summaryrefslogtreecommitdiff
path: root/gsl-1.9/specfunc/coulomb.c
blob: 7c68076f9abc1b3073d10d0594eb319370987c89 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
/* specfunc/coulomb.c
 * 
 * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman
 * 
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or (at
 * your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 */

/* Author:  G. Jungman */

/* Evaluation of Coulomb wave functions F_L(eta, x), G_L(eta, x),
 * and their derivatives. A combination of Steed's method, asymptotic
 * results, and power series.
 *
 * Steed's method:
 *  [Barnett, CPC 21, 297 (1981)]
 * Power series and other methods:
 *  [Biedenharn et al., PR 97, 542 (1954)]
 *  [Bardin et al., CPC 3, 73 (1972)]
 *  [Abad+Sesma, CPC 71, 110 (1992)]
 */
#include <config.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_sf_exp.h>
#include <gsl/gsl_sf_psi.h>
#include <gsl/gsl_sf_airy.h>
#include <gsl/gsl_sf_pow_int.h>
#include <gsl/gsl_sf_gamma.h>
#include <gsl/gsl_sf_coulomb.h>

#include "error.h"

/* the L=0 normalization constant
 * [Abramowitz+Stegun 14.1.8]
 */
static
double
C0sq(double eta)
{
  double twopieta = 2.0*M_PI*eta;

  if(fabs(eta) < GSL_DBL_EPSILON) {
    return 1.0;
  }
  else if(twopieta > GSL_LOG_DBL_MAX) {
    return 0.0;
  }
  else {
    gsl_sf_result scale;
    gsl_sf_expm1_e(twopieta, &scale);
    return twopieta/scale.val;
  }
}


/* the full definition of C_L(eta) for any valid L and eta
 * [Abramowitz and Stegun 14.1.7]
 * This depends on the complex gamma function. For large
 * arguments the phase of the complex gamma function is not
 * very accurately determined. However the modulus is, and that
 * is all that we need to calculate C_L.
 *
 * This is not valid for L <= -3/2  or  L = -1.
 */
static
int
CLeta(double L, double eta, gsl_sf_result * result)
{
  gsl_sf_result ln1; /* log of numerator Gamma function */
  gsl_sf_result ln2; /* log of denominator Gamma function */
  double sgn = 1.0;
  double arg_val, arg_err;

  if(fabs(eta/(L+1.0)) < GSL_DBL_EPSILON) {
    gsl_sf_lngamma_e(L+1.0, &ln1);
  }
  else {
    gsl_sf_result p1;                 /* phase of numerator Gamma -- not used */
    gsl_sf_lngamma_complex_e(L+1.0, eta, &ln1, &p1); /* should be ok */
  }

  gsl_sf_lngamma_e(2.0*(L+1.0), &ln2);
  if(L < -1.0) sgn = -sgn;

  arg_val  = L*M_LN2 - 0.5*eta*M_PI + ln1.val - ln2.val;
  arg_err  = ln1.err + ln2.err;
  arg_err += GSL_DBL_EPSILON * (fabs(L*M_LN2) + fabs(0.5*eta*M_PI));
  return gsl_sf_exp_err_e(arg_val, arg_err, result);
}


int
gsl_sf_coulomb_CL_e(double lam, double eta, gsl_sf_result * result)
{
  /* CHECK_POINTER(result) */

  if(lam <= -1.0) {
    DOMAIN_ERROR(result);
  }
  else if(fabs(lam) < GSL_DBL_EPSILON) {
    /* saves a calculation of complex_lngamma(), otherwise not necessary */
    result->val = sqrt(C0sq(eta));
    result->err = 2.0 * GSL_DBL_EPSILON * result->val;
    return GSL_SUCCESS;
  }
  else {
    return CLeta(lam, eta, result);
  }
}


/* cl[0] .. cl[kmax] = C_{lam_min}(eta) .. C_{lam_min+kmax}(eta)
 */
int
gsl_sf_coulomb_CL_array(double lam_min, int kmax, double eta, double * cl)
{
  int k;
  gsl_sf_result cl_0;
  gsl_sf_coulomb_CL_e(lam_min, eta, &cl_0);
  cl[0] = cl_0.val;

  for(k=1; k<=kmax; k++) {
    double L = lam_min + k;
    cl[k] = cl[k-1] * hypot(L, eta)/(L*(2.0*L+1.0));
  }

  return GSL_SUCCESS;
}


/* Evaluate the series for Phi_L(eta,x) and Phi_L*(eta,x)
 * [Abramowitz+Stegun 14.1.5]
 * [Abramowitz+Stegun 14.1.13]
 *
 * The sequence of coefficients A_k^L is
 * manifestly well-controlled for L >= -1/2
 * and eta < 10.
 *
 * This makes sense since this is the region
 * away from threshold, and you expect
 * the evaluation to become easier as you
 * get farther from threshold.
 *
 * Empirically, this is quite well-behaved for
 *   L >= -1/2
 *   eta < 10
 *   x   < 10
 */
#if 0
static
int
coulomb_Phi_series(const double lam, const double eta, const double x,
                   double * result, double * result_star)
{
  int kmin =   5;
  int kmax = 200;
  int k;
  double Akm2 = 1.0;
  double Akm1 = eta/(lam+1.0);
  double Ak;

  double xpow = x;
  double sum  = Akm2 + Akm1*x;
  double sump = (lam+1.0)*Akm2 + (lam+2.0)*Akm1*x;
  double prev_abs_del   = fabs(Akm1*x);
  double prev_abs_del_p = (lam+2.0) * prev_abs_del;

  for(k=2; k<kmax; k++) {
    double del;
    double del_p;
    double abs_del;
    double abs_del_p;

    Ak = (2.0*eta*Akm1 - Akm2)/(k*(2.0*lam + 1.0 + k));

    xpow *= x;
    del   = Ak*xpow;
    del_p = (k+lam+1.0)*del;
    sum  += del;
    sump += del_p;

    abs_del   = fabs(del);
    abs_del_p = fabs(del_p);

    if(          abs_del/(fabs(sum)+abs_del)          < GSL_DBL_EPSILON
       &&   prev_abs_del/(fabs(sum)+prev_abs_del)     < GSL_DBL_EPSILON
       &&      abs_del_p/(fabs(sump)+abs_del_p)       < GSL_DBL_EPSILON
       && prev_abs_del_p/(fabs(sump)+prev_abs_del_p)  < GSL_DBL_EPSILON
       && k > kmin
       ) break;

    /* We need to keep track of the previous delta because when
     * eta is near zero the odd terms of the sum are very small
     * and this could lead to premature termination.
     */
    prev_abs_del   = abs_del;
    prev_abs_del_p = abs_del_p;

