot = netmap_reset(na, NR_RX, rxr->me, 0);
+#endif /* DEV_NETMAP */
rsize = roundup2(adapter->num_rx_desc *
sizeof(union e1000_adv_rx_desc), IGB_DBA_ALIGN);
bzero((void *)rxr->rx_base, rsize);
@@ -3863,11 +4236,25 @@ igb_setup_receive_ring(struct rx_ring *rxr)
struct mbuf *mh, *mp;
rxbuf = &rxr->rx_buffers[j];
+#ifdef DEV_NETMAP
+ if (slot) {
+ /* slot sj is mapped to the i-th NIC-ring entry */
+ int sj = netmap_idx_n2k(&na->rx_rings[rxr->me], j);
+ uint64_t paddr;
+ void *addr;
+
+ addr = PNMB(slot + sj, &paddr);
+ netmap_load_map(rxr->ptag, rxbuf->pmap, addr);
+ /* Update descriptor */
+ rxr->rx_base[j].read.pkt_addr = htole64(paddr);
+ continue;
+ }
+#endif /* DEV_NETMAP */
if (rxr->hdr_split == FALSE)
goto skip_head;
/* First the header */
- rxbuf->m_head = m_gethdr(M_DONTWAIT, MT_DATA);
+ rxbuf->m_head = m_gethdr(M_NOWAIT, MT_DATA);
if (rxbuf->m_head == NULL) {
error = ENOBUFS;
goto fail;
@@ -3889,7 +4276,7 @@ igb_setup_receive_ring(struct rx_ring *rxr)
skip_head:
/* Now the payload cluster */
- rxbuf->m_pack = m_getjcl(M_DONTWAIT, MT_DATA,
+ rxbuf->m_pack = m_getjcl(M_NOWAIT, MT_DATA,
M_PKTHDR, adapter->rx_mbuf_sz);
if (rxbuf->m_pack == NULL) {
error = ENOBUFS;
@@ -3911,7 +4298,7 @@ skip_head:
/* Setup our descriptor indices */
rxr->next_to_check = 0;
- rxr->next_to_refresh = 0;
+ rxr->next_to_refresh = adapter->num_rx_desc - 1;
rxr->lro_enabled = FALSE;
rxr->rx_split_packets = 0;
rxr->rx_bytes = 0;
@@ -3949,6 +4336,7 @@ fail:
return (error);
}
+
/*********************************************************************
*
* Initialize all receive rings.
@@ -3971,8 +4359,8 @@ fail:
* the rings that completed, the failing case will have
* cleaned up for itself. 'i' is the endpoint.
*/
- for (int j = 0; j > i; ++j) {
- rxr = &adapter->rx_rings[i];
+ for (int j = 0; j < i; ++j) {
+ rxr = &adapter->rx_rings[j];
IGB_RX_LOCK(rxr);
igb_free_receive_ring(rxr);
IGB_RX_UNLOCK(rxr);
@@ -4006,7 +4394,7 @@ igb_initialize_receive_units(struct adapter *adapter)
/*
** Set up for header split
*/
- if (rxr->hdr_split) {
+ if (igb_header_split) {
/* Use a standard mbuf for the header */
srrctl |= IGB_HDR_BUF << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
@@ -4144,9 +4532,29 @@ igb_initialize_receive_units(struct adapter *adapter)
* - needs to be after enable
*/
for (int i = 0; i < adapter->num_queues; i++) {
- E1000_WRITE_REG(hw, E1000_RDH(i), 0);
- E1000_WRITE_REG(hw, E1000_RDT(i),
- adapter->num_rx_desc - 1);
+ rxr = &adapter->rx_rings[i];
+ E1000_WRITE_REG(hw, E1000_RDH(i), rxr->next_to_check);
+#ifdef DEV_NETMAP
+ /*
+ * an init() while a netmap client is active must
+ * preserve the rx buffers passed to userspace.
+ * In this driver it means we adjust RDT to
+ * somthing different from next_to_refresh
+ * (which is not used in netmap mode).
+ */
+ if (ifp->if_capenable & IFCAP_NETMAP) {
+ struct netmap_adapter *na = NA(adapter->ifp);
+ struct netmap_kring *kring = &na->rx_rings[i];
+ int t = rxr->next_to_refresh - kring->nr_hwavail;
+
+ if (t >= adapter->num_rx_desc)
+ t -= adapter->num_rx_desc;
+ else if (t < 0)
+ t += adapter->num_rx_desc;
+ E1000_WRITE_REG(hw, E1000_RDT(i), t);
+ } else
+#endif /* DEV_NETMAP */
+ E1000_WRITE_REG(hw, E1000_RDT(i), rxr->next_to_refresh);
}
return;
}
@@ -4325,6 +4733,20 @@ igb_rxeof(struct igb_queue *que, int count, int *done)
bus_dmamap_sync(rxr->rxdma.dma_tag, rxr->rxdma.dma_map,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
+#ifdef DEV_NETMAP
+ if (ifp->if_capenable & IFCAP_NETMAP) {
+ struct netmap_adapter *na = NA(ifp);
+
+ na->rx_rings[rxr->me].nr_kflags |= NKR_PENDINTR;
+ selwakeuppri(&na->rx_rings[rxr->me].si, PI_NET);
+ IGB_RX_UNLOCK(rxr);
+ IGB_CORE_LOCK(adapter);
+ selwakeuppri(&na->rx_si, PI_NET);
+ IGB_CORE_UNLOCK(adapter);
+ return (0);
+ }
+#endif /* DEV_NETMAP */
+
/* Main clean loop */
for (i = rxr->next_to_check; count != 0;) {
struct mbuf *sendmp, *mh, *mp;
@@ -4344,14 +4766,18 @@ igb_rxeof(struct igb_queue *que, int count, int *done)
rxbuf = &rxr->rx_buffers[i];
plen = le16toh(cur->wb.upper.length);
ptype = le32toh(cur->wb.lower.lo_dword.data) & IGB_PKTTYPE_MASK;
- vtag = le16toh(cur->wb.upper.vlan);
+ if ((adapter->hw.mac.type == e1000_i350) &&
+ (staterr & E1000_RXDEXT_STATERR_LB))
+ vtag = be16toh(cur->wb.upper.vlan);
+ else
+ vtag = le16toh(cur->wb.upper.vlan);
hdr = le16toh(cur->wb.lower.lo_dword.hs_rss.hdr_info);
eop = ((staterr & E1000_RXD_STAT_EOP) == E1000_RXD_STAT_EOP);
/* Make sure all segments of a bad packet are discarded */
if (((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) != 0) ||
(rxr->discard)) {
- ifp->if_ierrors++;
+ adapter->dropped_pkts++;
++rxr->rx_discarded;
if (!eop) /* Catch subsequent segs */
rxr->discard = TRUE;
@@ -4479,10 +4905,8 @@ next_desc:
}
/* Catch any remainders */
- if (processed != 0) {
+ if (igb_rx_unrefreshed(rxr))
igb_refresh_mbufs(rxr, i);
- processed = 0;
- }
rxr->next_to_check = i;
@@ -4494,19 +4918,11 @@ next_desc:
tcp_lro_flush(lro, queued);
}
- IGB_RX_UNLOCK(rxr);
-
if (done != NULL)
- *done = rxdone;
+ *done += rxdone;
- /*
- ** We still have cleaning to do?
