summaryrefslogtreecommitdiff
path: root/gsl-1.9/specfunc/lambert.c
blob: 896ac58324d2dab7a74af908e4556d2a9a55d802 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
/* specfunc/lambert.c
 * 
 * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001 Gerard Jungman
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or (at
 * your option) any later version.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 */

/* Author:  G. Jungman */

#include <config.h>
#include <math.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_sf_lambert.h>

/* Started with code donated by K. Briggs; added
 * error estimates, GSL foo, and minor tweaks.
 * Some Lambert-ology from
 *  [Corless, Gonnet, Hare, and Jeffrey, "On Lambert's W Function".]
 */


/* Halley iteration (eqn. 5.12, Corless et al) */
static int
halley_iteration(
  double x,
  double w_initial,
  unsigned int max_iters,
  gsl_sf_result * result
  )
{
  double w = w_initial;
  unsigned int i;

  for(i=0; i<max_iters; i++) {
    double tol;
    const double e = exp(w);
    const double p = w + 1.0;
    double t = w*e - x;
    /* printf("FOO: %20.16g  %20.16g\n", w, t); */

    if (w > 0) {
      t = (t/p)/e;  /* Newton iteration */
    } else {
      t /= e*p - 0.5*(p + 1.0)*t/p;  /* Halley iteration */
    };

    w -= t;

    tol = GSL_DBL_EPSILON * GSL_MAX_DBL(fabs(w), 1.0/(fabs(p)*e));

    if(fabs(t) < tol)
    {
      result->val = w;
      result->err = 2.0*tol;
      return GSL_SUCCESS;
    }
  }

  /* should never get here */
  result->val = w;
  result->err = fabs(w);
  return GSL_EMAXITER;
}


/* series which appears for q near zero;
 * only the argument is different for the different branches
 */
static double
series_eval(double r)
{
  static const double c[12] = {
    -1.0,
     2.331643981597124203363536062168,
    -1.812187885639363490240191647568,
     1.936631114492359755363277457668,
    -2.353551201881614516821543561516,
     3.066858901050631912893148922704,
    -4.175335600258177138854984177460,
     5.858023729874774148815053846119,
    -8.401032217523977370984161688514,
     12.250753501314460424,
    -18.100697012472442755,
     27.029044799010561650
  };
  const double t_8 = c[8] + r*(c[9] + r*(c[10] + r*c[11]));
  const double t_5 = c[5] + r*(c[6] + r*(c[7]  + r*t_8));
  const double t_1 = c[1] + r*(c[2] + r*(c[3]  + r*(c[4] + r*t_5)));
  return c[0] + r*t_1;
}


/*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/

int
gsl_sf_lambert_W0_e(double x, gsl_sf_result * result)
{
  const double one_over_E = 1.0/M_E;
  const double q = x + one_over_E;

  if(x == 0.0) {
    result->val = 0.0;
    result->err = 0.0;
    return GSL_SUCCESS;
  }
  else if(q < 0.0) {
    /* Strictly speaking this is an error. But because of the
     * arithmetic operation connecting x and q, I am a little
     * lenient in case of some epsilon overshoot. The following
     * answer is quite accurate in that case. Anyway, we have
     * to return GSL_EDOM.
     */
    result->val = -1.0;
    result->err =  sqrt(-q);
    return GSL_EDOM;
  }
  else if(q == 0.0) {
    result->val = -1.0;
    result->err =  GSL_DBL_EPSILON; /* cannot error is zero, maybe q == 0 by "accident" */
    return GSL_SUCCESS;
  }
  else if(q < 1.0e-03) {
    /* series near -1/E in sqrt(q) */
    const double r = sqrt(q);
    result->val = series_eval(r);
    result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val);
    return GSL_SUCCESS;
  }
  else {
    static const unsigned int MAX_ITERS = 10;
    double w;

    if (x < 1.0) {
      /* obtain initial approximation from series near x=0;
       * no need for extra care, since the Halley iteration
       * converges nicely on this branch
       */
      const double p = sqrt(2.0 * M_E * q);
      w = -1.0 + p*(1.0 + p*(-1.0/3.0 + p*11.0/72.0)); 
    }
    else {
      /* obtain initial approximation from rough asymptotic */
      w = log(x);
      if(x > 3.0) w -= log(w);
    }

    return halley_iteration(x, w, MAX_ITERS, result);
  }
}


int
gsl_sf_lambert_Wm1_e(double x, gsl_sf_result * result)
{
  if(x > 0.0) {
    return gsl_sf_lambert_W0_e(x, result);
  }
  else if(x == 0.0) {
    result->val = 0.0;
    result->err = 0.0;
    return GSL_SUCCESS;
  }
  else {
    static const unsigned int MAX_ITERS = 32;
    const double one_over_E = 1.0/M_E;
    const double q = x + one_over_E;
    double w;

    if (q < 0.0) {
      /* As in the W0 branch above, return some reasonable answer anyway. */
      result->val = -1.0; 
      result->err =  sqrt(-q);
      return GSL_EDOM;
    }

    if(x < -1.0e-6) {
      /* Obtain initial approximation from series about q = 0,
       * as long as we're not very close to x = 0.
       * Use full series and try to bail out if q is too small,
       * since the Halley iteration has bad convergence properties
       * in finite arithmetic for q very small, because the
       * increment alternates and p is near zero.
       */
      const double r = -sqrt(q);
      w = series_eval(r);
      if(q < 3.0e-3) {
        /* this approximation is good enough */
        result->val = w;
        result->err = 5.0 * GSL_DBL_EPSILON * fabs(w);
        return GSL_SUCCESS;
      }
    }
    else {
      /* Obtain initial approximation from asymptotic near zero. */
      const double L_1 = log(-x);
      const double L_2 = log(-L_1);
      w = L_1 - L_2 + L_2/L_1;
    }

    return halley_iteration(x, w, MAX_ITERS, result);
  }
}


/*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/

#include "eval.h"

double gsl_sf_lambert_W0(double x)
{
  EVAL_RESULT(gsl_sf_lambert_W0_e(x, &result));
}

double gsl_sf_lambert_Wm1(double x)
{
  EVAL_RESULT(gsl_sf_lambert_Wm1_e(x, &result));
}