summaryrefslogtreecommitdiffstats
path: root/cpukit/score/cpu/powerpc/rtems/new-exceptions/cpu.h
blob: 75a5c6d33bdf2ad4863a685fe83b741f6f3e4881 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
/*  cpu.h
 *
 *  This include file contains information pertaining to the PowerPC
 *  processor.
 *
 *  Modified for MPC8260 Andy Dachs <a.dachs@sstl.co.uk>
 *  Surrey Satellite Technology Limited (SSTL), 2001
 *
 *  Author:	Andrew Bray <andy@i-cubed.co.uk>
 *
 *  COPYRIGHT (c) 1995 by i-cubed ltd.
 *
 *  To anyone who acknowledges that this file is provided "AS IS"
 *  without any express or implied warranty:
 *      permission to use, copy, modify, and distribute this file
 *      for any purpose is hereby granted without fee, provided that
 *      the above copyright notice and this notice appears in all
 *      copies, and that the name of i-cubed limited not be used in
 *      advertising or publicity pertaining to distribution of the
 *      software without specific, written prior permission.
 *      i-cubed limited makes no representations about the suitability
 *      of this software for any purpose.
 *
 *  Derived from c/src/exec/cpu/no_cpu/cpu.h:
 *
 *  COPYRIGHT (c) 1989-1997.
 *  On-Line Applications Research Corporation (OAR).
 *
 *  The license and distribution terms for this file may be found in
 *  the file LICENSE in this distribution or at
 *  http://www.rtems.com/license/LICENSE.
 *
 *  $Id$
 */

#ifndef _RTEMS_NEW_EXCEPTIONS_CPU_H
#define _RTEMS_NEW_EXCEPTIONS_CPU_H

#ifndef _RTEMS_SCORE_CPU_H
#error "You should include <rtems/score/cpu.h>"
#endif

#include <rtems/powerpc/registers.h>

#ifdef __cplusplus
extern "C" {
#endif

/* conditional compilation parameters */

/*
 *  Does RTEMS manage a dedicated interrupt stack in software?
 *
 *  If TRUE, then a stack is allocated in _ISR_Handler_initialization.
 *  If FALSE, nothing is done.
 *
 *  If the CPU supports a dedicated interrupt stack in hardware,
 *  then it is generally the responsibility of the BSP to allocate it
 *  and set it up.
 *
 *  If the CPU does not support a dedicated interrupt stack, then
 *  the porter has two options: (1) execute interrupts on the
 *  stack of the interrupted task, and (2) have RTEMS manage a dedicated
 *  interrupt stack.
 *
 *  If this is TRUE, CPU_ALLOCATE_INTERRUPT_STACK should also be TRUE.
 *
 *  Only one of CPU_HAS_SOFTWARE_INTERRUPT_STACK and
 *  CPU_HAS_HARDWARE_INTERRUPT_STACK should be set to TRUE.  It is
 *  possible that both are FALSE for a particular CPU.  Although it
 *  is unclear what that would imply about the interrupt processing
 *  procedure on that CPU.
 */

#define CPU_HAS_SOFTWARE_INTERRUPT_STACK TRUE

/*
 *  Does this CPU have hardware support for a dedicated interrupt stack?
 *
 *  If TRUE, then it must be installed during initialization.
 *  If FALSE, then no installation is performed.
 *
 *  If this is TRUE, CPU_ALLOCATE_INTERRUPT_STACK should also be TRUE.
 *
 *  Only one of CPU_HAS_SOFTWARE_INTERRUPT_STACK and
 *  CPU_HAS_HARDWARE_INTERRUPT_STACK should be set to TRUE.  It is
 *  possible that both are FALSE for a particular CPU.  Although it
 *  is unclear what that would imply about the interrupt processing
 *  procedure on that CPU.
 */

#define CPU_HAS_HARDWARE_INTERRUPT_STACK FALSE

/*
 *  Does RTEMS allocate a dedicated interrupt stack in the Interrupt Manager?
 *
 *  If TRUE, then the memory is allocated during initialization.
 *  If FALSE, then the memory is allocated during initialization.
 *
 *  This should be TRUE is CPU_HAS_SOFTWARE_INTERRUPT_STACK is TRUE
 *  or CPU_INSTALL_HARDWARE_INTERRUPT_STACK is TRUE.
 */

#define CPU_ALLOCATE_INTERRUPT_STACK FALSE

/*
 *  Does the RTEMS invoke the user's ISR with the vector number and
 *  a pointer to the saved interrupt frame (1) or just the vector 
 *  number (0)?
 */

