summaryrefslogtreecommitdiffstats
path: root/freebsd/sys/dev/e1000/e1000_nvm.c
diff options
context:
space:
mode:
Diffstat (limited to 'freebsd/sys/dev/e1000/e1000_nvm.c')
-rw-r--r--freebsd/sys/dev/e1000/e1000_nvm.c398
1 files changed, 256 insertions, 142 deletions
diff --git a/freebsd/sys/dev/e1000/e1000_nvm.c b/freebsd/sys/dev/e1000/e1000_nvm.c
index 8fefe31c..370dca32 100644
--- a/freebsd/sys/dev/e1000/e1000_nvm.c
+++ b/freebsd/sys/dev/e1000/e1000_nvm.c
@@ -2,7 +2,7 @@
/******************************************************************************
- Copyright (c) 2001-2010, Intel Corporation
+ Copyright (c) 2001-2013, Intel Corporation
All rights reserved.
Redistribution and use in source and binary forms, with or without
@@ -233,7 +233,6 @@ s32 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg)
{
u32 attempts = 100000;
u32 i, reg = 0;
- s32 ret_val = -E1000_ERR_NVM;
DEBUGFUNC("e1000_poll_eerd_eewr_done");
@@ -243,15 +242,13 @@ s32 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg)
else
reg = E1000_READ_REG(hw, E1000_EEWR);
- if (reg & E1000_NVM_RW_REG_DONE) {
- ret_val = E1000_SUCCESS;
- break;
- }
+ if (reg & E1000_NVM_RW_REG_DONE)
+ return E1000_SUCCESS;
usec_delay(5);
}
- return ret_val;
+ return -E1000_ERR_NVM;
}
/**
@@ -266,7 +263,6 @@ s32 e1000_acquire_nvm_generic(struct e1000_hw *hw)
{
u32 eecd = E1000_READ_REG(hw, E1000_EECD);
s32 timeout = E1000_NVM_GRANT_ATTEMPTS;
- s32 ret_val = E1000_SUCCESS;
DEBUGFUNC("e1000_acquire_nvm_generic");
@@ -285,10 +281,10 @@ s32 e1000_acquire_nvm_generic(struct e1000_hw *hw)
eecd &= ~E1000_EECD_REQ;
E1000_WRITE_REG(hw, E1000_EECD, eecd);
DEBUGOUT("Could not acquire NVM grant\n");
- ret_val = -E1000_ERR_NVM;
+ return -E1000_ERR_NVM;
}
- return ret_val;
+ return E1000_SUCCESS;
}
/**
@@ -319,8 +315,7 @@ static void e1000_standby_nvm(struct e1000_hw *hw)
usec_delay(nvm->delay_usec);
e1000_lower_eec_clk(hw, &eecd);
- } else
- if (nvm->type == e1000_nvm_eeprom_spi) {
+ } else if (nvm->type == e1000_nvm_eeprom_spi) {
/* Toggle CS to flush commands */
eecd |= E1000_EECD_CS;
E1000_WRITE_REG(hw, E1000_EECD, eecd);
@@ -388,8 +383,6 @@ static s32 e1000_ready_nvm_eeprom(struct e1000_hw *hw)
{
struct e1000_nvm_info *nvm = &hw->nvm;
u32 eecd = E1000_READ_REG(hw, E1000_EECD);
- s32 ret_val = E1000_SUCCESS;
- u16 timeout = 0;
u8 spi_stat_reg;
DEBUGFUNC("e1000_ready_nvm_eeprom");
@@ -401,23 +394,23 @@ static s32 e1000_ready_nvm_eeprom(struct e1000_hw *hw)
/* Set CS */
eecd |= E1000_EECD_CS;
E1000_WRITE_REG(hw, E1000_EECD, eecd);
- } else
- if (nvm->type == e1000_nvm_eeprom_spi) {
+ } else if (nvm->type == e1000_nvm_eeprom_spi) {
+ u16 timeout = NVM_MAX_RETRY_SPI;
+
/* Clear SK and CS */
eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
E1000_WRITE_REG(hw, E1000_EECD, eecd);
+ E1000_WRITE_FLUSH(hw);
usec_delay(1);
- timeout = NVM_MAX_RETRY_SPI;
- /*
- * Read "Status Register" repeatedly until the LSB is cleared.
