summaryrefslogtreecommitdiff
path: root/gsl-1.9/specfunc/lambert.c
diff options
context:
space:
mode:
Diffstat (limited to 'gsl-1.9/specfunc/lambert.c')
-rw-r--r--gsl-1.9/specfunc/lambert.c230
1 files changed, 230 insertions, 0 deletions
diff --git a/gsl-1.9/specfunc/lambert.c b/gsl-1.9/specfunc/lambert.c
new file mode 100644
index 0000000..896ac58
--- /dev/null
+++ b/gsl-1.9/specfunc/lambert.c
@@ -0,0 +1,230 @@
+/* specfunc/lambert.c
+ *
+ * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001 Gerard Jungman
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or (at
+ * your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful, but
+ * WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+ */
+
+/* Author: G. Jungman */
+
+#include <config.h>
+#include <math.h>
+#include <gsl/gsl_math.h>
+#include <gsl/gsl_errno.h>
+#include <gsl/gsl_sf_lambert.h>
+
+/* Started with code donated by K. Briggs; added
+ * error estimates, GSL foo, and minor tweaks.
+ * Some Lambert-ology from
+ * [Corless, Gonnet, Hare, and Jeffrey, "On Lambert's W Function".]
+ */
+
+
+/* Halley iteration (eqn. 5.12, Corless et al) */
+static int
+halley_iteration(
+ double x,
+ double w_initial,
+ unsigned int max_iters,
+ gsl_sf_result * result
+ )
+{
+ double w = w_initial;
+ unsigned int i;
+
+ for(i=0; i<max_iters; i++) {
+ double tol;
+ const double e = exp(w);
+ const double p = w + 1.0;
+ double t = w*e - x;
+ /* printf("FOO: %20.16g %20.16g\n", w, t); */
+
+ if (w > 0) {
+ t = (t/p)/e; /* Newton iteration */
+ } else {
+ t /= e*p - 0.5*(p + 1.0)*t/p; /* Halley iteration */
+ };
+
+ w -= t;
+
+ tol = GSL_DBL_EPSILON * GSL_MAX_DBL(fabs(w), 1.0/(fabs(p)*e));
+
+ if(fabs(t) < tol)
+ {
+ result->val = w;
+ result->err = 2.0*tol;
+ return GSL_SUCCESS;
+ }
+ }
+
+ /* should never get here */
+ result->val = w;
+ result->err = fabs(w);
+ return GSL_EMAXITER;
+}
+
+
+/* series which appears for q near zero;
+ * only the argument is different for the different branches
+ */
+static double
+series_eval(double r)
+{
+ static const double c[12] = {
+ -1.0,
+ 2.331643981597124203363536062168,
+ -1.812187885639363490240191647568,
+ 1.936631114492359755363277457668,
+ -2.353551201881614516821543561516,
+ 3.066858901050631912893148922704,
+ -4.175335600258177138854984177460,
+ 5.858023729874774148815053846119,
+ -8.401032217523977370984161688514,
+ 12.250753501314460424,
+ -18.100697012472442755,
+ 27.029044799010561650
+ };
+ const double t_8 = c[8] + r*(c[9] + r*(c[10] + r*c[11]));
+ const double t_5 = c[5] + r*(c[6] + r*(c[7] + r*t_8));
+ const double t_1 = c[1] + r*(c[2] + r*(c[3] + r*(c[4] + r*t_5)));
+ return c[0] + r*t_1;
+}
+
+
+/*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/
+
+int
+gsl_sf_lambert_W0_e(double x, gsl_sf_result * result)
+{
+ const double one_over_E = 1.0/M_E;
+ const double q = x + one_over_E;
+
+ if(x == 0.0) {
+ result->val = 0.0;
+ result->err = 0.0;
+ return GSL_SUCCESS;
+ }
+ else if(q < 0.0) {
+ /* Strictly speaking this is an error. But because of the
+ * arithmetic operation connecting x and q, I am a little
+ * lenient in case of some epsilon overshoot. The following
+ * answer is quite accurate in that case. Anyway, we have
+ * to return GSL_EDOM.
+ */
+ result->val = -1.0;
+ result->err = sqrt(-q);
+ return GSL_EDOM;
+ }
+ else if(q == 0.0) {
+ result->val = -1.0;
+ result->err = GSL_DBL_EPSILON; /* cannot error is zero, maybe q == 0 by "accident" */
+ return GSL_SUCCESS;
+ }
+ else if(q < 1.0e-03) {
+ /* series near -1/E in sqrt(q) */
+ const double r = sqrt(q);
+ result->val = series_eval(r);
+ result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val);
+ return GSL_SUCCESS;
+ }
+ else {
+ static const unsigned int MAX_ITERS = 10;
+ double w;
+
+ if (x < 1.0) {
+ /* obtain initial approximation from series near x=0;
+ * no need for extra care, since the Halley iteration
+ * converges nicely on this branch
+ */
+ const double p = sqrt(2.0 * M_E * q);
+ w = -1.0 + p*(1.0 + p*(-1.0/3.0 + p*11.0/72.0));
+ }
+ else {
+ /* obtain initial approximation from rough asymptotic */
+ w = log(x);
+ if(x > 3.0) w -= log(w);
+ }
+
+ return halley_iteration(x, w, MAX_ITERS, result);
+ }
+}
+
+
+int
+gsl_sf_lambert_Wm1_e(double x, gsl_sf_result * result)
+{
+ if(x > 0.0) {
+ return gsl_sf_lambert_W0_e(x, result);
+ }
+ else if(x == 0.0) {
+ result->val = 0.0;
+ result->err = 0.0;
+ return GSL_SUCCESS;
+ }
+ else {
+ static const unsigned int MAX_ITERS = 32;
+ const double one_over_E = 1.0/M_E;
+ const double q = x + one_over_E;
+ double w;
+
+ if (q < 0.0) {
+ /* As in the W0 branch above, return some reasonable answer anyway. */
+ result->val = -1.0;
+ result->err = sqrt(-q);
+ return GSL_EDOM;
+ }
+
+ if(x < -1.0e-6) {
+ /* Obtain initial approximation from series about q = 0,
+ * as long as we're not very close to x = 0.
+ * Use full series and try to bail out if q is too small,
+ * since the Halley iteration has bad convergence properties
+ * in finite arithmetic for q very small, because the
+ * increment alternates and p is near zero.
+ */
+ const double r = -sqrt(q);
+ w = series_eval(r);
+ if(q < 3.0e-3) {
+ /* this approximation is good enough */
+ result->val = w;
+ result->err = 5.0 * GSL_DBL_EPSILON * fabs(w);
+ return GSL_SUCCESS;
+ }
+ }
+ else {
+ /* Obtain initial approximation from asymptotic near zero. */
+ const double L_1 = log(-x);
+ const double L_2 = log(-L_1);
+ w = L_1 - L_2 + L_2/L_1;
+ }
+
+ return halley_iteration(x, w, MAX_ITERS, result);
+ }
+}
+
+
+/*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/
+
+#include "eval.h"
+
+double gsl_sf_lambert_W0(double x)
+{
+ EVAL_RESULT(gsl_sf_lambert_W0_e(x, &result));
+}
+
+double gsl_sf_lambert_Wm1(double x)
+{
+ EVAL_RESULT(gsl_sf_lambert_Wm1_e(x, &result));
+}