summaryrefslogtreecommitdiffstats
path: root/cpukit/score/cpu/sparc/cpu.c
blob: cf70913d5ec5925a59bb474a0c460ab4109e2574 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
/*
 *  SPARC Dependent Source
 *
 *  $Id$
 */

#include <rtems/system.h>
#include <rtems/score/isr.h>

/*  _CPU_Initialize
 *
 *  This routine performs processor dependent initialization.
 *
 *  INPUT PARAMETERS:
 *    cpu_table       - CPU table to initialize
 *    thread_dispatch - address of disptaching routine
 */


void _CPU_Initialize(
  rtems_cpu_table  *cpu_table,
  void      (*thread_dispatch)      /* ignored on this CPU */
)
{
  void *pointer;

  /*
   *  The thread_dispatch argument is the address of the entry point
   *  for the routine called at the end of an ISR once it has been
   *  decided a context switch is necessary.  On some compilation
   *  systems it is difficult to call a high-level language routine
   *  from assembly.  This allows us to trick these systems.
   *
   *  If you encounter this problem save the entry point in a CPU
   *  dependent variable.
   */

  _CPU_Thread_dispatch_pointer = thread_dispatch;

  /*
   *  If there is not an easy way to initialize the FP context
   *  during Context_Initialize, then it is usually easier to
   *  save an "uninitialized" FP context here and copy it to
   *  the task's during Context_Initialize.
   */

  pointer = &_CPU_Null_fp_context;
  _CPU_Context_save_fp( &pointer );

  _CPU_Table = *cpu_table;
}

/*PAGE
 *
 *  _CPU_ISR_Get_level
 */
 
unsigned32 _CPU_ISR_Get_level( void )
{
  unsigned32 level;
 
  sparc_get_interrupt_level( level );
 
  return level;
}

/*  _CPU_ISR_install_vector
 *
 *  This kernel routine installs the RTEMS handler for the
 *  specified vector.
 *
 *  Input parameters:
 *    vector      - interrupt vector number
 *    old_handler - former ISR for this vector number
 *    new_handler - replacement ISR for this vector number
 *
 *  Output parameters:  NONE
 *
 */


void _CPU_ISR_install_vector(
  unsigned32  vector,
  proc_ptr    new_handler,
  proc_ptr   *old_handler
)
{
   *old_handler = _ISR_Vector_table[ vector ];

   /*
    *  If the interrupt vector table is a table of pointer to isr entry
    *  points, then we need to install the appropriate RTEMS interrupt
    *  handler for this vector number.
    */

   /*
    *  We put the actual user ISR address in '_ISR_vector_table'.  This will
    *  be used by the _ISR_Handler so the user gets control.
    */

    _ISR_Vector_table[ vector ] = new_handler;
}

/*PAGE
 *
 *  _CPU_Install_interrupt_stack
 */

void _CPU_Install_interrupt_stack( void )
{
}

/*PAGE
 *
 *  _CPU_Context_Initialize
 */

/*
 *  The following constants assist in building a thread's initial context.
 */

#define CPU_FRAME_SIZE  (112)   /* based on disassembled test code */
#define ADDR_ADJ_OFFSET  -8

void _CPU_Context_Initialize(
  Context_Control  *_the_context,
  unsigned32       *_stack_base,
  unsigned32        _size,
  unsigned32        _new_level,
  void             *_entry_point
)
{
    unsigned32   jmp_addr;
    unsigned32   _stack_high;  /* highest "stack aligned" address */
    unsigned32   _the_size;
    unsigned32   tmp_psr;
 
    jmp_addr = (unsigned32) _entry_point;
 
    /*
     *  On CPUs with stacks which grow down (i.e. SPARC), we build the stack
     *  based on the _stack_high address.  
     */
 
    _stack_high = ((unsigned32)(_stack_base) + _size);
    _stack_high &= ~(CPU_STACK_ALIGNMENT - 1);
 
    _the_size = _size & ~(CPU_STACK_ALIGNMENT - 1);
 
/* XXX following code is based on unix port */
    /*
     *  XXX SPARC port needs a diagram like this one...
     *  See /usr/include/sys/stack.h in Solaris 2.3 for a nice
     *  diagram of the stack.
     */
 
    _the_context->o7 = jmp_addr + ADDR_ADJ_OFFSET;
    _the_context->o6 = (unsigned32)(_stack_high - CPU_FRAME_SIZE);
    _the_context->i6 = (unsigned32)(_stack_high);
#if 0
    _the_context->rp = jmp_addr + ADDR_ADJ_OFFSET;
    _the_context->sp = (unsigned32)(_stack_high - CPU_FRAME_SIZE);
    _the_context->fp = (unsigned32)(_stack_high);
#endif

    _the_context->wim = 0x01;

    sparc_get_psr( tmp_psr );
    tmp_psr &= ~SPARC_PIL_MASK;
    tmp_psr |= (((_new_level) << 8) & SPARC_PIL_MASK);
    tmp_psr  = (tmp_psr & ~0x07) | 0x07;  /* XXX should use num windows */
    _the_context->psr = tmp_psr;
}

/*PAGE
 *
 *  _CPU_Internal_threads_Idle_thread_body
 *
 *  NOTES:
 *
 *  1. This is the same as the regular CPU independent algorithm.
 *
 *  2. If you implement this using a "halt", "idle", or "shutdown"
 *     instruction, then don't forget to put it in an infinite loop.
 *
 *  3. Be warned. Some processors with onboard DMA have been known
 *     to stop the DMA if the CPU were put in IDLE mode.  This might
 *     also be a problem with other on-chip peripherals.  So use this
 *     hook with caution.
 */

void _CPU_Internal_threads_Idle_thread_body( void )
{

  for( ; ; )
    /* insert your "halt" instruction here */ ;
}