- ** Schedule another interrupt if so.
- */
- if ((staterr & E1000_RXD_STAT_DD) != 0)
- return (TRUE);
-
- return (FALSE);
+ IGB_RX_UNLOCK(rxr);
+ return ((staterr & E1000_RXD_STAT_DD) ? TRUE : FALSE);
}
/*********************************************************************
@@ -4581,9 +4997,9 @@ igb_register_vlan(void *arg, struct ifnet *ifp, u16 vtag)
bit = vtag & 0x1F;
adapter->shadow_vfta[index] |= (1 << bit);
++adapter->num_vlans;
- /* Re-init to load the changes */
+ /* Change hw filter setting */
if (ifp->if_capenable & IFCAP_VLAN_HWFILTER)
- igb_init_locked(adapter);
+ igb_setup_vlan_hw_support(adapter);
IGB_CORE_UNLOCK(adapter);
}
@@ -4608,9 +5024,9 @@ igb_unregister_vlan(void *arg, struct ifnet *ifp, u16 vtag)
bit = vtag & 0x1F;
adapter->shadow_vfta[index] &= ~(1 << bit);
--adapter->num_vlans;
- /* Re-init to load the changes */
+ /* Change hw filter setting */
if (ifp->if_capenable & IFCAP_VLAN_HWFILTER)
- igb_init_locked(adapter);
+ igb_setup_vlan_hw_support(adapter);
IGB_CORE_UNLOCK(adapter);
}
@@ -4618,49 +5034,48 @@ static void
igb_setup_vlan_hw_support(struct adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
+ struct ifnet *ifp = adapter->ifp;
u32 reg;
- /*
- ** We get here thru init_locked, meaning
- ** a soft reset, this has already cleared
- ** the VFTA and other state, so if there
- ** have been no vlan's registered do nothing.
- */
- if (adapter->num_vlans == 0)
- return;
+ if (adapter->vf_ifp) {
+ e1000_rlpml_set_vf(hw,
+ adapter->max_frame_size + VLAN_TAG_SIZE);
+ return;
+ }
+
+ reg = E1000_READ_REG(hw, E1000_CTRL);
+ reg |= E1000_CTRL_VME;
+ E1000_WRITE_REG(hw, E1000_CTRL, reg);
+
+ /* Enable the Filter Table */
+ if (ifp->if_capenable & IFCAP_VLAN_HWFILTER) {
+ reg = E1000_READ_REG(hw, E1000_RCTL);
+ reg &= ~E1000_RCTL_CFIEN;
+ reg |= E1000_RCTL_VFE;
+ E1000_WRITE_REG(hw, E1000_RCTL, reg);
+ }
+ /* Update the frame size */
+ E1000_WRITE_REG(&adapter->hw, E1000_RLPML,
+ adapter->max_frame_size + VLAN_TAG_SIZE);
+
+ /* Don't bother with table if no vlans */
+ if ((adapter->num_vlans == 0) ||
+ ((ifp->if_capenable & IFCAP_VLAN_HWFILTER) == 0))
+ return;
/*
** A soft reset zero's out the VFTA, so
** we need to repopulate it now.
*/
for (int i = 0; i < IGB_VFTA_SIZE; i++)
if (adapter->shadow_vfta[i] != 0) {
- if (hw->mac.type == e1000_vfadapt)
+ if (adapter->vf_ifp)
e1000_vfta_set_vf(hw,
adapter->shadow_vfta[i], TRUE);
else
- E1000_WRITE_REG_ARRAY(hw, E1000_VFTA,
- i, adapter->shadow_vfta[i]);
+ e1000_write_vfta(hw,
+ i, adapter->shadow_vfta[i]);
}
-
- if (hw->mac.type == e1000_vfadapt)
- e1000_rlpml_set_vf(hw,
- adapter->max_frame_size + VLAN_TAG_SIZE);
- else {
- reg = E1000_READ_REG(hw, E1000_CTRL);
- reg |= E1000_CTRL_VME;
- E1000_WRITE_REG(hw, E1000_CTRL, reg);
-
- /* Enable the Filter Table */
- reg = E1000_READ_REG(hw, E1000_RCTL);
- reg &= ~E1000_RCTL_CFIEN;
- reg |= E1000_RCTL_VFE;
- E1000_WRITE_REG(hw, E1000_RCTL, reg);
-
- /* Update the frame size */
- E1000_WRITE_REG(&adapter->hw, E1000_RLPML,
- adapter->max_frame_size + VLAN_TAG_SIZE);
- }
}
static void
@@ -4668,12 +5083,10 @@ igb_enable_intr(struct adapter *adapter)
{
/* With RSS set up what to auto clear */
if (adapter->msix_mem) {
- E1000_WRITE_REG(&adapter->hw, E1000_EIAC,
- adapter->eims_mask);
- E1000_WRITE_REG(&adapter->hw, E1000_EIAM,
- adapter->eims_mask);
- E1000_WRITE_REG(&adapter->hw, E1000_EIMS,
- adapter->eims_mask);
+ u32 mask = (adapter->que_mask | adapter->link_mask);
+ E1000_WRITE_REG(&adapter->hw, E1000_EIAC, mask);
+ E1000_WRITE_REG(&adapter->hw, E1000_EIAM, mask);
+ E1000_WRITE_REG(&adapter->hw, E1000_EIMS, mask);
E1000_WRITE_REG(&adapter->hw, E1000_IMS,
E1000_IMS_LSC);
} else {
@@ -4750,7 +5163,7 @@ igb_get_hw_control(struct adapter *adapter)
{
u32 ctrl_ext;
- if (adapter->hw.mac.type == e1000_vfadapt)
+ if (adapter->vf_ifp)
return;
/* Let firmware know the driver has taken over */
@@ -4770,7 +5183,7 @@ igb_release_hw_control(struct adapter *adapter)
{
u32 ctrl_ext;
- if (adapter->hw.mac.type == e1000_vfadapt)
+ if (adapter->vf_ifp)
return;
/* Let firmware taken over control of h/w */
@@ -4849,7 +5262,7 @@ igb_update_stats_counters(struct adapter *adapter)
** small controlled set of stats, do only
** those and return.
*/
- if (adapter->hw.mac.type == e1000_vfadapt) {
+ if (adapter->vf_ifp) {
igb_update_vf_stats_counters(adapter);
return;
}
@@ -5190,7 +5603,7 @@ igb_add_hw_stats(struct adapter *adapter)
