summaryrefslogtreecommitdiffstats
path: root/bsps/powerpc/mvme3100/include/bsp/if_tsec_pub.h
diff options
context:
space:
mode:
authorChris Johns <chrisj@rtems.org>2017-12-23 18:18:56 +1100
committerSebastian Huber <sebastian.huber@embedded-brains.de>2018-01-25 08:45:26 +0100
commit2afb22b7e1ebcbe40373ff7e0efae7d207c655a9 (patch)
tree44759efe9374f13200a97e96d91bd9a2b7e5ce2a /bsps/powerpc/mvme3100/include/bsp/if_tsec_pub.h
parentMAINTAINERS: Add myself to Write After Approval. (diff)
downloadrtems-2afb22b7e1ebcbe40373ff7e0efae7d207c655a9.tar.bz2
Remove make preinstall
A speciality of the RTEMS build system was the make preinstall step. It copied header files from arbitrary locations into the build tree. The header files were included via the -Bsome/build/tree/path GCC command line option. This has at least seven problems: * The make preinstall step itself needs time and disk space. * Errors in header files show up in the build tree copy. This makes it hard for editors to open the right file to fix the error. * There is no clear relationship between source and build tree header files. This makes an audit of the build process difficult. * The visibility of all header files in the build tree makes it difficult to enforce API barriers. For example it is discouraged to use BSP-specifics in the cpukit. * An introduction of a new build system is difficult. * Include paths specified by the -B option are system headers. This may suppress warnings. * The parallel build had sporadic failures on some hosts. This patch removes the make preinstall step. All installed header files are moved to dedicated include directories in the source tree. Let @RTEMS_CPU@ be the target architecture, e.g. arm, powerpc, sparc, etc. Let @RTEMS_BSP_FAMILIY@ be a BSP family base directory, e.g. erc32, imx, qoriq, etc. The new cpukit include directories are: * cpukit/include * cpukit/score/cpu/@RTEMS_CPU@/include * cpukit/libnetworking The new BSP include directories are: * bsps/include * bsps/@RTEMS_CPU@/include * bsps/@RTEMS_CPU@/@RTEMS_BSP_FAMILIY@/include There are build tree include directories for generated files. The include directory order favours the most general header file, e.g. it is not possible to override general header files via the include path order. The "bootstrap -p" option was removed. The new "bootstrap -H" option should be used to regenerate the "headers.am" files. Update #3254.
Diffstat (limited to 'bsps/powerpc/mvme3100/include/bsp/if_tsec_pub.h')
-rw-r--r--bsps/powerpc/mvme3100/include/bsp/if_tsec_pub.h475
1 files changed, 475 insertions, 0 deletions
diff --git a/bsps/powerpc/mvme3100/include/bsp/if_tsec_pub.h b/bsps/powerpc/mvme3100/include/bsp/if_tsec_pub.h
new file mode 100644
index 0000000000..7eb0358eae
--- /dev/null
+++ b/bsps/powerpc/mvme3100/include/bsp/if_tsec_pub.h
@@ -0,0 +1,475 @@
+/**
+ * @file
+ *
+ * @ingroup powerpc_iftsecpub
+ *
+ * @brief IF_TSEC_PUB Support
+ */
+
+#ifndef IF_TSEC_PUBLIC_INTERFACE_H
+#define IF_TSEC_PUBLIC_INTERFACE_H
+
+/*
+ * Authorship
+ * ----------
+ * This software ('mvme3100' RTEMS BSP) was created by
+ *
+ * Till Straumann <strauman@slac.stanford.edu>, 2005-2007,
+ * Stanford Linear Accelerator Center, Stanford University.
+ *
+ * Acknowledgement of sponsorship
+ * ------------------------------
+ * The 'mvme3100' BSP was produced by
+ * the Stanford Linear Accelerator Center, Stanford University,
+ * under Contract DE-AC03-76SFO0515 with the Department of Energy.
+ *
+ * Government disclaimer of liability
+ * ----------------------------------
+ * Neither the United States nor the United States Department of Energy,
+ * nor any of their employees, makes any warranty, express or implied, or
+ * assumes any legal liability or responsibility for the accuracy,
+ * completeness, or usefulness of any data, apparatus, product, or process
+ * disclosed, or represents that its use would not infringe privately owned
+ * rights.
+ *
+ * Stanford disclaimer of liability
+ * --------------------------------
+ * Stanford University makes no representations or warranties, express or
+ * implied, nor assumes any liability for the use of this software.