    Akm2 = Akm1;
    Akm1 = Ak;
  }

  *result      = sum;
  *result_star = sump;

  if(k==kmax) {
    GSL_ERROR ("error", GSL_EMAXITER);
  }
  else {
    return GSL_SUCCESS;
  }
}
#endif /* 0 */


/* Determine the connection phase, phi_lambda.
 * See coulomb_FG_series() below. We have
 * to be careful about sin(phi)->0. Note that
 * there is an underflow condition for large 
 * positive eta in any case.
 */
static
int
coulomb_connection(const double lam, const double eta,
                   double * cos_phi, double * sin_phi)
{
  if(eta > -GSL_LOG_DBL_MIN/2.0*M_PI-1.0) {
    *cos_phi = 1.0;
    *sin_phi = 0.0;
    GSL_ERROR ("error", GSL_EUNDRFLW);
  }
  else if(eta > -GSL_LOG_DBL_EPSILON/(4.0*M_PI)) {
    const double eps = 2.0 * exp(-2.0*M_PI*eta);
    const double tpl = tan(M_PI * lam);
    const double dth = eps * tpl / (tpl*tpl + 1.0);
    *cos_phi = -1.0 + 0.5 * dth*dth;
    *sin_phi = -dth;
    return GSL_SUCCESS;
  }
  else {
    double X   = tanh(M_PI * eta) / tan(M_PI * lam);
    double phi = -atan(X) - (lam + 0.5) * M_PI;
    *cos_phi = cos(phi);
    *sin_phi = sin(phi);
    return GSL_SUCCESS;
  }
}


/* Evaluate the Frobenius series for F_lam(eta,x) and G_lam(eta,x).
 * Homegrown algebra. Evaluates the series for F_{lam} and
 * F_{-lam-1}, then uses
 *    G_{lam} = (F_{lam} cos(phi) - F_{-lam-1}) / sin(phi)
 * where
 *    phi = Arg[Gamma[1+lam+I eta]] - Arg[Gamma[-lam + I eta]] - (lam+1/2)Pi
 *        = Arg[Sin[Pi(-lam+I eta)] - (lam+1/2)Pi
 *        = atan2(-cos(lam Pi)sinh(eta Pi), -sin(lam Pi)cosh(eta Pi)) - (lam+1/2)Pi
 *
 *        = -atan(X) - (lam+1/2) Pi,  X = tanh(eta Pi)/tan(lam Pi)
 *
 * Not appropriate for lam <= -1/2, lam = 0, or lam >= 1/2.
 */
static
int
coulomb_FG_series(const double lam, const double eta, const double x,
                  gsl_sf_result * F, gsl_sf_result * G)
{
  const int max_iter = 800;
  gsl_sf_result ClamA;
  gsl_sf_result ClamB;
  int stat_A = CLeta(lam, eta, &ClamA);
  int stat_B = CLeta(-lam-1.0, eta, &ClamB);
  const double tlp1 = 2.0*lam + 1.0;
  const double pow_x = pow(x, lam);
  double cos_phi_lam;
  double sin_phi_lam;

  double uA_mm2 = 1.0;                  /* uA sum is for F_{lam} */
  double uA_mm1 = x*eta/(lam+1.0);
  double uA_m;
  double uB_mm2 = 1.0;                  /* uB sum is for F_{-lam-1} */
  double uB_mm1 = -x*eta/lam;
  double uB_m;
  double A_sum = uA_mm2 + uA_mm1;
  double B_sum = uB_mm2 + uB_mm1;
  double A_abs_del_prev = fabs(A_sum);
  double B_abs_del_prev = fabs(B_sum);
  gsl_sf_result FA, FB;
  int m = 2;

  int stat_conn = coulomb_connection(lam, eta, &cos_phi_lam, &sin_phi_lam);

  if(stat_conn == GSL_EUNDRFLW) {
    F->val = 0.0;  /* FIXME: should this be set to Inf too like G? */
    F->err = 0.0;
    OVERFLOW_ERROR(G);
  }

  while(m < max_iter) {
    double abs_dA;
    double abs_dB;
    uA_m = x*(2.0*eta*uA_mm1 - x*uA_mm2)/(m*(m+tlp1));
    uB_m = x*(2.0*eta*uB_mm1 - x*uB_mm2)/(m*(m-tlp1));
    A_sum += uA_m;
    B_sum += uB_m;
    abs_dA = fabs(uA_m);
    abs_dB = fabs(uB_m);
    if(m > 15) {
      /* Don't bother checking until we have gone out a little ways;
       * a minor optimization. Also make sure to check both the
       * current and the previous increment because the odd and even
       * terms of the sum can have very different behaviour, depending
       * on the value of eta.
       */
      double max_abs_dA = GSL_MAX(abs_dA, A_abs_del_prev);
      double max_abs_dB = GSL_MAX(abs_dB, B_abs_del_prev);
      double abs_A = fabs(A_sum);
      double abs_B = fabs(B_sum);
      if(   max_abs_dA/(max_abs_dA + abs_A) < 4.0*GSL_DBL_EPSILON
         && max_abs_dB/(max_abs_dB + abs_B) < 4.0*GSL_DBL_EPSILON
         ) break;
    }
    A_abs_del_prev = abs_dA;
    B_abs_del_prev = abs_dB;
    uA_mm2 = uA_mm1;
    uA_mm1 = uA_m;
    uB_mm2 = uB_mm1;
    uB_mm1 = uB_m;
    m++;
  }

  FA.val = A_sum * ClamA.val * pow_x * x;
  FA.err = fabs(A_sum) * ClamA.err * pow_x * x + 2.0*GSL_DBL_EPSILON*fabs(FA.val);
  FB.val = B_sum * ClamB.val / pow_x;
  FB.err = fabs(B_sum) * ClamB.err / pow_x + 2.0*GSL_DBL_EPSILON*fabs(FB.val);

  F->val = FA.val;
  F->err = FA.err;

  G->val = (FA.val * cos_phi_lam - FB.val)/sin_phi_lam;
  G->err = (FA.err * fabs(cos_phi_lam) + FB.err)/fabs(sin_phi_lam);

  if(m >= max_iter)
    GSL_ERROR ("error", GSL_EMAXITER);
  else
    return GSL_ERROR_SELECT_2(stat_A, stat_B);
}


