summaryrefslogtreecommitdiffstats
path: root/bsps/arm/imxrt/nxp/devices/MIMXRT1052/drivers/fsl_lpspi.c
diff options
context:
space:
mode:
Diffstat (limited to 'bsps/arm/imxrt/nxp/devices/MIMXRT1052/drivers/fsl_lpspi.c')
-rw-r--r--bsps/arm/imxrt/nxp/devices/MIMXRT1052/drivers/fsl_lpspi.c2221
1 files changed, 0 insertions, 2221 deletions
diff --git a/bsps/arm/imxrt/nxp/devices/MIMXRT1052/drivers/fsl_lpspi.c b/bsps/arm/imxrt/nxp/devices/MIMXRT1052/drivers/fsl_lpspi.c
deleted file mode 100644
index 4917a01c9e..0000000000
--- a/bsps/arm/imxrt/nxp/devices/MIMXRT1052/drivers/fsl_lpspi.c
+++ /dev/null
@@ -1,2221 +0,0 @@
-/*
- * Copyright (c) 2015, Freescale Semiconductor, Inc.
- * Copyright 2016-2019 NXP
- * All rights reserved.
- *
- * SPDX-License-Identifier: BSD-3-Clause
- */
-
-#include "fsl_lpspi.h"
-
-/*******************************************************************************
- * Definitions
- ******************************************************************************/
-
-/* Component ID definition, used by tools. */
-#ifndef FSL_COMPONENT_ID
-#define FSL_COMPONENT_ID "platform.drivers.lpspi"
-#endif
-
-/*!
- * @brief Default watermark values.
- *
- * The default watermarks are set to zero.
- */
-enum _lpspi_default_watermarks
-{
- kLpspiDefaultTxWatermark = 0,
- kLpspiDefaultRxWatermark = 0,
-};
-
-/*! @brief Typedef for master interrupt handler. */
-typedef void (*lpspi_master_isr_t)(LPSPI_Type *base, lpspi_master_handle_t *handle);
-
-/*! @brief Typedef for slave interrupt handler. */
-typedef void (*lpspi_slave_isr_t)(LPSPI_Type *base, lpspi_slave_handle_t *handle);
-
-/*******************************************************************************
- * Prototypes
- ******************************************************************************/
-
-/*!
- * @brief Configures the LPSPI peripheral chip select polarity.
- *
- * This function takes in the desired peripheral chip select (Pcs) and it's corresponding desired polarity and
- * configures the Pcs signal to operate with the desired characteristic.
- *
- * @param base LPSPI peripheral address.
- * @param pcs The particular peripheral chip select (parameter value is of type lpspi_which_pcs_t) for which we wish to
- * apply the active high or active low characteristic.
- * @param activeLowOrHigh The setting for either "active high, inactive low (0)" or "active low, inactive high(1)" of
- * type lpspi_pcs_polarity_config_t.
- */
-static void LPSPI_SetOnePcsPolarity(LPSPI_Type *base,
- lpspi_which_pcs_t pcs,
- lpspi_pcs_polarity_config_t activeLowOrHigh);
-
-/*!
- * @brief Combine the write data for 1 byte to 4 bytes.
- * This is not a public API.
- */
-static uint32_t LPSPI_CombineWriteData(uint8_t *txData, uint8_t bytesEachWrite, bool isByteSwap);
-
-/*!
- * @brief Separate the read data for 1 byte to 4 bytes.
- * This is not a public API.
- */
-static void LPSPI_SeparateReadData(uint8_t *rxData, uint32_t readData, uint8_t bytesEachRead, bool isByteSwap);
-
-/*!
- * @brief Master fill up the TX FIFO with data.
- * This is not a public API.
- */
-static void LPSPI_MasterTransferFillUpTxFifo(LPSPI_Type *base, lpspi_master_handle_t *handle);
-
-/*!
- * @brief Master finish up a transfer.
- * It would call back if there is callback function and set the state to idle.
- * This is not a public API.
- */
-static void LPSPI_MasterTransferComplete(LPSPI_Type *base, lpspi_master_handle_t *handle);
-
-/*!
- * @brief Slave fill up the TX FIFO with data.
- * This is not a public API.
- */
-static void LPSPI_SlaveTransferFillUpTxFifo(LPSPI_Type *base, lpspi_slave_handle_t *handle);
-
-/*!
- * @brief Slave finish up a transfer.
- * It would call back if there is callback function and set the state to idle.
- * This is not a public API.
- */
-static void LPSPI_SlaveTransferComplete(LPSPI_Type *base, lpspi_slave_handle_t *handle);
-
-/*!
- * @brief LPSPI common interrupt handler.
- *
- * @param handle pointer to s_lpspiHandle which stores the transfer state.
- */
-static void LPSPI_CommonIRQHandler(LPSPI_Type *base, void *param);
-
-/*******************************************************************************
- * Variables
- ******************************************************************************/
-
-/* Defines constant value arrays for the baud rate pre-scalar and scalar divider values.*/
-static const uint8_t s_baudratePrescaler[] = {1, 2, 4, 8, 16, 32, 64, 128};
-
-/*! @brief Pointers to lpspi bases for each instance. */
-static LPSPI_Type *const s_lpspiBases[] = LPSPI_BASE_PTRS;
-
-/*! @brief Pointers to lpspi IRQ number for each instance. */
-static const IRQn_Type s_lpspiIRQ[] = LPSPI_IRQS;
-
-#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
-/*! @brief Pointers to lpspi clocks for each instance. */
-static const clock_ip_name_t s_lpspiClocks[] = LPSPI_CLOCKS;
-
-#if defined(LPSPI_PERIPH_CLOCKS)
-static const clock_ip_name_t s_LpspiPeriphClocks[] = LPSPI_PERIPH_CLOCKS;
-#endif
-
-#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
-
-/*! @brief Pointers to lpspi handles for each instance. */
-static void *s_lpspiHandle[ARRAY_SIZE(s_lpspiBases)];
-
-/*! @brief Pointer to master IRQ handler for each instance. */
-static lpspi_master_isr_t s_lpspiMasterIsr;
-/*! @brief Pointer to slave IRQ handler for each instance. */
-static lpspi_slave_isr_t s_lpspiSlaveIsr;
-/* @brief Dummy data for each instance. This data is used when user's tx buffer is NULL*/
-volatile uint8_t g_lpspiDummyData[ARRAY_SIZE(s_lpspiBases)] = {0};
-
-/**********************************************************************************************************************
- * Code
- *********************************************************************************************************************/
-
-/*!
- * brief Get the LPSPI instance from peripheral base address.
- *
- * param base LPSPI peripheral base address.
- * return LPSPI instance.
- */
-uint32_t LPSPI_GetInstance(LPSPI_Type *base)
-{
- uint8_t instance = 0;
-
- /* Find the instance index from base address mappings. */
- for (instance = 0; instance < ARRAY_SIZE(s_lpspiBases); instance++)
- {
- if (s_lpspiBases[instance] == base)
- {
- break;
- }
- }
-
- assert(instance < ARRAY_SIZE(s_lpspiBases));
-
- return instance;
-}
-
-/*!
- * brief Set up the dummy data.
- *
- * param base LPSPI peripheral address.
- * param dummyData Data to be transferred when tx buffer is NULL.
- * Note:
- * This API has no effect when LPSPI in slave interrupt mode, because driver
- * will set the TXMSK bit to 1 if txData is NULL, no data is loaded from transmit
- * FIFO and output pin is tristated.
- */
-void LPSPI_SetDummyData(LPSPI_Type *base, uint8_t dummyData)
-{
- uint32_t instance = LPSPI_GetInstance(base);
- g_lpspiDummyData[instance] = dummyData;
-}
-
-/*!
- * brief Initializes the LPSPI master.
- *
- * param base LPSPI peripheral address.
- * param masterConfig Pointer to structure lpspi_master_config_t.
- * param srcClock_Hz Module source input clock in Hertz
- */
-void LPSPI_MasterInit(LPSPI_Type *base, const lpspi_master_config_t *masterConfig, uint32_t srcClock_Hz)
-{
- assert(masterConfig);
-
- uint32_t tcrPrescaleValue = 0;
-
-#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
-
- uint32_t instance = LPSPI_GetInstance(base);
- /* Enable LPSPI clock */
- (void)CLOCK_EnableClock(s_lpspiClocks[instance]);
-
-#if defined(LPSPI_PERIPH_CLOCKS)
- (void)CLOCK_EnableClock(s_LpspiPeriphClocks[instance]);
-#endif
-
-#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
-
- /* Set LPSPI to master */
- LPSPI_SetMasterSlaveMode(base, kLPSPI_Master);
-
- /* Set specific PCS to active high or low */
- LPSPI_SetOnePcsPolarity(base, masterConfig->whichPcs, masterConfig->pcsActiveHighOrLow);
-
- /* Set Configuration Register 1 related setting.*/
- base->CFGR1 = (base->CFGR1 & ~(LPSPI_CFGR1_OUTCFG_MASK | LPSPI_CFGR1_PINCFG_MASK | LPSPI_CFGR1_NOSTALL_MASK)) |
- LPSPI_CFGR1_OUTCFG(masterConfig->dataOutConfig) | LPSPI_CFGR1_PINCFG(masterConfig->pinCfg) |
- LPSPI_CFGR1_NOSTALL(0);
-
- /* Set baudrate and delay times*/
- (void)LPSPI_MasterSetBaudRate(base, masterConfig->baudRate, srcClock_Hz, &tcrPrescaleValue);
-
- /* Set default watermarks */
- LPSPI_SetFifoWatermarks(base, (uint32_t)kLpspiDefaultTxWatermark, (uint32_t)kLpspiDefaultRxWatermark);
-
- /* Set Transmit Command Register*/
- base->TCR = LPSPI_TCR_CPOL(masterConfig->cpol) | LPSPI_TCR_CPHA(masterConfig->cpha) |
- LPSPI_TCR_LSBF(masterConfig->direction) | LPSPI_TCR_FRAMESZ(masterConfig->bitsPerFrame - 1U) |
- LPSPI_TCR_PRESCALE(tcrPrescaleValue) | LPSPI_TCR_PCS(masterConfig->whichPcs);
-
- LPSPI_Enable(base, true);
-
- (void)LPSPI_MasterSetDelayTimes(base, masterConfig->pcsToSckDelayInNanoSec, kLPSPI_PcsToSck, srcClock_Hz);
- (void)LPSPI_MasterSetDelayTimes(base, masterConfig->lastSckToPcsDelayInNanoSec, kLPSPI_LastSckToPcs, srcClock_Hz);
- (void)LPSPI_MasterSetDelayTimes(base, masterConfig->betweenTransferDelayInNanoSec, kLPSPI_BetweenTransfer,
- srcClock_Hz);
-
- LPSPI_SetDummyData(base, LPSPI_DUMMY_DATA);
-}
-
-/*!