+ *
+ * Stanford disclaimer of copyright
+ * --------------------------------
+ * Stanford University, owner of the copyright, hereby disclaims its
+ * copyright and all other rights in this software. Hence, anyone may
+ * freely use it for any purpose without restriction.
+ *
+ * Maintenance of notices
+ * ----------------------
+ * In the interest of clarity regarding the origin and status of this
+ * SLAC software, this and all the preceding Stanford University notices
+ * are to remain affixed to any copy or derivative of this software made
+ * or distributed by the recipient and are to be affixed to any copy of
+ * software made or distributed by the recipient that contains a copy or
+ * derivative of this software.
+ *
+ * ------------------ SLAC Software Notices, Set 4 OTT.002a, 2004 FEB 03
+ */
+
+#include <rtems.h>
+#include <stdio.h>
+#include <stdint.h>
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/* Opaque driver handle */
+struct tsec_private;
+
+/********** Low-level Driver API ****************/
+
+/**
+ * @defgroup powerpc_iftsecpub Low-level Driver API
+ *
+ * @ingroup powerpc_mvme3100
+ *
+ * @brief This API provides driver access to applications that
+ * want to use e.g., the second ethernet interface
+ * independently from the BSD TCP/IP stack. E.g., for
+ * raw ethernet packet communication...
+ */
+
+#define TSEC_TXIRQ ( (1<<(31-9)) | (1<<(31-11)) )
+#define TSEC_RXIRQ ( (1<<(31-0)) | (1<<(31- 3)) | (1<<(31-24)) )
+#define TSEC_LKIRQ ( 1<<(31- 4) )
+/*
+ * Setup an interface.
+ * Allocates resources for descriptor rings and sets up the driver software structure.
+ *
+ * Arguments:
+ * unit:
+ * interface # (1..2). The interface must not be attached to BSD already.
+ *
+ * driver_tid:
+ * ISR posts RTEMS event # ('unit' - 1) to task with ID 'driver_tid' and disables interrupts
+ * from this interface.
+ *
+ * void (*cleanup_txbuf)(void *user_buf, void *cleanup_txbuf_arg, int error_on_tx_occurred):
+ * Pointer to user-supplied callback to release a buffer that had been sent
+ * by BSP_tsec_send_buf() earlier. The callback is passed 'cleanup_txbuf_arg'
+ * and a flag indicating whether the send had been successful.
+ * The driver no longer accesses 'user_buf' after invoking this callback.
+ * CONTEXT: This callback is executed either by BSP_tsec_swipe_tx() or
+ * BSP_tsec_send_buf(), BSP_tsec_init_hw(), BSP_tsec_stop_hw() (the latter
+ * ones calling BSP_tsec_swipe_tx()).
+ * void *cleanup_txbuf_arg:
+ * Closure argument that is passed on to 'cleanup_txbuf()' callback;
+ *
+ * void *(*alloc_rxbuf)(int *p_size, uintptr_t *p_data_addr),
+ * Pointer to user-supplied callback to allocate a buffer for subsequent
+ * insertion into the RX ring by the driver.
+ * RETURNS: opaque handle to the buffer (which may be a more complex object
+ * such as an 'mbuf'). The handle is not used by the driver directly
+ * but passed back to the 'consume_rxbuf()' callback.
+ * Size of the available data area and pointer to buffer's data area
+ * in '*psize' and '*p_data_area', respectively.
+ * If no buffer is available, this routine should return NULL in which
+ * case the driver drops the last packet and re-uses the last buffer
+ * instead of handing it out to 'consume_rxbuf()'.
+ * CONTEXT: Called when initializing the RX ring (BSP_tsec_init_hw()) or when
+ * swiping it (BSP_tsec_swipe_rx()).
+ *
+ *
+ * void (*consume_rxbuf)(void *user_buf, void *consume_rxbuf_arg, int len);
+ * Pointer to user-supplied callback to pass a received buffer back to
+ * the user. The driver no longer accesses the buffer after invoking this
+ * callback (with 'len'>0, see below). 'user_buf' is the buffer handle
+ * previously generated by 'alloc_rxbuf()'.
+ * The callback is passed 'cleanup_rxbuf_arg' and a 'len'
+ * argument giving the number of bytes that were received.
+ * 'len' may be <=0 in which case the 'user_buf' argument is NULL.