/* Evaluate the Frobenius series for F_0(eta,x) and G_0(eta,x).
 * See [Bardin et al., CPC 3, 73 (1972), (14)-(17)];
 * note the misprint in (17): nu_0=1 is correct, not nu_0=0.
 */
static
int
coulomb_FG0_series(const double eta, const double x,
                   gsl_sf_result * F, gsl_sf_result * G)
{
  const int max_iter = 800;
  const double x2  = x*x;
  const double tex = 2.0*eta*x;
  gsl_sf_result C0;
  int stat_CL = CLeta(0.0, eta, &C0);
  gsl_sf_result r1pie;
  int psi_stat = gsl_sf_psi_1piy_e(eta, &r1pie);
  double u_mm2 = 0.0;  /* u_0 */
  double u_mm1 = x;    /* u_1 */
  double u_m;
  double v_mm2 = 1.0;                               /* nu_0 */
  double v_mm1 = tex*(2.0*M_EULER-1.0+r1pie.val);   /* nu_1 */
  double v_m;
  double u_sum = u_mm2 + u_mm1;
  double v_sum = v_mm2 + v_mm1;
  double u_abs_del_prev = fabs(u_sum);
  double v_abs_del_prev = fabs(v_sum);
  int m = 2;
  double u_sum_err = 2.0 * GSL_DBL_EPSILON * fabs(u_sum);
  double v_sum_err = 2.0 * GSL_DBL_EPSILON * fabs(v_sum);
  double ln2x = log(2.0*x);

  while(m < max_iter) {
    double abs_du;
    double abs_dv;
    double m_mm1 = m*(m-1.0);
    u_m = (tex*u_mm1 - x2*u_mm2)/m_mm1;
    v_m = (tex*v_mm1 - x2*v_mm2 - 2.0*eta*(2*m-1)*u_m)/m_mm1;
    u_sum += u_m;
    v_sum += v_m;
    abs_du = fabs(u_m);
    abs_dv = fabs(v_m);
    u_sum_err += 2.0 * GSL_DBL_EPSILON * abs_du;
    v_sum_err += 2.0 * GSL_DBL_EPSILON * abs_dv;
    if(m > 15) {
      /* Don't bother checking until we have gone out a little ways;
       * a minor optimization. Also make sure to check both the
       * current and the previous increment because the odd and even
       * terms of the sum can have very different behaviour, depending
       * on the value of eta.
       */
      double max_abs_du = GSL_MAX(abs_du, u_abs_del_prev);
      double max_abs_dv = GSL_MAX(abs_dv, v_abs_del_prev);
      double abs_u = fabs(u_sum);
      double abs_v = fabs(v_sum);
      if(   max_abs_du/(max_abs_du + abs_u) < 40.0*GSL_DBL_EPSILON
         && max_abs_dv/(max_abs_dv + abs_v) < 40.0*GSL_DBL_EPSILON
         ) break;
    }
    u_abs_del_prev = abs_du;
    v_abs_del_prev = abs_dv;
    u_mm2 = u_mm1;
    u_mm1 = u_m;
    v_mm2 = v_mm1;
    v_mm1 = v_m;
    m++;
  }

  F->val  = C0.val * u_sum;
  F->err  = C0.err * fabs(u_sum);
  F->err += fabs(C0.val) * u_sum_err;
  F->err += 2.0 * GSL_DBL_EPSILON * fabs(F->val);

  G->val  = (v_sum + 2.0*eta*u_sum * ln2x) / C0.val;
  G->err  = (fabs(v_sum) + fabs(2.0*eta*u_sum * ln2x)) / fabs(C0.val) * fabs(C0.err/C0.val);
  G->err += (v_sum_err + fabs(2.0*eta*u_sum_err*ln2x)) / fabs(C0.val);
  G->err += 2.0 * GSL_DBL_EPSILON * fabs(G->val);

  if(m == max_iter)
    GSL_ERROR ("error", GSL_EMAXITER);
  else
    return GSL_ERROR_SELECT_2(psi_stat, stat_CL);
}


/* Evaluate the Frobenius series for F_{-1/2}(eta,x) and G_{-1/2}(eta,x).
 * Homegrown algebra.
 */
static
int
coulomb_FGmhalf_series(const double eta, const double x,
                       gsl_sf_result * F, gsl_sf_result * G)
{
  const int max_iter = 800;
  const double rx  = sqrt(x);
  const double x2  = x*x;
  const double tex = 2.0*eta*x;
  gsl_sf_result Cmhalf;
  int stat_CL = CLeta(-0.5, eta, &Cmhalf);
  double u_mm2 = 1.0;                      /* u_0 */
  double u_mm1 = tex * u_mm2;              /* u_1 */
  double u_m;
  double v_mm2, v_mm1, v_m;
  double f_sum, g_sum;
  double tmp1;
  gsl_sf_result rpsi_1pe;
  gsl_sf_result rpsi_1p2e;
  int m = 2;

  gsl_sf_psi_1piy_e(eta,     &rpsi_1pe);
  gsl_sf_psi_1piy_e(2.0*eta, &rpsi_1p2e);

  v_mm2 = 2.0*M_EULER - M_LN2 - rpsi_1pe.val + 2.0*rpsi_1p2e.val;
  v_mm1 = tex*(v_mm2 - 2.0*u_mm2);

  f_sum = u_mm2 + u_mm1;
  g_sum = v_mm2 + v_mm1;

  while(m < max_iter) {
    double m2 = m*m;
    u_m = (tex*u_mm1 - x2*u_mm2)/m2;
    v_m = (tex*v_mm1 - x2*v_mm2 - 2.0*m*u_m)/m2;
    f_sum += u_m;
    g_sum += v_m;
    if(   f_sum != 0.0
       && g_sum != 0.0
       && (fabs(u_m/f_sum) + fabs(v_m/g_sum) < 10.0*GSL_DBL_EPSILON)) break;
    u_mm2 = u_mm1;
    u_mm1 = u_m;
    v_mm2 = v_mm1;
    v_mm1 = v_m;
    m++;
  }
  
  F->val = Cmhalf.val * rx * f_sum;
  F->err = Cmhalf.err * fabs(rx * f_sum) + 2.0*GSL_DBL_EPSILON*fabs(F->val);

  tmp1 = f_sum*log(x);
  G->val = -rx*(tmp1 + g_sum)/Cmhalf.val;
  G->err = fabs(rx)*(fabs(tmp1) + fabs(g_sum))/fabs(Cmhalf.val) * fabs(Cmhalf.err/Cmhalf.val);

  if(m == max_iter)
    GSL_ERROR ("error", GSL_EMAXITER);
  else
    return stat_CL;
}