** VF adapter has a very limited set of stats
** since its not managing the metal, so to speak.
*/
- if (adapter->hw.mac.type == e1000_vfadapt) {
+ if (adapter->vf_ifp) {
SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "good_pkts_recvd",
CTLFLAG_RD, &stats->gprc,
"Good Packets Received");
@@ -5507,7 +5920,7 @@ igb_print_nvm_info(struct adapter *adapter)
}
static void
-igb_add_rx_process_limit(struct adapter *adapter, const char *name,
+igb_set_sysctl_value(struct adapter *adapter, const char *name,
const char *description, int *limit, int value)
{
*limit = value;
@@ -5515,3 +5928,112 @@ igb_add_rx_process_limit(struct adapter *adapter, const char *name,
SYSCTL_CHILDREN(device_get_sysctl_tree(adapter->dev)),
OID_AUTO, name, CTLTYPE_INT|CTLFLAG_RW, limit, value, description);
}
+
+/*
+** Set flow control using sysctl:
+** Flow control values:
+** 0 - off
+** 1 - rx pause
+** 2 - tx pause
+** 3 - full
+*/
+static int
+igb_set_flowcntl(SYSCTL_HANDLER_ARGS)
+{
+ int error;
+ static int input = 3; /* default is full */
+ struct adapter *adapter = (struct adapter *) arg1;
+
+ error = sysctl_handle_int(oidp, &input, 0, req);
+
+ if ((error) || (req->newptr == NULL))
+ return (error);
+
+ switch (input) {
+ case e1000_fc_rx_pause:
+ case e1000_fc_tx_pause:
+ case e1000_fc_full:
+ case e1000_fc_none:
+ adapter->hw.fc.requested_mode = input;
+ adapter->fc = input;
+ break;
+ default:
+ /* Do nothing */
+ return (error);
+ }
+
+ adapter->hw.fc.current_mode = adapter->hw.fc.requested_mode;
+ e1000_force_mac_fc(&adapter->hw);
+ return (error);
+}
+
+/*
+** Manage DMA Coalesce:
+** Control values:
+** 0/1 - off/on
+** Legal timer values are:
+** 250,500,1000-10000 in thousands
+*/
+static int
+igb_sysctl_dmac(SYSCTL_HANDLER_ARGS)
+{
+ struct adapter *adapter = (struct adapter *) arg1;
+ int error;
+
+ error = sysctl_handle_int(oidp, &adapter->dmac, 0, req);
+
+ if ((error) || (req->newptr == NULL))
+ return (error);
+
+ switch (adapter->dmac) {
+ case 0:
+ /*Disabling */
+ break;
+ case 1: /* Just enable and use default */
+ adapter->dmac = 1000;
+ break;
+ case 250:
+ case 500:
+ case 1000:
+ case 2000:
+ case 3000:
+ case 4000:
+ case 5000:
+ case 6000:
+ case 7000:
+ case 8000:
+ case 9000:
+ case 10000:
+ /* Legal values - allow */
+ break;
+ default:
+ /* Do nothing, illegal value */
+ adapter->dmac = 0;
+ return (error);
+ }
+ /* Reinit the interface */
+ igb_init(adapter);
+ return (error);
+}
+
+/*
+** Manage Energy Efficient Ethernet:
+** Control values:
+** 0/1 - enabled/disabled
+*/
+static int
+igb_sysctl_eee(SYSCTL_HANDLER_ARGS)
+{
+ struct adapter *adapter = (struct adapter *) arg1;
+ int error, value;
+
+ value = adapter->hw.dev_spec._82575.eee_disable;
+ error = sysctl_handle_int(oidp, &value, 0, req);
+ if (error || req->newptr == NULL)
+ return (error);
+ IGB_CORE_LOCK(adapter);
+ adapter->hw.dev_spec._82575.eee_disable = (value != 0);
+ igb_init_locked(adapter);
+ IGB_CORE_UNLOCK(adapter);
+ return (0);
+}
diff --git a/freebsd/sys/dev/e1000/if_igb.h b/freebsd/sys/dev/e1000/if_igb.h
index c77e9f17..51d8987a 100644
--- a/freebsd/sys/dev/e1000/if_igb.h
+++ b/freebsd/sys/dev/e1000/if_igb.h
@@ -1,6 +1,6 @@
/******************************************************************************
- Copyright (c) 2001-2010, Intel Corporation
+ Copyright (c) 2001-2011, Intel Corporation
All rights reserved.
Redistribution and use in source and binary forms, with or without
@@ -52,7 +52,7 @@
#define IGB_MAX_TXD 4096
/*
- * IGB_RXD: Maximum number of Transmit Descriptors
+ * IGB_RXD: Maximum number of Receive Descriptors
*
* This value is the number of receive descriptors allocated by the driver.
* Increasing this value allows the driver to buffer more incoming packets.
@@ -132,10 +132,9 @@
/*
* This parameter controls when the driver calls the routine to reclaim
- * transmit descriptors.
+ * transmit descriptors. Cleaning earlier seems a win.
*/
-#define IGB_TX_CLEANUP_THRESHOLD (adapter->num_tx_desc / 8)
-#define IGB_TX_OP_THRESHOLD (adapter->num_tx_desc / 32)
+#define IGB_TX_CLEANUP_THRESHOLD (adapter->num_tx_desc / 2)
/*
* This parameter controls whether or not autonegotation is enabled.