+ /* Read "Status Register" repeatedly until the LSB is cleared.
* The EEPROM will signal that the command has been completed
* by clearing bit 0 of the internal status register. If it's
* not cleared within 'timeout', then error out.
*/
while (timeout) {
e1000_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI,
- hw->nvm.opcode_bits);
+ hw->nvm.opcode_bits);
spi_stat_reg = (u8)e1000_shift_in_eec_bits(hw, 8);
if (!(spi_stat_reg & NVM_STATUS_RDY_SPI))
break;
@@ -429,13 +422,11 @@ static s32 e1000_ready_nvm_eeprom(struct e1000_hw *hw)
if (!timeout) {
DEBUGOUT("SPI NVM Status error\n");
- ret_val = -E1000_ERR_NVM;
- goto out;
+ return -E1000_ERR_NVM;
}
}
-out:
- return ret_val;
+ return E1000_SUCCESS;
}
/**
@@ -457,20 +448,18 @@ s32 e1000_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
DEBUGFUNC("e1000_read_nvm_spi");
- /*
- * A check for invalid values: offset too large, too many words,
+ /* A check for invalid values: offset too large, too many words,
* and not enough words.
*/
if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
(words == 0)) {
DEBUGOUT("nvm parameter(s) out of bounds\n");
- ret_val = -E1000_ERR_NVM;
- goto out;
+ return -E1000_ERR_NVM;
}
ret_val = nvm->ops.acquire(hw);
if (ret_val)
- goto out;
+ return ret_val;
ret_val = e1000_ready_nvm_eeprom(hw);
if (ret_val)
@@ -485,8 +474,7 @@ s32 e1000_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
e1000_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits);
e1000_shift_out_eec_bits(hw, (u16)(offset*2), nvm->address_bits);
- /*
- * Read the data. SPI NVMs increment the address with each byte
+ /* Read the data. SPI NVMs increment the address with each byte
* read and will roll over if reading beyond the end. This allows
* us to read the whole NVM from any offset
*/
@@ -498,7 +486,6 @@ s32 e1000_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
release:
nvm->ops.release(hw);
-out:
return ret_val;
}
@@ -512,7 +499,7 @@ out:
* Reads a 16 bit word from the EEPROM.
**/
s32 e1000_read_nvm_microwire(struct e1000_hw *hw, u16 offset, u16 words,
- u16 *data)
+ u16 *data)
{
struct e1000_nvm_info *nvm = &hw->nvm;
u32 i = 0;
@@ -521,20 +508,18 @@ s32 e1000_read_nvm_microwire(struct e1000_hw *hw, u16 offset, u16 words,
DEBUGFUNC("e1000_read_nvm_microwire");
- /*
- * A check for invalid values: offset too large, too many words,
+ /* A check for invalid values: offset too large, too many words,
* and not enough words.
*/
if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
(words == 0)) {
DEBUGOUT("nvm parameter(s) out of bounds\n");
- ret_val = -E1000_ERR_NVM;
- goto out;
+ return -E1000_ERR_NVM;
}
ret_val = nvm->ops.acquire(hw);
if (ret_val)
- goto out;
+ return ret_val;
ret_val = e1000_ready_nvm_eeprom(hw);
if (ret_val)
@@ -546,8 +531,7 @@ s32 e1000_read_nvm_microwire(struct e1000_hw *hw, u16 offset, u16 words,
e1000_shift_out_eec_bits(hw, (u16)(offset + i),
nvm->address_bits);
- /*
- * Read the data. For microwire, each word requires the
+ /* Read the data. For microwire, each word requires the
* overhead of setup and tear-down.
