summaryrefslogtreecommitdiffstats
path: root/user/bsps/arm
diff options
context:
space:
mode:
Diffstat (limited to 'user/bsps/arm')
-rw-r--r--user/bsps/arm/altera-cyclone-v.rst2
-rw-r--r--user/bsps/arm/fvp.rst2
-rw-r--r--user/bsps/arm/imx.rst2
-rw-r--r--user/bsps/arm/imxrt.rst149
-rw-r--r--user/bsps/arm/lpc24xx.rst2
-rw-r--r--user/bsps/arm/realview-pbx-a9.rst2
-rw-r--r--user/bsps/arm/stm32h7.rst6
-rw-r--r--user/bsps/arm/xilinx-zynqmp-rpu.rst95
-rw-r--r--user/bsps/arm/xilinx-zynqmp.rst2
9 files changed, 215 insertions, 47 deletions
diff --git a/user/bsps/arm/altera-cyclone-v.rst b/user/bsps/arm/altera-cyclone-v.rst
index eaa02e3..12e563e 100644
--- a/user/bsps/arm/altera-cyclone-v.rst
+++ b/user/bsps/arm/altera-cyclone-v.rst
@@ -1,6 +1,6 @@
.. SPDX-License-Identifier: CC-BY-SA-4.0
-.. Copyright (C) 2017, 2019 embedded brains GmbH
+.. Copyright (C) 2017, 2019 embedded brains GmbH & Co. KG
.. Copyright (C) 2017, 2019 Sebastian Huber
altera-cyclone-v (Intel Cyclone V)
diff --git a/user/bsps/arm/fvp.rst b/user/bsps/arm/fvp.rst
index a1e186a..b938e30 100644
--- a/user/bsps/arm/fvp.rst
+++ b/user/bsps/arm/fvp.rst
@@ -1,6 +1,6 @@
.. SPDX-License-Identifier: CC-BY-SA-4.0
-.. Copyright (C) 2022 embedded brains GmbH
+.. Copyright (C) 2022 embedded brains GmbH & Co. KG
fvp (Fixed Virtual Platform)
============================
diff --git a/user/bsps/arm/imx.rst b/user/bsps/arm/imx.rst
index f0ac928..47ad503 100644
--- a/user/bsps/arm/imx.rst
+++ b/user/bsps/arm/imx.rst
@@ -1,6 +1,6 @@
.. SPDX-License-Identifier: CC-BY-SA-4.0
-.. Copyright (C) 2017, 2019 embedded brains GmbH
+.. Copyright (C) 2017, 2019 embedded brains GmbH & Co. KG
.. Copyright (C) 2017, 2019 Sebastian Huber
imx (NXP i.MX)
diff --git a/user/bsps/arm/imxrt.rst b/user/bsps/arm/imxrt.rst
index e185823..30b1437 100644
--- a/user/bsps/arm/imxrt.rst
+++ b/user/bsps/arm/imxrt.rst
@@ -1,29 +1,48 @@
.. SPDX-License-Identifier: CC-BY-SA-4.0
-.. Copyright (C) 2020 embedded brains GmbH
+.. Copyright (C) 2020 embedded brains GmbH & Co. KG
.. Copyright (C) 2020 Christian Mauderer
imxrt (NXP i.MXRT)
==================
-This BSP offers only one variant, the `imxrt1052`. This variant supports the
-i.MXRT 1052 processor on a IMXRT1050-EVKB (tested with rev A1). You can also
-configure it to work with custom boards.
+This BSP offers multiple variants. The `imxrt1052` supports the i.MXRT 1052
+processor on a IMXRT1050-EVKB (tested with rev A1). Some possibilities to adapt
+it to a custom board are described below.
NOTE: The IMXRT1050-EVKB has an backlight controller that must not be enabled
without load. Make sure to either attach a load, disable it by software or
disable it by removing the 0-Ohm resistor on it's input.