@@ -180,8 +179,7 @@
#define IGB_TX_PTHRESH 8
#define IGB_TX_HTHRESH 1
-#define IGB_TX_WTHRESH (((hw->mac.type == e1000_82576 || \
- hw->mac.type == e1000_vfadapt) && \
+#define IGB_TX_WTHRESH ((hw->mac.type != e1000_82575 && \
adapter->msix_mem) ? 1 : 16)
#define MAX_NUM_MULTICAST_ADDRESSES 128
@@ -190,9 +188,13 @@
#define IGB_TX_BUFFER_SIZE ((uint32_t) 1514)
#define IGB_FC_PAUSE_TIME 0x0680
#define IGB_EEPROM_APME 0x400;
-#define IGB_QUEUE_IDLE 0
-#define IGB_QUEUE_WORKING 1
-#define IGB_QUEUE_HUNG 2
+/* Queue minimum free for use */
+#define IGB_QUEUE_THRESHOLD (adapter->num_tx_desc / 8)
+/* Queue bit defines */
+#define IGB_QUEUE_IDLE 1
+#define IGB_QUEUE_WORKING 2
+#define IGB_QUEUE_HUNG 4
+#define IGB_QUEUE_DEPLETED 8
/*
* TDBA/RDBA should be aligned on 16 byte boundary. But TDLEN/RDLEN should be
@@ -297,6 +299,7 @@ struct tx_ring {
struct igb_tx_buffer *tx_buffers;
#if __FreeBSD_version >= 800000
struct buf_ring *br;
+ struct task txq_task;
#endif
bus_dma_tag_t txtag;
@@ -361,7 +364,7 @@ struct adapter {
struct resource *msix_mem;
struct resource *res;
void *tag;
- u32 eims_mask;
+ u32 que_mask;
int linkvec;
int link_mask;
@@ -378,6 +381,7 @@ struct adapter {
struct mtx core_mtx;
int igb_insert_vlan_header;
u16 num_queues;
+ u16 vf_ifp; /* a VF interface */
eventhandler_tag vlan_attach;
eventhandler_tag vlan_detach;
@@ -396,10 +400,13 @@ struct adapter {
u32 shadow_vfta[IGB_VFTA_SIZE];
/* Info about the interface */
- u8 link_active;
+ u16 link_active;
+ u16 fc;
u16 link_speed;
u16 link_duplex;
u32 smartspeed;
+ u32 dmac;
+ int enable_aim;
/* Interface queues */
struct igb_queue *queues;
@@ -481,6 +488,21 @@ struct igb_rx_buf {
bus_dmamap_t pmap; /* bus_dma map for packet */
};
+/*
+** Find the number of unrefreshed RX descriptors
+*/
+static inline u16
+igb_rx_unrefreshed(struct rx_ring *rxr)
+{
+ struct adapter *adapter = rxr->adapter;
+
+ if (rxr->next_to_check > rxr->next_to_refresh)
+ return (rxr->next_to_check - rxr->next_to_refresh - 1);
+ else
+ return ((adapter->num_rx_desc + rxr->next_to_check) -
+ rxr->next_to_refresh - 1);
+}
+
#define IGB_CORE_LOCK_INIT(_sc, _name) \
mtx_init(&(_sc)->core_mtx, _name, "IGB Core Lock", MTX_DEF)
#define IGB_CORE_LOCK_DESTROY(_sc) mtx_destroy(&(_sc)->core_mtx)
@@ -509,7 +531,7 @@ struct igb_rx_buf {
cur |= new; \
}
-#if __FreeBSD_version < 800504
+#if __FreeBSD_version >= 800000 && __FreeBSD_version < 800504
static __inline int
drbr_needs_enqueue(struct ifnet *ifp, struct buf_ring *br)
{
diff --git a/freebsd/sys/dev/e1000/if_lem.c b/freebsd/sys/dev/e1000/if_lem.c
index 402a6f48..4c4bbf2d 100644
--- a/freebsd/sys/dev/e1000/if_lem.c
+++ b/freebsd/sys/dev/e1000/if_lem.c
@@ -2,7 +2,7 @@
/******************************************************************************
- Copyright (c) 2001-2010, Intel Corporation
+ Copyright (c) 2001-2012, Intel Corporation
All rights reserved.
Redistribution and use in source and binary forms, with or without
@@ -37,6 +37,7 @@
#ifdef HAVE_KERNEL_OPTION_HEADERS
#include <rtems/bsd/local/opt_device_polling.h>
#include <rtems/bsd/local/opt_inet.h>
+#include <rtems/bsd/local/opt_inet6.h>
#endif
#include <rtems/bsd/sys/param.h>
@@ -91,7 +92,7 @@
/*********************************************************************
* Legacy Em Driver version:
*********************************************************************/
-char lem_driver_version[] = "1.0.3";
+char lem_driver_version[] = "1.0.5";
/*********************************************************************
* PCI Device ID Table
@@ -245,15 +246,12 @@ static void lem_enable_wakeup(device_t);
static int lem_enable_phy_wakeup(struct adapter *);
static void lem_led_func(void *, int);
-#ifdef EM_LEGACY_IRQ
static void lem_intr(void *);
-#else /* FAST IRQ */
static int lem_irq_fast(void *);
static void lem_handle_rxtx(void *context, int pending);
static void lem_handle_link(void *context, int pending);
static void lem_add_rx_process_limit(struct adapter *, const char *,
const char *, int *, int);
-#endif /* ~EM_LEGACY_IRQ */
#ifdef DEVICE_POLLING
static poll_handler_t lem_poll;
@@ -271,7 +269,7 @@ static device_method_t lem_methods[] = {
DEVMETHOD(device_shutdown, lem_shutdown),
DEVMETHOD(device_suspend, lem_suspend),
DEVMETHOD(device_resume, lem_resume),
- {0, 0}
+ DEVMETHOD_END
};
static driver_t lem_driver = {
@@ -310,11 +308,13 @@ TUNABLE_INT("hw.em.txd", &lem_txd);
TUNABLE_INT("hw.em.smart_pwr_down", &lem_smart_pwr_down);
TUNABLE_INT("hw.em.sbp", &lem_debug_sbp);
-#ifndef EM_LEGACY_IRQ
+/* Interrupt style - default to fast */
+static int lem_use_legacy_irq = 0;
+TUNABLE_INT("hw.em.use_legacy_irq", &lem_use_legacy_irq);
+
/* How many packets rxeof tries to clean at a time */
static int lem_rx_process_limit = 100;
TUNABLE_INT("hw.em.rx_process_limit", &lem_rx_process_limit);
-#endif
/* Flow control setting - default to FULL */
static int lem_fc_setting = e1000_fc_full;
@@ -323,6 +323,10 @@ TUNABLE_INT("hw.em.fc_setting", &lem_fc_setting);
/* Global used in WOL setup with multiport cards */
static int global_quad_port_a = 0;
+#ifdef DEV_NETMAP /* see ixgbe.c for details */
+#include <dev/netmap/if_lem_netmap.h>
+#endif /* DEV_NETMAP */
+
/*********************************************************************
* Device identification routine
*
@@ -447,16 +451,14 @@ lem_attach(device_t dev)
lem_tx_abs_int_delay_dflt);
}
-#ifndef EM_LEGACY_IRQ
/* Sysctls for limiting the amount of work done in the taskqueue */
lem_add_rx_process_limit(adapter, "rx_processing_limit",
"max number of rx packets to process", &adapter->rx_process_limit,
lem_rx_process_limit);
-#endif
/* Sysctl for setting the interface flow control */
lem_set_flow_cntrl(adapter, "flow_control",
- "max number of rx packets to process",
+ "flow control setting",
&adapter->fc_setting, lem_fc_setting);
/*
@@ -653,6 +655,9 @@ lem_attach(device_t dev)
adapter->led_dev = led_create(lem_led_func, adapter,
device_get_nameunit(dev));
+#ifdef DEV_NETMAP
+ lem_netmap_attach(adapter);
+#endif /* DEV_NETMAP */
INIT_DEBUGOUT("lem_attach: end");
return (0);
@@ -731,6 +736,9 @@ lem_detach(device_t dev)
callout_drain(&adapter->timer);
callout_drain(&adapter->tx_fifo_timer);
+#ifdef DEV_NETMAP
+ netmap_detach(ifp);
+#endif /* DEV_NETMAP */
lem_free_pci_resources(adapter);
bus_generic_detach(dev);
if_free(ifp);
@@ -887,11 +895,12 @@ static int
lem_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
{
struct adapter *adapter = ifp->if_softc;
- struct ifreq *ifr = (struct ifreq *)data;
-#ifdef INET
- struct ifaddr *ifa = (struct ifaddr *)data;
+ struct ifreq *ifr = (struct ifreq *)data;
+#if defined(INET) || defined(INET6)
+ struct ifaddr *ifa = (struct ifaddr *)data;
#endif
- int error = 0;
+ bool avoid_reset = FALSE;
+ int error = 0;
if (adapter->in_detach)
return (error);
@@ -899,23 +908,26 @@ lem_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
switch (command) {
case SIOCSIFADDR:
#ifdef INET
- if (ifa->ifa_addr->sa_family == AF_INET) {
- /*
- * XXX
- * Since resetting hardware takes a very long time
- * and results in link renegotiation we only
- * initialize the hardware only when it is absolutely
- * required.