*/
data[i] = e1000_shift_in_eec_bits(hw, 16);
@@ -557,7 +541,6 @@ s32 e1000_read_nvm_microwire(struct e1000_hw *hw, u16 offset, u16 words,
release:
nvm->ops.release(hw);
-out:
return ret_val;
}
@@ -578,15 +561,13 @@ s32 e1000_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
DEBUGFUNC("e1000_read_nvm_eerd");
- /*
- * A check for invalid values: offset too large, too many words,
+ /* A check for invalid values: offset too large, too many words,
* too many words for the offset, and not enough words.
*/
if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
(words == 0)) {
DEBUGOUT("nvm parameter(s) out of bounds\n");
- ret_val = -E1000_ERR_NVM;
- goto out;
+ return -E1000_ERR_NVM;
}
for (i = 0; i < words; i++) {
@@ -599,10 +580,9 @@ s32 e1000_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
break;
data[i] = (E1000_READ_REG(hw, E1000_EERD) >>
- E1000_NVM_RW_REG_DATA);
+ E1000_NVM_RW_REG_DATA);
}
-out:
return ret_val;
}
@@ -621,43 +601,42 @@ out:
s32 e1000_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
{
struct e1000_nvm_info *nvm = &hw->nvm;
- s32 ret_val;
+ s32 ret_val = -E1000_ERR_NVM;
u16 widx = 0;
DEBUGFUNC("e1000_write_nvm_spi");
- /*
- * A check for invalid values: offset too large, too many words,
+ /* A check for invalid values: offset too large, too many words,
* and not enough words.
*/
if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
(words == 0)) {
DEBUGOUT("nvm parameter(s) out of bounds\n");
- ret_val = -E1000_ERR_NVM;
- goto out;
+ return -E1000_ERR_NVM;
}
- ret_val = nvm->ops.acquire(hw);
- if (ret_val)
- goto out;
-
while (widx < words) {
u8 write_opcode = NVM_WRITE_OPCODE_SPI;
- ret_val = e1000_ready_nvm_eeprom(hw);
+ ret_val = nvm->ops.acquire(hw);
if (ret_val)
- goto release;
+ return ret_val;
+
+ ret_val = e1000_ready_nvm_eeprom(hw);
+ if (ret_val) {
+ nvm->ops.release(hw);
+ return ret_val;
+ }
e1000_standby_nvm(hw);
/* Send the WRITE ENABLE command (8 bit opcode) */
e1000_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI,
- nvm->opcode_bits);
+ nvm->opcode_bits);
e1000_standby_nvm(hw);
- /*
- * Some SPI eeproms use the 8th address bit embedded in the
+ /* Some SPI eeproms use the 8th address bit embedded in the
* opcode
*/
if ((nvm->address_bits == 8) && (offset >= 128))
@@ -666,7 +645,7 @@ s32 e1000_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
/* Send the Write command (8-bit opcode + addr) */
e1000_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits);
e1000_shift_out_eec_bits(hw, (u16)((offset + widx) * 2),
- nvm->address_bits);
+ nvm->address_bits);
/* Loop to allow for up to whole page write of eeprom */
while (widx < words) {
@@ -680,13 +659,10 @@ s32 e1000_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
break;
}
}
+ msec_delay(10);
+ nvm->ops.release(hw);
}
- msec_delay(10);
-release:
- nvm->ops.release(hw);
-
-out:
return ret_val;
}
@@ -703,7 +679,7 @@ out:
* EEPROM will most likely contain an invalid checksum.
**/
s32 e1000_write_nvm_microwire(struct e1000_hw *hw, u16 offset, u16 words,
- u16 *data)
+ u16 *data)
{
struct e1000_nvm_info *nvm = &hw->nvm;
s32 ret_val;
@@ -713,27 +689,25 @@ s32 e1000_write_nvm_microwire(struct e1000_hw *hw, u16 offset, u16 words,
DEBUGFUNC("e1000_write_nvm_microwire");
- /*
- * A check for invalid values: offset too large, too many words,
+ /* A check for invalid values: offset too large, too many words,
* and not enough words.