/* Evolve the backwards recurrence for F,F'.
 *
 *    F_{lam-1}  = (S_lam F_lam + F_lam') / R_lam
 *    F_{lam-1}' = (S_lam F_{lam-1} - R_lam F_lam)
 * where
 *    R_lam = sqrt(1 + (eta/lam)^2)
 *    S_lam = lam/x + eta/lam
 *
 */
static
int
coulomb_F_recur(double lam_min, int kmax,
                double eta, double x,
                double F_lam_max, double Fp_lam_max,
                double * F_lam_min, double * Fp_lam_min
                )
{
  double x_inv = 1.0/x;
  double fcl = F_lam_max;
  double fpl = Fp_lam_max;
  double lam_max = lam_min + kmax;
  double lam = lam_max;
  int k;

  for(k=kmax-1; k>=0; k--) {
    double el = eta/lam;
    double rl = hypot(1.0, el);
    double sl = el  + lam*x_inv;
    double fc_lm1;
    fc_lm1 = (fcl*sl + fpl)/rl;
    fpl    =  fc_lm1*sl - fcl*rl;
    fcl    =  fc_lm1;
    lam -= 1.0;
  }

  *F_lam_min  = fcl;
  *Fp_lam_min = fpl;  
  return GSL_SUCCESS;
}


/* Evolve the forward recurrence for G,G'.
 *
 *   G_{lam+1}  = (S_lam G_lam - G_lam')/R_lam
 *   G_{lam+1}' = R_{lam+1} G_lam - S_lam G_{lam+1}
 *
 * where S_lam and R_lam are as above in the F recursion.
 */
static
int
coulomb_G_recur(const double lam_min, const int kmax,
                const double eta, const double x,
                const double G_lam_min, const double Gp_lam_min,
                double * G_lam_max, double * Gp_lam_max
                )
{
  double x_inv = 1.0/x;
  double gcl = G_lam_min;
  double gpl = Gp_lam_min;
  double lam = lam_min + 1.0;
  int k;

  for(k=1; k<=kmax; k++) {
    double el = eta/lam;
    double rl = hypot(1.0, el);
    double sl = el + lam*x_inv;
    double gcl1 = (sl*gcl - gpl)/rl;
    gpl   = rl*gcl - sl*gcl1;
    gcl   = gcl1;
    lam += 1.0;
  }
  
  *G_lam_max  = gcl;
  *Gp_lam_max = gpl;
  return GSL_SUCCESS;
}


/* Evaluate the first continued fraction, giving
 * the ratio F'/F at the upper lambda value.
 * We also determine the sign of F at that point,
 * since it is the sign of the last denominator
 * in the continued fraction.
 */
static
int
coulomb_CF1(double lambda,
            double eta, double x,
            double * fcl_sign,
            double * result,
            int * count
            )
{
  const double CF1_small = 1.e-30;
  const double CF1_abort = 1.0e+05;
  const double CF1_acc   = 2.0*GSL_DBL_EPSILON;
  const double x_inv     = 1.0/x;
  const double px        = lambda + 1.0 + CF1_abort;

  double pk = lambda + 1.0;
  double F  = eta/pk + pk*x_inv;
  double D, C;
  double df;

  *fcl_sign = 1.0;
  *count = 0;

  if(fabs(F) < CF1_small) F = CF1_small;
  D = 0.0;
  C = F;

  do {
    double pk1 = pk + 1.0;
    double ek  = eta / pk;
    double rk2 = 1.0 + ek*ek;
    double tk  = (pk + pk1)*(x_inv + ek/pk1);
    D   =  tk - rk2 * D;
    C   =  tk - rk2 / C;
    if(fabs(C) < CF1_small) C = CF1_small;
    if(fabs(D) < CF1_small) D = CF1_small;
    D = 1.0/D;
    df = D * C;
    F  = F * df;
    if(D < 0.0) {
      /* sign of result depends on sign of denominator */
      *fcl_sign = - *fcl_sign;
    }
    pk = pk1;
    if( pk > px ) {
      *result = F;
      GSL_ERROR ("error", GSL_ERUNAWAY);
    }
    ++(*count);
  }
  while(fabs(df-1.0) > CF1_acc);
  
  *result = F;
  return GSL_SUCCESS;
}


#if 0
static
int
old_coulomb_CF1(const double lambda,
                double eta, double x,
                double * fcl_sign,
                double * result
                )
{
  const double CF1_abort = 1.e5;
  const double CF1_acc   = 10.0*GSL_DBL_EPSILON;
  const double x_inv     = 1.0/x;
  const double px        = lambda + 1.0 + CF1_abort;
  
  double pk = lambda + 1.0;
  
  double D;
  double df;

  double F;
  double p;
  double pk1;
  double ek;
  
  double fcl = 1.0;

  double tk;

  while(1) {
    ek = eta/pk;
    F = (ek + pk*x_inv)*fcl + (fcl - 1.0)*x_inv;
    pk1 = pk + 1.0;
    if(fabs(eta*x + pk*pk1) > CF1_acc) break;
    fcl = (1.0 + ek*ek)/(1.0 + eta*eta/(pk1*pk1));
    pk = 2.0 + pk;
  }

  D  = 1.0/((pk + pk1)*(x_inv + ek/pk1));
  df = -fcl*(1.0 + ek*ek)*D;
  
  if(fcl != 1.0) fcl = -1.0;
  if(D    < 0.0) fcl = -fcl;
  
  F = F + df;

  p = 1.0;
  do {
    pk = pk1;
    pk1 = pk + 1.0;
    ek  = eta / pk;
    tk  = (pk + pk1)*(x_inv + ek/pk1);
    D   =  tk - D*(1.0+ek*ek);
    if(fabs(D) < sqrt(CF1_acc)) {
      p += 1.0;
      if(p > 2.0) {
        printf("HELP............\n");
      }
    }
    D = 1.0/D;
    if(D < 0.0) {
      /* sign of result depends on sign of denominator */
      fcl = -fcl;
    }
    df = df*(D*tk - 1.0);
    F  = F + df;
    if( pk > px ) {
      GSL_ERROR ("error", GSL_ERUNAWAY);
    }
  }
  while(fabs(df) > fabs(F)*CF1_acc);
  
  *fcl_sign = fcl;
  *result = F;
  return GSL_SUCCESS;
}
#endif /* 0 */


/* Evaluate the second continued fraction to 
 * obtain the ratio
 *    (G' + i F')/(G + i F) := P + i Q
 * at the specified lambda value.
 */
static
int
coulomb_CF2(const double lambda, const double eta, const double x,
            double * result_P, double * result_Q, int * count
            )
{
  int status = GSL_SUCCESS;

  const double CF2_acc   = 4.0*GSL_DBL_EPSILON;
  const double CF2_abort = 2.0e+05;

  const double wi    = 2.0*eta;
  const double x_inv = 1.0/x;
  const double e2mm1 = eta*eta + lambda*(lambda + 1.0);
  
  double ar = -e2mm1;
  double ai =  eta;

  double br =  2.0*(x - eta);
  double bi =  2.0;

  double dr =  br/(br*br + bi*bi);
  double di = -bi/(br*br + bi*bi);

  double dp = -x_inv*(ar*di + ai*dr);
  double dq =  x_inv*(ar*dr - ai*di);

  double A, B, C, D;

  double pk =  0.0;
  double P  =  0.0;
  double Q  =  1.0 - eta*x_inv;