- */
+ if (ifa->ifa_addr->sa_family == AF_INET)
+ avoid_reset = TRUE;
+#endif
+#ifdef INET6
+ if (ifa->ifa_addr->sa_family == AF_INET6)
+ avoid_reset = TRUE;
+#endif
+ /*
+ ** Calling init results in link renegotiation,
+ ** so we avoid doing it when possible.
+ */
+ if (avoid_reset) {
ifp->if_flags |= IFF_UP;
- if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
- EM_CORE_LOCK(adapter);
- lem_init_locked(adapter);
- EM_CORE_UNLOCK(adapter);
- }
- arp_ifinit(ifp, ifa);
- } else
+ if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
+ lem_init(adapter);
+#ifdef INET
+ if (!(ifp->if_flags & IFF_NOARP))
+ arp_ifinit(ifp, ifa);
#endif
+ } else
error = ether_ioctl(ifp, command, data);
break;
case SIOCSIFMTU:
@@ -1184,22 +1196,6 @@ lem_init_locked(struct adapter *adapter)
callout_reset(&adapter->timer, hz, lem_local_timer, adapter);
e1000_clear_hw_cntrs_base_generic(&adapter->hw);
- /* MSI/X configuration for 82574 */
- if (adapter->hw.mac.type == e1000_82574) {
- int tmp;
- tmp = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
- tmp |= E1000_CTRL_EXT_PBA_CLR;
- E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, tmp);
- /*
- ** Set the IVAR - interrupt vector routing.
- ** Each nibble represents a vector, high bit
- ** is enable, other 3 bits are the MSIX table
- ** entry, we map RXQ0 to 0, TXQ0 to 1, and
- ** Link (other) to 2, hence the magic number.
- */
- E1000_WRITE_REG(&adapter->hw, E1000_IVAR, 0x800A0908);
- }
-
#ifdef DEVICE_POLLING
/*
* Only enable interrupts if we are not polling, make sure
@@ -1214,9 +1210,6 @@ lem_init_locked(struct adapter *adapter)
/* AMT based hardware can now take control from firmware */
if (adapter->has_manage && adapter->has_amt)
lem_get_hw_control(adapter);
-
- /* Don't reset the phy next time init gets called */
- adapter->hw.phy.reset_disable = TRUE;
}
static void
@@ -1271,7 +1264,6 @@ lem_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
}
#endif /* DEVICE_POLLING */
-#ifdef EM_LEGACY_IRQ
/*********************************************************************
*
* Legacy Interrupt Service routine
@@ -1285,7 +1277,8 @@ lem_intr(void *arg)
u32 reg_icr;
- if (ifp->if_capenable & IFCAP_POLLING)
+ if ((ifp->if_capenable & IFCAP_POLLING) ||
+ ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0))
return;
EM_CORE_LOCK(adapter);
@@ -1293,11 +1286,10 @@ lem_intr(void *arg)
if (reg_icr & E1000_ICR_RXO)
adapter->rx_overruns++;
- if ((reg_icr == 0xffffffff) || (reg_icr == 0))
- goto out;
-
- if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
- goto out;
+ if ((reg_icr == 0xffffffff) || (reg_icr == 0)) {
+ EM_CORE_UNLOCK(adapter);
+ return;
+ }
if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
callout_stop(&adapter->timer);
@@ -1307,23 +1299,22 @@ lem_intr(void *arg)
lem_tx_purge(adapter);
callout_reset(&adapter->timer, hz,
lem_local_timer, adapter);
- goto out;
+ EM_CORE_UNLOCK(adapter);
+ return;
}
- EM_TX_LOCK(adapter);
+ EM_CORE_UNLOCK(adapter);
lem_rxeof(adapter, -1, NULL);
+
+ EM_TX_LOCK(adapter);
lem_txeof(adapter);
if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
lem_start_locked(ifp);
EM_TX_UNLOCK(adapter);
-
-out:
- EM_CORE_UNLOCK(adapter);
return;
}
-#else /* EM_FAST_IRQ, then fast interrupt routines only */
static void
lem_handle_link(void *context, int pending)
@@ -1407,7 +1398,6 @@ lem_irq_fast(void *arg)
adapter->rx_overruns++;
return FILTER_HANDLED;
}
-#endif /* ~EM_LEGACY_IRQ */
/*********************************************************************
@@ -1515,11 +1505,6 @@ lem_media_change(struct ifnet *ifp)
device_printf(adapter->dev, "Unsupported media type\n");
}
- /* As the speed/duplex settings my have changed we need to
- * reset the PHY.
- */
- adapter->hw.phy.reset_disable = FALSE;
-
lem_init_locked(adapter);
EM_CORE_UNLOCK(adapter);
@@ -1588,7 +1573,7 @@ lem_xmit(struct adapter *adapter, struct mbuf **m_headp)
if (error == EFBIG) {
struct mbuf *m;
- m = m_defrag(*m_headp, M_DONTWAIT);
+ m = m_defrag(*m_headp, M_NOWAIT);
if (m == NULL) {
adapter->mbuf_alloc_failed++;
m_freem(*m_headp);
@@ -2209,19 +2194,21 @@ lem_allocate_irq(struct adapter *adapter)
return (ENXIO);
}
-#ifdef EM_LEGACY_IRQ
- /* We do Legacy setup */
- if ((error = bus_setup_intr(dev, adapter->res[0],
- INTR_TYPE_NET | INTR_MPSAFE, NULL, lem_intr, adapter,
- &adapter->tag[0])) != 0) {
- device_printf(dev, "Failed to register interrupt handler");
- return (error);
+ /* Do Legacy setup? */
+ if (lem_use_legacy_irq) {
+ if ((error = bus_setup_intr(dev, adapter->res[0],
+ INTR_TYPE_NET | INTR_MPSAFE, NULL, lem_intr, adapter,
+ &adapter->tag[0])) != 0) {
+ device_printf(dev,
+ "Failed to register interrupt handler");
+ return (error);
+ }
+ return (0);
}
-#else /* FAST_IRQ */
/*
- * Try allocating a fast interrupt and the associated deferred
- * processing contexts.
+ * Use a Fast interrupt and the associated
+ * deferred processing contexts.
