#include #include "sha1.h" #define SHA_LITTLE_ENDIAN 1234 /* byte 0 is least significant (i386) */ #define SHA_BIG_ENDIAN 4321 /* byte 0 is most significant (mc68k) */ #include #ifndef BYTE_ORDER #error "BYTE_ORDER not defined" #endif #if BYTE_ORDER != BIG_ENDIAN #define PLATFORM_BYTE_ORDER SHA_LITTLE_ENDIAN #else #define PLATFORM_BYTE_ORDER SHA_BIG_ENDIAN #endif #if !defined(PLATFORM_BYTE_ORDER) # error Please set undetermined byte order (lines 87 or 89 of sha1.c). #endif #define rotl32(x,n) (((x) << n) | ((x) >> (32 - n))) #if (PLATFORM_BYTE_ORDER == SHA_BIG_ENDIAN) #define swap_b32(x) (x) #elif defined(bswap_32) #define swap_b32(x) bswap_32(x) #else #define swap_b32(x) ((rotl32((x), 8) & 0x00ff00ff) | (rotl32((x), 24) & 0xff00ff00)) #endif #define SHA1_MASK (SHA1_BLOCK_SIZE - 1) /* reverse byte order in 32-bit words */ #define ch(x,y,z) (((x) & (y)) ^ (~(x) & (z))) #define parity(x,y,z) ((x) ^ (y) ^ (z)) #define maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) /* A normal version as set out in the FIPS. This version uses */ /* partial loop unrolling and is optimised for the Pentium 4 */ #define rnd(f,k) \ t = a; a = rotl32(a,5) + f(b,c,d) + e + k + w[i]; \ e = d; d = c; c = rotl32(b, 30); b = t void sha1_compile(sha1_ctx ctx[1]) { sha1_32t w[80], i, a, b, c, d, e, t; /* note that words are compiled from the buffer into 32-bit */ /* words in big-endian order so an order reversal is needed */ /* here on little endian machines */ for(i = 0; i < SHA1_BLOCK_SIZE / 4; ++i) w[i] = swap_b32(ctx->wbuf[i]); for(i = SHA1_BLOCK_SIZE / 4; i < 80; ++i) w[i] = rotl32(w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16], 1); a = ctx->hash[0]; b = ctx->hash[1]; c = ctx->hash[2]; d = ctx->hash[3]; e = ctx->hash[4]; for(i = 0; i < 20; ++i) { rnd(ch, 0x5a827999); } for(i = 20; i < 40; ++i) { rnd(parity, 0x6ed9eba1); } for(i = 40; i < 60; ++i) { rnd(maj, 0x8f1bbcdc); } for(i = 60; i < 80; ++i) { rnd(parity, 0xca62c1d6); } ctx->hash[0] += a; ctx->hash[1] += b; ctx->hash[2] += c; ctx->hash[3] += d; ctx->hash[4] += e; } void sha1_begin(sha1_ctx ctx[1]) { ctx->count[0] = ctx->count[1] = 0; ctx->hash[0] = 0x67452301; ctx->hash[1] = 0xefcdab89; ctx->hash[2] = 0x98badcfe; ctx->hash[3] = 0x10325476; ctx->hash[4] = 0xc3d2e1f0; } /* SHA1 hash data in an array of bytes into hash buffer and call the */ /* hash_compile function as required. */ void sha1_hash(const unsigned char data[], unsigned int len, sha1_ctx ctx[1]) { sha1_32t pos = (sha1_32t)(ctx->count[0] & SHA1_MASK), space = SHA1_BLOCK_SIZE - pos; const unsigned char *sp = data; if((ctx->count[0] += len) < len) ++(ctx->count[1]); while(len >= space) /* tranfer whole blocks while possible */ { memcpy(((unsigned char*)ctx->wbuf) + pos, sp, space); sp += space; len -= space; space = SHA1_BLOCK_SIZE; pos = 0; sha1_compile(ctx); } memcpy(((unsigned char*)ctx->wbuf) + pos, sp, len); } /* SHA1 final padding and digest calculation */ #if (PLATFORM_BYTE_ORDER == SHA_LITTLE_ENDIAN) sha1_32t mask[4] = { 0x00000000, 0x000000ff, 0x0000ffff, 0x00ffffff }; sha1_32t bits[4] = { 0x00000080, 0x00008000, 0x00800000, 0x80000000 }; #else sha1_32t mask[4] = { 0x00000000, 0xff000000, 0xffff0000, 0xffffff00 }; sha1_32t bits[4] = { 0x80000000, 0x00800000, 0x00008000, 0x00000080 }; #endif void sha1_end(unsigned char hval[], sha1_ctx ctx[1]) { sha1_32t i = (sha1_32t)(ctx->count[0] & SHA1_MASK); /* mask out the rest of any partial 32-bit word and then set */ /* the next byte to 0x80. On big-endian machines any bytes in */ /* the buffer will be at the top end of 32 bit words, on little */ /* endian machines they will be at the bottom. Hence the AND */ /* and OR masks above are reversed for little endian systems */ /* Note that we can always add the first padding byte at this */ /* because the buffer always contains at least one empty slot */ ctx->wbuf[i >> 2] = (ctx->wbuf[i >> 2] & mask[i & 3]) | bits[i & 3]; /* we need 9 or more empty positions, one for the padding byte */ /* (above) and eight for the length count. If there is not */ /* enough space pad and empty the buffer */ if(i > SHA1_BLOCK_SIZE - 9) { if(i < 60) ctx->wbuf[15] = 0; sha1_compile(ctx); i = 0; } else /* compute a word index for the empty buffer positions */ i = (i >> 2) + 1; while(i < 14) /* and zero pad all but last two positions */ ctx->wbuf[i++] = 0; /* assemble the eight byte counter in in big-endian format */ ctx->wbuf[14] = swap_b32((ctx->count[1] << 3) | (ctx->count[0] >> 29)); ctx->wbuf[15] = swap_b32(ctx->count[0] << 3); sha1_compile(ctx); /* extract the hash value as bytes in case the hash buffer is */ /* misaligned for 32-bit words */ for(i = 0; i < SHA1_DIGEST_SIZE; ++i) hval[i] = (unsigned char)(ctx->hash[i >> 2] >> 8 * (~i & 3)); } void sha1(unsigned char hval[], const unsigned char data[], unsigned int len) { sha1_ctx cx[1]; sha1_begin(cx); sha1_hash(data, len, cx); sha1_end(hval, cx); }