  *count = 0;
 
  do {
    P += dp;
    Q += dq;
    pk += 2.0;
    ar += pk;
    ai += wi;
    bi += 2.0;
    D  = ar*dr - ai*di + br;
    di = ai*dr + ar*di + bi;
    C  = 1.0/(D*D + di*di);
    dr =  C*D;
    di = -C*di;
    A  = br*dr - bi*di - 1.;
    B  = bi*dr + br*di;
    C  = dp*A  - dq*B;
    dq = dp*B  + dq*A;
    dp = C;
    if(pk > CF2_abort) {
      status = GSL_ERUNAWAY;
      break;
    }
    ++(*count);
  }
  while(fabs(dp)+fabs(dq) > (fabs(P)+fabs(Q))*CF2_acc);

  if(Q < CF2_abort*GSL_DBL_EPSILON*fabs(P)) {
    status = GSL_ELOSS;
  }

  *result_P = P;
  *result_Q = Q;
  return status;
}


/* WKB evaluation of F, G. Assumes  0 < x < turning point.
 * Overflows are trapped, GSL_EOVRFLW is signalled,
 * and an exponent is returned such that:
 *
 *   result_F = fjwkb * exp(-exponent)
 *   result_G = gjwkb * exp( exponent)
 *
 * See [Biedenharn et al. Phys. Rev. 97, 542-554 (1955), Section IV]
 *
 * Unfortunately, this is not very accurate in general. The
 * test cases typically have 3-4 digits of precision. One could
 * argue that this is ok for general use because, for instance,
 * F is exponentially small in this region and so the absolute
 * accuracy is still roughly acceptable. But it would be better
 * to have a systematic method for improving the precision. See
 * the Abad+Sesma method discussion below.
 */
static
int
coulomb_jwkb(const double lam, const double eta, const double x,
             gsl_sf_result * fjwkb, gsl_sf_result * gjwkb,
             double * exponent)
{
  const double llp1      = lam*(lam+1.0) + 6.0/35.0;
  const double llp1_eff  = GSL_MAX(llp1, 0.0);
  const double rho_ghalf = sqrt(x*(2.0*eta - x) + llp1_eff);
  const double sinh_arg  = sqrt(llp1_eff/(eta*eta+llp1_eff)) * rho_ghalf / x;
  const double sinh_inv  = log(sinh_arg + hypot(1.0,sinh_arg));

  const double phi = fabs(rho_ghalf - eta*atan2(rho_ghalf,x-eta) - sqrt(llp1_eff) * sinh_inv);

  const double zeta_half = pow(3.0*phi/2.0, 1.0/3.0);
  const double prefactor = sqrt(M_PI*phi*x/(6.0 * rho_ghalf));
  
  double F = prefactor * 3.0/zeta_half;
  double G = prefactor * 3.0/zeta_half; /* Note the sqrt(3) from Bi normalization */
  double F_exp;
  double G_exp;
  
  const double airy_scale_exp = phi;
  gsl_sf_result ai;
  gsl_sf_result bi;
  gsl_sf_airy_Ai_scaled_e(zeta_half*zeta_half, GSL_MODE_DEFAULT, &ai);
  gsl_sf_airy_Bi_scaled_e(zeta_half*zeta_half, GSL_MODE_DEFAULT, &bi);
  F *= ai.val;
  G *= bi.val;
  F_exp = log(F) - airy_scale_exp;
  G_exp = log(G) + airy_scale_exp;

  if(G_exp >= GSL_LOG_DBL_MAX) {
    fjwkb->val = F;
    gjwkb->val = G;
    fjwkb->err = 1.0e-3 * fabs(F); /* FIXME: real error here ... could be smaller */
    gjwkb->err = 1.0e-3 * fabs(G);
    *exponent = airy_scale_exp;
    GSL_ERROR ("error", GSL_EOVRFLW);
  }
  else {
    fjwkb->val = exp(F_exp);
    gjwkb->val = exp(G_exp);
    fjwkb->err = 1.0e-3 * fabs(fjwkb->val);
    gjwkb->err = 1.0e-3 * fabs(gjwkb->val);
    *exponent = 0.0;
    return GSL_SUCCESS;
  }
}


/* Asymptotic evaluation of F and G below the minimal turning point.
 *
 * This is meant to be a drop-in replacement for coulomb_jwkb().
 * It uses the expressions in [Abad+Sesma]. This requires some
 * work because I am not sure where it is valid. They mumble
 * something about |x| < |lam|^(-1/2) or 8|eta x| > lam when |x| < 1.
 * This seems true, but I thought the result was based on a uniform
 * expansion and could be controlled by simply using more terms.
 */
#if 0
static
int
coulomb_AS_xlt2eta(const double lam, const double eta, const double x,
                   gsl_sf_result * f_AS, gsl_sf_result * g_AS,
                   double * exponent)
{
  /* no time to do this now... */
}
#endif /* 0 */



/*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/

int
gsl_sf_coulomb_wave_FG_e(const double eta, const double x,
                            const double lam_F,
                            const int  k_lam_G,      /* lam_G = lam_F - k_lam_G */
                            gsl_sf_result * F, gsl_sf_result * Fp,
                            gsl_sf_result * G, gsl_sf_result * Gp,
                            double * exp_F, double * exp_G)
{
  const double lam_G = lam_F - k_lam_G;