*/
TASK_INIT(&adapter->rxtx_task, 0, lem_handle_rxtx, adapter);
TASK_INIT(&adapter->link_task, 0, lem_handle_link, adapter);
@@ -2238,7 +2225,6 @@ lem_allocate_irq(struct adapter *adapter)
adapter->tq = NULL;
return (error);
}
-#endif /* EM_LEGACY_IRQ */
return (0);
}
@@ -2349,7 +2335,6 @@ lem_setup_interface(device_t dev, struct adapter *adapter)
return (-1);
}
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
- ifp->if_mtu = ETHERMTU;
ifp->if_init = lem_init;
ifp->if_softc = adapter;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
@@ -2644,6 +2629,11 @@ static void
lem_setup_transmit_structures(struct adapter *adapter)
{
struct em_buffer *tx_buffer;
+#ifdef DEV_NETMAP
+ /* we are already locked */
+ struct netmap_adapter *na = NA(adapter->ifp);
+ struct netmap_slot *slot = netmap_reset(na, NR_TX, 0, 0);
+#endif /* DEV_NETMAP */
/* Clear the old ring contents */
bzero(adapter->tx_desc_base,
@@ -2657,10 +2647,24 @@ lem_setup_transmit_structures(struct adapter *adapter)
bus_dmamap_unload(adapter->txtag, tx_buffer->map);
m_freem(tx_buffer->m_head);
tx_buffer->m_head = NULL;
+#ifdef DEV_NETMAP
+ if (slot) {
+ /* the i-th NIC entry goes to slot si */
+ int si = netmap_idx_n2k(&na->tx_rings[0], i);
+ uint64_t paddr;
+ void *addr;
+
+ addr = PNMB(slot + si, &paddr);
+ adapter->tx_desc_base[si].buffer_addr = htole64(paddr);
+ /* reload the map for netmap mode */
+ netmap_load_map(adapter->txtag, tx_buffer->map, addr);
+ }
+#endif /* DEV_NETMAP */
tx_buffer->next_eop = -1;
}
/* Reset state */
+ adapter->last_hw_offload = 0;
adapter->next_avail_tx_desc = 0;
adapter->next_tx_to_clean = 0;
adapter->num_tx_desc_avail = adapter->num_tx_desc;
@@ -2957,6 +2961,12 @@ lem_txeof(struct adapter *adapter)
EM_TX_LOCK_ASSERT(adapter);
+#ifdef DEV_NETMAP
+ if (ifp->if_capenable & IFCAP_NETMAP) {
+ selwakeuppri(&NA(ifp)->tx_rings[0].si, PI_NET);
+ return;
+ }
+#endif /* DEV_NETMAP */
if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
return;
@@ -3072,7 +3082,7 @@ lem_get_buf(struct adapter *adapter, int i)
struct em_buffer *rx_buffer;
int error, nsegs;
- m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
+ m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
if (m == NULL) {
adapter->mbuf_cluster_failed++;
return (ENOBUFS);
@@ -3187,6 +3197,11 @@ lem_setup_receive_structures(struct adapter *adapter)
{
struct em_buffer *rx_buffer;
int i, error;
+#ifdef DEV_NETMAP
+ /* we are already under lock */
+ struct netmap_adapter *na = NA(adapter->ifp);
+ struct netmap_slot *slot = netmap_reset(na, NR_RX, 0, 0);
+#endif
/* Reset descriptor ring */
bzero(adapter->rx_desc_base,
@@ -3206,6 +3221,20 @@ lem_setup_receive_structures(struct adapter *adapter)
/* Allocate new ones. */
for (i = 0; i < adapter->num_rx_desc; i++) {
+#ifdef DEV_NETMAP
+ if (slot) {
+ /* the i-th NIC entry goes to slot si */
+ int si = netmap_idx_n2k(&na->rx_rings[0], i);
+ uint64_t paddr;
+ void *addr;
+
+ addr = PNMB(slot + si, &paddr);
+ netmap_load_map(adapter->rxtag, rx_buffer->map, addr);
+ /* Update descriptor */
+ adapter->rx_desc_base[i].buffer_addr = htole64(paddr);
+ continue;
+ }
+#endif /* DEV_NETMAP */
error = lem_get_buf(adapter, i);
if (error)
return (error);
@@ -3253,20 +3282,6 @@ lem_initialize_receive_unit(struct adapter *adapter)
E1000_WRITE_REG(&adapter->hw, E1000_ITR, DEFAULT_ITR);
}
- /*
- ** When using MSIX interrupts we need to throttle
- ** using the EITR register (82574 only)
- */
- if (adapter->msix)
- for (int i = 0; i < 4; i++)
- E1000_WRITE_REG(&adapter->hw,
- E1000_EITR_82574(i), DEFAULT_ITR);
-
- /* Disable accelerated ackknowledge */
- if (adapter->hw.mac.type == e1000_82574)
- E1000_WRITE_REG(&adapter->hw,
- E1000_RFCTL, E1000_RFCTL_ACK_DIS);
-
/* Setup the Base and Length of the Rx Descriptor Ring */
bus_addr = adapter->rxdma.dma_paddr;
E1000_WRITE_REG(&adapter->hw, E1000_RDLEN(0),
@@ -3330,6 +3345,18 @@ lem_initialize_receive_unit(struct adapter *adapter)
* Tail Descriptor Pointers
*/
E1000_WRITE_REG(&adapter->hw, E1000_RDH(0), 0);
+#ifdef DEV_NETMAP
+ /* preserve buffers already made available to clients */
+ if (ifp->if_capenable & IFCAP_NETMAP) {
+ struct netmap_adapter *na = NA(adapter->ifp);
+ struct netmap_kring *kring = &na->rx_rings[0];
+ int t = na->num_rx_desc - 1 - kring->nr_hwavail;
+
+ if (t >= na->num_rx_desc)
+ t -= na->num_rx_desc;
+ E1000_WRITE_REG(&adapter->hw, E1000_RDT(0), t);
+ } else
+#endif /* DEV_NETMAP */
E1000_WRITE_REG(&adapter->hw, E1000_RDT(0), adapter->num_rx_desc - 1);
return;
@@ -3400,7 +3427,7 @@ lem_free_receive_structures(struct adapter *adapter)
static bool
lem_rxeof(struct adapter *adapter, int count, int *done)
{
- struct ifnet *ifp = adapter->ifp;;
+ struct ifnet *ifp = adapter->ifp;
struct mbuf *mp;
u8 status = 0, accept_frame = 0, eop = 0;
u16 len, desc_len, prev_len_adj;
@@ -3413,6 +3440,16 @@ lem_rxeof(struct adapter *adapter, int count, int *done)
bus_dmamap_sync(adapter->rxdma.dma_tag, adapter->rxdma.dma_map,
BUS_DMASYNC_POSTREAD);
+#ifdef DEV_NETMAP
+ if (ifp->if_capenable & IFCAP_NETMAP) {
+ struct netmap_adapter *na = NA(ifp);
+ na->rx_rings[0].nr_kflags |= NKR_PENDINTR;
+ selwakeuppri(&na->rx_rings[0].si, PI_NET);
+ EM_RX_UNLOCK(adapter);
+ return (0);
+ }
+#endif /* DEV_NETMAP */
+
if (!((current_desc->status) & E1000_RXD_STAT_DD)) {
if (done != NULL)
*done = rx_sent;
@@ -3516,8 +3553,7 @@ lem_rxeof(struct adapter *adapter, int count, int *done)
#endif
if (status & E1000_RXD_STAT_VP) {
adapter->fmp->m_pkthdr.ether_vtag =
- (le16toh(current_desc->special) &
- E1000_RXD_SPC_VLAN_MASK);
+ le16toh(current_desc->special);
adapter->fmp->m_flags |= M_VLANTAG;
}
#ifndef __NO_STRICT_ALIGNMENT
@@ -3528,7 +3564,7 @@ skip:
adapter->lmp = NULL;
}
} else {
- ifp->if_ierrors++;
+ adapter->dropped_pkts++;
discard:
/* Reuse loaded DMA map and just update mbuf chain */
mp = adapter->rx_buffer_area[i].m_head;
@@ -3604,7 +3640,7 @@ lem_fixup_rx(struct adapter *adapter)
bcopy(m->m_data, m->m_data + ETHER_HDR_LEN, m->m_len);
m->m_data += ETHER_HDR_LEN;
} else {
- MGETHDR(n, M_DONTWAIT, MT_DATA);
+ MGETHDR(n, M_NOWAIT, MT_DATA);
if (n != NULL) {
bcopy(m->m_data, n->m_data, ETHER_HDR_LEN);
m->m_data += ETHER_HDR_LEN;
@@ -3753,10 +3789,6 @@ lem_setup_vlan_hw_support(struct adapter *adapter)
reg &= ~E1000_RCTL_CFIEN;
reg |= E1000_RCTL_VFE;
E1000_WRITE_REG(hw, E1000_RCTL, reg);
-
- /* Update the frame size */
- E1000_WRITE_REG(&adapter->hw, E1000_RLPML,
- adapter->max_frame_size + VLAN_TAG_SIZE);
}
static void
@@ -3765,10 +3797,6 @@ lem_enable_intr(struct adapter *adapter)
struct e1000_hw *hw = &adapter->hw;
u32 ims_mask = IMS_ENABLE_MASK;
- if (adapter->msix) {
