summaryrefslogtreecommitdiffstats
path: root/bsps/arm/imxrt/nxp/devices/MIMXRT1052/drivers/fsl_lpspi.c
blob: 4917a01c9e87b05cee37f564a10437364aac4734 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
/*
 * Copyright (c) 2015, Freescale Semiconductor, Inc.
 * Copyright 2016-2019 NXP
 * All rights reserved.
 *
 * SPDX-License-Identifier: BSD-3-Clause
 */

#include "fsl_lpspi.h"

/*******************************************************************************
 * Definitions
 ******************************************************************************/

/* Component ID definition, used by tools. */
#ifndef FSL_COMPONENT_ID
#define FSL_COMPONENT_ID "platform.drivers.lpspi"
#endif

/*!
 * @brief Default watermark values.
 *
 * The default watermarks are set to zero.
 */
enum _lpspi_default_watermarks
{
    kLpspiDefaultTxWatermark = 0,
    kLpspiDefaultRxWatermark = 0,
};

/*! @brief Typedef for master interrupt handler. */
typedef void (*lpspi_master_isr_t)(LPSPI_Type *base, lpspi_master_handle_t *handle);

/*! @brief Typedef for slave interrupt handler. */
typedef void (*lpspi_slave_isr_t)(LPSPI_Type *base, lpspi_slave_handle_t *handle);

/*******************************************************************************
 * Prototypes
 ******************************************************************************/

/*!
 * @brief Configures the LPSPI peripheral chip select polarity.
 *
 * This function  takes in the desired peripheral chip select (Pcs) and it's corresponding desired polarity and
 * configures the Pcs signal to operate with the desired characteristic.
 *
 * @param base LPSPI peripheral address.
 * @param pcs The particular peripheral chip select (parameter value is of type lpspi_which_pcs_t) for which we wish to
 *            apply the active high or active low characteristic.
 * @param activeLowOrHigh The setting for either "active high, inactive low (0)"  or "active low, inactive high(1)" of
 *                        type lpspi_pcs_polarity_config_t.
 */
static void LPSPI_SetOnePcsPolarity(LPSPI_Type *base,
                                    lpspi_which_pcs_t pcs,
                                    lpspi_pcs_polarity_config_t activeLowOrHigh);

/*!
 * @brief Combine the write data for 1 byte to 4 bytes.
 * This is not a public API.
 */
static uint32_t LPSPI_CombineWriteData(uint8_t *txData, uint8_t bytesEachWrite, bool isByteSwap);

/*!
 * @brief Separate the read data for 1 byte to 4 bytes.
 * This is not a public API.
 */
static void LPSPI_SeparateReadData(uint8_t *rxData, uint32_t readData, uint8_t bytesEachRead, bool isByteSwap);

/*!
 * @brief Master fill up the TX FIFO with data.
 * This is not a public API.
 */
static void LPSPI_MasterTransferFillUpTxFifo(LPSPI_Type *base, lpspi_master_handle_t *handle);

/*!
 * @brief Master finish up a transfer.
 * It would call back if there is callback function and set the state to idle.
 * This is not a public API.
 */
static void LPSPI_MasterTransferComplete(LPSPI_Type *base, lpspi_master_handle_t *handle);

/*!
 * @brief Slave fill up the TX FIFO with data.
 * This is not a public API.
 */
static void LPSPI_SlaveTransferFillUpTxFifo(LPSPI_Type *base, lpspi_slave_handle_t *handle);

/*!
 * @brief Slave finish up a transfer.
 * It would call back if there is callback function and set the state to idle.
 * This is not a public API.
 */
static void LPSPI_SlaveTransferComplete(LPSPI_Type *base, lpspi_slave_handle_t *handle);

/*!
 * @brief LPSPI common interrupt handler.
 *
 * @param handle pointer to s_lpspiHandle which stores the transfer state.
 */
static void LPSPI_CommonIRQHandler(LPSPI_Type *base, void *param);

/*******************************************************************************
 * Variables
 ******************************************************************************/

/* Defines constant value arrays for the baud rate pre-scalar and scalar divider values.*/
static const uint8_t s_baudratePrescaler[] = {1, 2, 4, 8, 16, 32, 64, 128};

/*! @brief Pointers to lpspi bases for each instance. */
static LPSPI_Type *const s_lpspiBases[] = LPSPI_BASE_PTRS;

/*! @brief Pointers to lpspi IRQ number for each instance. */
static const IRQn_Type s_lpspiIRQ[] = LPSPI_IRQS;

#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
/*! @brief Pointers to lpspi clocks for each instance. */
static const clock_ip_name_t s_lpspiClocks[] = LPSPI_CLOCKS;

#if defined(LPSPI_PERIPH_CLOCKS)
static const clock_ip_name_t s_LpspiPeriphClocks[] = LPSPI_PERIPH_CLOCKS;
#endif

#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */

/*! @brief Pointers to lpspi handles for each instance. */
static void *s_lpspiHandle[ARRAY_SIZE(s_lpspiBases)];

/*! @brief Pointer to master IRQ handler for each instance. */
static lpspi_master_isr_t s_lpspiMasterIsr;
/*! @brief Pointer to slave IRQ handler for each instance. */
static lpspi_slave_isr_t s_lpspiSlaveIsr;
/* @brief Dummy data for each instance. This data is used when user's tx buffer is NULL*/
volatile uint8_t g_lpspiDummyData[ARRAY_SIZE(s_lpspiBases)] = {0};

/**********************************************************************************************************************
 * Code
 *********************************************************************************************************************/

/*!
 * brief Get the LPSPI instance from peripheral base address.
 *
 * param base LPSPI peripheral base address.
 * return LPSPI instance.
 */
uint32_t LPSPI_GetInstance(LPSPI_Type *base)
{
    uint8_t instance = 0;

    /* Find the instance index from base address mappings. */
    for (instance = 0; instance < ARRAY_SIZE(s_lpspiBases); instance++)
    {
        if (s_lpspiBases[instance] == base)
        {
            break;
        }
    }

    assert(instance < ARRAY_SIZE(s_lpspiBases));

    return instance;
}

/*!
 * brief Set up the dummy data.
 *
 * param base LPSPI peripheral address.
 * param dummyData Data to be transferred when tx buffer is NULL.
 * Note:
 *      This API has no effect when LPSPI in slave interrupt mode, because driver
 *      will set the TXMSK bit to 1 if txData is NULL, no data is loaded from transmit
 *      FIFO and output pin is tristated.
 */
void LPSPI_SetDummyData(LPSPI_Type *base, uint8_t dummyData)
{
    uint32_t instance          = LPSPI_GetInstance(base);
    g_lpspiDummyData[instance] = dummyData;
}

/*!
 * brief Initializes the LPSPI master.
 *
 * param base LPSPI peripheral address.
 * param masterConfig Pointer to structure lpspi_master_config_t.
 * param srcClock_Hz Module source input clock in Hertz
 */
void LPSPI_MasterInit(LPSPI_Type *base, const lpspi_master_config_t *masterConfig, uint32_t srcClock_Hz)
{
    assert(masterConfig);

    uint32_t tcrPrescaleValue = 0;

#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)

    uint32_t instance = LPSPI_GetInstance(base);
    /* Enable LPSPI clock */
    (void)CLOCK_EnableClock(s_lpspiClocks[instance]);

#if defined(LPSPI_PERIPH_CLOCKS)
    (void)CLOCK_EnableClock(s_LpspiPeriphClocks[instance]);
#endif

#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */

    /* Set LPSPI to master */
    LPSPI_SetMasterSlaveMode(base, kLPSPI_Master);

    /* Set specific PCS to active high or low */
    LPSPI_SetOnePcsPolarity(base, masterConfig->whichPcs, masterConfig->pcsActiveHighOrLow);

    /* Set Configuration Register 1 related setting.*/
    base->CFGR1 = (base->CFGR1 & ~(LPSPI_CFGR1_OUTCFG_MASK | LPSPI_CFGR1_PINCFG_MASK | LPSPI_CFGR1_NOSTALL_MASK)) |
                  LPSPI_CFGR1_OUTCFG(masterConfig->dataOutConfig) | LPSPI_CFGR1_PINCFG(masterConfig->pinCfg) |
                  LPSPI_CFGR1_NOSTALL(0);

    /* Set baudrate and delay times*/
    (void)LPSPI_MasterSetBaudRate(base, masterConfig->baudRate, srcClock_Hz, &tcrPrescaleValue);

    /* Set default watermarks */
    LPSPI_SetFifoWatermarks(base, (uint32_t)kLpspiDefaultTxWatermark, (uint32_t)kLpspiDefaultRxWatermark);

    /* Set Transmit Command Register*/
    base->TCR = LPSPI_TCR_CPOL(masterConfig->cpol) | LPSPI_TCR_CPHA(masterConfig->cpha) |
                LPSPI_TCR_LSBF(masterConfig->direction) | LPSPI_TCR_FRAMESZ(masterConfig->bitsPerFrame - 1U) |
                LPSPI_TCR_PRESCALE(tcrPrescaleValue) | LPSPI_TCR_PCS(masterConfig->whichPcs);

    LPSPI_Enable(base, true);

    (void)LPSPI_MasterSetDelayTimes(base, masterConfig->pcsToSckDelayInNanoSec, kLPSPI_PcsToSck, srcClock_Hz);
    (void)LPSPI_MasterSetDelayTimes(base, masterConfig->lastSckToPcsDelayInNanoSec, kLPSPI_LastSckToPcs, srcClock_Hz);
    (void)LPSPI_MasterSetDelayTimes(base, masterConfig->betweenTransferDelayInNanoSec, kLPSPI_BetweenTransfer,
                                    srcClock_Hz);

    LPSPI_SetDummyData(base, LPSPI_DUMMY_DATA);
}

/*!
 * brief Sets the lpspi_master_config_t structure to default values.
 *
 * This API initializes the configuration structure  for LPSPI_MasterInit().
 * The initialized structure can remain unchanged in LPSPI_MasterInit(), or can be modified
 * before calling the LPSPI_MasterInit().
 * Example:
 * code
 *  lpspi_master_config_t  masterConfig;
 *  LPSPI_MasterGetDefaultConfig(&masterConfig);
 * endcode
 * param masterConfig pointer to lpspi_master_config_t structure
 */
void LPSPI_MasterGetDefaultConfig(lpspi_master_config_t *masterConfig)
{
    assert(masterConfig);