- * brief Sets the lpspi_master_config_t structure to default values.
- *
- * This API initializes the configuration structure for LPSPI_MasterInit().
- * The initialized structure can remain unchanged in LPSPI_MasterInit(), or can be modified
- * before calling the LPSPI_MasterInit().
- * Example:
- * code
- * lpspi_master_config_t masterConfig;
- * LPSPI_MasterGetDefaultConfig(&masterConfig);
- * endcode
- * param masterConfig pointer to lpspi_master_config_t structure
- */
-void LPSPI_MasterGetDefaultConfig(lpspi_master_config_t *masterConfig)
-{
- assert(masterConfig);
-
- /* Initializes the configure structure to zero. */
- (void)memset(masterConfig, 0, sizeof(*masterConfig));
-
- masterConfig->baudRate = 500000;
- masterConfig->bitsPerFrame = 8;
- masterConfig->cpol = kLPSPI_ClockPolarityActiveHigh;
- masterConfig->cpha = kLPSPI_ClockPhaseFirstEdge;
- masterConfig->direction = kLPSPI_MsbFirst;
-
- masterConfig->pcsToSckDelayInNanoSec = 1000000000U / masterConfig->baudRate * 2U;
- masterConfig->lastSckToPcsDelayInNanoSec = 1000000000U / masterConfig->baudRate * 2U;
- masterConfig->betweenTransferDelayInNanoSec = 1000000000U / masterConfig->baudRate * 2U;
-
- masterConfig->whichPcs = kLPSPI_Pcs0;
- masterConfig->pcsActiveHighOrLow = kLPSPI_PcsActiveLow;
-
- masterConfig->pinCfg = kLPSPI_SdiInSdoOut;
- masterConfig->dataOutConfig = kLpspiDataOutRetained;
-}
-
-/*!
- * brief LPSPI slave configuration.
- *
- * param base LPSPI peripheral address.
- * param slaveConfig Pointer to a structure lpspi_slave_config_t.
- */
-void LPSPI_SlaveInit(LPSPI_Type *base, const lpspi_slave_config_t *slaveConfig)
-{
- assert(slaveConfig);
-
-#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
-
- uint32_t instance = LPSPI_GetInstance(base);
- /* Enable LPSPI clock */
- (void)CLOCK_EnableClock(s_lpspiClocks[instance]);
-
-#if defined(LPSPI_PERIPH_CLOCKS)
- (void)CLOCK_EnableClock(s_LpspiPeriphClocks[instance]);
-#endif
-
-#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
-
- LPSPI_SetMasterSlaveMode(base, kLPSPI_Slave);
-
- LPSPI_SetOnePcsPolarity(base, slaveConfig->whichPcs, slaveConfig->pcsActiveHighOrLow);
-
- base->CFGR1 = (base->CFGR1 & ~(LPSPI_CFGR1_OUTCFG_MASK | LPSPI_CFGR1_PINCFG_MASK)) |
- LPSPI_CFGR1_OUTCFG(slaveConfig->dataOutConfig) | LPSPI_CFGR1_PINCFG(slaveConfig->pinCfg);
-
- LPSPI_SetFifoWatermarks(base, (uint32_t)kLpspiDefaultTxWatermark, (uint32_t)kLpspiDefaultRxWatermark);
-
- base->TCR = LPSPI_TCR_CPOL(slaveConfig->cpol) | LPSPI_TCR_CPHA(slaveConfig->cpha) |
- LPSPI_TCR_LSBF(slaveConfig->direction) | LPSPI_TCR_FRAMESZ(slaveConfig->bitsPerFrame - 1U);
-
- /* This operation will set the dummy data for edma transfer, no effect in interrupt way. */
- LPSPI_SetDummyData(base, LPSPI_DUMMY_DATA);
-
- LPSPI_Enable(base, true);
-}
-
-/*!
- * brief Sets the lpspi_slave_config_t structure to default values.
- *
- * This API initializes the configuration structure for LPSPI_SlaveInit().
- * The initialized structure can remain unchanged in LPSPI_SlaveInit() or can be modified
- * before calling the LPSPI_SlaveInit().
- * Example:
- * code
- * lpspi_slave_config_t slaveConfig;
- * LPSPI_SlaveGetDefaultConfig(&slaveConfig);
- * endcode
- * param slaveConfig pointer to lpspi_slave_config_t structure.
- */
-void LPSPI_SlaveGetDefaultConfig(lpspi_slave_config_t *slaveConfig)
-{
- assert(slaveConfig);
-
- /* Initializes the configure structure to zero. */
- (void)memset(slaveConfig, 0, sizeof(*slaveConfig));
-
- slaveConfig->bitsPerFrame = 8; /*!< Bits per frame, minimum 8, maximum 4096.*/
- slaveConfig->cpol = kLPSPI_ClockPolarityActiveHigh; /*!< Clock polarity. */
- slaveConfig->cpha = kLPSPI_ClockPhaseFirstEdge; /*!< Clock phase. */
- slaveConfig->direction = kLPSPI_MsbFirst; /*!< MSB or LSB data shift direction. */
-
- slaveConfig->whichPcs = kLPSPI_Pcs0; /*!< Desired Peripheral Chip Select (pcs) */
- slaveConfig->pcsActiveHighOrLow = kLPSPI_PcsActiveLow; /*!< Desired PCS active high or low */
-
- slaveConfig->pinCfg = kLPSPI_SdiInSdoOut;
- slaveConfig->dataOutConfig = kLpspiDataOutRetained;
-}
-
-/*!
- * brief Restores the LPSPI peripheral to reset state. Note that this function
- * sets all registers to reset state. As a result, the LPSPI module can't work after calling
- * this API.
- * param base LPSPI peripheral address.
- */
-void LPSPI_Reset(LPSPI_Type *base)
-{
- /* Reset all internal logic and registers, except the Control Register. Remains set until cleared by software.*/
- base->CR |= LPSPI_CR_RST_MASK;
-
- /* Software reset doesn't reset the CR, so manual reset the FIFOs */
- base->CR |= LPSPI_CR_RRF_MASK | LPSPI_CR_RTF_MASK;
-
- /* Master logic is not reset and module is disabled.*/
- base->CR = 0x00U;
-}
-
-/*!
- * brief De-initializes the LPSPI peripheral. Call this API to disable the LPSPI clock.
- * param base LPSPI peripheral address.
- */
-void LPSPI_Deinit(LPSPI_Type *base)
-{
- /* Reset to default value */
- LPSPI_Reset(base);
-
-#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
-
- uint32_t instance = LPSPI_GetInstance(base);
- /* Enable LPSPI clock */
- (void)CLOCK_DisableClock(s_lpspiClocks[instance]);
-
-#if defined(LPSPI_PERIPH_CLOCKS)
- (void)CLOCK_DisableClock(s_LpspiPeriphClocks[instance]);
-#endif
-
-#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
-}
-
-static void LPSPI_SetOnePcsPolarity(LPSPI_Type *base,
- lpspi_which_pcs_t pcs,
- lpspi_pcs_polarity_config_t activeLowOrHigh)
-{
- uint32_t cfgr1Value = 0;
- /* Clear the PCS polarity bit */
- cfgr1Value = base->CFGR1 & ~(1UL << (LPSPI_CFGR1_PCSPOL_SHIFT + (uint32_t)pcs));
-
- /* Configure the PCS polarity bit according to the activeLowOrHigh setting */
- base->CFGR1 = cfgr1Value | ((uint32_t)activeLowOrHigh << (LPSPI_CFGR1_PCSPOL_SHIFT + (uint32_t)pcs));
-}
-
-/*!
- * brief Sets the LPSPI baud rate in bits per second.
- *
- * This function takes in the desired bitsPerSec (baud rate) and calculates the nearest
- * possible baud rate without exceeding the desired baud rate and returns the
- * calculated baud rate in bits-per-second. It requires the caller to provide
- * the frequency of the module source clock (in Hertz). Note that the baud rate
- * does not go into effect until the Transmit Control Register (TCR) is programmed
- * with the prescale value. Hence, this function returns the prescale tcrPrescaleValue
- * parameter for later programming in the TCR. The higher level
- * peripheral driver should alert the user of an out of range baud rate input.
- *
- * Note that the LPSPI module must first be disabled before configuring this.
- * Note that the LPSPI module must be configured for master mode before configuring this.
- *
- * param base LPSPI peripheral address.
- * param baudRate_Bps The desired baud rate in bits per second.
- * param srcClock_Hz Module source input clock in Hertz.
- * param tcrPrescaleValue The TCR prescale value needed to program the TCR.
- * return The actual calculated baud rate. This function may also return a "0" if the
- * LPSPI is not configured for master mode or if the LPSPI module is not disabled.
- */
-
-uint32_t LPSPI_MasterSetBaudRate(LPSPI_Type *base,
- uint32_t baudRate_Bps,
- uint32_t srcClock_Hz,
- uint32_t *tcrPrescaleValue)
-{
- assert(tcrPrescaleValue);
-
- /* For master mode configuration only, if slave mode detected, return 0.
- * Also, the LPSPI module needs to be disabled first, if enabled, return 0
- */
- if ((!LPSPI_IsMaster(base)) || ((base->CR & LPSPI_CR_MEN_MASK) != 0U))
- {
- return 0U;
- }
-
- uint32_t prescaler, bestPrescaler;
- uint32_t scaler, bestScaler;
- uint32_t realBaudrate, bestBaudrate;
- uint32_t diff, min_diff;
- uint32_t desiredBaudrate = baudRate_Bps;
-
- /* find combination of prescaler and scaler resulting in baudrate closest to the
- * requested value
- */
- min_diff = 0xFFFFFFFFU;
-
- /* Set to maximum divisor value bit settings so that if baud rate passed in is less
- * than the minimum possible baud rate, then the SPI will be configured to the lowest
- * possible baud rate
- */
- bestPrescaler = 7;
- bestScaler = 255;
-
- bestBaudrate = 0; /* required to avoid compilation warning */
-
- /* In all for loops, if min_diff = 0, the exit for loop*/
- for (prescaler = 0U; prescaler < 8U; prescaler++)
- {
- if (min_diff == 0U)
- {
- break;
- }
- for (scaler = 0U; scaler < 256U; scaler++)
- {
- if (min_diff == 0U)
- {
- break;
- }
- realBaudrate = (srcClock_Hz / (s_baudratePrescaler[prescaler] * (scaler + 2U)));
-
- /* calculate the baud rate difference based on the conditional statement
- * that states that the calculated baud rate must not exceed the desired baud rate
- */
- if (desiredBaudrate >= realBaudrate)
- {
- diff = desiredBaudrate - realBaudrate;
- if (min_diff > diff)
- {
- /* a better match found */
- min_diff = diff;
- bestPrescaler = prescaler;
- bestScaler = scaler;
- bestBaudrate = realBaudrate;
- }
- }
- }
- }
-
- /* Write the best baud rate scalar to the CCR.