- E1000_WRITE_REG(hw, EM_EIAC, EM_MSIX_MASK);
- ims_mask |= EM_MSIX_MASK;
- }
E1000_WRITE_REG(hw, E1000_IMS, ims_mask);
}
@@ -3777,9 +3805,7 @@ lem_disable_intr(struct adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
- if (adapter->msix)
- E1000_WRITE_REG(hw, EM_EIAC, 0);
- E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff);
+ E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
}
/*
@@ -3946,7 +3972,7 @@ lem_enable_wakeup(device_t dev)
u32 pmc, ctrl, ctrl_ext, rctl;
u16 status;
- if ((pci_find_extcap(dev, PCIY_PMG, &pmc) != 0))
+ if ((pci_find_cap(dev, PCIY_PMG, &pmc) != 0))
return;
/* Advertise the wakeup capability */
@@ -4304,11 +4330,11 @@ lem_add_hw_stats(struct adapter *adapter)
"Watchdog timeouts");
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "device_control",
- CTLFLAG_RD, adapter, E1000_CTRL,
+ CTLTYPE_UINT | CTLFLAG_RD, adapter, E1000_CTRL,
lem_sysctl_reg_handler, "IU",
"Device Control Register");
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rx_control",
- CTLFLAG_RD, adapter, E1000_RCTL,
+ CTLTYPE_UINT | CTLFLAG_RD, adapter, E1000_RCTL,
lem_sysctl_reg_handler, "IU",
"Receiver Control Register");
SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_high_water",
@@ -4317,27 +4343,27 @@ lem_add_hw_stats(struct adapter *adapter)
SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_low_water",
CTLFLAG_RD, &adapter->hw.fc.low_water, 0,
"Flow Control Low Watermark");
- SYSCTL_ADD_QUAD(ctx, child, OID_AUTO, "fifo_workaround",
+ SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "fifo_workaround",
CTLFLAG_RD, &adapter->tx_fifo_wrk_cnt,
"TX FIFO workaround events");
- SYSCTL_ADD_QUAD(ctx, child, OID_AUTO, "fifo_reset",
+ SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "fifo_reset",
CTLFLAG_RD, &adapter->tx_fifo_reset_cnt,
"TX FIFO resets");
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "txd_head",
- CTLFLAG_RD, adapter, E1000_TDH(0),
+ CTLTYPE_UINT | CTLFLAG_RD, adapter, E1000_TDH(0),
lem_sysctl_reg_handler, "IU",
"Transmit Descriptor Head");
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "txd_tail",
- CTLFLAG_RD, adapter, E1000_TDT(0),
+ CTLTYPE_UINT | CTLFLAG_RD, adapter, E1000_TDT(0),
lem_sysctl_reg_handler, "IU",
"Transmit Descriptor Tail");
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rxd_head",
- CTLFLAG_RD, adapter, E1000_RDH(0),
+ CTLTYPE_UINT | CTLFLAG_RD, adapter, E1000_RDH(0),
lem_sysctl_reg_handler, "IU",
"Receive Descriptor Head");
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rxd_tail",
- CTLFLAG_RD, adapter, E1000_RDT(0),
+ CTLTYPE_UINT | CTLFLAG_RD, adapter, E1000_RDT(0),
lem_sysctl_reg_handler, "IU",
"Receive Descriptor Tail");
@@ -4348,146 +4374,146 @@ lem_add_hw_stats(struct adapter *adapter)
CTLFLAG_RD, NULL, "Statistics");
stat_list = SYSCTL_CHILDREN(stat_node);
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "excess_coll",
+ SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "excess_coll",
CTLFLAG_RD, &stats->ecol,
"Excessive collisions");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "single_coll",
+ SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "single_coll",
CTLFLAG_RD, &stats->scc,
"Single collisions");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "multiple_coll",
+ SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "multiple_coll",
CTLFLAG_RD, &stats->mcc,
"Multiple collisions");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "late_coll",
+ SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "late_coll",
CTLFLAG_RD, &stats->latecol,
"Late collisions");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "collision_count",
+ SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "collision_count",
CTLFLAG_RD, &stats->colc,
"Collision Count");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "symbol_errors",
+ SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "symbol_errors",
CTLFLAG_RD, &adapter->stats.symerrs,
"Symbol Errors");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "sequence_errors",
+ SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "sequence_errors",
CTLFLAG_RD, &adapter->stats.sec,
"Sequence Errors");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "defer_count",
+ SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "defer_count",
CTLFLAG_RD, &adapter->stats.dc,
"Defer Count");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "missed_packets",
+ SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "missed_packets",
CTLFLAG_RD, &adapter->stats.mpc,
"Missed Packets");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "recv_no_buff",
+ SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_no_buff",
CTLFLAG_RD, &adapter->stats.rnbc,
"Receive No Buffers");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "recv_undersize",
+ SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_undersize",
CTLFLAG_RD, &adapter->stats.ruc,
"Receive Undersize");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "recv_fragmented",
+ SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_fragmented",
CTLFLAG_RD, &adapter->stats.rfc,
"Fragmented Packets Received ");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "recv_oversize",
+ SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_oversize",
CTLFLAG_RD, &adapter->stats.roc,
"Oversized Packets Received");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "recv_jabber",
+ SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_jabber",
CTLFLAG_RD, &adapter->stats.rjc,
"Recevied Jabber");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "recv_errs",
+ SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_errs",
CTLFLAG_RD, &adapter->stats.rxerrc,
"Receive Errors");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "crc_errs",
+ SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "crc_errs",
CTLFLAG_RD, &adapter->stats.crcerrs,
"CRC errors");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "alignment_errs",
+ SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "alignment_errs",
CTLFLAG_RD, &adapter->stats.algnerrc,
"Alignment Errors");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "coll_ext_errs",
+ SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "coll_ext_errs",
CTLFLAG_RD, &adapter->stats.cexterr,
"Collision/Carrier extension errors");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "xon_recvd",
+ SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xon_recvd",
CTLFLAG_RD, &adapter->stats.xonrxc,
"XON Received");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "xon_txd",
+ SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xon_txd",
CTLFLAG_RD, &adapter->stats.xontxc,