    /* Initializes the configure structure to zero. */
    (void)memset(masterConfig, 0, sizeof(*masterConfig));

    masterConfig->baudRate     = 500000;
    masterConfig->bitsPerFrame = 8;
    masterConfig->cpol         = kLPSPI_ClockPolarityActiveHigh;
    masterConfig->cpha         = kLPSPI_ClockPhaseFirstEdge;
    masterConfig->direction    = kLPSPI_MsbFirst;

    masterConfig->pcsToSckDelayInNanoSec        = 1000000000U / masterConfig->baudRate * 2U;
    masterConfig->lastSckToPcsDelayInNanoSec    = 1000000000U / masterConfig->baudRate * 2U;
    masterConfig->betweenTransferDelayInNanoSec = 1000000000U / masterConfig->baudRate * 2U;

    masterConfig->whichPcs           = kLPSPI_Pcs0;
    masterConfig->pcsActiveHighOrLow = kLPSPI_PcsActiveLow;

    masterConfig->pinCfg        = kLPSPI_SdiInSdoOut;
    masterConfig->dataOutConfig = kLpspiDataOutRetained;
}

/*!
 * brief LPSPI slave configuration.
 *
 * param base LPSPI peripheral address.
 * param slaveConfig Pointer to a structure lpspi_slave_config_t.
 */
void LPSPI_SlaveInit(LPSPI_Type *base, const lpspi_slave_config_t *slaveConfig)
{
    assert(slaveConfig);

#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)

    uint32_t instance = LPSPI_GetInstance(base);
    /* Enable LPSPI clock */
    (void)CLOCK_EnableClock(s_lpspiClocks[instance]);

#if defined(LPSPI_PERIPH_CLOCKS)
    (void)CLOCK_EnableClock(s_LpspiPeriphClocks[instance]);
#endif

#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */

    LPSPI_SetMasterSlaveMode(base, kLPSPI_Slave);

    LPSPI_SetOnePcsPolarity(base, slaveConfig->whichPcs, slaveConfig->pcsActiveHighOrLow);

    base->CFGR1 = (base->CFGR1 & ~(LPSPI_CFGR1_OUTCFG_MASK | LPSPI_CFGR1_PINCFG_MASK)) |
                  LPSPI_CFGR1_OUTCFG(slaveConfig->dataOutConfig) | LPSPI_CFGR1_PINCFG(slaveConfig->pinCfg);

    LPSPI_SetFifoWatermarks(base, (uint32_t)kLpspiDefaultTxWatermark, (uint32_t)kLpspiDefaultRxWatermark);

    base->TCR = LPSPI_TCR_CPOL(slaveConfig->cpol) | LPSPI_TCR_CPHA(slaveConfig->cpha) |
                LPSPI_TCR_LSBF(slaveConfig->direction) | LPSPI_TCR_FRAMESZ(slaveConfig->bitsPerFrame - 1U);

    /* This operation will set the dummy data for edma transfer, no effect in interrupt way. */
    LPSPI_SetDummyData(base, LPSPI_DUMMY_DATA);

    LPSPI_Enable(base, true);
}

/*!
 * brief Sets the lpspi_slave_config_t structure to default values.
 *
 * This API initializes the configuration structure for LPSPI_SlaveInit().
 * The initialized structure can remain unchanged in LPSPI_SlaveInit() or can be modified
 * before calling the LPSPI_SlaveInit().
 * Example:
 * code
 *  lpspi_slave_config_t  slaveConfig;
 *  LPSPI_SlaveGetDefaultConfig(&slaveConfig);
 * endcode
 * param slaveConfig pointer to lpspi_slave_config_t structure.
 */
void LPSPI_SlaveGetDefaultConfig(lpspi_slave_config_t *slaveConfig)
{
    assert(slaveConfig);

    /* Initializes the configure structure to zero. */
    (void)memset(slaveConfig, 0, sizeof(*slaveConfig));

    slaveConfig->bitsPerFrame = 8;                              /*!< Bits per frame, minimum 8, maximum 4096.*/
    slaveConfig->cpol         = kLPSPI_ClockPolarityActiveHigh; /*!< Clock polarity. */
    slaveConfig->cpha         = kLPSPI_ClockPhaseFirstEdge;     /*!< Clock phase. */
    slaveConfig->direction    = kLPSPI_MsbFirst;                /*!< MSB or LSB data shift direction. */

    slaveConfig->whichPcs           = kLPSPI_Pcs0;         /*!< Desired Peripheral Chip Select (pcs) */
    slaveConfig->pcsActiveHighOrLow = kLPSPI_PcsActiveLow; /*!< Desired PCS active high or low */

    slaveConfig->pinCfg        = kLPSPI_SdiInSdoOut;
    slaveConfig->dataOutConfig = kLpspiDataOutRetained;
}

/*!
 * brief Restores the LPSPI peripheral to reset state. Note that this function
 * sets all registers to reset state. As a result, the LPSPI module can't work after calling
 * this API.
 * param base LPSPI peripheral address.
 */
void LPSPI_Reset(LPSPI_Type *base)
{
    /* Reset all internal logic and registers, except the Control Register. Remains set until cleared by software.*/
    base->CR |= LPSPI_CR_RST_MASK;

    /* Software reset doesn't reset the CR, so manual reset the FIFOs */
    base->CR |= LPSPI_CR_RRF_MASK | LPSPI_CR_RTF_MASK;

    /* Master logic is not reset and module is disabled.*/
    base->CR = 0x00U;
}

/*!
 * brief De-initializes the LPSPI peripheral. Call this API to disable the LPSPI clock.
 * param base LPSPI peripheral address.
 */
void LPSPI_Deinit(LPSPI_Type *base)
{
    /* Reset to default value */
    LPSPI_Reset(base);

#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)

    uint32_t instance = LPSPI_GetInstance(base);
    /* Enable LPSPI clock */
    (void)CLOCK_DisableClock(s_lpspiClocks[instance]);

#if defined(LPSPI_PERIPH_CLOCKS)
    (void)CLOCK_DisableClock(s_LpspiPeriphClocks[instance]);
#endif

#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
}

static void LPSPI_SetOnePcsPolarity(LPSPI_Type *base,
                                    lpspi_which_pcs_t pcs,
                                    lpspi_pcs_polarity_config_t activeLowOrHigh)
{
    uint32_t cfgr1Value = 0;
    /* Clear the PCS polarity bit */
    cfgr1Value = base->CFGR1 & ~(1UL << (LPSPI_CFGR1_PCSPOL_SHIFT + (uint32_t)pcs));

    /* Configure the PCS polarity bit according to the activeLowOrHigh setting */
    base->CFGR1 = cfgr1Value | ((uint32_t)activeLowOrHigh << (LPSPI_CFGR1_PCSPOL_SHIFT + (uint32_t)pcs));
}

/*!
 * brief Sets the LPSPI baud rate in bits per second.
 *
 * This function takes in the desired bitsPerSec (baud rate) and calculates the nearest
 * possible baud rate without exceeding the desired baud rate and returns the
 * calculated baud rate in bits-per-second. It requires the caller to provide
 * the frequency of the module source clock (in Hertz). Note that the baud rate
 * does not go into effect until the Transmit Control Register (TCR) is programmed
 * with the prescale value. Hence, this function returns the prescale tcrPrescaleValue
 * parameter for later programming in the TCR.  The higher level
 * peripheral driver should alert the user of an out of range baud rate input.
 *
 * Note that the LPSPI module must first be disabled before configuring this.
 * Note that the LPSPI module must be configured for master mode before configuring this.
 *
 * param base LPSPI peripheral address.
 * param baudRate_Bps The desired baud rate in bits per second.
 * param srcClock_Hz Module source input clock in Hertz.
 * param tcrPrescaleValue The TCR prescale value needed to program the TCR.
 * return  The actual calculated baud rate. This function may also return a "0" if the
 *          LPSPI is not configured for master mode or if the LPSPI module is not disabled.
 */

uint32_t LPSPI_MasterSetBaudRate(LPSPI_Type *base,
                                 uint32_t baudRate_Bps,
                                 uint32_t srcClock_Hz,
                                 uint32_t *tcrPrescaleValue)
{
    assert(tcrPrescaleValue);

    /* For master mode configuration only, if slave mode detected, return 0.
     * Also, the LPSPI module needs to be disabled first, if enabled, return 0
     */
    if ((!LPSPI_IsMaster(base)) || ((base->CR & LPSPI_CR_MEN_MASK) != 0U))
    {
        return 0U;
    }

    uint32_t prescaler, bestPrescaler;
    uint32_t scaler, bestScaler;
    uint32_t realBaudrate, bestBaudrate;
    uint32_t diff, min_diff;
    uint32_t desiredBaudrate = baudRate_Bps;

    /* find combination of prescaler and scaler resulting in baudrate closest to the
     * requested value
     */
    min_diff = 0xFFFFFFFFU;

    /* Set to maximum divisor value bit settings so that if baud rate passed in is less
     * than the minimum possible baud rate, then the SPI will be configured to the lowest
     * possible baud rate
     */
    bestPrescaler = 7;
    bestScaler    = 255;

    bestBaudrate = 0; /* required to avoid compilation warning */

    /* In all for loops, if min_diff = 0, the exit for loop*/
    for (prescaler = 0U; prescaler < 8U; prescaler++)
    {
        if (min_diff == 0U)
        {
            break;
        }
        for (scaler = 0U; scaler < 256U; scaler++)
        {
            if (min_diff == 0U)
            {
                break;
            }
            realBaudrate = (srcClock_Hz / (s_baudratePrescaler[prescaler] * (scaler + 2U)));

            /* calculate the baud rate difference based on the conditional statement
             * that states that the calculated baud rate must not exceed the desired baud rate
             */
            if (desiredBaudrate >= realBaudrate)
            {
                diff = desiredBaudrate - realBaudrate;
                if (min_diff > diff)
                {
                    /* a better match found */
                    min_diff      = diff;
                    bestPrescaler = prescaler;
                    bestScaler    = scaler;
                    bestBaudrate  = realBaudrate;
                }
            }
        }
    }

    /* Write the best baud rate scalar to the CCR.
     * Note, no need to check for error since we've already checked to make sure the module is
     * disabled and in master mode. Also, there is a limit on the maximum divider so we will not
     * exceed this.
     */
    base->CCR = (base->CCR & ~LPSPI_CCR_SCKDIV_MASK) | LPSPI_CCR_SCKDIV(bestScaler);

    /* return the best prescaler value for user to use later */
    *tcrPrescaleValue = bestPrescaler;