  if(x < 0.0 || lam_F <= -0.5 || lam_G <= -0.5) {
    GSL_SF_RESULT_SET(F,  0.0, 0.0);
    GSL_SF_RESULT_SET(Fp, 0.0, 0.0);
    GSL_SF_RESULT_SET(G,  0.0, 0.0);
    GSL_SF_RESULT_SET(Gp, 0.0, 0.0);
    *exp_F = 0.0;
    *exp_G = 0.0;
    GSL_ERROR ("domain error", GSL_EDOM);
  }
  else if(x == 0.0) {
    gsl_sf_result C0;
    CLeta(0.0, eta, &C0);
    GSL_SF_RESULT_SET(F,  0.0, 0.0);
    GSL_SF_RESULT_SET(Fp, 0.0, 0.0);
    GSL_SF_RESULT_SET(G,  0.0, 0.0); /* FIXME: should be Inf */
    GSL_SF_RESULT_SET(Gp, 0.0, 0.0); /* FIXME: should be Inf */
    *exp_F = 0.0;
    *exp_G = 0.0;
    if(lam_F == 0.0){
      GSL_SF_RESULT_SET(Fp, C0.val, C0.err);
    }
    if(lam_G == 0.0) {
      GSL_SF_RESULT_SET(Gp, 1.0/C0.val, fabs(C0.err/C0.val)/fabs(C0.val));
    }
    GSL_ERROR ("domain error", GSL_EDOM);
    /* After all, since we are asking for G, this is a domain error... */
  }
  else if(x < 1.2 && 2.0*M_PI*eta < 0.9*(-GSL_LOG_DBL_MIN) && fabs(eta*x) < 10.0) {
    /* Reduce to a small lambda value and use the series
     * representations for F and G. We cannot allow eta to
     * be large and positive because the connection formula
     * for G_lam is badly behaved due to an underflow in sin(phi_lam) 
     * [see coulomb_FG_series() and coulomb_connection() above].
     * Note that large negative eta is ok however.
     */
    const double SMALL = GSL_SQRT_DBL_EPSILON;
    const int N    = (int)(lam_F + 0.5);
    const int span = GSL_MAX(k_lam_G, N);
    const double lam_min = lam_F - N;    /* -1/2 <= lam_min < 1/2 */
    double F_lam_F, Fp_lam_F;
    double G_lam_G, Gp_lam_G;
    double F_lam_F_err, Fp_lam_F_err;
    double Fp_over_F_lam_F;
    double F_sign_lam_F;
    double F_lam_min_unnorm, Fp_lam_min_unnorm;
    double Fp_over_F_lam_min;
    gsl_sf_result F_lam_min;
    gsl_sf_result G_lam_min, Gp_lam_min;
    double F_scale;
    double Gerr_frac;
    double F_scale_frac_err;
    double F_unnorm_frac_err;

    /* Determine F'/F at lam_F. */
    int CF1_count;
    int stat_CF1 = coulomb_CF1(lam_F, eta, x, &F_sign_lam_F, &Fp_over_F_lam_F, &CF1_count);

    int stat_ser;
    int stat_Fr;
    int stat_Gr;

    /* Recurse down with unnormalized F,F' values. */
    F_lam_F  = SMALL;
    Fp_lam_F = Fp_over_F_lam_F * F_lam_F;
    if(span != 0) {
      stat_Fr = coulomb_F_recur(lam_min, span, eta, x,
                                F_lam_F, Fp_lam_F,
                                &F_lam_min_unnorm, &Fp_lam_min_unnorm
                                );
    }
    else {
      F_lam_min_unnorm  =  F_lam_F;
      Fp_lam_min_unnorm = Fp_lam_F;
      stat_Fr = GSL_SUCCESS;
    }

    /* Determine F and G at lam_min. */
    if(lam_min == -0.5) {
      stat_ser = coulomb_FGmhalf_series(eta, x, &F_lam_min, &G_lam_min);
    }
    else if(lam_min == 0.0) {
      stat_ser = coulomb_FG0_series(eta, x, &F_lam_min, &G_lam_min);
    }
    else if(lam_min == 0.5) {
      /* This cannot happen. */
      F->val  = F_lam_F;
      F->err  = 2.0 * GSL_DBL_EPSILON * fabs(F->val);
      Fp->val = Fp_lam_F;
      Fp->err = 2.0 * GSL_DBL_EPSILON * fabs(Fp->val);
      G->val  = G_lam_G;
      G->err  = 2.0 * GSL_DBL_EPSILON * fabs(G->val);
      Gp->val = Gp_lam_G;
      Gp->err = 2.0 * GSL_DBL_EPSILON * fabs(Gp->val);
      *exp_F = 0.0;
      *exp_G = 0.0;
      GSL_ERROR ("error", GSL_ESANITY);
    }
    else {
      stat_ser = coulomb_FG_series(lam_min, eta, x, &F_lam_min, &G_lam_min);
    }

    /* Determine remaining quantities. */
    Fp_over_F_lam_min = Fp_lam_min_unnorm / F_lam_min_unnorm;
    Gp_lam_min.val  = Fp_over_F_lam_min*G_lam_min.val - 1.0/F_lam_min.val;
    Gp_lam_min.err  = fabs(Fp_over_F_lam_min)*G_lam_min.err;
    Gp_lam_min.err += fabs(1.0/F_lam_min.val) * fabs(F_lam_min.err/F_lam_min.val);
    F_scale     = F_lam_min.val / F_lam_min_unnorm;

    /* Apply scale to the original F,F' values. */
    F_scale_frac_err  = fabs(F_lam_min.err/F_lam_min.val);
    F_unnorm_frac_err = 2.0*GSL_DBL_EPSILON*(CF1_count+span+1);
    F_lam_F     *= F_scale;
    F_lam_F_err  = fabs(F_lam_F) * (F_unnorm_frac_err + F_scale_frac_err);
    Fp_lam_F    *= F_scale;
    Fp_lam_F_err = fabs(Fp_lam_F) * (F_unnorm_frac_err + F_scale_frac_err);

    /* Recurse up to get the required G,G' values. */
    stat_Gr = coulomb_G_recur(lam_min, GSL_MAX(N-k_lam_G,0), eta, x,
                              G_lam_min.val, Gp_lam_min.val,
                              &G_lam_G, &Gp_lam_G
                              );

    F->val  = F_lam_F;
    F->err  = F_lam_F_err;
    F->err += 2.0 * GSL_DBL_EPSILON * fabs(F_lam_F);

    Fp->val  = Fp_lam_F;
    Fp->err  = Fp_lam_F_err;
    Fp->err += 2.0 * GSL_DBL_EPSILON * fabs(Fp_lam_F);

    Gerr_frac = fabs(G_lam_min.err/G_lam_min.val) + fabs(Gp_lam_min.err/Gp_lam_min.val);

    G->val  = G_lam_G;
    G->err  = Gerr_frac * fabs(G_lam_G);
    G->err += 2.0 * (CF1_count+1) * GSL_DBL_EPSILON * fabs(G->val);

    Gp->val  = Gp_lam_G;
    Gp->err  = Gerr_frac * fabs(Gp->val);
    Gp->err += 2.0 * (CF1_count+1) * GSL_DBL_EPSILON * fabs(Gp->val);