- * Note, no need to check for error since we've already checked to make sure the module is
- * disabled and in master mode. Also, there is a limit on the maximum divider so we will not
- * exceed this.
- */
- base->CCR = (base->CCR & ~LPSPI_CCR_SCKDIV_MASK) | LPSPI_CCR_SCKDIV(bestScaler);
-
- /* return the best prescaler value for user to use later */
- *tcrPrescaleValue = bestPrescaler;
-
- /* return the actual calculated baud rate */
- return bestBaudrate;
-}
-
-/*!
- * brief Manually configures a specific LPSPI delay parameter (module must be disabled to
- * change the delay values).
- *
- * This function configures the following:
- * SCK to PCS delay, or
- * PCS to SCK delay, or
- * The configurations must occur between the transfer delay.
- *
- * The delay names are available in type lpspi_delay_type_t.
- *
- * The user passes the desired delay along with the delay value.
- * This allows the user to directly set the delay values if they have
- * pre-calculated them or if they simply wish to manually increment the value.
- *
- * Note that the LPSPI module must first be disabled before configuring this.
- * Note that the LPSPI module must be configured for master mode before configuring this.
- *
- * param base LPSPI peripheral address.
- * param scaler The 8-bit delay value 0x00 to 0xFF (255).
- * param whichDelay The desired delay to configure, must be of type lpspi_delay_type_t.
- */
-void LPSPI_MasterSetDelayScaler(LPSPI_Type *base, uint32_t scaler, lpspi_delay_type_t whichDelay)
-{
- /*These settings are only relevant in master mode */
- switch (whichDelay)
- {
- case kLPSPI_PcsToSck:
- base->CCR = (base->CCR & (~LPSPI_CCR_PCSSCK_MASK)) | LPSPI_CCR_PCSSCK(scaler);
-
- break;
- case kLPSPI_LastSckToPcs:
- base->CCR = (base->CCR & (~LPSPI_CCR_SCKPCS_MASK)) | LPSPI_CCR_SCKPCS(scaler);
-
- break;
- case kLPSPI_BetweenTransfer:
- base->CCR = (base->CCR & (~LPSPI_CCR_DBT_MASK)) | LPSPI_CCR_DBT(scaler);
-
- break;
- default:
- assert(false);
- break;
- }
-}
-
-/*!
- * brief Calculates the delay based on the desired delay input in nanoseconds (module must be
- * disabled to change the delay values).
- *
- * This function calculates the values for the following:
- * SCK to PCS delay, or
- * PCS to SCK delay, or
- * The configurations must occur between the transfer delay.
- *
- * The delay names are available in type lpspi_delay_type_t.
- *
- * The user passes the desired delay and the desired delay value in
- * nano-seconds. The function calculates the value needed for the desired delay parameter
- * and returns the actual calculated delay because an exact delay match may not be possible. In this
- * case, the closest match is calculated without going below the desired delay value input.
- * It is possible to input a very large delay value that exceeds the capability of the part, in
- * which case the maximum supported delay is returned. It is up to the higher level
- * peripheral driver to alert the user of an out of range delay input.
- *
- * Note that the LPSPI module must be configured for master mode before configuring this. And note that
- * the delayTime = LPSPI_clockSource / (PRESCALE * Delay_scaler).
- *
- * param base LPSPI peripheral address.
- * param delayTimeInNanoSec The desired delay value in nano-seconds.
- * param whichDelay The desired delay to configuration, which must be of type lpspi_delay_type_t.
- * param srcClock_Hz Module source input clock in Hertz.
- * return actual Calculated delay value in nano-seconds.
- */
-uint32_t LPSPI_MasterSetDelayTimes(LPSPI_Type *base,
- uint32_t delayTimeInNanoSec,
- lpspi_delay_type_t whichDelay,
- uint32_t srcClock_Hz)
-{
- uint64_t realDelay, bestDelay;
- uint32_t scaler, bestScaler;
- uint32_t diff, min_diff;
- uint64_t initialDelayNanoSec;
- uint32_t clockDividedPrescaler;
-
- /* For delay between transfer, an additional scaler value is needed */
- uint32_t additionalScaler = 0;
-
- /*As the RM note, the LPSPI baud rate clock is itself divided by the PRESCALE setting, which can vary between
- * transfers.*/
- clockDividedPrescaler =
- srcClock_Hz / s_baudratePrescaler[(base->TCR & LPSPI_TCR_PRESCALE_MASK) >> LPSPI_TCR_PRESCALE_SHIFT];
-
- /* Find combination of prescaler and scaler resulting in the delay closest to the requested value.*/
- min_diff = 0xFFFFFFFFU;
-
- /* Initialize scaler to max value to generate the max delay */
- bestScaler = 0xFFU;
-
- /* Calculate the initial (min) delay and maximum possible delay based on the specific delay as
- * the delay divisors are slightly different based on which delay we are configuring.
- */
- if (whichDelay == kLPSPI_BetweenTransfer)
- {
- /* First calculate the initial, default delay, note min delay is 2 clock cycles. Due to large size of
- calculated values (uint64_t), we need to break up the calculation into several steps to ensure
- accurate calculated results
- */
- initialDelayNanoSec = 1000000000U;
- initialDelayNanoSec *= 2U;
- initialDelayNanoSec /= clockDividedPrescaler;
-
- /* Calculate the maximum delay */
- bestDelay = 1000000000U;
- bestDelay *= 257U; /* based on DBT+2, or 255 + 2 */
- bestDelay /= clockDividedPrescaler;
-
- additionalScaler = 1U;
- }
- else
- {
- /* First calculate the initial, default delay, min delay is 1 clock cycle. Due to large size of calculated
- values (uint64_t), we need to break up the calculation into several steps to ensure accurate calculated
- results.
- */
- initialDelayNanoSec = 1000000000U;
- initialDelayNanoSec /= clockDividedPrescaler;
-
- /* Calculate the maximum delay */
- bestDelay = 1000000000U;
- bestDelay *= 256U; /* based on SCKPCS+1 or PCSSCK+1, or 255 + 1 */
- bestDelay /= clockDividedPrescaler;
-
- additionalScaler = 0U;
- }
-
- /* If the initial, default delay is already greater than the desired delay, then
- * set the delay to their initial value (0) and return the delay. In other words,
- * there is no way to decrease the delay value further.
- */
- if (initialDelayNanoSec >= delayTimeInNanoSec)
- {
- LPSPI_MasterSetDelayScaler(base, 0, whichDelay);
- return (uint32_t)initialDelayNanoSec;
- }
-
- /* If min_diff = 0, the exit for loop */
- for (scaler = 0U; scaler < 256U; scaler++)
- {
- if (min_diff == 0U)
- {
- break;
- }
- /* Calculate the real delay value as we cycle through the scaler values.
- Due to large size of calculated values (uint64_t), we need to break up the
- calculation into several steps to ensure accurate calculated results
- */
- realDelay = 1000000000U;
- realDelay *= ((uint64_t)scaler + 1UL + (uint64_t)additionalScaler);
- realDelay /= clockDividedPrescaler;
-
- /* calculate the delay difference based on the conditional statement
- * that states that the calculated delay must not be less then the desired delay
- */
- if (realDelay >= delayTimeInNanoSec)
- {
- diff = (uint32_t)(realDelay - (uint64_t)delayTimeInNanoSec);
- if (min_diff > diff)
- {
- /* a better match found */
- min_diff = diff;
- bestScaler = scaler;
- bestDelay = realDelay;
- }
- }
- }
-
- /* write the best scaler value for the delay */
- LPSPI_MasterSetDelayScaler(base, bestScaler, whichDelay);
-
- /* return the actual calculated delay value (in ns) */
- return (uint32_t)bestDelay;
-}
-
-/*Transactional APIs -- Master*/
-
-/*!
- * brief Initializes the LPSPI master handle.
- *
- * This function initializes the LPSPI handle, which can be used for other LPSPI transactional APIs. Usually, for a
- * specified LPSPI instance, call this API once to get the initialized handle.
-
- * param base LPSPI peripheral address.
- * param handle LPSPI handle pointer to lpspi_master_handle_t.
- * param callback DSPI callback.
- * param userData callback function parameter.
- */
-void LPSPI_MasterTransferCreateHandle(LPSPI_Type *base,
- lpspi_master_handle_t *handle,
- lpspi_master_transfer_callback_t callback,
- void *userData)
-{
- assert(handle);
-
- /* Zero the handle. */
- (void)memset(handle, 0, sizeof(*handle));
-
- s_lpspiHandle[LPSPI_GetInstance(base)] = handle;
-
- /* Set irq handler. */
- s_lpspiMasterIsr = LPSPI_MasterTransferHandleIRQ;
-
- handle->callback = callback;
- handle->userData = userData;
-}
-
-/*!
- * brief Check the argument for transfer .
- *
- * param transfer the transfer struct to be used.
- * param bitPerFrame The bit size of one frame.
- * param bytePerFrame The byte size of one frame.
- * return Return true for right and false for wrong.
- */
-bool LPSPI_CheckTransferArgument(lpspi_transfer_t *transfer, uint32_t bitsPerFrame, uint32_t bytesPerFrame)
-{
- assert(transfer);
-
- /* If the transfer count is zero, then return immediately.*/
- if (transfer->dataSize == 0U)
- {
- return false;
- }
-
- /* If both send buffer and receive buffer is null */
- if ((NULL == (transfer->txData)) && (NULL == (transfer->rxData)))
- {
- return false;
- }
-
- /*The transfer data size should be integer multiples of bytesPerFrame if bytesPerFrame is less than or equal to 4 .
- *For bytesPerFrame greater than 4 situation:
- *the transfer data size should be equal to bytesPerFrame if the bytesPerFrame is not integer multiples of 4 ,
- *otherwise , the transfer data size can be integer multiples of bytesPerFrame.
- */
- if (bytesPerFrame <= 4U)
- {
- if ((transfer->dataSize % bytesPerFrame) != 0U)
- {
- return false;
- }
- }
- else
- {
- if ((bytesPerFrame % 4U) != 0U)
- {
- if (transfer->dataSize != bytesPerFrame)
- {
- return false;
- }
- }
- else
- {
- if ((transfer->dataSize % bytesPerFrame) != 0U)
- {
- return false;
- }
- }
- }
-
- return true;
-}
-
-/*!
- * brief LPSPI master transfer data using a polling method.
- *
- * This function transfers data using a polling method. This is a blocking function, which does not return until all
- * transfers have been
- * completed.
- *
- * Note:
- * The transfer data size should be integer multiples of bytesPerFrame if bytesPerFrame is less than or equal to 4.
- * For bytesPerFrame greater than 4:
- * The transfer data size should be equal to bytesPerFrame if the bytesPerFrame is not integer multiples of 4.
- * Otherwise, the transfer data size can be an integer multiple of bytesPerFrame.
- *
- * param base LPSPI peripheral address.
- * param transfer pointer to lpspi_transfer_t structure.