+The `imxrt1166-cm7-saltshaker` supports an application specific board. Adapting
+it to another i.MXRT1166 based board works similar like for the `imxrt1052` BSP.
+
Build Configuration Options
---------------------------
Please see the documentation of the `IMXRT_*` and `BSP_*` configuration options
for that. You can generate a default set of options with::
- ./waf bsp_defaults --rtems-bsps=arm/imxrt1052 > config.ini
+ ./waf bspdefaults --rtems-bsps=arm/imxrt1052 > config.ini
-Boot Process
-------------
+Adapting to a different board
+-----------------------------
+
+This is only a short overview for the most important steps to adapt the BSP to
+another board. Details for most steps follow further below.
+
+#. The device tree has to be adapted to fit the target hardware.
+#. A matching clock configuration is necessary (simplest method is to generate
+ it with the NXP PinMux tool)
+#. The `dcd_data` has to be adapted. That is used for example to initialize
+ SDRAM.
+#. `imxrt_flexspi_config` has to be adapted to match the Flash connected to
+ FlexSPI (if that is used).
+#. `BOARD_InitDEBUG_UARTPins` should be adapted to match the used system
+ console.
+
+Boot Process of IMXRT1050-EVKB
+------------------------------
There are two possible boot processes supported:
@@ -82,18 +101,19 @@ ones that need different values):
You can find the default definitions in `bsps/arm/imxrt/start/flash-*.c`. Take a
look at the `i.MX RT1050 Processor Reference Manual, Rev. 4, 12/2019` chapter
-`9.7 Program image` for details about the contents.
+`9.7 Program image` or `i.MX RT1166 Processor Reference Manual, Rev. 0, 05/2021`
+chapter `10.7 Program image` for details about the contents.
FDT
---
The BSP uses a FDT based initialization. The FDT is linked into the application.
-You can find the default FDT used in the BSP in
-`bsps/arm/imxrt/dts/imxrt1050-evkb.dts`. The FDT is split up into two parts. The
-core part is put into an `dtsi` file and is installed together with normal
-headers into `${PREFIX}/arm-rtems@rtems-ver-major@/imxrt1052/lib/include`. You
-can use that to create your own device tree based on that. Basically use
-something like::
+You can find the default FDT used in the BSPs in `bsps/arm/imxrt/dts`. The FDT
+is split up into two parts. The controller specific part is put into an `dtsi`
+file. The board specific one is in the dts file. Both are installed together
+with normal headers into
+`${PREFIX}/arm-rtems@rtems-ver-major@/${BSP}/lib/include`. You can use that to
+create your own device tree based on that. Basically use something like::
/dts-v1/;
@@ -137,26 +157,6 @@ You'll get a C file which defines the `imxrt_dtb` array. Make sure that your new
C file is compiled and linked into the application. It will overwrite the
existing definition of the `imxrt_dtb` in RTEMS.
-PLL Settings
-------------
-
-The commercial variant of the i.MXRT1052 on the evaluation board allows a clock
-up to 600MHz for the ARM core. For some industrial variants only up to 528MHz
-are specified. To make it possible to adapt to these variants the application
-can overwrite the following constant:
-
-.. code-block:: c
-
- #include "fsl_clock_config.h"
-
- const clock_arm_pll_config_t armPllConfig_BOARD_BootClockRUN = {
- .loopDivider = 100,
- .src = 0,
- };
-
-With the default configuration of a 24MHz oscillator, the loopDivider has to be
-88 for the 528MHz.
-
Clock Driver
------------
@@ -198,10 +198,38 @@ Note that the SPI-pins on the evaluation board are shared with the SD card.
Populate R278, R279, R280, R281 on the IMXRT1050-EVKB (Rev A) to use the SPI
pins on the Arduino connector.
+By default, the native chip selects are used. If you want to use GPIOs as chip
+select instead, you can use the `cs-gpios` and `num-cs` attributes just like on
+a Linux SPI controller. A maximum of `IMXRT_LPSPI_MAX_CS` pins can be used.