#define CPU_ISR_PASSES_FRAME_POINTER 0

/*
 *  Should the saving of the floating point registers be deferred
 *  until a context switch is made to another different floating point
 *  task?
 *
 *  If TRUE, then the floating point context will not be stored until
 *  necessary.  It will remain in the floating point registers and not
 *  disturned until another floating point task is switched to.
 *
 *  If FALSE, then the floating point context is saved when a floating
 *  point task is switched out and restored when the next floating point
 *  task is restored.  The state of the floating point registers between
 *  those two operations is not specified.
 *
 *  If the floating point context does NOT have to be saved as part of
 *  interrupt dispatching, then it should be safe to set this to TRUE.
 *
 *  Setting this flag to TRUE results in using a different algorithm
 *  for deciding when to save and restore the floating point context.
 *  The deferred FP switch algorithm minimizes the number of times
 *  the FP context is saved and restored.  The FP context is not saved
 *  until a context switch is made to another, different FP task.
 *  Thus in a system with only one FP task, the FP context will never
 *  be saved or restored.
 *
 *  Note, however that compilers may use floating point registers/
 *  instructions for optimization or they may save/restore FP registers
 *  on the stack. You must not use deferred switching in these cases
 *  and on the PowerPC attempting to do so will raise a "FP unavailable"
 *  exception.
 */
/*
 *  ACB Note:  This could make debugging tricky..
 */

/* conservative setting (FALSE); probably doesn't affect performance too much */
#define CPU_USE_DEFERRED_FP_SWITCH       FALSE

/*
 *  Processor defined structures required for cpukit/score.
 */

#ifndef ASM
  
/*
 *  The following table contains the information required to configure
 *  the PowerPC processor specific parameters.
 */

typedef struct {
  void       (*pretasking_hook)( void );
  void       (*predriver_hook)( void );
  void       (*postdriver_hook)( void );
  void       (*idle_task)( void );
  boolean      do_zero_of_workspace;
  uint32_t     idle_task_stack_size;
  uint32_t     interrupt_stack_size;
  uint32_t     extra_mpci_receive_server_stack;
  void *     (*stack_allocate_hook)( uint32_t   );
  void       (*stack_free_hook)( void* );
  /* end of fields required on all CPUs */

  uint32_t     clicks_per_usec;	       /* Timer clicks per microsecond */
  boolean      exceptions_in_RAM;     /* TRUE if in RAM */

#if (defined(ppc403) || defined(ppc405) \
  || defined(mpc860) || defined(mpc821) || defined(mpc8260))
  uint32_t     serial_per_sec;	       /* Serial clocks per second */
  boolean      serial_external_clock;
  boolean      serial_xon_xoff;
  boolean      serial_cts_rts;
  uint32_t     serial_rate;
  uint32_t     timer_average_overhead; /* Average overhead of timer in ticks */
  uint32_t     timer_least_valid;      /* Least valid number from timer      */
  boolean      timer_internal_clock;   /* TRUE, when timer runs with CPU clk */
#endif

#if (defined(mpc555) \
  || defined(mpc860) || defined(mpc821) || defined(mpc8260))
  uint32_t     clock_speed;            /* Speed of CPU in Hz */
#endif
}   rtems_cpu_table;

/*
 *  Macros to access required entires in the CPU Table are in 
 *  the file rtems/system.h.
 */

/*
 *  This variable is optional.  It is used on CPUs on which it is difficult
 *  to generate an "uninitialized" FP context.  It is filled in by
 *  _CPU_Initialize and copied into the task's FP context area during
 *  _CPU_Context_Initialize.
 */

/* EXTERN Context_Control_fp  _CPU_Null_fp_context; */

/*
 *  On some CPUs, RTEMS supports a software managed interrupt stack.
 *  This stack is allocated by the Interrupt Manager and the switch
 *  is performed in _ISR_Handler.  These variables contain pointers
 *  to the lowest and highest addresses in the chunk of memory allocated
 *  for the interrupt stack.  Since it is unknown whether the stack
 *  grows up or down (in general), this give the CPU dependent
 *  code the option of picking the version it wants to use.
 *
 *  NOTE: These two variables are required if the macro
 *        CPU_HAS_SOFTWARE_INTERRUPT_STACK is defined as TRUE.
 */

SCORE_EXTERN void               *_CPU_Interrupt_stack_low;
SCORE_EXTERN void               *_CPU_Interrupt_stack_high;