- * return status of status_t.
- */
-status_t LPSPI_MasterTransferBlocking(LPSPI_Type *base, lpspi_transfer_t *transfer)
-{
- assert(transfer);
-
- uint32_t bitsPerFrame = ((base->TCR & LPSPI_TCR_FRAMESZ_MASK) >> LPSPI_TCR_FRAMESZ_SHIFT) + 1U;
- uint32_t bytesPerFrame = (bitsPerFrame + 7U) / 8U;
- uint32_t temp = 0U;
- uint8_t dummyData = g_lpspiDummyData[LPSPI_GetInstance(base)];
-
- if (!LPSPI_CheckTransferArgument(transfer, bitsPerFrame, bytesPerFrame))
- {
- return kStatus_InvalidArgument;
- }
-
- /* Check that LPSPI is not busy.*/
- if ((LPSPI_GetStatusFlags(base) & (uint32_t)kLPSPI_ModuleBusyFlag) != 0U)
- {
- return kStatus_LPSPI_Busy;
- }
-
- uint8_t *txData = transfer->txData;
- uint8_t *rxData = transfer->rxData;
- uint32_t txRemainingByteCount = transfer->dataSize;
- uint32_t rxRemainingByteCount = transfer->dataSize;
-
- uint8_t bytesEachWrite;
- uint8_t bytesEachRead;
-
- uint32_t readData = 0U;
- uint32_t wordToSend =
- ((uint32_t)dummyData) | ((uint32_t)dummyData << 8) | ((uint32_t)dummyData << 16) | ((uint32_t)dummyData << 24);
-
- /*The TX and RX FIFO sizes are always the same*/
- uint32_t fifoSize = LPSPI_GetRxFifoSize(base);
- uint32_t rxFifoMaxBytes = MIN(bytesPerFrame, 4U) * fifoSize;
- uint32_t whichPcs = (transfer->configFlags & LPSPI_MASTER_PCS_MASK) >> LPSPI_MASTER_PCS_SHIFT;
-
- bool isPcsContinuous = ((transfer->configFlags & (uint32_t)kLPSPI_MasterPcsContinuous) != 0U);
- bool isRxMask = false;
- bool isByteSwap = ((transfer->configFlags & (uint32_t)kLPSPI_MasterByteSwap) != 0U);
-
-#if SPI_RETRY_TIMES
- uint32_t waitTimes;
-#endif
-
- LPSPI_FlushFifo(base, true, true);
- LPSPI_ClearStatusFlags(base, (uint32_t)kLPSPI_AllStatusFlag);
-
- if (NULL == rxData)
- {
- isRxMask = true;
- }
-
- LPSPI_Enable(base, false);
- base->CFGR1 &= (~LPSPI_CFGR1_NOSTALL_MASK);
- /* Check if using 3-wire mode and the txData is NULL, set the output pin to tristated. */
- temp = base->CFGR1;
- temp &= LPSPI_CFGR1_PINCFG_MASK;
- if ((temp == LPSPI_CFGR1_PINCFG(kLPSPI_SdiInSdiOut)) || (temp == LPSPI_CFGR1_PINCFG(kLPSPI_SdoInSdoOut)))
- {
- if (NULL == txData)
- {
- base->CFGR1 |= LPSPI_CFGR1_OUTCFG_MASK;
- }
- /* The 3-wire mode can't send and receive data at the same time. */
- if ((txData != NULL) && (rxData != NULL))
- {
- return kStatus_InvalidArgument;
- }
- }
- LPSPI_Enable(base, true);
-
- base->TCR =
- (base->TCR & ~(LPSPI_TCR_CONT_MASK | LPSPI_TCR_CONTC_MASK | LPSPI_TCR_RXMSK_MASK | LPSPI_TCR_PCS_MASK)) |
- LPSPI_TCR_CONT(isPcsContinuous) | LPSPI_TCR_CONTC(0) | LPSPI_TCR_RXMSK(isRxMask) | LPSPI_TCR_PCS(whichPcs);
-
- if (bytesPerFrame <= 4U)
- {
- bytesEachWrite = (uint8_t)bytesPerFrame;
- bytesEachRead = (uint8_t)bytesPerFrame;
- }
- else
- {
- bytesEachWrite = 4U;
- bytesEachRead = 4U;
- }
-
- /*Write the TX data until txRemainingByteCount is equal to 0 */
- while (txRemainingByteCount > 0U)
- {
- if (txRemainingByteCount < bytesEachWrite)
- {
- bytesEachWrite = (uint8_t)txRemainingByteCount;
- }
-
- /*Wait until TX FIFO is not full*/
-#if SPI_RETRY_TIMES
- waitTimes = SPI_RETRY_TIMES;
- while ((LPSPI_GetTxFifoCount(base) == fifoSize) && (--waitTimes != 0U))
-#else
- while (LPSPI_GetTxFifoCount(base) == fifoSize)
-#endif
- {
- }
-#if SPI_RETRY_TIMES
- if (waitTimes == 0U)
- {
- return kStatus_SPI_Timeout;
- }
-#endif
-
- /* To prevent rxfifo overflow, ensure transmitting and receiving are executed in parallel */
- if (((NULL == rxData) || (rxRemainingByteCount - txRemainingByteCount) < rxFifoMaxBytes))
- {
- if (txData != NULL)
- {
- wordToSend = LPSPI_CombineWriteData(txData, bytesEachWrite, isByteSwap);
- txData += bytesEachWrite;
- }
-
- LPSPI_WriteData(base, wordToSend);
- txRemainingByteCount -= bytesEachWrite;
- }
-
- /*Check whether there is RX data in RX FIFO . Read out the RX data so that the RX FIFO would not overrun.*/
- if (rxData != NULL)
- {
-#if SPI_RETRY_TIMES
- waitTimes = SPI_RETRY_TIMES;
- while ((LPSPI_GetRxFifoCount(base) != 0U) && (--waitTimes != 0U))
-#else
- while (LPSPI_GetRxFifoCount(base) != 0U)
-#endif
- {
- readData = LPSPI_ReadData(base);
- if (rxRemainingByteCount < bytesEachRead)
- {
- bytesEachRead = (uint8_t)rxRemainingByteCount;
- }
-
- LPSPI_SeparateReadData(rxData, readData, bytesEachRead, isByteSwap);
- rxData += bytesEachRead;
-
- rxRemainingByteCount -= bytesEachRead;
- }
-#if SPI_RETRY_TIMES
- if (waitTimes == 0U)
- {
- return kStatus_SPI_Timeout;
- }
-#endif
- }
- }
-
- /* After write all the data in TX FIFO , should write the TCR_CONTC to 0 to de-assert the PCS. Note that TCR
- * register also use the TX FIFO.
- */
-#if SPI_RETRY_TIMES
- waitTimes = SPI_RETRY_TIMES;
- while ((LPSPI_GetTxFifoCount(base) == fifoSize) && (--waitTimes != 0U))
-#else
- while (LPSPI_GetTxFifoCount(base) == fifoSize)
-#endif
- {
- }
-#if SPI_RETRY_TIMES
- if (waitTimes == 0U)
- {
- return kStatus_SPI_Timeout;
- }
-#endif
- base->TCR = (base->TCR & ~(LPSPI_TCR_CONTC_MASK));
-
- /*Read out the RX data in FIFO*/
- if (rxData != NULL)
- {
- while (rxRemainingByteCount > 0U)
- {
-#if SPI_RETRY_TIMES
- waitTimes = SPI_RETRY_TIMES;
- while ((LPSPI_GetRxFifoCount(base) != 0U) && (--waitTimes != 0U))
-#else
- while (LPSPI_GetRxFifoCount(base) != 0U)
-#endif
- {
- readData = LPSPI_ReadData(base);
-
- if (rxRemainingByteCount < bytesEachRead)
- {
- bytesEachRead = (uint8_t)rxRemainingByteCount;
- }
-
- LPSPI_SeparateReadData(rxData, readData, bytesEachRead, isByteSwap);
- rxData += bytesEachRead;
-
- rxRemainingByteCount -= bytesEachRead;
- }
-#if SPI_RETRY_TIMES
- if (waitTimes == 0U)
- {
- return kStatus_SPI_Timeout;
- }
-#endif
- }
- }
- else
- {
- /* If no RX buffer, then transfer is not complete until transfer complete flag sets */
-#if SPI_RETRY_TIMES
- waitTimes = SPI_RETRY_TIMES;
- while (((LPSPI_GetStatusFlags(base) & (uint32_t)kLPSPI_TransferCompleteFlag) == 0U) && (--waitTimes != 0U))
-#else
- while ((LPSPI_GetStatusFlags(base) & (uint32_t)kLPSPI_TransferCompleteFlag) == 0U)
-#endif
- {
- }
-#if SPI_RETRY_TIMES
- if (waitTimes == 0U)
- {
- return kStatus_SPI_Timeout;
- }
-#endif
- }
-
- return kStatus_Success;
-}
-
-/*!
- * brief LPSPI master transfer data using an interrupt method.
- *
- * This function transfers data using an interrupt method. This is a non-blocking function, which returns right away.
- * When all data
- * is transferred, the callback function is called.
- *
- * Note:
- * The transfer data size should be integer multiples of bytesPerFrame if bytesPerFrame is less than or equal to 4.
- * For bytesPerFrame greater than 4:
- * The transfer data size should be equal to bytesPerFrame if the bytesPerFrame is not integer multiples of 4.
- * Otherwise, the transfer data size can be an integer multiple of bytesPerFrame.
- *
- * param base LPSPI peripheral address.
- * param handle pointer to lpspi_master_handle_t structure which stores the transfer state.
- * param transfer pointer to lpspi_transfer_t structure.
- * return status of status_t.