    *exp_F = 0.0;
    *exp_G = 0.0;

    return GSL_ERROR_SELECT_4(stat_ser, stat_CF1, stat_Fr, stat_Gr);
  }
  else if(x < 2.0*eta) {
    /* Use WKB approximation to obtain F and G at the two
     * lambda values, and use the Wronskian and the
     * continued fractions for F'/F to obtain F' and G'.
     */
    gsl_sf_result F_lam_F, G_lam_F;
    gsl_sf_result F_lam_G, G_lam_G;
    double exp_lam_F, exp_lam_G;
    int stat_lam_F;
    int stat_lam_G;
    int stat_CF1_lam_F;
    int stat_CF1_lam_G;
    int CF1_count;
    double Fp_over_F_lam_F;
    double Fp_over_F_lam_G;
    double F_sign_lam_F;
    double F_sign_lam_G;

    stat_lam_F = coulomb_jwkb(lam_F, eta, x, &F_lam_F, &G_lam_F, &exp_lam_F);
    if(k_lam_G == 0) {
      stat_lam_G = stat_lam_F;
      F_lam_G = F_lam_F;
      G_lam_G = G_lam_F;
      exp_lam_G = exp_lam_F;
    }
    else {
      stat_lam_G = coulomb_jwkb(lam_G, eta, x, &F_lam_G, &G_lam_G, &exp_lam_G);
    }

    stat_CF1_lam_F = coulomb_CF1(lam_F, eta, x, &F_sign_lam_F, &Fp_over_F_lam_F, &CF1_count);
    if(k_lam_G == 0) {
      stat_CF1_lam_G  = stat_CF1_lam_F;
      F_sign_lam_G    = F_sign_lam_F;
      Fp_over_F_lam_G = Fp_over_F_lam_F;
    }
    else {
      stat_CF1_lam_G = coulomb_CF1(lam_G, eta, x, &F_sign_lam_G, &Fp_over_F_lam_G, &CF1_count);
    }

    F->val = F_lam_F.val;
    F->err = F_lam_F.err;

    G->val = G_lam_G.val;
    G->err = G_lam_G.err;

    Fp->val  = Fp_over_F_lam_F * F_lam_F.val;
    Fp->err  = fabs(Fp_over_F_lam_F) * F_lam_F.err;
    Fp->err += 2.0*GSL_DBL_EPSILON*fabs(Fp->val);

    Gp->val  = Fp_over_F_lam_G * G_lam_G.val - 1.0/F_lam_G.val;
    Gp->err  = fabs(Fp_over_F_lam_G) * G_lam_G.err;
    Gp->err += fabs(1.0/F_lam_G.val) * fabs(F_lam_G.err/F_lam_G.val);

    *exp_F = exp_lam_F;
    *exp_G = exp_lam_G;

    if(stat_lam_F == GSL_EOVRFLW || stat_lam_G == GSL_EOVRFLW) {
      GSL_ERROR ("overflow", GSL_EOVRFLW);
    }
    else {
      return GSL_ERROR_SELECT_2(stat_lam_F, stat_lam_G);
    }
  }
  else {
    /* x > 2 eta, so we know that we can find a lambda value such
     * that x is above the turning point. We do this, evaluate
     * using Steed's method at that oscillatory point, then
     * use recursion on F and G to obtain the required values.
     *
     * lam_0   = a value of lambda such that x is below the turning point
     * lam_min = minimum of lam_0 and the requested lam_G, since
     *           we must go at least as low as lam_G
     */
    const double SMALL = GSL_SQRT_DBL_EPSILON;
    const double C = sqrt(1.0 + 4.0*x*(x-2.0*eta));
    const int N = ceil(lam_F - C + 0.5);
    const double lam_0   = lam_F - GSL_MAX(N, 0);
    const double lam_min = GSL_MIN(lam_0, lam_G);
    double F_lam_F, Fp_lam_F;
    double G_lam_G, Gp_lam_G;
    double F_lam_min_unnorm, Fp_lam_min_unnorm;
    double F_lam_min, Fp_lam_min;
    double G_lam_min, Gp_lam_min;
    double Fp_over_F_lam_F;
    double Fp_over_F_lam_min;
    double F_sign_lam_F, F_sign_lam_min;
    double P_lam_min, Q_lam_min;
    double alpha;
    double gamma;
    double F_scale;

    int CF1_count;
    int CF2_count;
    int stat_CF1 = coulomb_CF1(lam_F, eta, x, &F_sign_lam_F, &Fp_over_F_lam_F, &CF1_count);
    int stat_CF2;
    int stat_Fr;
    int stat_Gr;

    int F_recur_count;
    int G_recur_count;

    double err_amplify;

    F_lam_F  = F_sign_lam_F * SMALL;  /* unnormalized */
    Fp_lam_F = Fp_over_F_lam_F * F_lam_F;

    /* Backward recurrence to get F,Fp at lam_min */
    F_recur_count = GSL_MAX(k_lam_G, N);
    stat_Fr = coulomb_F_recur(lam_min, F_recur_count, eta, x,
                              F_lam_F, Fp_lam_F,
                              &F_lam_min_unnorm, &Fp_lam_min_unnorm
                              );
    Fp_over_F_lam_min = Fp_lam_min_unnorm / F_lam_min_unnorm;

    /* Steed evaluation to complete evaluation of F,Fp,G,Gp at lam_min */
    stat_CF2 = coulomb_CF2(lam_min, eta, x, &P_lam_min, &Q_lam_min, &CF2_count);
    alpha = Fp_over_F_lam_min - P_lam_min;
    gamma = alpha/Q_lam_min;

    F_sign_lam_min = GSL_SIGN(F_lam_min_unnorm) ;

    F_lam_min  = F_sign_lam_min / sqrt(alpha*alpha/Q_lam_min + Q_lam_min);
    Fp_lam_min = Fp_over_F_lam_min * F_lam_min;
    G_lam_min  = gamma * F_lam_min;
    Gp_lam_min = (P_lam_min * gamma - Q_lam_min) * F_lam_min;

    /* Apply scale to values of F,Fp at lam_F (the top). */
    F_scale = F_lam_min / F_lam_min_unnorm;    
    F_lam_F  *= F_scale;
    Fp_lam_F *= F_scale;

    /* Forward recurrence to get G,Gp at lam_G (the top). */
    G_recur_count = GSL_MAX(N-k_lam_G,0);
    stat_Gr = coulomb_G_recur(lam_min, G_recur_count, eta, x,
                              G_lam_min, Gp_lam_min,
                              &G_lam_G, &Gp_lam_G
                              );

    err_amplify = CF1_count + CF2_count + F_recur_count + G_recur_count + 1;

    F->val  = F_lam_F;
    F->err  = 8.0*err_amplify*GSL_DBL_EPSILON * fabs(F->val);

    Fp->val = Fp_lam_F;
    Fp->err = 8.0*err_amplify*GSL_DBL_EPSILON * fabs(Fp->val);