+ * 'len' == 0 means that the last 'alloc_rxbuf()' had failed,
+ * 'len' < 0 indicates a receiver error. In both cases, the last packet
+ * was dropped/missed and the last buffer will be re-used by the driver.
+ * NOTE: the data are 'prefixed' with two bytes, i.e., the ethernet packet header
+ * is stored at offset 2 in the buffer's data area. Also, the FCS (4 bytes)
+ * is appended. 'len' accounts for both.
+ * CONTEXT: Called from BSP_tsec_swipe_rx().
+ * void *cleanup_rxbuf_arg:
+ * Closure argument that is passed on to 'consume_rxbuf()' callback;
+ *
+ * rx_ring_size, tx_ring_size:
+ * How many big to make the RX and TX descriptor rings. Note that the sizes
+ * may be 0 in which case a reasonable default will be used.
+ * If either ring size is < 0 then the RX or TX will be disabled.
+ * Note that it is illegal in this case to use BSP_tsec_swipe_rx() or
+ * BSP_tsec_swipe_tx(), respectively.
+ *
+ * irq_mask:
+ * Interrupts to enable. OR of flags from above.
+ *
+ */
+struct tsec_private *
+BSP_tsec_setup(
+ int unit,
+ rtems_id driver_tid,
+ void (*cleanup_txbuf)(void *user_buf, void *cleanup_txbuf_arg, int error_on_tx_occurred),
+ void * cleanup_txbuf_arg,
+ void * (*alloc_rxbuf)(int *p_size, uintptr_t *p_data_addr),
+ void (*consume_rxbuf)(void *user_buf, void *consume_rxbuf_arg, int len),
+ void * consume_rxbuf_arg,
+ int rx_ring_size,
+ int tx_ring_size,
+ int irq_mask
+);
+
+/*
+ * Alternate 'setup' routine allowing the user to install an ISR rather
+ * than a task ID.
+ * All parameters (other than 'isr' / 'isr_arg') and the return value
+ * are identical to the BSP_tsec_setup() entry point.
+ */
+struct tsec_private *
+BSP_tsec_setup_1(
+ int unit,
+ void (*isr)(void *isr_arg),
+ void * isr_arg,
+ void (*cleanup_txbuf)(void *user_buf, void *cleanup_txbuf_arg, int error_on_tx_occurred),
+ void * cleanup_txbuf_arg,
+ void * (*alloc_rxbuf)(int *p_size, uintptr_t *p_data_addr),
+ void (*consume_rxbuf)(void *user_buf, void *consume_rxbuf_arg, int len),
+ void * consume_rxbuf_arg,
+ int rx_ring_size,
+ int tx_ring_size,
+ int irq_mask
+);
+
+
+/*
+ * Descriptor scavenger; cleanup the TX ring, passing all buffers
+ * that have been sent to the cleanup_tx() callback.
+ * This routine is called from BSP_tsec_send_buf(), BSP_tsec_init_hw(),
+ * BSP_tsec_stop_hw().
+ *
+ * RETURNS: number of buffers processed.
+ */
+
+int
+BSP_tsec_swipe_tx(struct tsec_private *mp);
+
+
+/*
+ * Reset statistics counters.
+ */
+void
+BSP_tsec_reset_stats(struct tsec_private *mp);
+
+/*
+ * Initialize interface hardware
+ *
+ * 'mp' handle obtained by from BSP_tsec_setup().
+ * 'promisc' whether to set promiscuous flag.
+ * 'enaddr' pointer to six bytes with MAC address. Read
+ * from the device if NULL.
+ * NOTE: multicast filter is cleared by this routine.
+ */
+void
+BSP_tsec_init_hw(struct tsec_private *mp, int promisc, unsigned char *enaddr);
+
+/*
+ * Clear multicast hash filter. No multicast frames are accepted
+ * after executing this routine (unless the hardware was initialized
+ * in 'promiscuous' mode).
+ *
+ * Reset reference count for all hash-table entries
+ * to zero (see BSP_tsec_mcast_filter_accept_del()).
+ */
+void
+BSP_tsec_mcast_filter_clear(struct tsec_private *mp);
+
+/*
+ * Program multicast filter to accept all multicast frames.
+ *
+ * Increment reference count for all hash-table entries
+ * by one (see BSP_tsec_mcast_filter_accept_del()).