    /* return the actual calculated baud rate */
    return bestBaudrate;
}

/*!
 * brief Manually configures a specific LPSPI delay parameter (module must be disabled to
 *        change the delay values).
 *
 * This function configures the following:
 * SCK to PCS delay, or
 * PCS to SCK delay, or
 * The configurations must occur between the transfer delay.
 *
 * The delay names are available in type lpspi_delay_type_t.
 *
 * The user passes the desired delay along with the delay value.
 * This allows the user to directly set the delay values if they have
 * pre-calculated them or if they simply wish to manually increment the value.
 *
 * Note that the LPSPI module must first be disabled before configuring this.
 * Note that the LPSPI module must be configured for master mode before configuring this.
 *
 * param base LPSPI peripheral address.
 * param scaler The 8-bit delay value 0x00 to 0xFF (255).
 * param whichDelay The desired delay to configure, must be of type lpspi_delay_type_t.
 */
void LPSPI_MasterSetDelayScaler(LPSPI_Type *base, uint32_t scaler, lpspi_delay_type_t whichDelay)
{
    /*These settings are only relevant in master mode */
    switch (whichDelay)
    {
        case kLPSPI_PcsToSck:
            base->CCR = (base->CCR & (~LPSPI_CCR_PCSSCK_MASK)) | LPSPI_CCR_PCSSCK(scaler);

            break;
        case kLPSPI_LastSckToPcs:
            base->CCR = (base->CCR & (~LPSPI_CCR_SCKPCS_MASK)) | LPSPI_CCR_SCKPCS(scaler);

            break;
        case kLPSPI_BetweenTransfer:
            base->CCR = (base->CCR & (~LPSPI_CCR_DBT_MASK)) | LPSPI_CCR_DBT(scaler);

            break;
        default:
            assert(false);
            break;
    }
}

/*!
 * brief Calculates the delay based on the desired delay input in nanoseconds (module must be
 *        disabled to change the delay values).
 *
 * This function calculates the values for the following:
 * SCK to PCS delay, or
 * PCS to SCK delay, or
 * The configurations must occur between the transfer delay.
 *
 * The delay names are available in type lpspi_delay_type_t.
 *
 * The user passes the desired delay and the desired delay value in
 * nano-seconds.  The function calculates the value needed for the desired delay parameter
 * and returns the actual calculated delay because an exact delay match may not be possible. In this
 * case, the closest match is calculated without going below the desired delay value input.
 * It is possible to input a very large delay value that exceeds the capability of the part, in
 * which case the maximum supported delay is returned. It is up to the higher level
 * peripheral driver to alert the user of an out of range delay input.
 *
 * Note that the LPSPI module must be configured for master mode before configuring this. And note that
 * the delayTime = LPSPI_clockSource / (PRESCALE * Delay_scaler).
 *
 * param base LPSPI peripheral address.
 * param delayTimeInNanoSec The desired delay value in nano-seconds.
 * param whichDelay The desired delay to configuration, which must be of type lpspi_delay_type_t.
 * param srcClock_Hz  Module source input clock in Hertz.
 * return actual Calculated delay value in nano-seconds.
 */
uint32_t LPSPI_MasterSetDelayTimes(LPSPI_Type *base,
                                   uint32_t delayTimeInNanoSec,
                                   lpspi_delay_type_t whichDelay,
                                   uint32_t srcClock_Hz)
{
    uint64_t realDelay, bestDelay;
    uint32_t scaler, bestScaler;
    uint32_t diff, min_diff;
    uint64_t initialDelayNanoSec;
    uint32_t clockDividedPrescaler;

    /* For delay between transfer, an additional scaler value is needed */
    uint32_t additionalScaler = 0;

    /*As the RM note, the LPSPI baud rate clock is itself divided by the PRESCALE setting, which can vary between
     * transfers.*/
    clockDividedPrescaler =
        srcClock_Hz / s_baudratePrescaler[(base->TCR & LPSPI_TCR_PRESCALE_MASK) >> LPSPI_TCR_PRESCALE_SHIFT];

    /* Find combination of prescaler and scaler resulting in the delay closest to the requested value.*/
    min_diff = 0xFFFFFFFFU;

    /* Initialize scaler to max value to generate the max delay */
    bestScaler = 0xFFU;

    /* Calculate the initial (min) delay and maximum possible delay based on the specific delay as
     * the delay divisors are slightly different based on which delay we are configuring.
     */
    if (whichDelay == kLPSPI_BetweenTransfer)
    {
        /* First calculate the initial, default delay, note min delay is 2 clock cycles. Due to large size of
         calculated values (uint64_t), we need to break up the calculation into several steps to ensure
         accurate calculated results
         */
        initialDelayNanoSec = 1000000000U;
        initialDelayNanoSec *= 2U;
        initialDelayNanoSec /= clockDividedPrescaler;

        /* Calculate the maximum delay */
        bestDelay = 1000000000U;
        bestDelay *= 257U; /* based on DBT+2, or 255 + 2 */
        bestDelay /= clockDividedPrescaler;

        additionalScaler = 1U;
    }
    else
    {
        /* First calculate the initial, default delay, min delay is 1 clock cycle. Due to large size of calculated
        values (uint64_t), we need to break up the calculation into several steps to ensure accurate calculated
        results.
        */
        initialDelayNanoSec = 1000000000U;
        initialDelayNanoSec /= clockDividedPrescaler;

        /* Calculate the maximum delay */
        bestDelay = 1000000000U;
        bestDelay *= 256U; /* based on SCKPCS+1 or PCSSCK+1, or 255 + 1 */
        bestDelay /= clockDividedPrescaler;

        additionalScaler = 0U;
    }

    /* If the initial, default delay is already greater than the desired delay, then
     * set the delay to their initial value (0) and return the delay. In other words,
     * there is no way to decrease the delay value further.
     */
    if (initialDelayNanoSec >= delayTimeInNanoSec)
    {
        LPSPI_MasterSetDelayScaler(base, 0, whichDelay);
        return (uint32_t)initialDelayNanoSec;
    }

    /* If min_diff = 0, the exit for loop */
    for (scaler = 0U; scaler < 256U; scaler++)
    {
        if (min_diff == 0U)
        {
            break;
        }
        /* Calculate the real delay value as we cycle through the scaler values.
        Due to large size of calculated values (uint64_t), we need to break up the
        calculation into several steps to ensure accurate calculated results
        */
        realDelay = 1000000000U;
        realDelay *= ((uint64_t)scaler + 1UL + (uint64_t)additionalScaler);
        realDelay /= clockDividedPrescaler;

        /* calculate the delay difference based on the conditional statement
         * that states that the calculated delay must not be less then the desired delay
         */
        if (realDelay >= delayTimeInNanoSec)
        {
            diff = (uint32_t)(realDelay - (uint64_t)delayTimeInNanoSec);
            if (min_diff > diff)
            {
                /* a better match found */
                min_diff   = diff;
                bestScaler = scaler;
                bestDelay  = realDelay;
            }
        }
    }

    /* write the best scaler value for the delay */
    LPSPI_MasterSetDelayScaler(base, bestScaler, whichDelay);

    /* return the actual calculated delay value (in ns) */
    return (uint32_t)bestDelay;
}

/*Transactional APIs -- Master*/

/*!
 * brief Initializes the LPSPI master handle.
 *
 * This function initializes the LPSPI handle, which can be used for other LPSPI transactional APIs.  Usually, for a
 * specified LPSPI instance, call this API once to get the initialized handle.

 * param base LPSPI peripheral address.
 * param handle LPSPI handle pointer to lpspi_master_handle_t.
 * param callback DSPI callback.
 * param userData callback function parameter.
 */
void LPSPI_MasterTransferCreateHandle(LPSPI_Type *base,
                                      lpspi_master_handle_t *handle,
                                      lpspi_master_transfer_callback_t callback,
                                      void *userData)
{
    assert(handle);

    /* Zero the handle. */
    (void)memset(handle, 0, sizeof(*handle));

    s_lpspiHandle[LPSPI_GetInstance(base)] = handle;

    /* Set irq handler. */
    s_lpspiMasterIsr = LPSPI_MasterTransferHandleIRQ;

    handle->callback = callback;
    handle->userData = userData;
}

/*!
 * brief Check the argument for transfer .
 *
 * param transfer the transfer struct to be used.
 * param bitPerFrame The bit size of one frame.
 * param bytePerFrame The byte size of one frame.
 * return Return true for right and false for wrong.
 */
bool LPSPI_CheckTransferArgument(lpspi_transfer_t *transfer, uint32_t bitsPerFrame, uint32_t bytesPerFrame)
{
    assert(transfer);

    /* If the transfer count is zero, then return immediately.*/
    if (transfer->dataSize == 0U)
    {
        return false;
    }

    /* If both send buffer and receive buffer is null */
    if ((NULL == (transfer->txData)) && (NULL == (transfer->rxData)))
    {
        return false;
    }

    /*The transfer data size should be integer multiples of bytesPerFrame if bytesPerFrame is less than or equal to 4 .
     *For bytesPerFrame greater than 4 situation:
     *the transfer data size should be equal to bytesPerFrame if the bytesPerFrame is not integer multiples of 4 ,
     *otherwise , the transfer data size can be integer multiples of bytesPerFrame.
     */
    if (bytesPerFrame <= 4U)
    {
        if ((transfer->dataSize % bytesPerFrame) != 0U)
        {
            return false;
        }
    }
    else
    {
        if ((bytesPerFrame % 4U) != 0U)
        {
            if (transfer->dataSize != bytesPerFrame)
            {
                return false;
            }
        }
        else
        {
            if ((transfer->dataSize % bytesPerFrame) != 0U)
            {
                return false;
            }
        }
    }

    return true;
}

/*!
 * brief LPSPI master transfer data using a polling method.
 *
 * This function transfers data using a  polling method. This is a blocking function, which does not return until all
 * transfers have been
 * completed.
 *
 * Note:
 * The transfer data size should be integer multiples of bytesPerFrame if bytesPerFrame is less than or equal to 4.
 * For bytesPerFrame greater than 4:
 * The transfer data size should be equal to bytesPerFrame if the bytesPerFrame is not integer multiples of 4.
 * Otherwise, the transfer data size can be an integer multiple of bytesPerFrame.
 *
 * param base LPSPI peripheral address.
 * param transfer pointer to lpspi_transfer_t structure.
 * return status of status_t.
 */
status_t LPSPI_MasterTransferBlocking(LPSPI_Type *base, lpspi_transfer_t *transfer)
{
    assert(transfer);

    uint32_t bitsPerFrame  = ((base->TCR & LPSPI_TCR_FRAMESZ_MASK) >> LPSPI_TCR_FRAMESZ_SHIFT) + 1U;
    uint32_t bytesPerFrame = (bitsPerFrame + 7U) / 8U;
    uint32_t temp          = 0U;
    uint8_t dummyData      = g_lpspiDummyData[LPSPI_GetInstance(base)];

    if (!LPSPI_CheckTransferArgument(transfer, bitsPerFrame, bytesPerFrame))
    {
        return kStatus_InvalidArgument;
    }