- */
-status_t LPSPI_MasterTransferNonBlocking(LPSPI_Type *base, lpspi_master_handle_t *handle, lpspi_transfer_t *transfer)
-{
- assert(handle);
- assert(transfer);
-
- uint32_t bitsPerFrame = ((base->TCR & LPSPI_TCR_FRAMESZ_MASK) >> LPSPI_TCR_FRAMESZ_SHIFT) + 1U;
- uint32_t bytesPerFrame = (bitsPerFrame + 7U) / 8U;
- uint32_t temp = 0U;
- uint8_t dummyData = g_lpspiDummyData[LPSPI_GetInstance(base)];
- bool isPcsContinuous;
- uint32_t tmpTimes;
-
- if (!LPSPI_CheckTransferArgument(transfer, bitsPerFrame, bytesPerFrame))
- {
- return kStatus_InvalidArgument;
- }
-
- /* Check that we're not busy.*/
- if (handle->state == (uint8_t)kLPSPI_Busy)
- {
- return kStatus_LPSPI_Busy;
- }
-
- handle->state = (uint8_t)kLPSPI_Busy;
-
- bool isRxMask = false;
-
- uint8_t txWatermark;
-
- uint32_t whichPcs = (transfer->configFlags & LPSPI_MASTER_PCS_MASK) >> LPSPI_MASTER_PCS_SHIFT;
-
- handle->txData = transfer->txData;
- handle->rxData = transfer->rxData;
- handle->txRemainingByteCount = transfer->dataSize;
- handle->rxRemainingByteCount = transfer->dataSize;
- handle->totalByteCount = transfer->dataSize;
-
- handle->writeTcrInIsr = false;
-
- handle->writeRegRemainingTimes = (transfer->dataSize / bytesPerFrame) * ((bytesPerFrame + 3U) / 4U);
- handle->readRegRemainingTimes = handle->writeRegRemainingTimes;
-
- handle->txBuffIfNull =
- ((uint32_t)dummyData) | ((uint32_t)dummyData << 8) | ((uint32_t)dummyData << 16) | ((uint32_t)dummyData << 24);
-
- /*The TX and RX FIFO sizes are always the same*/
- handle->fifoSize = LPSPI_GetRxFifoSize(base);
-
- handle->isPcsContinuous = ((transfer->configFlags & (uint32_t)kLPSPI_MasterPcsContinuous) != 0U);
- isPcsContinuous = handle->isPcsContinuous;
- handle->isByteSwap = ((transfer->configFlags & (uint32_t)kLPSPI_MasterByteSwap) != 0U);
-
- /*Set the RX and TX watermarks to reduce the ISR times.*/
- if (handle->fifoSize > 1U)
- {
- txWatermark = 1U;
- handle->rxWatermark = handle->fifoSize - 2U;
- }
- else
- {
- txWatermark = 0U;
- handle->rxWatermark = 0U;
- }
-
- LPSPI_SetFifoWatermarks(base, txWatermark, handle->rxWatermark);
-
- LPSPI_Enable(base, false);
- /*Transfers will stall when transmit FIFO is empty or receive FIFO is full. */
- base->CFGR1 &= (~LPSPI_CFGR1_NOSTALL_MASK);
- /* Check if using 3-wire mode and the txData is NULL, set the output pin to tristated. */
- temp = base->CFGR1;
- temp &= LPSPI_CFGR1_PINCFG_MASK;
- if ((temp == LPSPI_CFGR1_PINCFG(kLPSPI_SdiInSdiOut)) || (temp == LPSPI_CFGR1_PINCFG(kLPSPI_SdoInSdoOut)))
- {
- if (NULL == handle->txData)
- {
- base->CFGR1 |= LPSPI_CFGR1_OUTCFG_MASK;
- }
- /* The 3-wire mode can't send and receive data at the same time. */
- if ((NULL != handle->txData) && (NULL != handle->rxData))
- {
- return kStatus_InvalidArgument;
- }
- }
- LPSPI_Enable(base, true);
-
- /*Flush FIFO , clear status , disable all the inerrupts.*/
- LPSPI_FlushFifo(base, true, true);
- LPSPI_ClearStatusFlags(base, (uint32_t)kLPSPI_AllStatusFlag);
- LPSPI_DisableInterrupts(base, (uint32_t)kLPSPI_AllInterruptEnable);
-
- /* If there is not rxData , can mask the receive data (receive data is not stored in receive FIFO).
- * For master transfer , we'd better not masked the transmit data in TCR since the transfer flow is hard to
- * controlled by software.*/
- if (handle->rxData == NULL)
- {
- isRxMask = true;
- handle->rxRemainingByteCount = 0;
- }
-
- base->TCR =
- (base->TCR & ~(LPSPI_TCR_CONT_MASK | LPSPI_TCR_CONTC_MASK | LPSPI_TCR_RXMSK_MASK | LPSPI_TCR_PCS_MASK)) |
- LPSPI_TCR_CONT(isPcsContinuous) | LPSPI_TCR_CONTC(0) | LPSPI_TCR_RXMSK(isRxMask) | LPSPI_TCR_PCS(whichPcs);
-
- /*Calculate the bytes for write/read the TX/RX register each time*/
- if (bytesPerFrame <= 4U)
- {
- handle->bytesEachWrite = (uint8_t)bytesPerFrame;
- handle->bytesEachRead = (uint8_t)bytesPerFrame;
- }
- else
- {
- handle->bytesEachWrite = 4U;
- handle->bytesEachRead = 4U;
- }
-
- /* Enable the NVIC for LPSPI peripheral. Note that below code is useless if the LPSPI interrupt is in INTMUX ,
- * and you should also enable the INTMUX interupt in your application.
- */
- (void)EnableIRQ(s_lpspiIRQ[LPSPI_GetInstance(base)]);
-
- /*TCR is also shared the FIFO , so wait for TCR written.*/
-#if SPI_RETRY_TIMES
- uint32_t waitTimes = SPI_RETRY_TIMES;
- while ((LPSPI_GetTxFifoCount(base) != 0U) && (--waitTimes != 0U))
-#else
- while (LPSPI_GetTxFifoCount(base) != 0U)
-#endif
- {
- }
-#if SPI_RETRY_TIMES
- if (waitTimes == 0U)
- {
- return kStatus_SPI_Timeout;
- }
-#endif
-
- /*Fill up the TX data in FIFO */
- LPSPI_MasterTransferFillUpTxFifo(base, handle);
-
- /* Since SPI is a synchronous interface, we only need to enable the RX interrupt if there is RX data.
- * The IRQ handler will get the status of RX and TX interrupt flags.
- */
- if (handle->rxData != NULL)
- {
- /*Set rxWatermark to (readRegRemainingTimes-1) if readRegRemainingTimes less than rxWatermark. Otherwise there
- *is not RX interrupt for the last datas because the RX count is not greater than rxWatermark.
- */
- tmpTimes = handle->readRegRemainingTimes;
- if (tmpTimes <= handle->rxWatermark)
- {
- base->FCR = (base->FCR & (~LPSPI_FCR_RXWATER_MASK)) | LPSPI_FCR_RXWATER(tmpTimes - 1U);
- }
-
- LPSPI_EnableInterrupts(base, (uint32_t)kLPSPI_RxInterruptEnable);
- }
- else
- {
- LPSPI_EnableInterrupts(base, (uint32_t)kLPSPI_TxInterruptEnable);
- }
-
- return kStatus_Success;
-}
-
-static void LPSPI_MasterTransferFillUpTxFifo(LPSPI_Type *base, lpspi_master_handle_t *handle)
-{
- assert(handle);
-
- uint32_t wordToSend = 0;
- uint8_t fifoSize = handle->fifoSize;
- uint32_t writeRegRemainingTimes = handle->writeRegRemainingTimes;
- uint32_t readRegRemainingTimes = handle->readRegRemainingTimes;
- size_t txRemainingByteCount = handle->txRemainingByteCount;
- uint8_t bytesEachWrite = handle->bytesEachWrite;
- bool isByteSwap = handle->isByteSwap;
-
- /* Make sure the difference in remaining TX and RX byte counts does not exceed FIFO depth
- * and that the number of TX FIFO entries does not exceed the FIFO depth.
- * But no need to make the protection if there is no rxData.
- */
- while ((LPSPI_GetTxFifoCount(base) < fifoSize) &&
- (((readRegRemainingTimes - writeRegRemainingTimes) < (uint32_t)fifoSize) || (handle->rxData == NULL)))
- {
- if (txRemainingByteCount < (size_t)bytesEachWrite)
- {
- handle->bytesEachWrite = (uint8_t)txRemainingByteCount;
- bytesEachWrite = handle->bytesEachWrite;
- }
-
- if (handle->txData != NULL)
- {
- wordToSend = LPSPI_CombineWriteData(handle->txData, bytesEachWrite, isByteSwap);
- handle->txData += bytesEachWrite;
- }
- else
- {
- wordToSend = handle->txBuffIfNull;
- }
-
- /*Write the word to TX register*/
- LPSPI_WriteData(base, wordToSend);
-
- /*Decrease the write TX register times.*/
- --handle->writeRegRemainingTimes;
- writeRegRemainingTimes = handle->writeRegRemainingTimes;
-
- /*Decrease the remaining TX byte count.*/
- handle->txRemainingByteCount -= (size_t)bytesEachWrite;
- txRemainingByteCount = handle->txRemainingByteCount;
-
- if (handle->txRemainingByteCount == 0U)
- {
- /* If PCS is continuous, update TCR to de-assert PCS */
- if (handle->isPcsContinuous)
- {
- /* Only write to the TCR if the FIFO has room */
- if (LPSPI_GetTxFifoCount(base) < fifoSize)
- {
- base->TCR = (base->TCR & ~(LPSPI_TCR_CONTC_MASK));
- handle->writeTcrInIsr = false;
- }
- /* Else, set a global flag to tell the ISR to do write to the TCR */
- else
- {
- handle->writeTcrInIsr = true;
- }
- }
- break;
- }
- }
-}
-
-static void LPSPI_MasterTransferComplete(LPSPI_Type *base, lpspi_master_handle_t *handle)
-{
- assert(handle);
-
- /* Disable interrupt requests*/
- LPSPI_DisableInterrupts(base, (uint32_t)kLPSPI_AllInterruptEnable);
-
- handle->state = (uint8_t)kLPSPI_Idle;
-
- if (handle->callback != NULL)
- {
- handle->callback(base, handle, kStatus_Success, handle->userData);
- }
-}
-
-/*!
- * brief Gets the master transfer remaining bytes.
- *
- * This function gets the master transfer remaining bytes.
- *
- * param base LPSPI peripheral address.
- * param handle pointer to lpspi_master_handle_t structure which stores the transfer state.
- * param count Number of bytes transferred so far by the non-blocking transaction.
- * return status of status_t.
- */
-status_t LPSPI_MasterTransferGetCount(LPSPI_Type *base, lpspi_master_handle_t *handle, size_t *count)
-{
- assert(handle);
-
- if (NULL == count)
- {
- return kStatus_InvalidArgument;
- }
-
- /* Catch when there is not an active transfer. */
- if (handle->state != (uint8_t)kLPSPI_Busy)
- {
- *count = 0;
- return kStatus_NoTransferInProgress;
- }
-
- size_t remainingByte;
-
- if (handle->rxData != NULL)
- {
- remainingByte = handle->rxRemainingByteCount;
- }
- else
- {
- remainingByte = handle->txRemainingByteCount;
- }
-
- *count = handle->totalByteCount - remainingByte;
-
- return kStatus_Success;
-}
-
-/*!
- * brief LPSPI master abort transfer which uses an interrupt method.
- *
- * This function aborts a transfer which uses an interrupt method.
- *
- * param base LPSPI peripheral address.
- * param handle pointer to lpspi_master_handle_t structure which stores the transfer state.
