summaryrefslogtreecommitdiffstats
path: root/c/src/lib/libbsp/arm/nds/tools/ndstool/source/sha1.cpp
blob: 9e0dd5270380cc4160fa60810fad673896126c69 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
#include <string.h>
#include "sha1.h"

#define SHA_LITTLE_ENDIAN   1234 /* byte 0 is least significant (i386) */
#define SHA_BIG_ENDIAN      4321 /* byte 0 is most significant (mc68k) */

#include <sys/param.h>

#ifndef BYTE_ORDER
	#error "BYTE_ORDER not defined"
#endif

#if BYTE_ORDER != BIG_ENDIAN
	#define PLATFORM_BYTE_ORDER	SHA_LITTLE_ENDIAN
#else
	#define PLATFORM_BYTE_ORDER	SHA_BIG_ENDIAN
#endif



#if !defined(PLATFORM_BYTE_ORDER)
#  error Please set undetermined byte order (lines 87 or 89 of sha1.c).
#endif

#define rotl32(x,n) (((x) << n) | ((x) >> (32 - n)))

#if (PLATFORM_BYTE_ORDER == SHA_BIG_ENDIAN)
#define swap_b32(x) (x)
#elif defined(bswap_32)
#define swap_b32(x) bswap_32(x)
#else
#define swap_b32(x) ((rotl32((x), 8) & 0x00ff00ff) | (rotl32((x), 24) & 0xff00ff00))
#endif

#define SHA1_MASK   (SHA1_BLOCK_SIZE - 1)

/* reverse byte order in 32-bit words   */

#define ch(x,y,z)       (((x) & (y)) ^ (~(x) & (z)))
#define parity(x,y,z)   ((x) ^ (y) ^ (z))
#define maj(x,y,z)      (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))

/* A normal version as set out in the FIPS. This version uses   */
/* partial loop unrolling and is optimised for the Pentium 4    */

#define rnd(f,k)    \
    t = a; a = rotl32(a,5) + f(b,c,d) + e + k + w[i]; \
    e = d; d = c; c = rotl32(b, 30); b = t

void sha1_compile(sha1_ctx ctx[1])
{   sha1_32t    w[80], i, a, b, c, d, e, t;

    /* note that words are compiled from the buffer into 32-bit */
    /* words in big-endian order so an order reversal is needed */
    /* here on little endian machines                           */
    for(i = 0; i < SHA1_BLOCK_SIZE / 4; ++i)
        w[i] = swap_b32(ctx->wbuf[i]);

    for(i = SHA1_BLOCK_SIZE / 4; i < 80; ++i)
        w[i] = rotl32(w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16], 1);

    a = ctx->hash[0];
    b = ctx->hash[1];
    c = ctx->hash[2];
    d = ctx->hash[3];
    e = ctx->hash[4];

    for(i = 0; i < 20; ++i)
    {
        rnd(ch, 0x5a827999);    
    }

    for(i = 20; i < 40; ++i)
    {
        rnd(parity, 0x6ed9eba1);
    }

    for(i = 40; i < 60; ++i)
    {
        rnd(maj, 0x8f1bbcdc);
    }

    for(i = 60; i < 80; ++i)
    {
        rnd(parity, 0xca62c1d6);
    }

    ctx->hash[0] += a; 
    ctx->hash[1] += b; 
    ctx->hash[2] += c; 
    ctx->hash[3] += d; 
    ctx->hash[4] += e;
}

void sha1_begin(sha1_ctx ctx[1])
{
    ctx->count[0] = ctx->count[1] = 0;
    ctx->hash[0] = 0x67452301;
    ctx->hash[1] = 0xefcdab89;
    ctx->hash[2] = 0x98badcfe;
    ctx->hash[3] = 0x10325476;
    ctx->hash[4] = 0xc3d2e1f0;
}

/* SHA1 hash data in an array of bytes into hash buffer and call the        */
/* hash_compile function as required.                                       */

void sha1_hash(const unsigned char data[], unsigned int len, sha1_ctx ctx[1])
{   sha1_32t pos = (sha1_32t)(ctx->count[0] & SHA1_MASK), 
             space = SHA1_BLOCK_SIZE - pos;
    const unsigned char *sp = data;

    if((ctx->count[0] += len) < len)
        ++(ctx->count[1]);

    while(len >= space)     /* tranfer whole blocks while possible  */
    {
        memcpy(((unsigned char*)ctx->wbuf) + pos, sp, space);
        sp += space; len -= space; space = SHA1_BLOCK_SIZE; pos = 0; 
        sha1_compile(ctx);
    }

    memcpy(((unsigned char*)ctx->wbuf) + pos, sp, len);
}

/* SHA1 final padding and digest calculation  */

#if (PLATFORM_BYTE_ORDER == SHA_LITTLE_ENDIAN)
sha1_32t  mask[4] = 
	{   0x00000000, 0x000000ff, 0x0000ffff, 0x00ffffff };
sha1_32t  bits[4] = 
	{   0x00000080, 0x00008000, 0x00800000, 0x80000000 };
#else
sha1_32t  mask[4] = 
	{   0x00000000, 0xff000000, 0xffff0000, 0xffffff00 };
sha1_32t  bits[4] = 
	{   0x80000000, 0x00800000, 0x00008000, 0x00000080 };
#endif

void sha1_end(unsigned char hval[], sha1_ctx ctx[1])
{   sha1_32t    i = (sha1_32t)(ctx->count[0] & SHA1_MASK);

    /* mask out the rest of any partial 32-bit word and then set    */
    /* the next byte to 0x80. On big-endian machines any bytes in   */
    /* the buffer will be at the top end of 32 bit words, on little */
    /* endian machines they will be at the bottom. Hence the AND    */
    /* and OR masks above are reversed for little endian systems    */
	/* Note that we can always add the first padding byte at this	*/
	/* because the buffer always contains at least one empty slot	*/ 
    ctx->wbuf[i >> 2] = (ctx->wbuf[i >> 2] & mask[i & 3]) | bits[i & 3];

    /* we need 9 or more empty positions, one for the padding byte  */
    /* (above) and eight for the length count.  If there is not     */
    /* enough space pad and empty the buffer                        */
    if(i > SHA1_BLOCK_SIZE - 9)
    {
        if(i < 60) ctx->wbuf[15] = 0;
        sha1_compile(ctx);
        i = 0;
    }
    else    /* compute a word index for the empty buffer positions  */
        i = (i >> 2) + 1;

    while(i < 14) /* and zero pad all but last two positions      */ 
        ctx->wbuf[i++] = 0;
    
    /* assemble the eight byte counter in in big-endian format		*/
    ctx->wbuf[14] = swap_b32((ctx->count[1] << 3) | (ctx->count[0] >> 29));
    ctx->wbuf[15] = swap_b32(ctx->count[0] << 3);

    sha1_compile(ctx);

    /* extract the hash value as bytes in case the hash buffer is   */
    /* misaligned for 32-bit words                                  */
    for(i = 0; i < SHA1_DIGEST_SIZE; ++i)
        hval[i] = (unsigned char)(ctx->hash[i >> 2] >> 8 * (~i & 3));
}

void sha1(unsigned char hval[], const unsigned char data[], unsigned int len)
{   sha1_ctx    cx[1];

    sha1_begin(cx); sha1_hash(data, len, cx); sha1_end(hval, cx);
}