    /* Check that LPSPI is not busy.*/
    if ((LPSPI_GetStatusFlags(base) & (uint32_t)kLPSPI_ModuleBusyFlag) != 0U)
    {
        return kStatus_LPSPI_Busy;
    }

    uint8_t *txData               = transfer->txData;
    uint8_t *rxData               = transfer->rxData;
    uint32_t txRemainingByteCount = transfer->dataSize;
    uint32_t rxRemainingByteCount = transfer->dataSize;

    uint8_t bytesEachWrite;
    uint8_t bytesEachRead;

    uint32_t readData = 0U;
    uint32_t wordToSend =
        ((uint32_t)dummyData) | ((uint32_t)dummyData << 8) | ((uint32_t)dummyData << 16) | ((uint32_t)dummyData << 24);

    /*The TX and RX FIFO sizes are always the same*/
    uint32_t fifoSize       = LPSPI_GetRxFifoSize(base);
    uint32_t rxFifoMaxBytes = MIN(bytesPerFrame, 4U) * fifoSize;
    uint32_t whichPcs       = (transfer->configFlags & LPSPI_MASTER_PCS_MASK) >> LPSPI_MASTER_PCS_SHIFT;

    bool isPcsContinuous = ((transfer->configFlags & (uint32_t)kLPSPI_MasterPcsContinuous) != 0U);
    bool isRxMask        = false;
    bool isByteSwap      = ((transfer->configFlags & (uint32_t)kLPSPI_MasterByteSwap) != 0U);

#if SPI_RETRY_TIMES
    uint32_t waitTimes;
#endif

    LPSPI_FlushFifo(base, true, true);
    LPSPI_ClearStatusFlags(base, (uint32_t)kLPSPI_AllStatusFlag);

    if (NULL == rxData)
    {
        isRxMask = true;
    }

    LPSPI_Enable(base, false);
    base->CFGR1 &= (~LPSPI_CFGR1_NOSTALL_MASK);
    /* Check if using 3-wire mode and the txData is NULL, set the output pin to tristated. */
    temp = base->CFGR1;
    temp &= LPSPI_CFGR1_PINCFG_MASK;
    if ((temp == LPSPI_CFGR1_PINCFG(kLPSPI_SdiInSdiOut)) || (temp == LPSPI_CFGR1_PINCFG(kLPSPI_SdoInSdoOut)))
    {
        if (NULL == txData)
        {
            base->CFGR1 |= LPSPI_CFGR1_OUTCFG_MASK;
        }
        /* The 3-wire mode can't send and receive data at the same time. */
        if ((txData != NULL) && (rxData != NULL))
        {
            return kStatus_InvalidArgument;
        }
    }
    LPSPI_Enable(base, true);

    base->TCR =
        (base->TCR & ~(LPSPI_TCR_CONT_MASK | LPSPI_TCR_CONTC_MASK | LPSPI_TCR_RXMSK_MASK | LPSPI_TCR_PCS_MASK)) |
        LPSPI_TCR_CONT(isPcsContinuous) | LPSPI_TCR_CONTC(0) | LPSPI_TCR_RXMSK(isRxMask) | LPSPI_TCR_PCS(whichPcs);

    if (bytesPerFrame <= 4U)
    {
        bytesEachWrite = (uint8_t)bytesPerFrame;
        bytesEachRead  = (uint8_t)bytesPerFrame;
    }
    else
    {
        bytesEachWrite = 4U;
        bytesEachRead  = 4U;
    }

    /*Write the TX data until txRemainingByteCount is equal to 0 */
    while (txRemainingByteCount > 0U)
    {
        if (txRemainingByteCount < bytesEachWrite)
        {
            bytesEachWrite = (uint8_t)txRemainingByteCount;
        }

        /*Wait until TX FIFO is not full*/
#if SPI_RETRY_TIMES
        waitTimes = SPI_RETRY_TIMES;
        while ((LPSPI_GetTxFifoCount(base) == fifoSize) && (--waitTimes != 0U))
#else
        while (LPSPI_GetTxFifoCount(base) == fifoSize)
#endif
        {
        }
#if SPI_RETRY_TIMES
        if (waitTimes == 0U)
        {
            return kStatus_SPI_Timeout;
        }
#endif

        /* To prevent rxfifo overflow, ensure transmitting and receiving are executed in parallel */
        if (((NULL == rxData) || (rxRemainingByteCount - txRemainingByteCount) < rxFifoMaxBytes))
        {
            if (txData != NULL)
            {
                wordToSend = LPSPI_CombineWriteData(txData, bytesEachWrite, isByteSwap);
                txData += bytesEachWrite;
            }

            LPSPI_WriteData(base, wordToSend);
            txRemainingByteCount -= bytesEachWrite;
        }

        /*Check whether there is RX data in RX FIFO . Read out the RX data so that the RX FIFO would not overrun.*/
        if (rxData != NULL)
        {
#if SPI_RETRY_TIMES
            waitTimes = SPI_RETRY_TIMES;
            while ((LPSPI_GetRxFifoCount(base) != 0U) && (--waitTimes != 0U))
#else
            while (LPSPI_GetRxFifoCount(base) != 0U)
#endif
            {
                readData = LPSPI_ReadData(base);
                if (rxRemainingByteCount < bytesEachRead)
                {
                    bytesEachRead = (uint8_t)rxRemainingByteCount;
                }

                LPSPI_SeparateReadData(rxData, readData, bytesEachRead, isByteSwap);
                rxData += bytesEachRead;

                rxRemainingByteCount -= bytesEachRead;
            }
#if SPI_RETRY_TIMES
            if (waitTimes == 0U)
            {
                return kStatus_SPI_Timeout;
            }
#endif
        }
    }

    /* After write all the data in TX FIFO , should write the TCR_CONTC to 0 to de-assert the PCS. Note that TCR
     * register also use the TX FIFO.
     */
#if SPI_RETRY_TIMES
    waitTimes = SPI_RETRY_TIMES;
    while ((LPSPI_GetTxFifoCount(base) == fifoSize) && (--waitTimes != 0U))
#else
    while (LPSPI_GetTxFifoCount(base) == fifoSize)
#endif
    {
    }
#if SPI_RETRY_TIMES
    if (waitTimes == 0U)
    {
        return kStatus_SPI_Timeout;
    }
#endif
    base->TCR = (base->TCR & ~(LPSPI_TCR_CONTC_MASK));

    /*Read out the RX data in FIFO*/
    if (rxData != NULL)
    {
        while (rxRemainingByteCount > 0U)
        {
#if SPI_RETRY_TIMES
            waitTimes = SPI_RETRY_TIMES;
            while ((LPSPI_GetRxFifoCount(base) != 0U) && (--waitTimes != 0U))
#else
            while (LPSPI_GetRxFifoCount(base) != 0U)
#endif
            {
                readData = LPSPI_ReadData(base);

                if (rxRemainingByteCount < bytesEachRead)
                {
                    bytesEachRead = (uint8_t)rxRemainingByteCount;
                }

                LPSPI_SeparateReadData(rxData, readData, bytesEachRead, isByteSwap);
                rxData += bytesEachRead;

                rxRemainingByteCount -= bytesEachRead;
            }
#if SPI_RETRY_TIMES
            if (waitTimes == 0U)
            {
                return kStatus_SPI_Timeout;
            }
#endif
        }
    }
    else
    {
        /* If no RX buffer, then transfer is not complete until transfer complete flag sets */
#if SPI_RETRY_TIMES
        waitTimes = SPI_RETRY_TIMES;
        while (((LPSPI_GetStatusFlags(base) & (uint32_t)kLPSPI_TransferCompleteFlag) == 0U) && (--waitTimes != 0U))
#else
        while ((LPSPI_GetStatusFlags(base) & (uint32_t)kLPSPI_TransferCompleteFlag) == 0U)
#endif
        {
        }
#if SPI_RETRY_TIMES
        if (waitTimes == 0U)
        {
            return kStatus_SPI_Timeout;
        }
#endif
    }

    return kStatus_Success;
}

/*!
 * brief LPSPI master transfer data using an interrupt method.
 *
 * This function transfers data using an interrupt method. This is a non-blocking function, which returns right away.
 * When all data
 * is transferred, the callback function is called.
 *
 * Note:
 * The transfer data size should be integer multiples of bytesPerFrame if bytesPerFrame is less than or equal to 4.
 * For bytesPerFrame greater than 4:
 * The transfer data size should be equal to bytesPerFrame if the bytesPerFrame is not integer multiples of 4.
 * Otherwise, the transfer data size can be an integer multiple of bytesPerFrame.
 *
 * param base LPSPI peripheral address.
 * param handle pointer to lpspi_master_handle_t structure which stores the transfer state.
 * param transfer pointer to lpspi_transfer_t structure.
 * return status of status_t.
 */
status_t LPSPI_MasterTransferNonBlocking(LPSPI_Type *base, lpspi_master_handle_t *handle, lpspi_transfer_t *transfer)
{
    assert(handle);
    assert(transfer);

    uint32_t bitsPerFrame  = ((base->TCR & LPSPI_TCR_FRAMESZ_MASK) >> LPSPI_TCR_FRAMESZ_SHIFT) + 1U;
    uint32_t bytesPerFrame = (bitsPerFrame + 7U) / 8U;
    uint32_t temp          = 0U;
    uint8_t dummyData      = g_lpspiDummyData[LPSPI_GetInstance(base)];
    bool isPcsContinuous;
    uint32_t tmpTimes;

    if (!LPSPI_CheckTransferArgument(transfer, bitsPerFrame, bytesPerFrame))
    {
        return kStatus_InvalidArgument;
    }

    /* Check that we're not busy.*/
    if (handle->state == (uint8_t)kLPSPI_Busy)
    {
        return kStatus_LPSPI_Busy;
    }

    handle->state = (uint8_t)kLPSPI_Busy;

    bool isRxMask = false;

    uint8_t txWatermark;

    uint32_t whichPcs = (transfer->configFlags & LPSPI_MASTER_PCS_MASK) >> LPSPI_MASTER_PCS_SHIFT;

    handle->txData               = transfer->txData;
    handle->rxData               = transfer->rxData;
    handle->txRemainingByteCount = transfer->dataSize;
    handle->rxRemainingByteCount = transfer->dataSize;
    handle->totalByteCount       = transfer->dataSize;

    handle->writeTcrInIsr = false;

    handle->writeRegRemainingTimes = (transfer->dataSize / bytesPerFrame) * ((bytesPerFrame + 3U) / 4U);
    handle->readRegRemainingTimes  = handle->writeRegRemainingTimes;

    handle->txBuffIfNull =
        ((uint32_t)dummyData) | ((uint32_t)dummyData << 8) | ((uint32_t)dummyData << 16) | ((uint32_t)dummyData << 24);

    /*The TX and RX FIFO sizes are always the same*/
    handle->fifoSize = LPSPI_GetRxFifoSize(base);

    handle->isPcsContinuous = ((transfer->configFlags & (uint32_t)kLPSPI_MasterPcsContinuous) != 0U);
    isPcsContinuous         = handle->isPcsContinuous;
    handle->isByteSwap      = ((transfer->configFlags & (uint32_t)kLPSPI_MasterByteSwap) != 0U);

    /*Set the RX and TX watermarks to reduce the ISR times.*/
    if (handle->fifoSize > 1U)
    {
        txWatermark         = 1U;
        handle->rxWatermark = handle->fifoSize - 2U;
    }
    else
    {
        txWatermark         = 0U;
        handle->rxWatermark = 0U;
    }

    LPSPI_SetFifoWatermarks(base, txWatermark, handle->rxWatermark);

    LPSPI_Enable(base, false);
    /*Transfers will stall when transmit FIFO is empty or receive FIFO is full. */
    base->CFGR1 &= (~LPSPI_CFGR1_NOSTALL_MASK);
    /* Check if using 3-wire mode and the txData is NULL, set the output pin to tristated. */
    temp = base->CFGR1;
    temp &= LPSPI_CFGR1_PINCFG_MASK;
    if ((temp == LPSPI_CFGR1_PINCFG(kLPSPI_SdiInSdiOut)) || (temp == LPSPI_CFGR1_PINCFG(kLPSPI_SdoInSdoOut)))
    {
        if (NULL == handle->txData)
        {
            base->CFGR1 |= LPSPI_CFGR1_OUTCFG_MASK;
        }
        /* The 3-wire mode can't send and receive data at the same time. */
        if ((NULL != handle->txData) && (NULL != handle->rxData))
        {
            return kStatus_InvalidArgument;
        }
    }
    LPSPI_Enable(base, true);

    /*Flush FIFO , clear status , disable all the inerrupts.*/
    LPSPI_FlushFifo(base, true, true);
    LPSPI_ClearStatusFlags(base, (uint32_t)kLPSPI_AllStatusFlag);
    LPSPI_DisableInterrupts(base, (uint32_t)kLPSPI_AllInterruptEnable);

    /* If there is not rxData , can mask the receive data (receive data is not stored in receive FIFO).
     * For master transfer , we'd better not masked the transmit data in TCR since the transfer flow is hard to
     * controlled by software.*/
    if (handle->rxData == NULL)
    {
        isRxMask                     = true;
        handle->rxRemainingByteCount = 0;
    }

    base->TCR =
        (base->TCR & ~(LPSPI_TCR_CONT_MASK | LPSPI_TCR_CONTC_MASK | LPSPI_TCR_RXMSK_MASK | LPSPI_TCR_PCS_MASK)) |
        LPSPI_TCR_CONT(isPcsContinuous) | LPSPI_TCR_CONTC(0) | LPSPI_TCR_RXMSK(isRxMask) | LPSPI_TCR_PCS(whichPcs);

    /*Calculate the bytes for write/read the TX/RX register each time*/
    if (bytesPerFrame <= 4U)
    {
        handle->bytesEachWrite = (uint8_t)bytesPerFrame;
        handle->bytesEachRead  = (uint8_t)bytesPerFrame;
    }
    else
    {
        handle->bytesEachWrite = 4U;
        handle->bytesEachRead  = 4U;
    }

    /* Enable the NVIC for LPSPI peripheral. Note that below code is useless if the LPSPI interrupt is in INTMUX ,
     * and you should also enable the INTMUX interupt in your application.
     */
    (void)EnableIRQ(s_lpspiIRQ[LPSPI_GetInstance(base)]);

    /*TCR is also shared the FIFO , so wait for TCR written.*/
#if SPI_RETRY_TIMES
    uint32_t waitTimes = SPI_RETRY_TIMES;
    while ((LPSPI_GetTxFifoCount(base) != 0U) && (--waitTimes != 0U))
#else
    while (LPSPI_GetTxFifoCount(base) != 0U)
#endif
    {
    }
#if SPI_RETRY_TIMES
    if (waitTimes == 0U)
    {
        return kStatus_SPI_Timeout;
    }
#endif

    /*Fill up the TX data in FIFO */
    LPSPI_MasterTransferFillUpTxFifo(base, handle);

    /* Since SPI is a synchronous interface, we only need to enable the RX interrupt if there is RX data.
     * The IRQ handler will get the status of RX and TX interrupt flags.
     */
    if (handle->rxData != NULL)
    {
        /*Set rxWatermark to (readRegRemainingTimes-1) if readRegRemainingTimes less than rxWatermark. Otherwise there
         *is not RX interrupt for the last datas because the RX count is not greater than rxWatermark.
         */
        tmpTimes = handle->readRegRemainingTimes;
        if (tmpTimes <= handle->rxWatermark)
        {
            base->FCR = (base->FCR & (~LPSPI_FCR_RXWATER_MASK)) | LPSPI_FCR_RXWATER(tmpTimes - 1U);
        }

        LPSPI_EnableInterrupts(base, (uint32_t)kLPSPI_RxInterruptEnable);
    }
    else
    {
        LPSPI_EnableInterrupts(base, (uint32_t)kLPSPI_TxInterruptEnable);
    }

    return kStatus_Success;
}

static void LPSPI_MasterTransferFillUpTxFifo(LPSPI_Type *base, lpspi_master_handle_t *handle)
{
    assert(handle);

    uint32_t wordToSend             = 0;
    uint8_t fifoSize                = handle->fifoSize;
    uint32_t writeRegRemainingTimes = handle->writeRegRemainingTimes;
    uint32_t readRegRemainingTimes  = handle->readRegRemainingTimes;
    size_t txRemainingByteCount     = handle->txRemainingByteCount;
    uint8_t bytesEachWrite          = handle->bytesEachWrite;
    bool isByteSwap                 = handle->isByteSwap;

    /* Make sure the difference in remaining TX and RX byte counts does not exceed FIFO depth
     * and that the number of TX FIFO entries does not exceed the FIFO depth.
     * But no need to make the protection if there is no rxData.
     */
    while ((LPSPI_GetTxFifoCount(base) < fifoSize) &&
           (((readRegRemainingTimes - writeRegRemainingTimes) < (uint32_t)fifoSize) || (handle->rxData == NULL)))
    {
        if (txRemainingByteCount < (size_t)bytesEachWrite)
        {
            handle->bytesEachWrite = (uint8_t)txRemainingByteCount;
            bytesEachWrite         = handle->bytesEachWrite;
        }

        if (handle->txData != NULL)
        {
            wordToSend = LPSPI_CombineWriteData(handle->txData, bytesEachWrite, isByteSwap);
            handle->txData += bytesEachWrite;
        }
        else
        {
            wordToSend = handle->txBuffIfNull;
        }

        /*Write the word to TX register*/
        LPSPI_WriteData(base, wordToSend);

        /*Decrease the write TX register times.*/
        --handle->writeRegRemainingTimes;
        writeRegRemainingTimes = handle->writeRegRemainingTimes;

        /*Decrease the remaining TX byte count.*/
        handle->txRemainingByteCount -= (size_t)bytesEachWrite;
        txRemainingByteCount = handle->txRemainingByteCount;

        if (handle->txRemainingByteCount == 0U)
        {
            /* If PCS is continuous, update TCR to de-assert PCS */
            if (handle->isPcsContinuous)
            {
                /* Only write to the TCR if the FIFO has room */
                if (LPSPI_GetTxFifoCount(base) < fifoSize)
                {
                    base->TCR             = (base->TCR & ~(LPSPI_TCR_CONTC_MASK));
                    handle->writeTcrInIsr = false;
                }
                /* Else, set a global flag to tell the ISR to do write to the TCR */
                else
                {
                    handle->writeTcrInIsr = true;
                }
            }
            break;
        }
    }
}

static void LPSPI_MasterTransferComplete(LPSPI_Type *base, lpspi_master_handle_t *handle)
{
    assert(handle);

    /* Disable interrupt requests*/
    LPSPI_DisableInterrupts(base, (uint32_t)kLPSPI_AllInterruptEnable);

    handle->state = (uint8_t)kLPSPI_Idle;

    if (handle->callback != NULL)
    {
        handle->callback(base, handle, kStatus_Success, handle->userData);
    }
}

/*!
 * brief Gets the master transfer remaining bytes.
 *
 * This function gets the master transfer remaining bytes.
 *
 * param base LPSPI peripheral address.
 * param handle pointer to lpspi_master_handle_t structure which stores the transfer state.
 * param count Number of bytes transferred so far by the non-blocking transaction.
 * return status of status_t.
 */
status_t LPSPI_MasterTransferGetCount(LPSPI_Type *base, lpspi_master_handle_t *handle, size_t *count)
{
    assert(handle);

    if (NULL == count)
    {
        return kStatus_InvalidArgument;
    }

    /* Catch when there is not an active transfer. */
    if (handle->state != (uint8_t)kLPSPI_Busy)
    {
        *count = 0;
        return kStatus_NoTransferInProgress;
    }

    size_t remainingByte;

    if (handle->rxData != NULL)
    {
        remainingByte = handle->rxRemainingByteCount;
    }
    else
    {
        remainingByte = handle->txRemainingByteCount;
    }

    *count = handle->totalByteCount - remainingByte;

    return kStatus_Success;
}

/*!
 * brief LPSPI master abort transfer which uses an interrupt method.
 *
 * This function aborts a transfer which uses an interrupt method.
 *
 * param base LPSPI peripheral address.
 * param handle pointer to lpspi_master_handle_t structure which stores the transfer state.
 */
void LPSPI_MasterTransferAbort(LPSPI_Type *base, lpspi_master_handle_t *handle)
{
    assert(handle);

    /* Disable interrupt requests*/
    LPSPI_DisableInterrupts(base, (uint32_t)kLPSPI_AllInterruptEnable);

    LPSPI_Reset(base);

    handle->state                = (uint8_t)kLPSPI_Idle;
    handle->txRemainingByteCount = 0;
    handle->rxRemainingByteCount = 0;
}

/*!
 * brief LPSPI Master IRQ handler function.
 *
 * This function processes the LPSPI transmit and receive IRQ.
 *
 * param base LPSPI peripheral address.
 * param handle pointer to lpspi_master_handle_t structure which stores the transfer state.
 */
void LPSPI_MasterTransferHandleIRQ(LPSPI_Type *base, lpspi_master_handle_t *handle)
{
    assert(handle);

    uint32_t readData;
    uint8_t bytesEachRead          = handle->bytesEachRead;
    bool isByteSwap                = handle->isByteSwap;
    uint32_t readRegRemainingTimes = handle->readRegRemainingTimes;

    if (handle->rxData != NULL)
    {
        if (handle->rxRemainingByteCount != 0U)
        {
            /* First, disable the interrupts to avoid potentially triggering another interrupt
             * while reading out the RX FIFO as more data may be coming into the RX FIFO. We'll
             * re-enable the interrupts based on the LPSPI state after reading out the FIFO.
             */
            LPSPI_DisableInterrupts(base, (uint32_t)kLPSPI_RxInterruptEnable);

            while ((LPSPI_GetRxFifoCount(base) != 0U) && (handle->rxRemainingByteCount != 0U))
            {
                /*Read out the data*/
                readData = LPSPI_ReadData(base);

                /*Decrease the read RX register times.*/
                --handle->readRegRemainingTimes;
                readRegRemainingTimes = handle->readRegRemainingTimes;

                if (handle->rxRemainingByteCount < (size_t)bytesEachRead)
                {
                    handle->bytesEachRead = (uint8_t)(handle->rxRemainingByteCount);
                    bytesEachRead         = handle->bytesEachRead;
                }

                LPSPI_SeparateReadData(handle->rxData, readData, bytesEachRead, isByteSwap);
                handle->rxData += bytesEachRead;

                /*Decrease the remaining RX byte count.*/
                handle->rxRemainingByteCount -= (size_t)bytesEachRead;
            }

            /* Re-enable the interrupts only if rxCount indicates there is more data to receive,
             * else we may get a spurious interrupt.
             * */
            if (handle->rxRemainingByteCount != 0U)
            {
                /* Set the TDF and RDF interrupt enables simultaneously to avoid race conditions */
                LPSPI_EnableInterrupts(base, (uint32_t)kLPSPI_RxInterruptEnable);
            }
        }

        /*Set rxWatermark to (readRegRemainingTimes-1) if readRegRemainingTimes less than rxWatermark. Otherwise there
         *is not RX interrupt for the last datas because the RX count is not greater than rxWatermark.
         */
        if (readRegRemainingTimes <= (uint32_t)handle->rxWatermark)
        {
            base->FCR = (base->FCR & (~LPSPI_FCR_RXWATER_MASK)) |
                        LPSPI_FCR_RXWATER((readRegRemainingTimes > 1U) ? (readRegRemainingTimes - 1U) : (0U));
        }
    }

    if (handle->txRemainingByteCount != 0U)
    {
        LPSPI_MasterTransferFillUpTxFifo(base, handle);
    }
    else
    {
        if ((LPSPI_GetTxFifoCount(base) < (handle->fifoSize)))
        {
            if ((handle->isPcsContinuous) && (handle->writeTcrInIsr))
            {
                base->TCR             = (base->TCR & ~(LPSPI_TCR_CONTC_MASK));
                handle->writeTcrInIsr = false;
            }
        }
    }

    if ((handle->txRemainingByteCount == 0U) && (handle->rxRemainingByteCount == 0U) && (!handle->writeTcrInIsr))
    {
        /* If no RX buffer, then transfer is not complete until transfer complete flag sets */
        if (handle->rxData == NULL)
        {
            if ((LPSPI_GetStatusFlags(base) & (uint32_t)kLPSPI_TransferCompleteFlag) != 0U)
            {
                LPSPI_ClearStatusFlags(base, (uint32_t)kLPSPI_TransferCompleteFlag);
                /* Complete the transfer and disable the interrupts */
                LPSPI_MasterTransferComplete(base, handle);
            }
            else
            {
                LPSPI_EnableInterrupts(base, (uint32_t)kLPSPI_TransferCompleteInterruptEnable);
                LPSPI_DisableInterrupts(base, (uint32_t)kLPSPI_TxInterruptEnable | (uint32_t)kLPSPI_RxInterruptEnable);
            }
        }
        else
        {
            /* Complete the transfer and disable the interrupts */
            LPSPI_MasterTransferComplete(base, handle);
        }
    }
}

/*Transactional APIs -- Slave*/
/*!
 * brief Initializes the LPSPI slave handle.
 *
 * This function initializes the LPSPI handle, which can be used for other LPSPI transactional APIs.  Usually, for a
 * specified LPSPI instance, call this API once to get the initialized handle.
 *
 * param base LPSPI peripheral address.
 * param handle LPSPI handle pointer to lpspi_slave_handle_t.
 * param callback DSPI callback.
 * param userData callback function parameter.
 */
void LPSPI_SlaveTransferCreateHandle(LPSPI_Type *base,
                                     lpspi_slave_handle_t *handle,
                                     lpspi_slave_transfer_callback_t callback,
                                     void *userData)
{
    assert(handle);

    /* Zero the handle. */
    (void)memset(handle, 0, sizeof(*handle));

    s_lpspiHandle[LPSPI_GetInstance(base)] = handle;

    /* Set irq handler. */
    s_lpspiSlaveIsr = LPSPI_SlaveTransferHandleIRQ;

    handle->callback = callback;
    handle->userData = userData;
}

/*!
 * brief LPSPI slave transfer data using an interrupt method.
 *
 * This function transfer data using an interrupt method. This is a non-blocking function, which returns right away.
 * When all data
 * is transferred, the callback function is called.
 *
 * Note:
 * The transfer data size should be integer multiples of bytesPerFrame if bytesPerFrame is less than or equal to 4.
 * For bytesPerFrame greater than 4:
 * The transfer data size should be equal to bytesPerFrame if the bytesPerFrame is not an integer multiple of 4.
 * Otherwise, the transfer data size can be an integer multiple of bytesPerFrame.
 *
 * param base LPSPI peripheral address.
 * param handle pointer to lpspi_slave_handle_t structure which stores the transfer state.
 * param transfer pointer to lpspi_transfer_t structure.
 * return status of status_t.
 */
status_t LPSPI_SlaveTransferNonBlocking(LPSPI_Type *base, lpspi_slave_handle_t *handle, lpspi_transfer_t *transfer)
{
    assert(handle);
    assert(transfer);

    uint32_t bitsPerFrame  = ((base->TCR & LPSPI_TCR_FRAMESZ_MASK) >> LPSPI_TCR_FRAMESZ_SHIFT) + 1U;
    uint32_t bytesPerFrame = (bitsPerFrame + 7U) / 8U;
    uint32_t temp          = 0U;
    uint32_t readRegRemainingTimes;

    if (!LPSPI_CheckTransferArgument(transfer, bitsPerFrame, bytesPerFrame))
    {
        return kStatus_InvalidArgument;
    }

    /* Check that we're not busy.*/
    if (handle->state == (uint8_t)kLPSPI_Busy)
    {
        return kStatus_LPSPI_Busy;
    }
    handle->state = (uint8_t)kLPSPI_Busy;

    bool isRxMask = false;
    bool isTxMask = false;

    uint32_t whichPcs = (transfer->configFlags & LPSPI_SLAVE_PCS_MASK) >> LPSPI_SLAVE_PCS_SHIFT;

    handle->txData               = transfer->txData;
    handle->rxData               = transfer->rxData;
    handle->txRemainingByteCount = transfer->dataSize;
    handle->rxRemainingByteCount = transfer->dataSize;
    handle->totalByteCount       = transfer->dataSize;

    handle->writeRegRemainingTimes = (transfer->dataSize / bytesPerFrame) * ((bytesPerFrame + 3U) / 4U);
    handle->readRegRemainingTimes  = handle->writeRegRemainingTimes;

    /*The TX and RX FIFO sizes are always the same*/
    handle->fifoSize = LPSPI_GetRxFifoSize(base);

    handle->isByteSwap = ((transfer->configFlags & (uint32_t)kLPSPI_SlaveByteSwap) != 0U);

    /*Set the RX and TX watermarks to reduce the ISR times.*/
    uint8_t txWatermark;
    if (handle->fifoSize > 1U)
    {
        txWatermark         = 1U;
        handle->rxWatermark = handle->fifoSize - 2U;
    }
    else
    {
        txWatermark         = 0U;
        handle->rxWatermark = 0U;
    }
    LPSPI_SetFifoWatermarks(base, txWatermark, handle->rxWatermark);

    /* Check if using 3-wire mode and the txData is NULL, set the output pin to tristated. */
    temp = base->CFGR1;
    temp &= LPSPI_CFGR1_PINCFG_MASK;
    if ((temp == LPSPI_CFGR1_PINCFG(kLPSPI_SdiInSdiOut)) || (temp == LPSPI_CFGR1_PINCFG(kLPSPI_SdoInSdoOut)))
    {
        if (NULL == handle->txData)
        {
            LPSPI_Enable(base, false);
            base->CFGR1 |= LPSPI_CFGR1_OUTCFG_MASK;
            LPSPI_Enable(base, true);
        }
        /* The 3-wire mode can't send and receive data at the same time. */
        if ((handle->txData != NULL) && (handle->rxData != NULL))
        {
            return kStatus_InvalidArgument;
        }
    }

    /*Flush FIFO , clear status , disable all the inerrupts.*/
    LPSPI_FlushFifo(base, true, true);
    LPSPI_ClearStatusFlags(base, (uint32_t)kLPSPI_AllStatusFlag);
    LPSPI_DisableInterrupts(base, (uint32_t)kLPSPI_AllInterruptEnable);

    /*If there is not rxData , can mask the receive data (receive data is not stored in receive FIFO).*/
    if (handle->rxData == NULL)
    {
        isRxMask                     = true;
        handle->rxRemainingByteCount = 0U;
    }

    /*If there is not txData , can mask the transmit data (no data is loaded from transmit FIFO and output pin
     * is tristated).
     */
    if (handle->txData == NULL)
    {
        isTxMask                     = true;
        handle->txRemainingByteCount = 0U;
    }

    base->TCR = (base->TCR & ~(LPSPI_TCR_CONT_MASK | LPSPI_TCR_CONTC_MASK | LPSPI_TCR_RXMSK_MASK |
                               LPSPI_TCR_TXMSK_MASK | LPSPI_TCR_PCS_MASK)) |
                LPSPI_TCR_CONT(0) | LPSPI_TCR_CONTC(0) | LPSPI_TCR_RXMSK(isRxMask) | LPSPI_TCR_TXMSK(isTxMask) |
                LPSPI_TCR_PCS(whichPcs);