+ */
+void
+BSP_tsec_mcast_filter_accept_all(struct tsec_private *mp);
+
+/*
+ * Add a MAC address to the multicast filter and increment
+ * the reference count for the matching hash-table entry
+ * (see BSP_tsec_mcast_filter_accept_del()).
+ *
+ * Existing entries are not changed but note that
+ * the filter is imperfect, i.e., multiple MAC addresses
+ * may alias to a single filter entry. Hence software
+ * filtering must still be performed.
+ *
+ */
+void
+BSP_tsec_mcast_filter_accept_add(struct tsec_private *mp, unsigned char *enaddr);
+
+/*
+ * Remove a MAC address from the (imperfec) multicast
+ * filter.
+ * Note that the driver maintains an internal reference
+ * counter for each multicast hash. The hash-table
+ * entry is only cleared when the reference count
+ * reaches zero ('del' has been called the same
+ * amount of times as 'add' for an address (or
+ * any alias) that matches a given table entry.
+ * BSP_tsec_mcast_filter_clear() resets all reference
+ * counters to zero.
+ */
+void
+BSP_tsec_mcast_filter_accept_del(struct tsec_private *mp, unsigned char *enaddr);
+
+/*
+ * Dump statistics to FILE 'f'. If NULL, stdout is used.
+ */
+void
+BSP_tsec_dump_stats(struct tsec_private *mp, FILE *f);
+
+/*
+ * Shutdown hardware and clean out the rings
+ */
+void
+BSP_tsec_stop_hw(struct tsec_private *mp);
+
+/*
+ * calls BSP_tsec_stop_hw(), releases all resources and marks the interface
+ * as unused.
+ * RETURNS 0 on success, nonzero on failure.
+ * NOTE: the handle MUST NOT be used after successful execution of this
+ * routine.
+ */
+int
+BSP_tsec_detach(struct tsec_private *mp);
+
+/*
+ * Enqueue a mbuf chain or a raw data buffer for transmission;
+ * RETURN: #bytes sent or -1 if there are not enough free descriptors
+ *
+ * If 'len' is <=0 then 'm_head' is assumed to point to a mbuf chain.
+ * OTOH, a raw data packet (or a different type of buffer)
+ * may be sent (non-BSD driver) by pointing data_p to the start of
+ * the data and passing 'len' > 0.
+ * 'm_head' is passed back to the 'cleanup_txbuf()' callback.
+ *
+ * Comments: software cache-flushing incurs a penalty if the
+ * packet cannot be queued since it is flushed anyways.
+ * The algorithm is slightly more efficient in the normal
+ * case, though.
+ *
+ * RETURNS: # bytes enqueued to device for transmission or -1 if no
+ * space in the TX ring was available.
+ */
+
+int
+BSP_tsec_send_buf(struct tsec_private *mp, void *m_head, void *data_p, int len);
+
+/*
+ * Retrieve all received buffers from the RX ring, replacing them
+ * by fresh ones (obtained from the alloc_rxbuf() callback). The
+ * received buffers are passed to consume_rxbuf().
+ *
+ * RETURNS: number of buffers processed.
+ */
+int
+BSP_tsec_swipe_rx(struct tsec_private *mp);
+
+/* read ethernet address from hw to buffer */
+void
+BSP_tsec_read_eaddr(struct tsec_private *mp, unsigned char *eaddr);
+
+/* Read MII register */
+uint32_t
+BSP_tsec_mdio_rd(struct tsec_private *mp, unsigned reg);
+
+/* Write MII register */
+int
+BSP_tsec_mdio_wr(struct tsec_private *mp, unsigned reg, uint32_t val);
+
+/*
+ * read/write media word.
+ * 'cmd': can be SIOCGIFMEDIA, SIOCSIFMEDIA, 0 or 1. The latter
+ * are aliased to the former for convenience.
+ * 'parg': pointer to media word.
+ *
+ * RETURNS: 0 on success, nonzero on error
+ */
+int
+BSP_tsec_media_ioctl(struct tsec_private *mp, int cmd, int *parg);
+
+/* Interrupt related routines */
+
+/*
+ * When it comes to interrupts the chip has two rather
+ * annoying features:
+ * 1 once an IRQ is pending, clearing the IMASK does not
+ * de-assert the interrupt line.
+ * 2 the chip has three physical interrupt lines even though
+ * all events are reported in a single register. Rather
+ * useless; we must hook 3 ISRs w/o any real benefit.