- */
-void LPSPI_MasterTransferAbort(LPSPI_Type *base, lpspi_master_handle_t *handle)
-{
- assert(handle);
-
- /* Disable interrupt requests*/
- LPSPI_DisableInterrupts(base, (uint32_t)kLPSPI_AllInterruptEnable);
-
- LPSPI_Reset(base);
-
- handle->state = (uint8_t)kLPSPI_Idle;
- handle->txRemainingByteCount = 0;
- handle->rxRemainingByteCount = 0;
-}
-
-/*!
- * brief LPSPI Master IRQ handler function.
- *
- * This function processes the LPSPI transmit and receive IRQ.
- *
- * param base LPSPI peripheral address.
- * param handle pointer to lpspi_master_handle_t structure which stores the transfer state.
- */
-void LPSPI_MasterTransferHandleIRQ(LPSPI_Type *base, lpspi_master_handle_t *handle)
-{
- assert(handle);
-
- uint32_t readData;
- uint8_t bytesEachRead = handle->bytesEachRead;
- bool isByteSwap = handle->isByteSwap;
- uint32_t readRegRemainingTimes = handle->readRegRemainingTimes;
-
- if (handle->rxData != NULL)
- {
- if (handle->rxRemainingByteCount != 0U)
- {
- /* First, disable the interrupts to avoid potentially triggering another interrupt
- * while reading out the RX FIFO as more data may be coming into the RX FIFO. We'll
- * re-enable the interrupts based on the LPSPI state after reading out the FIFO.
- */
- LPSPI_DisableInterrupts(base, (uint32_t)kLPSPI_RxInterruptEnable);
-
- while ((LPSPI_GetRxFifoCount(base) != 0U) && (handle->rxRemainingByteCount != 0U))
- {
- /*Read out the data*/
- readData = LPSPI_ReadData(base);
-
- /*Decrease the read RX register times.*/
- --handle->readRegRemainingTimes;
- readRegRemainingTimes = handle->readRegRemainingTimes;
-
- if (handle->rxRemainingByteCount < (size_t)bytesEachRead)
- {
- handle->bytesEachRead = (uint8_t)(handle->rxRemainingByteCount);
- bytesEachRead = handle->bytesEachRead;
- }
-
- LPSPI_SeparateReadData(handle->rxData, readData, bytesEachRead, isByteSwap);
- handle->rxData += bytesEachRead;
-
- /*Decrease the remaining RX byte count.*/
- handle->rxRemainingByteCount -= (size_t)bytesEachRead;
- }
-
- /* Re-enable the interrupts only if rxCount indicates there is more data to receive,
- * else we may get a spurious interrupt.
- * */
- if (handle->rxRemainingByteCount != 0U)
- {
- /* Set the TDF and RDF interrupt enables simultaneously to avoid race conditions */
- LPSPI_EnableInterrupts(base, (uint32_t)kLPSPI_RxInterruptEnable);
- }
- }
-
- /*Set rxWatermark to (readRegRemainingTimes-1) if readRegRemainingTimes less than rxWatermark. Otherwise there
- *is not RX interrupt for the last datas because the RX count is not greater than rxWatermark.
- */
- if (readRegRemainingTimes <= (uint32_t)handle->rxWatermark)
- {
- base->FCR = (base->FCR & (~LPSPI_FCR_RXWATER_MASK)) |
- LPSPI_FCR_RXWATER((readRegRemainingTimes > 1U) ? (readRegRemainingTimes - 1U) : (0U));
- }
- }
-
- if (handle->txRemainingByteCount != 0U)
- {
- LPSPI_MasterTransferFillUpTxFifo(base, handle);
- }
- else
- {
- if ((LPSPI_GetTxFifoCount(base) < (handle->fifoSize)))
- {
- if ((handle->isPcsContinuous) && (handle->writeTcrInIsr))
- {
- base->TCR = (base->TCR & ~(LPSPI_TCR_CONTC_MASK));
- handle->writeTcrInIsr = false;
- }
- }
- }
-
- if ((handle->txRemainingByteCount == 0U) && (handle->rxRemainingByteCount == 0U) && (!handle->writeTcrInIsr))
- {
- /* If no RX buffer, then transfer is not complete until transfer complete flag sets */
- if (handle->rxData == NULL)
- {
- if ((LPSPI_GetStatusFlags(base) & (uint32_t)kLPSPI_TransferCompleteFlag) != 0U)
- {
- LPSPI_ClearStatusFlags(base, (uint32_t)kLPSPI_TransferCompleteFlag);
- /* Complete the transfer and disable the interrupts */
- LPSPI_MasterTransferComplete(base, handle);
- }
- else
- {
- LPSPI_EnableInterrupts(base, (uint32_t)kLPSPI_TransferCompleteInterruptEnable);
- LPSPI_DisableInterrupts(base, (uint32_t)kLPSPI_TxInterruptEnable | (uint32_t)kLPSPI_RxInterruptEnable);
- }
- }
- else
- {
- /* Complete the transfer and disable the interrupts */
- LPSPI_MasterTransferComplete(base, handle);
- }
- }
-}
-
-/*Transactional APIs -- Slave*/
-/*!
- * brief Initializes the LPSPI slave handle.
- *
- * This function initializes the LPSPI handle, which can be used for other LPSPI transactional APIs. Usually, for a
- * specified LPSPI instance, call this API once to get the initialized handle.
- *
- * param base LPSPI peripheral address.
- * param handle LPSPI handle pointer to lpspi_slave_handle_t.
- * param callback DSPI callback.
- * param userData callback function parameter.
- */
-void LPSPI_SlaveTransferCreateHandle(LPSPI_Type *base,
- lpspi_slave_handle_t *handle,
- lpspi_slave_transfer_callback_t callback,
- void *userData)
-{
- assert(handle);
-
- /* Zero the handle. */
- (void)memset(handle, 0, sizeof(*handle));
-
- s_lpspiHandle[LPSPI_GetInstance(base)] = handle;
-
- /* Set irq handler. */
- s_lpspiSlaveIsr = LPSPI_SlaveTransferHandleIRQ;
-
- handle->callback = callback;
- handle->userData = userData;
-}
-
-/*!
- * brief LPSPI slave transfer data using an interrupt method.
- *
- * This function transfer data using an interrupt method. This is a non-blocking function, which returns right away.
- * When all data
- * is transferred, the callback function is called.
- *
- * Note:
- * The transfer data size should be integer multiples of bytesPerFrame if bytesPerFrame is less than or equal to 4.
- * For bytesPerFrame greater than 4:
- * The transfer data size should be equal to bytesPerFrame if the bytesPerFrame is not an integer multiple of 4.
- * Otherwise, the transfer data size can be an integer multiple of bytesPerFrame.
- *
- * param base LPSPI peripheral address.
- * param handle pointer to lpspi_slave_handle_t structure which stores the transfer state.
- * param transfer pointer to lpspi_transfer_t structure.
- * return status of status_t.
- */
-status_t LPSPI_SlaveTransferNonBlocking(LPSPI_Type *base, lpspi_slave_handle_t *handle, lpspi_transfer_t *transfer)
-{
- assert(handle);
- assert(transfer);
-
- uint32_t bitsPerFrame = ((base->TCR & LPSPI_TCR_FRAMESZ_MASK) >> LPSPI_TCR_FRAMESZ_SHIFT) + 1U;
- uint32_t bytesPerFrame = (bitsPerFrame + 7U) / 8U;
- uint32_t temp = 0U;
- uint32_t readRegRemainingTimes;
-
- if (!LPSPI_CheckTransferArgument(transfer, bitsPerFrame, bytesPerFrame))
- {
- return kStatus_InvalidArgument;
- }
-
- /* Check that we're not busy.*/
- if (handle->state == (uint8_t)kLPSPI_Busy)
- {
- return kStatus_LPSPI_Busy;
- }
- handle->state = (uint8_t)kLPSPI_Busy;
-
- bool isRxMask = false;
- bool isTxMask = false;
-
- uint32_t whichPcs = (transfer->configFlags & LPSPI_SLAVE_PCS_MASK) >> LPSPI_SLAVE_PCS_SHIFT;
-
- handle->txData = transfer->txData;
- handle->rxData = transfer->rxData;
- handle->txRemainingByteCount = transfer->dataSize;
- handle->rxRemainingByteCount = transfer->dataSize;
- handle->totalByteCount = transfer->dataSize;
-
- handle->writeRegRemainingTimes = (transfer->dataSize / bytesPerFrame) * ((bytesPerFrame + 3U) / 4U);
- handle->readRegRemainingTimes = handle->writeRegRemainingTimes;
-
- /*The TX and RX FIFO sizes are always the same*/
- handle->fifoSize = LPSPI_GetRxFifoSize(base);
-
- handle->isByteSwap = ((transfer->configFlags & (uint32_t)kLPSPI_SlaveByteSwap) != 0U);
-
- /*Set the RX and TX watermarks to reduce the ISR times.*/
- uint8_t txWatermark;
- if (handle->fifoSize > 1U)
- {
- txWatermark = 1U;
- handle->rxWatermark = handle->fifoSize - 2U;
- }
- else
- {
- txWatermark = 0U;
- handle->rxWatermark = 0U;
- }
- LPSPI_SetFifoWatermarks(base, txWatermark, handle->rxWatermark);
-
- /* Check if using 3-wire mode and the txData is NULL, set the output pin to tristated. */
- temp = base->CFGR1;
- temp &= LPSPI_CFGR1_PINCFG_MASK;
- if ((temp == LPSPI_CFGR1_PINCFG(kLPSPI_SdiInSdiOut)) || (temp == LPSPI_CFGR1_PINCFG(kLPSPI_SdoInSdoOut)))
- {
- if (NULL == handle->txData)
- {
- LPSPI_Enable(base, false);
- base->CFGR1 |= LPSPI_CFGR1_OUTCFG_MASK;
- LPSPI_Enable(base, true);
- }
- /* The 3-wire mode can't send and receive data at the same time. */
- if ((handle->txData != NULL) && (handle->rxData != NULL))
- {
- return kStatus_InvalidArgument;
- }
- }
-
- /*Flush FIFO , clear status , disable all the inerrupts.*/
- LPSPI_FlushFifo(base, true, true);
- LPSPI_ClearStatusFlags(base, (uint32_t)kLPSPI_AllStatusFlag);
- LPSPI_DisableInterrupts(base, (uint32_t)kLPSPI_AllInterruptEnable);
-
- /*If there is not rxData , can mask the receive data (receive data is not stored in receive FIFO).*/
- if (handle->rxData == NULL)
- {
- isRxMask = true;
- handle->rxRemainingByteCount = 0U;
- }
-
- /*If there is not txData , can mask the transmit data (no data is loaded from transmit FIFO and output pin
- * is tristated).