+
+The hardware doesn't support selecting no native chip select during a transfer.
+Therefore one native chip select has to be reserved as a dummy if you want to be
+able to use GPIOs. The pin function for this chip select must not be configured
+on any pin. Dummy will be the first of the first four chip selects that is not a
+native one. Example configuration::
+
+ &lpspi4 {
+ status = "okay";
+ pinctrl-0 = <&my_pinctrl_lpspi4>;
+ cs-gpios = <0>, <0>, <&gpio1 1 0>, <0>, <&gpio11 5 1>;
+ num-cs = <5>;
+ }
+
+In this case, CS2 will be the dummy chip select and no pin must be configured
+with that function. CS0, CS1 and CS3 are just native chip selects and should be
+used via pin functions. GPIO1.1 is used as a high active CS and GPIO11.5 a low
+active one.
+
Limitations:
* Only a basic SPI driver is implemented. This is mostly a driver limitation and
not a hardware one.
+* GPIO CS pins on i.MXRT10xx are not tested. The chip has a lot of errate so
+ they might not work.
+* Switching from one mode (CPOL/CPHA) to another one can lead to single wrong
+ edges on the CLK line if GPIO CS pins are involved. Make sure to stuff a dummy
+ transfer with `SPI_NO_CS` set if you use multiple modes together with a GPIO
+ CS.
Network Interface Driver
------------------------
@@ -225,13 +253,58 @@ the SDK. But please note that they are not tested and maybe won't work out of
the box. Everything that works with interrupts most likely needs some special
treatment.
-Caveats
--------
+The SDK files are imported to RTEMS from the NXP mcux-sdk git repository that
+you can find here: https://github.com/nxp-mcuxpresso/mcux-sdk/
+
+The directory structure has been preserved and all files are in a
+`bsps/arm/imxrt/mcux-sdk` directory. All patches to the files are marked with
+`#ifdef __rtems__` markers.
+
+The suggested method to import new or updated files is to apply all RTEMS
+patches to the mcux-sdk repository, rebase them to the latest mcux-sdk release
+and re-import the files. The new base revision should be mentioned in the commit
+description to make future updates simpler.
+
+A import helper script (that might or might not work on newer releases of the
+mcux-sdk) can be found here:
+https://raw.githubusercontent.com/c-mauderer/nxp-mcux-sdk/d21c3e61eb8602b2cf8f45fed0afa50c6aee932f/export_to_RTEMS.py
+
+Clocks and SDRAM
+----------------
The clock configuration support is quite rudimentary. The same is true for
SDRAM. It mostly relies on the DCD and on a static clock configuration that is
taken from the NXP SDK example projects.
-The MPU settings are currently quite permissive.
+If you need to adapt the DCD or clock config to support a different hardware,
+you should generate these files using the NXP MCUXpresso Configuration Tools.
+You can add the generated files to your application to overwrite the default
+RTEMS ones or you can add them to RTEMS in a new BSP variant.
+
+As a special case, the imxrt1052 BSP will adapt it's PLL setting based on the
+chip variant. The commercial variant of the i.MXRT1052 will use a core clock of
+600MHz for the ARM core. The industrial variants only uses 528MHz. For other
+chip or BSP variants, you should adapt the files generated with the MCUXpresso
+Configuration Tools.
+
+Caveats
+-------
+
+* The MPU settings are currently quite permissive.
+
+* There is no power management support.
+
+* On the i.MXRT1166, sleeping of the Cortex M7 can't be disabled even for
+ debugging purposes. That makes it hard for a debugger to access the
+ controller. To make debugging a bit easier, it's possible to overwrite the
+ idle thread with the following one in the application:
+
+ .. code-block:: c
-There is no power management support.