+ * In fact, it makes our life a bit more difficult:
+ *
+ * Hence, for (1) we would have to mask interrupts at the PIC
+ * but to re-enable them we would have to do that three times
+ * because of (2).
+ *
+ * Therefore, we take the following approach:
+ *
+ * ISR masks all interrupts on the TSEC, acks/clears them
+ * and stores the acked irqs in the device struct where
+ * it is picked up by BSP_tsec_ack_irqs().
+ * Since all interrupts are disabled until the daemon
+ * re-enables them after calling BSP_tsec_ack_irqs()
+ * no interrupts are lost.
+ *
+ * BUT: NO isr (including PHY isrs) MUST INTERRUPT ANY
+ * OTHER ONE, i.e., they all must have the same
+ * priority. Otherwise, integrity of the cached
+ * irq_pending variable may be compromised.
+ */
+
+/* Note: the BSP_tsec_enable/disable/ack_irqs() entry points
+ * are deprecated.
+ * The newer API where the user passes a mask allows
+ * for more selective control.
+ */
+
+/* Enable interrupts at device */
+void
+BSP_tsec_enable_irqs(struct tsec_private *mp);
+
+/* Disable interrupts at device */
+void
+BSP_tsec_disable_irqs(struct tsec_private *mp);
+
+/*
+ * Acknowledge (and clear) interrupts.
+ * RETURNS: interrupts that were raised.
+ */
+uint32_t
+BSP_tsec_ack_irqs(struct tsec_private *mp);
+
+/* Enable interrupts included in 'mask' (leaving
+ * already enabled interrupts on). If the mask includes
+ * bits that were not passed to the 'setup' routine then
+ * the behavior is undefined.
+ */
+void
+BSP_tsec_enable_irq_mask(struct tsec_private *mp, uint32_t irq_mask);
+
+/* Disable interrupts included in 'mask' (leaving
+ * other ones that are currently enabled on). If the mask
+ * includes bits that were not passed to the 'setup' routine
+ * then the behavior is undefined.
+
+ * RETURNS: Bitmask of interrupts that were enabled upon entry
+ * into this routine. This can be used to restore the previous
+ * state.
+ */
+uint32_t
+BSP_tsec_disable_irq_mask(struct tsec_private *mp, uint32_t irq_mask);
+
+/* Acknowledge and clear selected interrupts.
+ *
+ * RETURNS: All pending interrupts.
+ *
+ * NOTE: Only pending interrupts contained in 'mask'
+ * are cleared. Others are left pending.
+ *
+ * This routine can be used to check for pending
+ * interrupts (pass mask == 0) or to clear all
+ * interrupts (pass mask == -1).
+ */
+uint32_t
+BSP_tsec_ack_irq_mask(struct tsec_private *mp, uint32_t mask);
+
+
+/* Retrieve the driver daemon TID that was passed to
+ * BSP_tsec_setup().
+ */
+
+rtems_id
+BSP_tsec_get_tid(struct tsec_private *mp);
+
+struct tsec_private *
+BSP_tsec_getp(unsigned index);
+
+/*
+ *
+ * Example driver task loop (note: no synchronization of
+ * buffer access shown!).
+ * RTEMS_EVENTx = 0,1 or 2 depending on IF unit.
+ *
+ * / * setup (obtain handle) and initialize hw here * /
+ *
+ * do {
+ * / * ISR disables IRQs and posts event * /
+ * rtems_event_receive( RTEMS_EVENTx, RTEMS_WAIT | RTEMS_EVENT_ANY, RTEMS_NO_TIMEOUT, &evs );
+ * irqs = BSP_tsec_ack_irqs(handle);
+ * if ( irqs & BSP_TSEC_IRQ_TX ) {
+ * BSP_tsec_swipe_tx(handle); / * cleanup_txbuf() callback executed * /
+ * }
+ * if ( irqs & BSP_TSEC_IRQ_RX ) {
+ * BSP_tsec_swipe_rx(handle); / * alloc_rxbuf() and consume_rxbuf() executed * /
+ * }
+ * BSP_tsec_enable_irqs(handle);
+ * } while (1);
+ *
+ */
+
+/* PUBLIC RTEMS BSDNET ATTACH FUNCTION */
+struct rtems_bsdnet_ifconfig;
+
+int
+rtems_tsec_attach(struct rtems_bsdnet_ifconfig *ifcfg, int attaching);
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif