summaryrefslogtreecommitdiff
path: root/gsl-1.9/specfunc/coulomb.c
diff options
context:
space:
mode:
Diffstat (limited to 'gsl-1.9/specfunc/coulomb.c')
-rw-r--r--gsl-1.9/specfunc/coulomb.c1417
1 files changed, 1417 insertions, 0 deletions
diff --git a/gsl-1.9/specfunc/coulomb.c b/gsl-1.9/specfunc/coulomb.c
new file mode 100644
index 0000000..7c68076
--- /dev/null
+++ b/gsl-1.9/specfunc/coulomb.c
@@ -0,0 +1,1417 @@
+/* specfunc/coulomb.c
+ *
+ * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or (at
+ * your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful, but
+ * WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+ */
+
+/* Author: G. Jungman */
+
+/* Evaluation of Coulomb wave functions F_L(eta, x), G_L(eta, x),
+ * and their derivatives. A combination of Steed's method, asymptotic
+ * results, and power series.
+ *
+ * Steed's method:
+ * [Barnett, CPC 21, 297 (1981)]
+ * Power series and other methods:
+ * [Biedenharn et al., PR 97, 542 (1954)]
+ * [Bardin et al., CPC 3, 73 (1972)]
+ * [Abad+Sesma, CPC 71, 110 (1992)]
+ */
+#include <config.h>
+#include <gsl/gsl_math.h>
+#include <gsl/gsl_errno.h>
+#include <gsl/gsl_sf_exp.h>
+#include <gsl/gsl_sf_psi.h>
+#include <gsl/gsl_sf_airy.h>
+#include <gsl/gsl_sf_pow_int.h>
+#include <gsl/gsl_sf_gamma.h>
+#include <gsl/gsl_sf_coulomb.h>
+
+#include "error.h"
+
+/* the L=0 normalization constant
+ * [Abramowitz+Stegun 14.1.8]
+ */
+static
+double
+C0sq(double eta)
+{
+ double twopieta = 2.0*M_PI*eta;
+
+ if(fabs(eta) < GSL_DBL_EPSILON) {
+ return 1.0;
+ }
+ else if(twopieta > GSL_LOG_DBL_MAX) {
+ return 0.0;
+ }
+ else {
+ gsl_sf_result scale;
+ gsl_sf_expm1_e(twopieta, &scale);
+ return twopieta/scale.val;
+ }
+}
+
+
+/* the full definition of C_L(eta) for any valid L and eta
+ * [Abramowitz and Stegun 14.1.7]
+ * This depends on the complex gamma function. For large
+ * arguments the phase of the complex gamma function is not
+ * very accurately determined. However the modulus is, and that
+ * is all that we need to calculate C_L.
+ *
+ * This is not valid for L <= -3/2 or L = -1.
+ */
+static
+int
+CLeta(double L, double eta, gsl_sf_result * result)
+{
+ gsl_sf_result ln1; /* log of numerator Gamma function */
+ gsl_sf_result ln2; /* log of denominator Gamma function */
+ double sgn = 1.0;
+ double arg_val, arg_err;
+
+ if(fabs(eta/(L+1.0)) < GSL_DBL_EPSILON) {
+ gsl_sf_lngamma_e(L+1.0, &ln1);
+ }
+ else {
+ gsl_sf_result p1; /* phase of numerator Gamma -- not used */
+ gsl_sf_lngamma_complex_e(L+1.0, eta, &ln1, &p1); /* should be ok */
+ }
+
+ gsl_sf_lngamma_e(2.0*(L+1.0), &ln2);
+ if(L < -1.0) sgn = -sgn;
+
+ arg_val = L*M_LN2 - 0.5*eta*M_PI + ln1.val - ln2.val;
+ arg_err = ln1.err + ln2.err;
+ arg_err += GSL_DBL_EPSILON * (fabs(L*M_LN2) + fabs(0.5*eta*M_PI));
+ return gsl_sf_exp_err_e(arg_val, arg_err, result);
+}
+
+
+int
+gsl_sf_coulomb_CL_e(double lam, double eta, gsl_sf_result * result)
+{
+ /* CHECK_POINTER(result) */
+
+ if(lam <= -1.0) {
+ DOMAIN_ERROR(result);
+ }
+ else if(fabs(lam) < GSL_DBL_EPSILON) {
+ /* saves a calculation of complex_lngamma(), otherwise not necessary */
+ result->val = sqrt(C0sq(eta));
+ result->err = 2.0 * GSL_DBL_EPSILON * result->val;
+ return GSL_SUCCESS;
+ }
+ else {
+ return CLeta(lam, eta, result);
+ }
+}
+
+
+/* cl[0] .. cl[kmax] = C_{lam_min}(eta) .. C_{lam_min+kmax}(eta)
+ */
+int
+gsl_sf_coulomb_CL_array(double lam_min, int kmax, double eta, double * cl)
+{
+ int k;
+ gsl_sf_result cl_0;
+ gsl_sf_coulomb_CL_e(lam_min, eta, &cl_0);
+ cl[0] = cl_0.val;
+
+ for(k=1; k<=kmax; k++) {
+ double L = lam_min + k;
+ cl[k] = cl[k-1] * hypot(L, eta)/(L*(2.0*L+1.0));
+ }
+
+ return GSL_SUCCESS;
+}
+
+
+/* Evaluate the series for Phi_L(eta,x) and Phi_L*(eta,x)
+ * [Abramowitz+Stegun 14.1.5]
+ * [Abramowitz+Stegun 14.1.13]
+ *
+ * The sequence of coefficients A_k^L is
+ * manifestly well-controlled for L >= -1/2
+ * and eta < 10.
+ *
+ * This makes sense since this is the region
+ * away from threshold, and you expect
+ * the evaluation to become easier as you
+ * get farther from threshold.
+ *
+ * Empirically, this is quite well-behaved for
+ * L >= -1/2
+ * eta < 10
+ * x < 10
+ */
+#if 0
+static
+int
+coulomb_Phi_series(const double lam, const double eta, const double x,
+ double * result, double * result_star)
+{
+ int kmin = 5;
+ int kmax = 200;
+ int k;
+ double Akm2 = 1.0;
+ double Akm1 = eta/(lam+1.0);
+ double Ak;
+
+ double xpow = x;
+ double sum = Akm2 + Akm1*x;
+ double sump = (lam+1.0)*Akm2 + (lam+2.0)*Akm1*x;
+ double prev_abs_del = fabs(Akm1*x);
+ double prev_abs_del_p = (lam+2.0) * prev_abs_del;
+
+ for(k=2; k<kmax; k++) {
+ double del;
+ double del_p;
+ double abs_del;
+ double abs_del_p;
+
+ Ak = (2.0*eta*Akm1 - Akm2)/(k*(2.0*lam + 1.0 + k));
+
+ xpow *= x;
+ del = Ak*xpow;
+ del_p = (k+lam+1.0)*del;
+ sum += del;
+ sump += del_p;
+
+ abs_del = fabs(del);
+ abs_del_p = fabs(del_p);
+
+ if( abs_del/(fabs(sum)+abs_del) < GSL_DBL_EPSILON
+ && prev_abs_del/(fabs(sum)+prev_abs_del) < GSL_DBL_EPSILON
+ && abs_del_p/(fabs(sump)+abs_del_p) < GSL_DBL_EPSILON
+ && prev_abs_del_p/(fabs(sump)+prev_abs_del_p) < GSL_DBL_EPSILON
+ && k > kmin
+ ) break;
+
+ /* We need to keep track of the previous delta because when
+ * eta is near zero the odd terms of the sum are very small
+ * and this could lead to premature termination.
+ */
+ prev_abs_del = abs_del;
+ prev_abs_del_p = abs_del_p;
+
+ Akm2 = Akm1;
+ Akm1 = Ak;
+ }
+
+ *result = sum;
+ *result_star = sump;
+
+ if(k==kmax) {
+ GSL_ERROR ("error", GSL_EMAXITER);
+ }
+ else {
+ return GSL_SUCCESS;
+ }
+}
+#endif /* 0 */
+
+
+/* Determine the connection phase, phi_lambda.