    /*Calculate the bytes for write/read the TX/RX register each time*/
    if (bytesPerFrame <= 4U)
    {
        handle->bytesEachWrite = (uint8_t)bytesPerFrame;
        handle->bytesEachRead  = (uint8_t)bytesPerFrame;
    }
    else
    {
        handle->bytesEachWrite = 4U;
        handle->bytesEachRead  = 4U;
    }

    /* Enable the NVIC for LPSPI peripheral. Note that below code is useless if the LPSPI interrupt is in INTMUX ,
     * and you should also enable the INTMUX interupt in your application.
     */
    (void)EnableIRQ(s_lpspiIRQ[LPSPI_GetInstance(base)]);

    /*TCR is also shared the FIFO , so wait for TCR written.*/
#if SPI_RETRY_TIMES
    uint32_t waitTimes = SPI_RETRY_TIMES;
    while ((LPSPI_GetTxFifoCount(base) != 0U) && (--waitTimes != 0U))
#else
    while (LPSPI_GetTxFifoCount(base) != 0U)
#endif
    {
    }
#if SPI_RETRY_TIMES
    if (waitTimes == 0U)
    {
        return kStatus_SPI_Timeout;
    }
#endif

    /*Fill up the TX data in FIFO */
    if (handle->txData != NULL)
    {
        LPSPI_SlaveTransferFillUpTxFifo(base, handle);
    }

    /* Since SPI is a synchronous interface, we only need to enable the RX interrupt if there is RX data.
     * The IRQ handler will get the status of RX and TX interrupt flags.
     */
    if (handle->rxData != NULL)
    {
        /*Set rxWatermark to (readRegRemainingTimes-1) if readRegRemainingTimes less than rxWatermark. Otherwise there
         *is not RX interrupt for the last datas because the RX count is not greater than rxWatermark.
         */
        readRegRemainingTimes = handle->readRegRemainingTimes;
        if (readRegRemainingTimes <= (uint32_t)handle->rxWatermark)
        {
            base->FCR = (base->FCR & (~LPSPI_FCR_RXWATER_MASK)) | LPSPI_FCR_RXWATER(readRegRemainingTimes - 1U);
        }

        LPSPI_EnableInterrupts(base, (uint32_t)kLPSPI_RxInterruptEnable);
    }
    else
    {
        LPSPI_EnableInterrupts(base, (uint32_t)kLPSPI_TxInterruptEnable);
    }

    if (handle->rxData != NULL)
    {
        /* RX FIFO overflow request enable */
        LPSPI_EnableInterrupts(base, (uint32_t)kLPSPI_ReceiveErrorInterruptEnable);
    }
    if (handle->txData != NULL)
    {
        /* TX FIFO underflow request enable */
        LPSPI_EnableInterrupts(base, (uint32_t)kLPSPI_TransmitErrorInterruptEnable);
    }

    return kStatus_Success;
}

static void LPSPI_SlaveTransferFillUpTxFifo(LPSPI_Type *base, lpspi_slave_handle_t *handle)
{
    assert(handle);

    uint32_t wordToSend    = 0U;
    uint8_t bytesEachWrite = handle->bytesEachWrite;
    bool isByteSwap        = handle->isByteSwap;

    while (LPSPI_GetTxFifoCount(base) < (handle->fifoSize))
    {
        if (handle->txRemainingByteCount < (size_t)bytesEachWrite)
        {
            handle->bytesEachWrite = (uint8_t)handle->txRemainingByteCount;
            bytesEachWrite         = handle->bytesEachWrite;
        }

        wordToSend = LPSPI_CombineWriteData(handle->txData, bytesEachWrite, isByteSwap);
        handle->txData += bytesEachWrite;

        /*Decrease the remaining TX byte count.*/
        handle->txRemainingByteCount -= (size_t)bytesEachWrite;

        /*Write the word to TX register*/
        LPSPI_WriteData(base, wordToSend);

        if (handle->txRemainingByteCount == 0U)
        {
            break;
        }
    }
}

static void LPSPI_SlaveTransferComplete(LPSPI_Type *base, lpspi_slave_handle_t *handle)
{
    assert(handle);

    status_t status = kStatus_Success;

    /* Disable interrupt requests*/
    LPSPI_DisableInterrupts(base, (uint32_t)kLPSPI_AllInterruptEnable);

    if (handle->state == (uint8_t)kLPSPI_Error)
    {
        status = kStatus_LPSPI_Error;
    }
    else
    {
        status = kStatus_Success;
    }

    handle->state = (uint8_t)kLPSPI_Idle;

    if (handle->callback != NULL)
    {
        handle->callback(base, handle, status, handle->userData);
    }
}

/*!
 * brief Gets the slave transfer remaining bytes.
 *
 * This function gets the slave transfer remaining bytes.
 *
 * param base LPSPI peripheral address.
 * param handle pointer to lpspi_slave_handle_t structure which stores the transfer state.
 * param count Number of bytes transferred so far by the non-blocking transaction.
 * return status of status_t.
 */
status_t LPSPI_SlaveTransferGetCount(LPSPI_Type *base, lpspi_slave_handle_t *handle, size_t *count)
{
    assert(handle != NULL);

    if (NULL == count)
    {
        return kStatus_InvalidArgument;
    }

    /* Catch when there is not an active transfer. */
    if (handle->state != (uint8_t)kLPSPI_Busy)
    {
        *count = 0;
        return kStatus_NoTransferInProgress;
    }

    size_t remainingByte;

    if (handle->rxData != NULL)
    {
        remainingByte = handle->rxRemainingByteCount;
    }
    else
    {
        remainingByte = handle->txRemainingByteCount;
    }

    *count = handle->totalByteCount - remainingByte;

    return kStatus_Success;
}

/*!
 * brief LPSPI slave aborts a transfer which uses an interrupt method.
 *
 * This function aborts a transfer which uses an interrupt method.
 *
 * param base LPSPI peripheral address.
 * param handle pointer to lpspi_slave_handle_t structure which stores the transfer state.
 */
void LPSPI_SlaveTransferAbort(LPSPI_Type *base, lpspi_slave_handle_t *handle)
{
    assert(handle);

    /* Disable interrupt requests*/
    LPSPI_DisableInterrupts(base, (uint32_t)kLPSPI_TxInterruptEnable | (uint32_t)kLPSPI_RxInterruptEnable);

    LPSPI_Reset(base);

    handle->state                = (uint8_t)kLPSPI_Idle;
    handle->txRemainingByteCount = 0U;
    handle->rxRemainingByteCount = 0U;
}

/*!
 * brief LPSPI Slave IRQ handler function.
 *
 * This function processes the LPSPI transmit and receives an IRQ.
 *
 * param base LPSPI peripheral address.
 * param handle pointer to lpspi_slave_handle_t structure which stores the transfer state.
 */
void LPSPI_SlaveTransferHandleIRQ(LPSPI_Type *base, lpspi_slave_handle_t *handle)
{
    assert(handle);

    uint32_t readData;   /* variable to store word read from RX FIFO */
    uint32_t wordToSend; /* variable to store word to write to TX FIFO */
    uint8_t bytesEachRead  = handle->bytesEachRead;
    uint8_t bytesEachWrite = handle->bytesEachWrite;
    bool isByteSwap        = handle->isByteSwap;
    uint32_t readRegRemainingTimes;

    if (handle->rxData != NULL)
    {
        if (handle->rxRemainingByteCount > 0U)
        {
            while (LPSPI_GetRxFifoCount(base) != 0U)
            {
                /*Read out the data*/
                readData = LPSPI_ReadData(base);

                /*Decrease the read RX register times.*/
                --handle->readRegRemainingTimes;

                if (handle->rxRemainingByteCount < (size_t)bytesEachRead)
                {
                    handle->bytesEachRead = (uint8_t)handle->rxRemainingByteCount;
                    bytesEachRead         = handle->bytesEachRead;
                }

                LPSPI_SeparateReadData(handle->rxData, readData, bytesEachRead, isByteSwap);
                handle->rxData += bytesEachRead;

                /*Decrease the remaining RX byte count.*/
                handle->rxRemainingByteCount -= (size_t)bytesEachRead;

                if ((handle->txRemainingByteCount > 0U) && (handle->txData != NULL))
                {
                    if (handle->txRemainingByteCount < (size_t)bytesEachWrite)
                    {
                        handle->bytesEachWrite = (uint8_t)handle->txRemainingByteCount;
                        bytesEachWrite         = handle->bytesEachWrite;
                    }

                    wordToSend = LPSPI_CombineWriteData(handle->txData, bytesEachWrite, isByteSwap);
                    handle->txData += bytesEachWrite;

                    /*Decrease the remaining TX byte count.*/
                    handle->txRemainingByteCount -= (size_t)bytesEachWrite;

                    /*Write the word to TX register*/
                    LPSPI_WriteData(base, wordToSend);
                }

                if (handle->rxRemainingByteCount == 0U)
                {
                    break;
                }
            }
        }

        /*Set rxWatermark to (readRegRemainingTimes-1) if readRegRemainingTimes less than rxWatermark. Otherwise there
         *is not RX interrupt for the last datas because the RX count is not greater than rxWatermark.
         */
        readRegRemainingTimes = handle->readRegRemainingTimes;
        if (readRegRemainingTimes <= (uint32_t)handle->rxWatermark)
        {
            base->FCR = (base->FCR & (~LPSPI_FCR_RXWATER_MASK)) |
                        LPSPI_FCR_RXWATER((readRegRemainingTimes > 1U) ? (readRegRemainingTimes - 1U) : (0U));
        }
    }
    if ((handle->rxData == NULL) && (handle->txRemainingByteCount != 0U) && (handle->txData != NULL))
    {
        LPSPI_SlaveTransferFillUpTxFifo(base, handle);
    }

    if ((handle->txRemainingByteCount == 0U) && (handle->rxRemainingByteCount == 0U))
    {
        /* If no RX buffer, then transfer is not complete until transfer complete flag sets and the TX FIFO empty*/
        if (handle->rxData == NULL)
        {
            if (((LPSPI_GetStatusFlags(base) & (uint32_t)kLPSPI_FrameCompleteFlag) != 0U) &&
                (LPSPI_GetTxFifoCount(base) == 0U))
            {
                LPSPI_ClearStatusFlags(base, (uint32_t)kLPSPI_FrameCompleteFlag);
                /* Complete the transfer and disable the interrupts */
                LPSPI_SlaveTransferComplete(base, handle);
            }
            else
            {
                LPSPI_ClearStatusFlags(base, (uint32_t)kLPSPI_FrameCompleteFlag);
                LPSPI_EnableInterrupts(base, (uint32_t)kLPSPI_FrameCompleteInterruptEnable);
                LPSPI_DisableInterrupts(base, (uint32_t)kLPSPI_TxInterruptEnable | (uint32_t)kLPSPI_RxInterruptEnable);
            }
        }
        else
        {
            /* Complete the transfer and disable the interrupts */
            LPSPI_SlaveTransferComplete(base, handle);
        }
    }

    /* Catch tx fifo underflow conditions, service only if tx under flow interrupt enabled */
    if (((LPSPI_GetStatusFlags(base) & (uint32_t)kLPSPI_TransmitErrorFlag) != 0U) &&
        ((base->IER & LPSPI_IER_TEIE_MASK) != 0U))
    {
        LPSPI_ClearStatusFlags(base, (uint32_t)kLPSPI_TransmitErrorFlag);
        /* Change state to error and clear flag */
        if (handle->txData != NULL)
        {
            handle->state = (uint8_t)kLPSPI_Error;
        }
        handle->errorCount++;
    }
    /* Catch rx fifo overflow conditions, service only if rx over flow interrupt enabled */
    if (((LPSPI_GetStatusFlags(base) & (uint32_t)kLPSPI_ReceiveErrorFlag) != 0U) &&
        ((base->IER & LPSPI_IER_REIE_MASK) != 0U))
    {
        LPSPI_ClearStatusFlags(base, (uint32_t)kLPSPI_ReceiveErrorFlag);
        /* Change state to error and clear flag */
        if (handle->txData != NULL)
        {
            handle->state = (uint8_t)kLPSPI_Error;
        }
        handle->errorCount++;
    }
}

static uint32_t LPSPI_CombineWriteData(uint8_t *txData, uint8_t bytesEachWrite, bool isByteSwap)
{
    assert(txData != NULL);

    uint32_t wordToSend = 0U;

    switch (bytesEachWrite)
    {
        case 1:
            wordToSend = *txData;
            ++txData;
            break;

        case 2:
            if (!isByteSwap)
            {
                wordToSend = *txData;
                ++txData;
                wordToSend |= (unsigned)(*txData) << 8U;
                ++txData;
            }
            else
            {
                wordToSend = (unsigned)(*txData) << 8U;
                ++txData;
                wordToSend |= *txData;
                ++txData;
            }

            break;

        case 3:
            if (!isByteSwap)
            {
                wordToSend = *txData;
                ++txData;
                wordToSend |= (unsigned)(*txData) << 8U;
                ++txData;
                wordToSend |= (unsigned)(*txData) << 16U;
                ++txData;
            }
            else
            {
                wordToSend = (unsigned)(*txData) << 16U;
                ++txData;
                wordToSend |= (unsigned)(*txData) << 8U;
                ++txData;
                wordToSend |= *txData;
                ++txData;
            }
            break;

        case 4:
            if (!isByteSwap)
            {
                wordToSend = *txData;
                ++txData;
                wordToSend |= (unsigned)(*txData) << 8U;
                ++txData;
                wordToSend |= (unsigned)(*txData) << 16U;
                ++txData;
                wordToSend |= (unsigned)(*txData) << 24U;
                ++txData;
            }
            else
            {
                wordToSend = (unsigned)(*txData) << 24U;
                ++txData;
                wordToSend |= (unsigned)(*txData) << 16U;
                ++txData;
                wordToSend |= (unsigned)(*txData) << 8U;
                ++txData;
                wordToSend |= *txData;
                ++txData;
            }
            break;

        default:
            assert(false);
            break;
    }
    return wordToSend;
}

static void LPSPI_SeparateReadData(uint8_t *rxData, uint32_t readData, uint8_t bytesEachRead, bool isByteSwap)
{
    assert(rxData);

    switch (bytesEachRead)
    {
        case 1:
            *rxData = (uint8_t)readData;
            ++rxData;
            break;

        case 2:
            if (!isByteSwap)
            {
                *rxData = (uint8_t)readData;
                ++rxData;
                *rxData = (uint8_t)(readData >> 8);
                ++rxData;
            }
            else
            {
                *rxData = (uint8_t)(readData >> 8);
                ++rxData;
                *rxData = (uint8_t)readData;
                ++rxData;
            }
            break;

        case 3:
            if (!isByteSwap)
            {
                *rxData = (uint8_t)readData;
                ++rxData;
                *rxData = (uint8_t)(readData >> 8);
                ++rxData;
                *rxData = (uint8_t)(readData >> 16);
                ++rxData;
            }
            else
            {
                *rxData = (uint8_t)(readData >> 16);
                ++rxData;
                *rxData = (uint8_t)(readData >> 8);
                ++rxData;
                *rxData = (uint8_t)readData;
                ++rxData;
            }
            break;

        case 4:
            if (!isByteSwap)
            {
                *rxData = (uint8_t)readData;
                ++rxData;
                *rxData = (uint8_t)(readData >> 8);
                ++rxData;
                *rxData = (uint8_t)(readData >> 16);
                ++rxData;
                *rxData = (uint8_t)(readData >> 24);
                ++rxData;
            }
            else
            {
                *rxData = (uint8_t)(readData >> 24);
                ++rxData;
                *rxData = (uint8_t)(readData >> 16);
                ++rxData;
                *rxData = (uint8_t)(readData >> 8);
                ++rxData;
                *rxData = (uint8_t)readData;
                ++rxData;
            }
            break;

        default:
            assert(false);
            break;
    }
}

static void LPSPI_CommonIRQHandler(LPSPI_Type *base, void *param)
{
    if (LPSPI_IsMaster(base))
    {
        s_lpspiMasterIsr(base, (lpspi_master_handle_t *)param);
    }
    else
    {
        s_lpspiSlaveIsr(base, (lpspi_slave_handle_t *)param);
    }
    SDK_ISR_EXIT_BARRIER;
}

#if defined(LPSPI0)
void LPSPI0_DriverIRQHandler(void)
{
    assert(s_lpspiHandle[0]);
    LPSPI_CommonIRQHandler(LPSPI0, s_lpspiHandle[0]);
}
#endif

#if defined(LPSPI1)
void LPSPI1_DriverIRQHandler(void)
{
    assert(s_lpspiHandle[1]);
    LPSPI_CommonIRQHandler(LPSPI1, s_lpspiHandle[1]);
}
#endif

#if defined(LPSPI2)
void LPSPI2_DriverIRQHandler(void)
{
    assert(s_lpspiHandle[2]);
    LPSPI_CommonIRQHandler(LPSPI2, s_lpspiHandle[2]);
}
#endif

#if defined(LPSPI3)
void LPSPI3_DriverIRQHandler(void)
{
    assert(s_lpspiHandle[3]);
    LPSPI_CommonIRQHandler(LPSPI3, s_lpspiHandle[3]);
}
#endif

#if defined(LPSPI4)
void LPSPI4_DriverIRQHandler(void)
{
    assert(s_lpspiHandle[4]);
    LPSPI_CommonIRQHandler(LPSPI4, s_lpspiHandle[4]);
}
#endif

#if defined(LPSPI5)
void LPSPI5_DriverIRQHandler(void)
{
    assert(s_lpspiHandle[5]);
    LPSPI_CommonIRQHandler(LPSPI5, s_lpspiHandle[5]);
}
#endif

#if defined(DMA__LPSPI0)
void DMA_SPI0_INT_DriverIRQHandler(void)
{
    assert(s_lpspiHandle[LPSPI_GetInstance(DMA__LPSPI0)]);
    LPSPI_CommonIRQHandler(DMA__LPSPI0, s_lpspiHandle[LPSPI_GetInstance(DMA__LPSPI0)]);
}
#endif

#if defined(DMA__LPSPI1)
void DMA_SPI1_INT_DriverIRQHandler(void)
{
    assert(s_lpspiHandle[LPSPI_GetInstance(DMA__LPSPI1)]);
    LPSPI_CommonIRQHandler(DMA__LPSPI1, s_lpspiHandle[LPSPI_GetInstance(DMA__LPSPI1)]);
}
#endif
#if defined(DMA__LPSPI2)
void DMA_SPI2_INT_DriverIRQHandler(void)
{
    assert(s_lpspiHandle[LPSPI_GetInstance(DMA__LPSPI2)]);
    LPSPI_CommonIRQHandler(DMA__LPSPI2, s_lpspiHandle[LPSPI_GetInstance(DMA__LPSPI2)]);
}
#endif

#if defined(DMA__LPSPI3)
void DMA_SPI3_INT_DriverIRQHandler(void)
{
    assert(s_lpspiHandle[LPSPI_GetInstance(DMA__LPSPI3)]);
    LPSPI_CommonIRQHandler(DMA__LPSPI3, s_lpspiHandle[LPSPI_GetInstance(DMA__LPSPI3)]);
}
#endif

#if defined(ADMA__LPSPI0)
void ADMA_SPI0_INT_DriverIRQHandler(void)
{
    assert(s_lpspiHandle[LPSPI_GetInstance(ADMA__LPSPI0)]);
    LPSPI_CommonIRQHandler(ADMA__LPSPI0, s_lpspiHandle[LPSPI_GetInstance(ADMA__LPSPI0)]);
}
#endif

#if defined(ADMA__LPSPI1)
void ADMA_SPI1_INT_DriverIRQHandler(void)
{
    assert(s_lpspiHandle[LPSPI_GetInstance(ADMA__LPSPI1)]);
    LPSPI_CommonIRQHandler(ADMA__LPSPI1, s_lpspiHandle[LPSPI_GetInstance(ADMA__LPSPI1)]);
}
#endif
#if defined(ADMA__LPSPI2)
void ADMA_SPI2_INT_DriverIRQHandler(void)
{
    assert(s_lpspiHandle[LPSPI_GetInstance(ADMA__LPSPI2)]);
    LPSPI_CommonIRQHandler(ADMA__LPSPI2, s_lpspiHandle[LPSPI_GetInstance(ADMA__LPSPI2)]);
}
#endif

#if defined(ADMA__LPSPI3)
void ADMA_SPI3_INT_DriverIRQHandler(void)
{
    assert(s_lpspiHandle[LPSPI_GetInstance(ADMA__LPSPI3)]);
    LPSPI_CommonIRQHandler(ADMA__LPSPI3, s_lpspiHandle[LPSPI_GetInstance(ADMA__LPSPI3)]);
}
#endif