- */
- if (handle->txData == NULL)
- {
- isTxMask = true;
- handle->txRemainingByteCount = 0U;
- }
-
- base->TCR = (base->TCR & ~(LPSPI_TCR_CONT_MASK | LPSPI_TCR_CONTC_MASK | LPSPI_TCR_RXMSK_MASK |
- LPSPI_TCR_TXMSK_MASK | LPSPI_TCR_PCS_MASK)) |
- LPSPI_TCR_CONT(0) | LPSPI_TCR_CONTC(0) | LPSPI_TCR_RXMSK(isRxMask) | LPSPI_TCR_TXMSK(isTxMask) |
- LPSPI_TCR_PCS(whichPcs);
-
- /*Calculate the bytes for write/read the TX/RX register each time*/
- if (bytesPerFrame <= 4U)
- {
- handle->bytesEachWrite = (uint8_t)bytesPerFrame;
- handle->bytesEachRead = (uint8_t)bytesPerFrame;
- }
- else
- {
- handle->bytesEachWrite = 4U;
- handle->bytesEachRead = 4U;
- }
-
- /* Enable the NVIC for LPSPI peripheral. Note that below code is useless if the LPSPI interrupt is in INTMUX ,
- * and you should also enable the INTMUX interupt in your application.
- */
- (void)EnableIRQ(s_lpspiIRQ[LPSPI_GetInstance(base)]);
-
- /*TCR is also shared the FIFO , so wait for TCR written.*/
-#if SPI_RETRY_TIMES
- uint32_t waitTimes = SPI_RETRY_TIMES;
- while ((LPSPI_GetTxFifoCount(base) != 0U) && (--waitTimes != 0U))
-#else
- while (LPSPI_GetTxFifoCount(base) != 0U)
-#endif
- {
- }
-#if SPI_RETRY_TIMES
- if (waitTimes == 0U)
- {
- return kStatus_SPI_Timeout;
- }
-#endif
-
- /*Fill up the TX data in FIFO */
- if (handle->txData != NULL)
- {
- LPSPI_SlaveTransferFillUpTxFifo(base, handle);
- }
-
- /* Since SPI is a synchronous interface, we only need to enable the RX interrupt if there is RX data.
- * The IRQ handler will get the status of RX and TX interrupt flags.
- */
- if (handle->rxData != NULL)
- {
- /*Set rxWatermark to (readRegRemainingTimes-1) if readRegRemainingTimes less than rxWatermark. Otherwise there
- *is not RX interrupt for the last datas because the RX count is not greater than rxWatermark.
- */
- readRegRemainingTimes = handle->readRegRemainingTimes;
- if (readRegRemainingTimes <= (uint32_t)handle->rxWatermark)
- {
- base->FCR = (base->FCR & (~LPSPI_FCR_RXWATER_MASK)) | LPSPI_FCR_RXWATER(readRegRemainingTimes - 1U);
- }
-
- LPSPI_EnableInterrupts(base, (uint32_t)kLPSPI_RxInterruptEnable);
- }
- else
- {
- LPSPI_EnableInterrupts(base, (uint32_t)kLPSPI_TxInterruptEnable);
- }
-
- if (handle->rxData != NULL)
- {
- /* RX FIFO overflow request enable */
- LPSPI_EnableInterrupts(base, (uint32_t)kLPSPI_ReceiveErrorInterruptEnable);
- }
- if (handle->txData != NULL)
- {
- /* TX FIFO underflow request enable */
- LPSPI_EnableInterrupts(base, (uint32_t)kLPSPI_TransmitErrorInterruptEnable);
- }
-
- return kStatus_Success;
-}
-
-static void LPSPI_SlaveTransferFillUpTxFifo(LPSPI_Type *base, lpspi_slave_handle_t *handle)
-{
- assert(handle);
-
- uint32_t wordToSend = 0U;
- uint8_t bytesEachWrite = handle->bytesEachWrite;
- bool isByteSwap = handle->isByteSwap;
-
- while (LPSPI_GetTxFifoCount(base) < (handle->fifoSize))
- {
- if (handle->txRemainingByteCount < (size_t)bytesEachWrite)
- {
- handle->bytesEachWrite = (uint8_t)handle->txRemainingByteCount;
- bytesEachWrite = handle->bytesEachWrite;
- }
-
- wordToSend = LPSPI_CombineWriteData(handle->txData, bytesEachWrite, isByteSwap);
- handle->txData += bytesEachWrite;
-
- /*Decrease the remaining TX byte count.*/
- handle->txRemainingByteCount -= (size_t)bytesEachWrite;
-
- /*Write the word to TX register*/
- LPSPI_WriteData(base, wordToSend);
-
- if (handle->txRemainingByteCount == 0U)
- {
- break;
- }
- }
-}
-
-static void LPSPI_SlaveTransferComplete(LPSPI_Type *base, lpspi_slave_handle_t *handle)
-{
- assert(handle);
-
- status_t status = kStatus_Success;
-
- /* Disable interrupt requests*/
- LPSPI_DisableInterrupts(base, (uint32_t)kLPSPI_AllInterruptEnable);
-
- if (handle->state == (uint8_t)kLPSPI_Error)
- {
- status = kStatus_LPSPI_Error;
- }
- else
- {
- status = kStatus_Success;
- }
-
- handle->state = (uint8_t)kLPSPI_Idle;
-
- if (handle->callback != NULL)
- {
- handle->callback(base, handle, status, handle->userData);
- }
-}
-
-/*!
- * brief Gets the slave transfer remaining bytes.
- *
- * This function gets the slave transfer remaining bytes.
- *
- * param base LPSPI peripheral address.
- * param handle pointer to lpspi_slave_handle_t structure which stores the transfer state.
- * param count Number of bytes transferred so far by the non-blocking transaction.
- * return status of status_t.
- */
-status_t LPSPI_SlaveTransferGetCount(LPSPI_Type *base, lpspi_slave_handle_t *handle, size_t *count)
-{
- assert(handle != NULL);
-
- if (NULL == count)
- {
- return kStatus_InvalidArgument;
- }
-
- /* Catch when there is not an active transfer. */
- if (handle->state != (uint8_t)kLPSPI_Busy)
- {
- *count = 0;
- return kStatus_NoTransferInProgress;
- }
-
- size_t remainingByte;
-
- if (handle->rxData != NULL)
- {
- remainingByte = handle->rxRemainingByteCount;
- }
- else
- {
- remainingByte = handle->txRemainingByteCount;
- }
-
- *count = handle->totalByteCount - remainingByte;
-
- return kStatus_Success;
-}
-
-/*!
- * brief LPSPI slave aborts a transfer which uses an interrupt method.
- *
- * This function aborts a transfer which uses an interrupt method.
- *
- * param base LPSPI peripheral address.
- * param handle pointer to lpspi_slave_handle_t structure which stores the transfer state.
- */
-void LPSPI_SlaveTransferAbort(LPSPI_Type *base, lpspi_slave_handle_t *handle)
-{
- assert(handle);
-
- /* Disable interrupt requests*/
- LPSPI_DisableInterrupts(base, (uint32_t)kLPSPI_TxInterruptEnable | (uint32_t)kLPSPI_RxInterruptEnable);
-
- LPSPI_Reset(base);
-
- handle->state = (uint8_t)kLPSPI_Idle;
- handle->txRemainingByteCount = 0U;
- handle->rxRemainingByteCount = 0U;
-}
-
-/*!
- * brief LPSPI Slave IRQ handler function.
- *
- * This function processes the LPSPI transmit and receives an IRQ.
- *
- * param base LPSPI peripheral address.
- * param handle pointer to lpspi_slave_handle_t structure which stores the transfer state.
- */
-void LPSPI_SlaveTransferHandleIRQ(LPSPI_Type *base, lpspi_slave_handle_t *handle)
-{
- assert(handle);
-
- uint32_t readData; /* variable to store word read from RX FIFO */
- uint32_t wordToSend; /* variable to store word to write to TX FIFO */
- uint8_t bytesEachRead = handle->bytesEachRead;
- uint8_t bytesEachWrite = handle->bytesEachWrite;
- bool isByteSwap = handle->isByteSwap;
- uint32_t readRegRemainingTimes;
-
- if (handle->rxData != NULL)
- {
- if (handle->rxRemainingByteCount > 0U)
- {
- while (LPSPI_GetRxFifoCount(base) != 0U)
- {
- /*Read out the data*/
- readData = LPSPI_ReadData(base);
-
- /*Decrease the read RX register times.*/
- --handle->readRegRemainingTimes;
-
- if (handle->rxRemainingByteCount < (size_t)bytesEachRead)
- {
- handle->bytesEachRead = (uint8_t)handle->rxRemainingByteCount;
- bytesEachRead = handle->bytesEachRead;
- }
-
- LPSPI_SeparateReadData(handle->rxData, readData, bytesEachRead, isByteSwap);
- handle->rxData += bytesEachRead;
-
- /*Decrease the remaining RX byte count.*/
- handle->rxRemainingByteCount -= (size_t)bytesEachRead;
-
- if ((handle->txRemainingByteCount > 0U) && (handle->txData != NULL))
- {
- if (handle->txRemainingByteCount < (size_t)bytesEachWrite)
- {
- handle->bytesEachWrite = (uint8_t)handle->txRemainingByteCount;
- bytesEachWrite = handle->bytesEachWrite;
- }
-
- wordToSend = LPSPI_CombineWriteData(handle->txData, bytesEachWrite, isByteSwap);
- handle->txData += bytesEachWrite;
-
- /*Decrease the remaining TX byte count.*/
- handle->txRemainingByteCount -= (size_t)bytesEachWrite;
-
- /*Write the word to TX register*/
- LPSPI_WriteData(base, wordToSend);
- }
-
- if (handle->rxRemainingByteCount == 0U)
- {
- break;
- }
- }
- }
-
- /*Set rxWatermark to (readRegRemainingTimes-1) if readRegRemainingTimes less than rxWatermark. Otherwise there
- *is not RX interrupt for the last datas because the RX count is not greater than rxWatermark.