    G->val  = G_lam_G;
    G->err  = 8.0*err_amplify*GSL_DBL_EPSILON * fabs(G->val);

    Gp->val = Gp_lam_G;
    Gp->err = 8.0*err_amplify*GSL_DBL_EPSILON * fabs(Gp->val);

    *exp_F = 0.0;
    *exp_G = 0.0;

    return GSL_ERROR_SELECT_4(stat_CF1, stat_CF2, stat_Fr, stat_Gr);
  }
}


int
gsl_sf_coulomb_wave_F_array(double lam_min, int kmax,
                                 double eta, double x, 
                                 double * fc_array,
                                 double * F_exp)
{
  if(x == 0.0) {
    int k;
    *F_exp = 0.0;
    for(k=0; k<=kmax; k++) {
      fc_array[k] = 0.0;
    }
    if(lam_min == 0.0){
      gsl_sf_result f_0;
      CLeta(0.0, eta, &f_0);
      fc_array[0] = f_0.val;
    }
    return GSL_SUCCESS;
  }
  else {
    const double x_inv = 1.0/x;
    const double lam_max = lam_min + kmax;
    gsl_sf_result F, Fp;
    gsl_sf_result G, Gp;
    double G_exp;

    int stat_FG = gsl_sf_coulomb_wave_FG_e(eta, x, lam_max, 0,
                                              &F, &Fp, &G, &Gp, F_exp, &G_exp);

    double fcl  = F.val;
    double fpl = Fp.val;
    double lam = lam_max;
    int k;

    fc_array[kmax] = F.val;

    for(k=kmax-1; k>=0; k--) {
      double el = eta/lam;
      double rl = hypot(1.0, el);
      double sl = el  + lam*x_inv;
      double fc_lm1 = (fcl*sl + fpl)/rl;
      fc_array[k]   = fc_lm1;
      fpl           =  fc_lm1*sl - fcl*rl;
      fcl           =  fc_lm1;
      lam -= 1.0;
    }

    return stat_FG;
  }
}


int
gsl_sf_coulomb_wave_FG_array(double lam_min, int kmax,
                                  double eta, double x,
                                  double * fc_array, double * gc_array,
                                  double * F_exp, double * G_exp)
{
  const double x_inv = 1.0/x;
  const double lam_max = lam_min + kmax;
  gsl_sf_result F, Fp;
  gsl_sf_result G, Gp;

  int stat_FG = gsl_sf_coulomb_wave_FG_e(eta, x, lam_max, kmax,
                                            &F, &Fp, &G, &Gp, F_exp, G_exp);

  double fcl  = F.val;
  double fpl = Fp.val;
  double lam = lam_max;
  int k;

  double gcl, gpl;

  fc_array[kmax] = F.val;

  for(k=kmax-1; k>=0; k--) {
    double el = eta/lam;
    double rl = hypot(1.0, el);
    double sl = el  + lam*x_inv;
    double fc_lm1;
    fc_lm1 = (fcl*sl + fpl)/rl;
    fc_array[k] = fc_lm1;
    fpl         =  fc_lm1*sl - fcl*rl;
    fcl         =  fc_lm1;
    lam -= 1.0;
  }

  gcl = G.val;
  gpl = Gp.val;
  lam = lam_min + 1.0;

  gc_array[0] = G.val;

  for(k=1; k<=kmax; k++) {
    double el = eta/lam;
    double rl = hypot(1.0, el);
    double sl = el + lam*x_inv;
    double gcl1 = (sl*gcl - gpl)/rl;
    gc_array[k] = gcl1;
    gpl         = rl*gcl - sl*gcl1;
    gcl         = gcl1;
    lam += 1.0;
  }

  return stat_FG;
}


int
gsl_sf_coulomb_wave_FGp_array(double lam_min, int kmax,
                                   double eta, double x,
                                   double * fc_array, double * fcp_array,
                                   double * gc_array, double * gcp_array,
                                   double * F_exp, double * G_exp)

{
  const double x_inv = 1.0/x;
  const double lam_max = lam_min + kmax;
  gsl_sf_result F, Fp;
  gsl_sf_result G, Gp;

  int stat_FG = gsl_sf_coulomb_wave_FG_e(eta, x, lam_max, kmax,
                                            &F, &Fp, &G, &Gp, F_exp, G_exp);

  double fcl  = F.val;
  double fpl = Fp.val;
  double lam = lam_max;
  int k;

  double gcl, gpl;

  fc_array[kmax]  = F.val;
  fcp_array[kmax] = Fp.val;

  for(k=kmax-1; k>=0; k--) {
    double el = eta/lam;
    double rl = hypot(1.0, el);
    double sl = el  + lam*x_inv;
    double fc_lm1;
    fc_lm1 = (fcl*sl + fpl)/rl;
    fc_array[k]  = fc_lm1;
    fpl          = fc_lm1*sl - fcl*rl;
    fcp_array[k] = fpl;
    fcl          =  fc_lm1;
    lam -= 1.0;
  }

  gcl = G.val;
  gpl = Gp.val;
  lam = lam_min + 1.0;

  gc_array[0]  = G.val;
  gcp_array[0] = Gp.val;

  for(k=1; k<=kmax; k++) {
    double el = eta/lam;
    double rl = hypot(1.0, el);
    double sl = el + lam*x_inv;
    double gcl1 = (sl*gcl - gpl)/rl;
    gc_array[k]  = gcl1;
    gpl          = rl*gcl - sl*gcl1;
    gcp_array[k] = gpl;
    gcl          = gcl1;
    lam += 1.0;
  }

  return stat_FG;
}


int
gsl_sf_coulomb_wave_sphF_array(double lam_min, int kmax,
                                    double eta, double x,
                                    double * fc_array,
                                    double * F_exp)
{
  if(x < 0.0 || lam_min < -0.5) {
    GSL_ERROR ("domain error", GSL_EDOM);
  }
  else if(x < 10.0/GSL_DBL_MAX) {
    int k;
    for(k=0; k<=kmax; k++) {
      fc_array[k] = 0.0;
    }
    if(lam_min == 0.0) {
      fc_array[0] = sqrt(C0sq(eta));
    }
    *F_exp = 0.0;
    if(x == 0.0)
      return GSL_SUCCESS;
    else
      GSL_ERROR ("underflow", GSL_EUNDRFLW);
  }
  else {
    int k;
    int stat_F = gsl_sf_coulomb_wave_F_array(lam_min, kmax,
                                                  eta, x, 
                                                  fc_array,
                                                  F_exp);

    for(k=0; k<=kmax; k++) {
      fc_array[k] = fc_array[k] / x;
    }
    return stat_F;
  }
}