*/
if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
(words == 0)) {
DEBUGOUT("nvm parameter(s) out of bounds\n");
- ret_val = -E1000_ERR_NVM;
- goto out;
+ return -E1000_ERR_NVM;
}
ret_val = nvm->ops.acquire(hw);
if (ret_val)
- goto out;
+ return ret_val;
ret_val = e1000_ready_nvm_eeprom(hw);
if (ret_val)
goto release;
e1000_shift_out_eec_bits(hw, NVM_EWEN_OPCODE_MICROWIRE,
- (u16)(nvm->opcode_bits + 2));
+ (u16)(nvm->opcode_bits + 2));
e1000_shift_out_eec_bits(hw, 0, (u16)(nvm->address_bits - 2));
@@ -741,10 +715,10 @@ s32 e1000_write_nvm_microwire(struct e1000_hw *hw, u16 offset, u16 words,
while (words_written < words) {
e1000_shift_out_eec_bits(hw, NVM_WRITE_OPCODE_MICROWIRE,
- nvm->opcode_bits);
+ nvm->opcode_bits);
e1000_shift_out_eec_bits(hw, (u16)(offset + words_written),
- nvm->address_bits);
+ nvm->address_bits);
e1000_shift_out_eec_bits(hw, data[words_written], 16);
@@ -769,14 +743,13 @@ s32 e1000_write_nvm_microwire(struct e1000_hw *hw, u16 offset, u16 words,
}
e1000_shift_out_eec_bits(hw, NVM_EWDS_OPCODE_MICROWIRE,
- (u16)(nvm->opcode_bits + 2));
+ (u16)(nvm->opcode_bits + 2));
e1000_shift_out_eec_bits(hw, 0, (u16)(nvm->address_bits - 2));
release:
nvm->ops.release(hw);
-out:
return ret_val;
}
@@ -789,8 +762,8 @@ out:
* Reads the product board assembly (PBA) number from the EEPROM and stores
* the value in pba_num.
**/
-s32 e1000_read_pba_string_generic(struct e1000_hw *hw, u8 *pba_num,
- u32 pba_num_size)
+s32 e1000_read_pba_string_generic(struct e1000_hw *hw, u8 *pba_num,
+ u32 pba_num_size)
{
s32 ret_val;
u16 nvm_data;
@@ -802,32 +775,30 @@ s32 e1000_read_pba_string_generic(struct e1000_hw *hw, u8 *pba_num,
if (pba_num == NULL) {
DEBUGOUT("PBA string buffer was null\n");
- ret_val = E1000_ERR_INVALID_ARGUMENT;
- goto out;
+ return -E1000_ERR_INVALID_ARGUMENT;
}
ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
if (ret_val) {
DEBUGOUT("NVM Read Error\n");
- goto out;
+ return ret_val;
}
ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &pba_ptr);
if (ret_val) {
DEBUGOUT("NVM Read Error\n");
- goto out;
+ return ret_val;
}
- /*
- * if nvm_data is not ptr guard the PBA must be in legacy format which
+ /* if nvm_data is not ptr guard the PBA must be in legacy format which
* means pba_ptr is actually our second data word for the PBA number
* and we can decode it into an ascii string
*/
if (nvm_data != NVM_PBA_PTR_GUARD) {
DEBUGOUT("NVM PBA number is not stored as string\n");
- /* we will need 11 characters to store the PBA */
- if (pba_num_size < 11) {
+ /* make sure callers buffer is big enough to store the PBA */
+ if (pba_num_size < E1000_PBANUM_LENGTH) {
DEBUGOUT("PBA string buffer too small\n");
return E1000_ERR_NO_SPACE;
}
@@ -855,25 +826,23 @@ s32 e1000_read_pba_string_generic(struct e1000_hw *hw, u8 *pba_num,
pba_num[offset] += 'A' - 0xA;
}
- goto out;
+ return E1000_SUCCESS;
}