+ void * _CPU_Thread_Idle_body(uintptr_t ignored)
+ {
+ (void)ignored;
+ while (true) {
+ /* void */
+ }
+ }
diff --git a/user/bsps/arm/lpc24xx.rst b/user/bsps/arm/lpc24xx.rst
index ecf1d84..f287dc8 100644
--- a/user/bsps/arm/lpc24xx.rst
+++ b/user/bsps/arm/lpc24xx.rst
@@ -1,6 +1,6 @@
.. SPDX-License-Identifier: CC-BY-SA-4.0
-.. Copyright (C) 2017, 2019 embedded brains GmbH
+.. Copyright (C) 2017, 2019 embedded brains GmbH & Co. KG
.. Copyright (C) 2017, 2019 Sebastian Huber
lpc24xx (NXP LPC17XX/LPC24XX/LPC40XX)
diff --git a/user/bsps/arm/realview-pbx-a9.rst b/user/bsps/arm/realview-pbx-a9.rst
index 15d1fbf..bbe0269 100644
--- a/user/bsps/arm/realview-pbx-a9.rst
+++ b/user/bsps/arm/realview-pbx-a9.rst
@@ -1,6 +1,6 @@
.. SPDX-License-Identifier: CC-BY-SA-4.0
-.. Copyright (C) 2020 embedded brains GmbH (http://www.embedded-brains.de)
+.. Copyright (C) 2020 embedded brains GmbH & Co. KG
realview-pbx-a9
===============
diff --git a/user/bsps/arm/stm32h7.rst b/user/bsps/arm/stm32h7.rst
index ec7440f..cdf4d43 100644
--- a/user/bsps/arm/stm32h7.rst
+++ b/user/bsps/arm/stm32h7.rst
@@ -1,6 +1,6 @@
.. SPDX-License-Identifier: CC-BY-SA-4.0
-.. Copyright (C) 2020 embedded brains GmbH
+.. Copyright (C) 2020 embedded brains GmbH & Co. KG
.. Copyright (C) 2022 Karel Gardas <karel@functional.vision>
@@ -248,7 +248,7 @@ installed. Please go to its *bin* directory. E.g.
$ cd plugins/com.st.stm32cube.ide.mcu.externaltools.stlink-gdb-server.linux64_2.0.200.202202231230/tools/bin
Now, you will need to edit provided *config.txt* file inside the
-directory. Use your favorite editor. Open the file and scrolls
+directory. Use your favorite editor. Open the file and scroll
down to its end. You will see following comment:
.. code-block:: none
@@ -332,7 +332,7 @@ Generate default configuration for the board:
.. code-block:: shell
- $ ./waf bsp_defaults --rtems-bsps=arm/stm32h747i-disco > stm32h747i-disco.ini
+ $ ./waf bspdefaults --rtems-bsps=arm/stm32h747i-disco > stm32h747i-disco.ini
Regenerate build specification cache (needs a couple of seconds)...
To run basic hello world or ticker samples you do not need to modify
diff --git a/user/bsps/arm/xilinx-zynqmp-rpu.rst b/user/bsps/arm/xilinx-zynqmp-rpu.rst
new file mode 100644
index 0000000..0dfb77e
--- /dev/null
+++ b/user/bsps/arm/xilinx-zynqmp-rpu.rst
@@ -0,0 +1,95 @@
+.. SPDX-License-Identifier: CC-BY-SA-4.0
+
+.. Copyright (C) 2024 On-Line Applications Research Corporation (OAR)
+
+.. _BSP_arm_xilinx_zynqmp_rpu:
+
+Xilinx ZynqMP RPU
+=================
+
+This BSP supports the Cortex-R5 processor on the Xilinx Zynq UltraScale+ MPSoC
+platform. Basic hardware initialization is performed by the Cortex-R5 FSBL and
+the BSP. This BSP supports the GICv2 interrupt controller available to the
+Cortex-R5 subsystem. Since the Cortex-R5 subsystem only varies in speed, this
+BSP should be functional across all chip variants as well as on Xilinx's QEMU
+branch. SMP operation is not currently supported.
+
+Clock Driver
+------------
+
+The clock driver uses one of the available triple timer counters (TTCs) as the
+timer interrupt source.