#endif /* ndef ASM */

/*
 *  This defines the number of levels and the mask used to pick those
 *  bits out of a thread mode.
 */

#define CPU_MODES_INTERRUPT_LEVEL  0x00000001 /* interrupt level in mode */
#define CPU_MODES_INTERRUPT_MASK   0x00000001 /* interrupt level in mode */

/*
 *  With some compilation systems, it is difficult if not impossible to
 *  call a high-level language routine from assembly language.  This
 *  is especially true of commercial Ada compilers and name mangling
 *  C++ ones.  This variable can be optionally defined by the CPU porter
 *  and contains the address of the routine _Thread_Dispatch.  This
 *  can make it easier to invoke that routine at the end of the interrupt
 *  sequence (if a dispatch is necessary).
 */

/* EXTERN void           (*_CPU_Thread_dispatch_pointer)(); */

/*
 *  Nothing prevents the porter from declaring more CPU specific variables.
 */

#ifndef ASM
  
SCORE_EXTERN struct {
  uint32_t   *Disable_level;
  void *Stack;
  volatile boolean *Switch_necessary;
  boolean *Signal;

} _CPU_IRQ_info CPU_STRUCTURE_ALIGNMENT;

#endif /* ndef ASM */

/*
 *  The size of the floating point context area.  On some CPUs this
 *  will not be a "sizeof" because the format of the floating point
 *  area is not defined -- only the size is.  This is usually on
 *  CPUs with a "floating point save context" instruction.
 */

#define CPU_CONTEXT_FP_SIZE sizeof( Context_Control_fp )

/*
 * (Optional) # of bytes for libmisc/stackchk to check
 * If not specifed, then it defaults to something reasonable
 * for most architectures.
 */

#define CPU_STACK_CHECK_SIZE    (128)

/*
 *  Amount of extra stack (above minimum stack size) required by
 *  MPCI receive server thread.  Remember that in a multiprocessor
 *  system this thread must exist and be able to process all directives.
 */

#define CPU_MPCI_RECEIVE_SERVER_EXTRA_STACK 0

/*
 *  This defines the number of entries in the ISR_Vector_table managed
 *  by RTEMS.
 */

#define CPU_INTERRUPT_NUMBER_OF_VECTORS     (PPC_INTERRUPT_MAX)
#define CPU_INTERRUPT_MAXIMUM_VECTOR_NUMBER (PPC_INTERRUPT_MAX - 1)

/*
 *  This is defined if the port has a special way to report the ISR nesting
 *  level.  Most ports maintain the variable _ISR_Nest_level. Note that
 *  this is not an option - RTEMS/score _relies_ on _ISR_Nest_level
 *  being maintained (e.g. watchdog queues).
 */

#define CPU_PROVIDES_ISR_IS_IN_PROGRESS FALSE

/*
 *  ISR handler macros
 */

#define _CPU_Initialize_vectors()

/*
 *  Disable all interrupts for an RTEMS critical section.  The previous
 *  level is returned in _isr_cookie.
 */

#ifndef ASM
  
static inline uint32_t   _CPU_ISR_Get_level( void )
{
  register unsigned int msr;
  _CPU_MSR_GET(msr);
  if (msr & MSR_EE) return 0;
  else	return 1;
}

static inline void _CPU_ISR_Set_level( uint32_t   level )
{
  register unsigned int msr;
  _CPU_MSR_GET(msr);
  if (!(level & CPU_MODES_INTERRUPT_MASK)) {
    msr |= MSR_EE;
  }
  else {
    msr &= ~MSR_EE;
  }
  _CPU_MSR_SET(msr);
}
  
void BSP_panic(char *);

/* Fatal Error manager macros */

/*
 *  This routine copies _error into a known place -- typically a stack
 *  location or a register, optionally disables interrupts, and
 *  halts/stops the CPU.
 */

void _BSP_Fatal_error(unsigned int);

#define _CPU_Fatal_halt( _error ) \
  _BSP_Fatal_error(_error)

/* end of Fatal Error manager macros */

/*
 *  Until all new-exception processing BSPs have fixed
 *  PR288, we let the good BSPs pass
 *
 *  PPC_BSP_HAS_FIXED_PR288
 *
 *  in SPRG0 and let _CPU_Initialize assert this.
 */

#define PPC_BSP_HAS_FIXED_PR288	0x600dbabe

#endif /* ASM */

#ifdef __cplusplus
}
#endif

#endif