ret_val = hw->nvm.ops.read(hw, pba_ptr, 1, &length);
if (ret_val) {
DEBUGOUT("NVM Read Error\n");
- goto out;
+ return ret_val;
}
if (length == 0xFFFF || length == 0) {
DEBUGOUT("NVM PBA number section invalid length\n");
- ret_val = E1000_ERR_NVM_PBA_SECTION;
- goto out;
+ return -E1000_ERR_NVM_PBA_SECTION;
}
/* check if pba_num buffer is big enough */
if (pba_num_size < (((u32)length * 2) - 1)) {
DEBUGOUT("PBA string buffer too small\n");
- ret_val = E1000_ERR_NO_SPACE;
- goto out;
+ return -E1000_ERR_NO_SPACE;
}
/* trim pba length from start of string */
@@ -884,15 +853,14 @@ s32 e1000_read_pba_string_generic(struct e1000_hw *hw, u8 *pba_num,
ret_val = hw->nvm.ops.read(hw, pba_ptr + offset, 1, &nvm_data);
if (ret_val) {
DEBUGOUT("NVM Read Error\n");
- goto out;
+ return ret_val;
}
pba_num[offset * 2] = (u8)(nvm_data >> 8);
pba_num[(offset * 2) + 1] = (u8)(nvm_data & 0xFF);
}
pba_num[offset * 2] = '\0';
-out:
- return ret_val;
+ return E1000_SUCCESS;
}
/**
@@ -914,85 +882,233 @@ s32 e1000_read_pba_length_generic(struct e1000_hw *hw, u32 *pba_num_size)
if (pba_num_size == NULL) {
DEBUGOUT("PBA buffer size was null\n");
- ret_val = E1000_ERR_INVALID_ARGUMENT;
- goto out;
+ return -E1000_ERR_INVALID_ARGUMENT;
}
ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
if (ret_val) {
DEBUGOUT("NVM Read Error\n");
- goto out;
+ return ret_val;
}
ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &pba_ptr);
if (ret_val) {
DEBUGOUT("NVM Read Error\n");
- goto out;
+ return ret_val;
}
/* if data is not ptr guard the PBA must be in legacy format */
if (nvm_data != NVM_PBA_PTR_GUARD) {
- *pba_num_size = 11;
- goto out;
+ *pba_num_size = E1000_PBANUM_LENGTH;
+ return E1000_SUCCESS;
}
ret_val = hw->nvm.ops.read(hw, pba_ptr, 1, &length);
if (ret_val) {
DEBUGOUT("NVM Read Error\n");
- goto out;
+ return ret_val;
}
if (length == 0xFFFF || length == 0) {
DEBUGOUT("NVM PBA number section invalid length\n");
- ret_val = E1000_ERR_NVM_PBA_SECTION;
- goto out;
+ return -E1000_ERR_NVM_PBA_SECTION;
}
- /*
- * Convert from length in u16 values to u8 chars, add 1 for NULL,
+ /* Convert from length in u16 values to u8 chars, add 1 for NULL,
* and subtract 2 because length field is included in length.
*/
*pba_num_size = ((u32)length * 2) - 1;
-out:
- return ret_val;
+ return E1000_SUCCESS;
}
+
/**
- * e1000_read_pba_num_generic - Read device part number
+ * e1000_read_pba_raw
* @hw: pointer to the HW structure
- * @pba_num: pointer to device part number
+ * @eeprom_buf: optional pointer to EEPROM image
+ * @eeprom_buf_size: size of EEPROM image in words
+ * @max_pba_block_size: PBA block size limit
+ * @pba: pointer to output PBA structure
+ *
+ * Reads PBA from EEPROM image when eeprom_buf is not NULL.
+ * Reads PBA from physical EEPROM device when eeprom_buf is NULL.
*
- * Reads the product board assembly (PBA) number from the EEPROM and stores
- * the value in pba_num.
**/
-s32 e1000_read_pba_num_generic(struct e1000_hw *hw, u32 *pba_num)
+s32 e1000_read_pba_raw(struct e1000_hw *hw, u16 *eeprom_buf,
+ u32 eeprom_buf_size, u16 max_pba_block_size,
+ struct e1000_pba *pba)
{
- s32 ret_val;
- u16 nvm_data;
+ s32 ret_val;
+ u16 pba_block_size;
- DEBUGFUNC("e1000_read_pba_num_generic");
+ if (pba == NULL)
+ return -E1000_ERR_PARAM;
- ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
- if (ret_val) {
- DEBUGOUT("NVM Read Error\n");
- goto out;
- } else if (nvm_data == NVM_PBA_PTR_GUARD) {
- DEBUGOUT("NVM Not Supported\n");
- ret_val = E1000_NOT_IMPLEMENTED;
- goto out;
+ if (eeprom_buf == NULL) {
+ ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_0, 2,
+ &pba->word[0]);
+ if (ret_val)
+ return ret_val;
+ } else {
+ if (eeprom_buf_size > NVM_PBA_OFFSET_1) {
+ pba->word[0] = eeprom_buf[NVM_PBA_OFFSET_0];
+ pba->word[1] = eeprom_buf[NVM_PBA_OFFSET_1];
+ } else {
+ return -E1000_ERR_PARAM;
+ }
}
- *pba_num = (u32)(nvm_data << 16);
- ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &nvm_data);
- if (ret_val) {
- DEBUGOUT("NVM Read Error\n");
- goto out;
+ if (pba->word[0] == NVM_PBA_PTR_GUARD) {
+ if (pba->pba_block == NULL)
+ return -E1000_ERR_PARAM;
+
+ ret_val = e1000_get_pba_block_size(hw, eeprom_buf,
+ eeprom_buf_size,
+ &pba_block_size);
+ if (ret_val)
+ return ret_val;
+
+ if (pba_block_size > max_pba_block_size)
+ return -E1000_ERR_PARAM;
+
+ if (eeprom_buf == NULL) {
+ ret_val = e1000_read_nvm(hw, pba->word[1],
+ pba_block_size,
+ pba->pba_block);
+ if (ret_val)
+ return ret_val;
+ } else {
+ if (eeprom_buf_size > (u32)(pba->word[1] +
+ pba->pba_block[0])) {
+ memcpy(pba->pba_block,
+ &eeprom_buf[pba->word[1]],
+ pba_block_size * sizeof(u16));
+ } else {
+ return -E1000_ERR_PARAM;
+ }
+ }
}
- *pba_num |= nvm_data;
-out:
- return ret_val;
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_write_pba_raw
+ * @hw: pointer to the HW structure
+ * @eeprom_buf: optional pointer to EEPROM image
+ * @eeprom_buf_size: size of EEPROM image in words
+ * @pba: pointer to PBA structure
+ *
+ * Writes PBA to EEPROM image when eeprom_buf is not NULL.
+ * Writes PBA to physical EEPROM device when eeprom_buf is NULL.
+ *
+ **/
+s32 e1000_write_pba_raw(struct e1000_hw *hw, u16 *eeprom_buf,
+ u32 eeprom_buf_size, struct e1000_pba *pba)
+{
+ s32 ret_val;
+
+ if (pba == NULL)
+ return -E1000_ERR_PARAM;
+
+ if (eeprom_buf == NULL) {
+ ret_val = e1000_write_nvm(hw, NVM_PBA_OFFSET_0, 2,
+ &pba->word[0]);
+ if (ret_val)
+ return ret_val;
+ } else {
+ if (eeprom_buf_size > NVM_PBA_OFFSET_1) {
+ eeprom_buf[NVM_PBA_OFFSET_0] = pba->word[0];
+ eeprom_buf[NVM_PBA_OFFSET_1] = pba->word[1];
+ } else {
+ return -E1000_ERR_PARAM;
+ }
+ }
+
+ if (pba->word[0] == NVM_PBA_PTR_GUARD) {
+ if (pba->pba_block == NULL)
+ return -E1000_ERR_PARAM;
+
+ if (eeprom_buf == NULL) {
+ ret_val = e1000_write_nvm(hw, pba->word[1],
+ pba->pba_block[0],
+ pba->pba_block);
+ if (ret_val)
+ return ret_val;
+ } else {
+ if (eeprom_buf_size > (u32)(pba->word[1] +
+ pba->pba_block[0])) {
+ memcpy(&eeprom_buf[pba->word[1]],
+ pba->pba_block,
+ pba->pba_block[0] * sizeof(u16));
+ } else {
+ return -E1000_ERR_PARAM;
+ }
+ }
+ }
+
+ return E1000_SUCCESS;
+}
+
+/**
+ * e1000_get_pba_block_size
+ * @hw: pointer to the HW structure
+ * @eeprom_buf: optional pointer to EEPROM image
+ * @eeprom_buf_size: size of EEPROM image in words
+ * @pba_data_size: pointer to output variable
+ *
+ * Returns the size of the PBA block in words. Function operates on EEPROM
+ * image if the eeprom_buf pointer is not NULL otherwise it accesses physical
+ * EEPROM device.