"XON Transmitted");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "xoff_recvd",
+ SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xoff_recvd",
CTLFLAG_RD, &adapter->stats.xoffrxc,
"XOFF Received");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "xoff_txd",
+ SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xoff_txd",
CTLFLAG_RD, &adapter->stats.xofftxc,
"XOFF Transmitted");
/* Packet Reception Stats */
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "total_pkts_recvd",
+ SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "total_pkts_recvd",
CTLFLAG_RD, &adapter->stats.tpr,
"Total Packets Received ");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "good_pkts_recvd",
+ SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_pkts_recvd",
CTLFLAG_RD, &adapter->stats.gprc,
"Good Packets Received");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_recvd",
+ SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_recvd",
CTLFLAG_RD, &adapter->stats.bprc,
"Broadcast Packets Received");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_recvd",
+ SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_recvd",
CTLFLAG_RD, &adapter->stats.mprc,
"Multicast Packets Received");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "rx_frames_64",
+ SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_64",
CTLFLAG_RD, &adapter->stats.prc64,
"64 byte frames received ");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "rx_frames_65_127",
+ SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_65_127",
CTLFLAG_RD, &adapter->stats.prc127,
"65-127 byte frames received");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "rx_frames_128_255",
+ SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_128_255",
CTLFLAG_RD, &adapter->stats.prc255,
"128-255 byte frames received");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "rx_frames_256_511",
+ SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_256_511",
CTLFLAG_RD, &adapter->stats.prc511,
"256-511 byte frames received");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "rx_frames_512_1023",
+ SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_512_1023",
CTLFLAG_RD, &adapter->stats.prc1023,
"512-1023 byte frames received");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "rx_frames_1024_1522",
+ SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_1024_1522",
CTLFLAG_RD, &adapter->stats.prc1522,
"1023-1522 byte frames received");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "good_octets_recvd",
+ SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_octets_recvd",
CTLFLAG_RD, &adapter->stats.gorc,
"Good Octets Received");
/* Packet Transmission Stats */
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "good_octets_txd",
+ SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_octets_txd",
CTLFLAG_RD, &adapter->stats.gotc,
"Good Octets Transmitted");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "total_pkts_txd",
+ SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "total_pkts_txd",
CTLFLAG_RD, &adapter->stats.tpt,
"Total Packets Transmitted");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "good_pkts_txd",
+ SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_pkts_txd",
CTLFLAG_RD, &adapter->stats.gptc,
"Good Packets Transmitted");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_txd",
+ SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_txd",
CTLFLAG_RD, &adapter->stats.bptc,
"Broadcast Packets Transmitted");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_txd",
+ SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_txd",
CTLFLAG_RD, &adapter->stats.mptc,
"Multicast Packets Transmitted");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "tx_frames_64",
+ SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_64",
CTLFLAG_RD, &adapter->stats.ptc64,
"64 byte frames transmitted ");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "tx_frames_65_127",
+ SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_65_127",
CTLFLAG_RD, &adapter->stats.ptc127,
"65-127 byte frames transmitted");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "tx_frames_128_255",
+ SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_128_255",
CTLFLAG_RD, &adapter->stats.ptc255,
"128-255 byte frames transmitted");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "tx_frames_256_511",
+ SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_256_511",
CTLFLAG_RD, &adapter->stats.ptc511,
"256-511 byte frames transmitted");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "tx_frames_512_1023",
+ SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_512_1023",
CTLFLAG_RD, &adapter->stats.ptc1023,
"512-1023 byte frames transmitted");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "tx_frames_1024_1522",
+ SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_1024_1522",
CTLFLAG_RD, &adapter->stats.ptc1522,
"1024-1522 byte frames transmitted");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "tso_txd",
+ SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tso_txd",
CTLFLAG_RD, &adapter->stats.tsctc,
"TSO Contexts Transmitted");
- SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "tso_ctx_fail",
+ SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tso_ctx_fail",
CTLFLAG_RD, &adapter->stats.tsctfc,
"TSO Contexts Failed");
}
@@ -4613,7 +4639,6 @@ lem_set_flow_cntrl(struct adapter *adapter, const char *name,
OID_AUTO, name, CTLTYPE_INT|CTLFLAG_RW, limit, value, description);
}
-#ifndef EM_LEGACY_IRQ
static void
lem_add_rx_process_limit(struct adapter *adapter, const char *name,
const char *description, int *limit, int value)
@@ -4623,4 +4648,3 @@ lem_add_rx_process_limit(struct adapter *adapter, const char *name,
SYSCTL_CHILDREN(device_get_sysctl_tree(adapter->dev)),
OID_AUTO, name, CTLTYPE_INT|CTLFLAG_RW, limit, value, description);
}
-#endif
diff --git a/freebsd/sys/dev/e1000/if_lem.h b/freebsd/sys/dev/e1000/if_lem.h
index 21287b61..29d26af5 100644
--- a/freebsd/sys/dev/e1000/if_lem.h
+++ b/freebsd/sys/dev/e1000/if_lem.h
@@ -1,6 +1,6 @@
/******************************************************************************
- Copyright (c) 2001-2010, Intel Corporation
+ Copyright (c) 2001-2011, Intel Corporation
All rights reserved.
Redistribution and use in source and binary forms, with or without
@@ -217,6 +217,10 @@
#define EM_BAR_MEM_TYPE_64BIT 0x00000004
#define EM_MSIX_BAR 3 /* On 82575 */
+#if __FreeBSD_version < 900000
+#define SYSCTL_ADD_UQUAD SYSCTL_ADD_QUAD
+#endif
+
/* Defines for printing debug information */
#define DEBUG_INIT 0
#define DEBUG_IOCTL 0