- */
- readRegRemainingTimes = handle->readRegRemainingTimes;
- if (readRegRemainingTimes <= (uint32_t)handle->rxWatermark)
- {
- base->FCR = (base->FCR & (~LPSPI_FCR_RXWATER_MASK)) |
- LPSPI_FCR_RXWATER((readRegRemainingTimes > 1U) ? (readRegRemainingTimes - 1U) : (0U));
- }
- }
- if ((handle->rxData == NULL) && (handle->txRemainingByteCount != 0U) && (handle->txData != NULL))
- {
- LPSPI_SlaveTransferFillUpTxFifo(base, handle);
- }
-
- if ((handle->txRemainingByteCount == 0U) && (handle->rxRemainingByteCount == 0U))
- {
- /* If no RX buffer, then transfer is not complete until transfer complete flag sets and the TX FIFO empty*/
- if (handle->rxData == NULL)
- {
- if (((LPSPI_GetStatusFlags(base) & (uint32_t)kLPSPI_FrameCompleteFlag) != 0U) &&
- (LPSPI_GetTxFifoCount(base) == 0U))
- {
- LPSPI_ClearStatusFlags(base, (uint32_t)kLPSPI_FrameCompleteFlag);
- /* Complete the transfer and disable the interrupts */
- LPSPI_SlaveTransferComplete(base, handle);
- }
- else
- {
- LPSPI_ClearStatusFlags(base, (uint32_t)kLPSPI_FrameCompleteFlag);
- LPSPI_EnableInterrupts(base, (uint32_t)kLPSPI_FrameCompleteInterruptEnable);
- LPSPI_DisableInterrupts(base, (uint32_t)kLPSPI_TxInterruptEnable | (uint32_t)kLPSPI_RxInterruptEnable);
- }
- }
- else
- {
- /* Complete the transfer and disable the interrupts */
- LPSPI_SlaveTransferComplete(base, handle);
- }
- }
-
- /* Catch tx fifo underflow conditions, service only if tx under flow interrupt enabled */
- if (((LPSPI_GetStatusFlags(base) & (uint32_t)kLPSPI_TransmitErrorFlag) != 0U) &&
- ((base->IER & LPSPI_IER_TEIE_MASK) != 0U))
- {
- LPSPI_ClearStatusFlags(base, (uint32_t)kLPSPI_TransmitErrorFlag);
- /* Change state to error and clear flag */
- if (handle->txData != NULL)
- {
- handle->state = (uint8_t)kLPSPI_Error;
- }
- handle->errorCount++;
- }
- /* Catch rx fifo overflow conditions, service only if rx over flow interrupt enabled */
- if (((LPSPI_GetStatusFlags(base) & (uint32_t)kLPSPI_ReceiveErrorFlag) != 0U) &&
- ((base->IER & LPSPI_IER_REIE_MASK) != 0U))
- {
- LPSPI_ClearStatusFlags(base, (uint32_t)kLPSPI_ReceiveErrorFlag);
- /* Change state to error and clear flag */
- if (handle->txData != NULL)
- {
- handle->state = (uint8_t)kLPSPI_Error;
- }
- handle->errorCount++;
- }
-}
-
-static uint32_t LPSPI_CombineWriteData(uint8_t *txData, uint8_t bytesEachWrite, bool isByteSwap)
-{
- assert(txData != NULL);
-
- uint32_t wordToSend = 0U;
-
- switch (bytesEachWrite)
- {
- case 1:
- wordToSend = *txData;
- ++txData;
- break;
-
- case 2:
- if (!isByteSwap)
- {
- wordToSend = *txData;
- ++txData;
- wordToSend |= (unsigned)(*txData) << 8U;
- ++txData;
- }
- else
- {
- wordToSend = (unsigned)(*txData) << 8U;
- ++txData;
- wordToSend |= *txData;
- ++txData;
- }
-
- break;
-
- case 3:
- if (!isByteSwap)
- {
- wordToSend = *txData;
- ++txData;
- wordToSend |= (unsigned)(*txData) << 8U;
- ++txData;
- wordToSend |= (unsigned)(*txData) << 16U;
- ++txData;
- }
- else
- {
- wordToSend = (unsigned)(*txData) << 16U;
- ++txData;
- wordToSend |= (unsigned)(*txData) << 8U;
- ++txData;
- wordToSend |= *txData;
- ++txData;
- }
- break;
-
- case 4:
- if (!isByteSwap)
- {
- wordToSend = *txData;
- ++txData;
- wordToSend |= (unsigned)(*txData) << 8U;
- ++txData;
- wordToSend |= (unsigned)(*txData) << 16U;
- ++txData;
- wordToSend |= (unsigned)(*txData) << 24U;
- ++txData;
- }
- else
- {
- wordToSend = (unsigned)(*txData) << 24U;
- ++txData;
- wordToSend |= (unsigned)(*txData) << 16U;
- ++txData;
- wordToSend |= (unsigned)(*txData) << 8U;
- ++txData;
- wordToSend |= *txData;
- ++txData;
- }
- break;
-
- default:
- assert(false);
- break;
- }
- return wordToSend;
-}
-
-static void LPSPI_SeparateReadData(uint8_t *rxData, uint32_t readData, uint8_t bytesEachRead, bool isByteSwap)
-{
- assert(rxData);
-
- switch (bytesEachRead)
- {
- case 1:
- *rxData = (uint8_t)readData;
- ++rxData;
- break;
-
- case 2:
- if (!isByteSwap)
- {
- *rxData = (uint8_t)readData;
- ++rxData;
- *rxData = (uint8_t)(readData >> 8);
- ++rxData;
- }
- else
- {
- *rxData = (uint8_t)(readData >> 8);
- ++rxData;
- *rxData = (uint8_t)readData;
- ++rxData;
- }
- break;
-
- case 3:
- if (!isByteSwap)
- {
- *rxData = (uint8_t)readData;
- ++rxData;
- *rxData = (uint8_t)(readData >> 8);
- ++rxData;
- *rxData = (uint8_t)(readData >> 16);
- ++rxData;
- }
- else
- {
- *rxData = (uint8_t)(readData >> 16);
- ++rxData;
- *rxData = (uint8_t)(readData >> 8);
- ++rxData;
- *rxData = (uint8_t)readData;
- ++rxData;
- }
- break;
-
- case 4:
- if (!isByteSwap)
- {
- *rxData = (uint8_t)readData;
- ++rxData;
- *rxData = (uint8_t)(readData >> 8);
- ++rxData;
- *rxData = (uint8_t)(readData >> 16);
- ++rxData;
- *rxData = (uint8_t)(readData >> 24);
- ++rxData;
- }
- else
- {
- *rxData = (uint8_t)(readData >> 24);
- ++rxData;
- *rxData = (uint8_t)(readData >> 16);
- ++rxData;
- *rxData = (uint8_t)(readData >> 8);
- ++rxData;
- *rxData = (uint8_t)readData;
- ++rxData;
- }
- break;
-
- default:
- assert(false);
- break;
- }
-}
-
-static void LPSPI_CommonIRQHandler(LPSPI_Type *base, void *param)
-{
- if (LPSPI_IsMaster(base))
- {
- s_lpspiMasterIsr(base, (lpspi_master_handle_t *)param);
- }
- else
- {
- s_lpspiSlaveIsr(base, (lpspi_slave_handle_t *)param);
- }
- SDK_ISR_EXIT_BARRIER;
-}
-
-#if defined(LPSPI0)
-void LPSPI0_DriverIRQHandler(void)
-{
- assert(s_lpspiHandle[0]);
- LPSPI_CommonIRQHandler(LPSPI0, s_lpspiHandle[0]);
-}
-#endif
-
-#if defined(LPSPI1)
-void LPSPI1_DriverIRQHandler(void)
-{
- assert(s_lpspiHandle[1]);
- LPSPI_CommonIRQHandler(LPSPI1, s_lpspiHandle[1]);
-}
-#endif
-
-#if defined(LPSPI2)
-void LPSPI2_DriverIRQHandler(void)
-{
- assert(s_lpspiHandle[2]);
- LPSPI_CommonIRQHandler(LPSPI2, s_lpspiHandle[2]);
-}
-#endif
-
-#if defined(LPSPI3)
-void LPSPI3_DriverIRQHandler(void)
-{
- assert(s_lpspiHandle[3]);
- LPSPI_CommonIRQHandler(LPSPI3, s_lpspiHandle[3]);
-}
-#endif
-
-#if defined(LPSPI4)
-void LPSPI4_DriverIRQHandler(void)
-{
- assert(s_lpspiHandle[4]);
- LPSPI_CommonIRQHandler(LPSPI4, s_lpspiHandle[4]);
-}
-#endif
-
-#if defined(LPSPI5)
-void LPSPI5_DriverIRQHandler(void)
-{
- assert(s_lpspiHandle[5]);
- LPSPI_CommonIRQHandler(LPSPI5, s_lpspiHandle[5]);
-}
-#endif
-
-#if defined(DMA__LPSPI0)
-void DMA_SPI0_INT_DriverIRQHandler(void)
-{
- assert(s_lpspiHandle[LPSPI_GetInstance(DMA__LPSPI0)]);
- LPSPI_CommonIRQHandler(DMA__LPSPI0, s_lpspiHandle[LPSPI_GetInstance(DMA__LPSPI0)]);
-}
-#endif
-
-#if defined(DMA__LPSPI1)
-void DMA_SPI1_INT_DriverIRQHandler(void)
-{
- assert(s_lpspiHandle[LPSPI_GetInstance(DMA__LPSPI1)]);
- LPSPI_CommonIRQHandler(DMA__LPSPI1, s_lpspiHandle[LPSPI_GetInstance(DMA__LPSPI1)]);
-}
-#endif
-#if defined(DMA__LPSPI2)
-void DMA_SPI2_INT_DriverIRQHandler(void)
-{
- assert(s_lpspiHandle[LPSPI_GetInstance(DMA__LPSPI2)]);
- LPSPI_CommonIRQHandler(DMA__LPSPI2, s_lpspiHandle[LPSPI_GetInstance(DMA__LPSPI2)]);
-}
-#endif
-
-#if defined(DMA__LPSPI3)
-void DMA_SPI3_INT_DriverIRQHandler(void)
-{
- assert(s_lpspiHandle[LPSPI_GetInstance(DMA__LPSPI3)]);
- LPSPI_CommonIRQHandler(DMA__LPSPI3, s_lpspiHandle[LPSPI_GetInstance(DMA__LPSPI3)]);
-}
-#endif
-
-#if defined(ADMA__LPSPI0)
-void ADMA_SPI0_INT_DriverIRQHandler(void)
-{
- assert(s_lpspiHandle[LPSPI_GetInstance(ADMA__LPSPI0)]);
- LPSPI_CommonIRQHandler(ADMA__LPSPI0, s_lpspiHandle[LPSPI_GetInstance(ADMA__LPSPI0)]);
-}
-#endif
-
-#if defined(ADMA__LPSPI1)
-void ADMA_SPI1_INT_DriverIRQHandler(void)
-{
- assert(s_lpspiHandle[LPSPI_GetInstance(ADMA__LPSPI1)]);
- LPSPI_CommonIRQHandler(ADMA__LPSPI1, s_lpspiHandle[LPSPI_GetInstance(ADMA__LPSPI1)]);
-}
-#endif
-#if defined(ADMA__LPSPI2)
-void ADMA_SPI2_INT_DriverIRQHandler(void)
-{
- assert(s_lpspiHandle[LPSPI_GetInstance(ADMA__LPSPI2)]);
- LPSPI_CommonIRQHandler(ADMA__LPSPI2, s_lpspiHandle[LPSPI_GetInstance(ADMA__LPSPI2)]);
-}
-#endif
-
-#if defined(ADMA__LPSPI3)
-void ADMA_SPI3_INT_DriverIRQHandler(void)
-{
- assert(s_lpspiHandle[LPSPI_GetInstance(ADMA__LPSPI3)]);
- LPSPI_CommonIRQHandler(ADMA__LPSPI3, s_lpspiHandle[LPSPI_GetInstance(ADMA__LPSPI3)]);
-}
-#endif