+
+Console Driver
+--------------
+
+The console driver supports the default Qemu emulated ARM PL011 PrimeCell UART
+as well as the physical ARM PL011 PrimeCell UART in the ZynqMP hardware.
+
+Boot on ZynqMP Hardware
+-----------------------
+
+On the ZynqMP RPU, RTEMS can be started by Cortes-R5 u-boot, Cortex-A53 u-boot,
+via JTAG, or directly as part of BOOT.bin. For quick turnaround during testing,
+it is recommended to use Cortex-A53 u-boot to avoid repeated BOOT.bin
+generation since the provided Cortex-R5 u-boot is highly limited and has no
+network or MMC/SD access.
+
+Note that if the RPU image is started by the Cortex-A53 u-boot, the program
+sections located at ZYNQMP_RPU_RAM_INT_0_ORIGIN and ZYNQMP_RPU_RAM_INT_1_ORIGIN
+must be manually relocated from DDR to TCM since the TCMs are not directly
+available to the Cortex-A53 cores at their Cortex-R5 internal addresses. This
+can be accomplished by disabling dcache in u-boot and using u-boot's "cp"
+command. Once this is done, the program can be started at 0x0 by using u-boot's
+"cpu" command to first disable core 4 and then release it in split mode.
+
+Hardware Boot Image Generation
+------------------------------
+
+When generating BOOT.bin from components, the BIF file should include at least
+entries for the Cortex-R5 FSBL ([bootloader,destination_cpu=r5-0]) and the
+Cortex-R5 application ([destination_cpu=r5-0]). The Cortex-R5 application should
+be either a u-boot or RTEMS ELF binary. The Cortex-R5 u-boot binary can be
+obtained by building it from Xilinx's u-boot repository. The Cortex-R5 FSBL can
+be obtained setting up an appropriate platform project in Xilinx's current
+development system.
+
+Boot on QEMU
+------------
+The executable image is booted by Qemu in ELF format.
+
+Running Executables on QEMU
+---------------------------
+
+Xilinx's qemu-devicetrees repository must be used in conjunction with the Xilinx
+QEMU available via RSB. Executables generated by this BSP can be run using the
+following command:
+
+.. code-block:: shell
+
+ qemu-system-aarch64 -no-reboot -nographic -M arm-generic-fdt -serial null \
+ -serial mon:stdio -device loader,file=example.exe,cpu-num=4 \
+ -device loader,addr=0xff5e023c,data=0x80088fde,data-len=4 \
+ -device loader,addr=0xff9a0000,data=0x80000218,data-len=4 \
+ -hw-dtb /xlnx-qemu-devtrees-path/LATEST/SINGLE_ARCH/board-zynqmp-zcu102.dtb \
+ -m 4096 -display none
+
+Debugging Executables on QEMU
+-----------------------------
+
+Debugging the RPU cores under QEMU presents unique challenges due to requiring
+the AArch64 QEMU to emulate the entire processing subsystem. Debugging requires
+a multi-arch GDB which can be created by adding "--enable-targets=all" to the
+normal GDB configure line and then building as normal.
+
+To attach to the RPU core once QEMU is started with "-s -S", The following steps
+are required:
+
+.. code-block:: shell
+
+ aarch64-rtems6-gdb
+ (gdb) tar ext :1234
+ (gdb) add-inferior
+ (gdb) inferior 2
+ (gdb) file example.exe
+ (gdb) attach 2
diff --git a/user/bsps/arm/xilinx-zynqmp.rst b/user/bsps/arm/xilinx-zynqmp.rst
index 9a605bb..fa60470 100644
--- a/user/bsps/arm/xilinx-zynqmp.rst
+++ b/user/bsps/arm/xilinx-zynqmp.rst
@@ -1,6 +1,6 @@
.. SPDX-License-Identifier: CC-BY-SA-4.0
-.. Copyright (C) 2019 embedded brains GmbH
+.. Copyright (C) 2019 embedded brains GmbH & Co. KG
xilinx-zynqmp
=============