+ *
+ **/
+s32 e1000_get_pba_block_size(struct e1000_hw *hw, u16 *eeprom_buf,
+ u32 eeprom_buf_size, u16 *pba_block_size)
+{
+ s32 ret_val;
+ u16 pba_word[2];
+ u16 length;
+
+ DEBUGFUNC("e1000_get_pba_block_size");
+
+ if (eeprom_buf == NULL) {
+ ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_0, 2, &pba_word[0]);
+ if (ret_val)
+ return ret_val;
+ } else {
+ if (eeprom_buf_size > NVM_PBA_OFFSET_1) {
+ pba_word[0] = eeprom_buf[NVM_PBA_OFFSET_0];
+ pba_word[1] = eeprom_buf[NVM_PBA_OFFSET_1];
+ } else {
+ return -E1000_ERR_PARAM;
+ }
+ }
+
+ if (pba_word[0] == NVM_PBA_PTR_GUARD) {
+ if (eeprom_buf == NULL) {
+ ret_val = e1000_read_nvm(hw, pba_word[1] + 0, 1,
+ &length);
+ if (ret_val)
+ return ret_val;
+ } else {
+ if (eeprom_buf_size > pba_word[1])
+ length = eeprom_buf[pba_word[1] + 0];
+ else
+ return -E1000_ERR_PARAM;
+ }
+
+ if (length == 0xFFFF || length == 0)
+ return -E1000_ERR_NVM_PBA_SECTION;
+ } else {
+ /* PBA number in legacy format, there is no PBA Block. */
+ length = 0;
+ }
+
+ if (pba_block_size != NULL)
+ *pba_block_size = length;
+
+ return E1000_SUCCESS;
}
/**
@@ -1033,7 +1149,7 @@ s32 e1000_read_mac_addr_generic(struct e1000_hw *hw)
**/
s32 e1000_validate_nvm_checksum_generic(struct e1000_hw *hw)
{
- s32 ret_val = E1000_SUCCESS;
+ s32 ret_val;
u16 checksum = 0;
u16 i, nvm_data;
@@ -1043,19 +1159,17 @@ s32 e1000_validate_nvm_checksum_generic(struct e1000_hw *hw)
ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
if (ret_val) {
DEBUGOUT("NVM Read Error\n");
- goto out;
+ return ret_val;
}
checksum += nvm_data;
}
if (checksum != (u16) NVM_SUM) {
DEBUGOUT("NVM Checksum Invalid\n");
- ret_val = -E1000_ERR_NVM;
- goto out;
+ return -E1000_ERR_NVM;
}
-out:
- return ret_val;
+ return E1000_SUCCESS;
}
/**
@@ -1078,7 +1192,7 @@ s32 e1000_update_nvm_checksum_generic(struct e1000_hw *hw)
ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
if (ret_val) {
DEBUGOUT("NVM Read Error while updating checksum.\n");
- goto out;
+ return ret_val;
}
checksum += nvm_data;
}
@@ -1087,7 +1201,6 @@ s32 e1000_update_nvm_checksum_generic(struct e1000_hw *hw)
if (ret_val)
DEBUGOUT("NVM Write Error while updating checksum.\n");
-out:
return ret_val;
}
@@ -1111,3 +1224,4 @@ static void e1000_reload_nvm_generic(struct e1000_hw *hw)
E1000_WRITE_FLUSH(hw);
}
+