+ * See coulomb_FG_series() below. We have
+ * to be careful about sin(phi)->0. Note that
+ * there is an underflow condition for large
+ * positive eta in any case.
+ */
+static
+int
+coulomb_connection(const double lam, const double eta,
+ double * cos_phi, double * sin_phi)
+{
+ if(eta > -GSL_LOG_DBL_MIN/2.0*M_PI-1.0) {
+ *cos_phi = 1.0;
+ *sin_phi = 0.0;
+ GSL_ERROR ("error", GSL_EUNDRFLW);
+ }
+ else if(eta > -GSL_LOG_DBL_EPSILON/(4.0*M_PI)) {
+ const double eps = 2.0 * exp(-2.0*M_PI*eta);
+ const double tpl = tan(M_PI * lam);
+ const double dth = eps * tpl / (tpl*tpl + 1.0);
+ *cos_phi = -1.0 + 0.5 * dth*dth;
+ *sin_phi = -dth;
+ return GSL_SUCCESS;
+ }
+ else {
+ double X = tanh(M_PI * eta) / tan(M_PI * lam);
+ double phi = -atan(X) - (lam + 0.5) * M_PI;
+ *cos_phi = cos(phi);
+ *sin_phi = sin(phi);
+ return GSL_SUCCESS;
+ }
+}
+
+
+/* Evaluate the Frobenius series for F_lam(eta,x) and G_lam(eta,x).
+ * Homegrown algebra. Evaluates the series for F_{lam} and
+ * F_{-lam-1}, then uses
+ * G_{lam} = (F_{lam} cos(phi) - F_{-lam-1}) / sin(phi)
+ * where
+ * phi = Arg[Gamma[1+lam+I eta]] - Arg[Gamma[-lam + I eta]] - (lam+1/2)Pi
+ * = Arg[Sin[Pi(-lam+I eta)] - (lam+1/2)Pi
+ * = atan2(-cos(lam Pi)sinh(eta Pi), -sin(lam Pi)cosh(eta Pi)) - (lam+1/2)Pi
+ *
+ * = -atan(X) - (lam+1/2) Pi, X = tanh(eta Pi)/tan(lam Pi)
+ *
+ * Not appropriate for lam <= -1/2, lam = 0, or lam >= 1/2.
+ */
+static
+int
+coulomb_FG_series(const double lam, const double eta, const double x,
+ gsl_sf_result * F, gsl_sf_result * G)
+{
+ const int max_iter = 800;
+ gsl_sf_result ClamA;
+ gsl_sf_result ClamB;
+ int stat_A = CLeta(lam, eta, &ClamA);
+ int stat_B = CLeta(-lam-1.0, eta, &ClamB);
+ const double tlp1 = 2.0*lam + 1.0;
+ const double pow_x = pow(x, lam);
+ double cos_phi_lam;
+ double sin_phi_lam;
+
+ double uA_mm2 = 1.0; /* uA sum is for F_{lam} */
+ double uA_mm1 = x*eta/(lam+1.0);
+ double uA_m;
+ double uB_mm2 = 1.0; /* uB sum is for F_{-lam-1} */
+ double uB_mm1 = -x*eta/lam;
+ double uB_m;
+ double A_sum = uA_mm2 + uA_mm1;
+ double B_sum = uB_mm2 + uB_mm1;
+ double A_abs_del_prev = fabs(A_sum);
+ double B_abs_del_prev = fabs(B_sum);
+ gsl_sf_result FA, FB;
+ int m = 2;
+
+ int stat_conn = coulomb_connection(lam, eta, &cos_phi_lam, &sin_phi_lam);
+
+ if(stat_conn == GSL_EUNDRFLW) {
+ F->val = 0.0; /* FIXME: should this be set to Inf too like G? */
+ F->err = 0.0;
+ OVERFLOW_ERROR(G);
+ }
+
+ while(m < max_iter) {
+ double abs_dA;
+ double abs_dB;
+ uA_m = x*(2.0*eta*uA_mm1 - x*uA_mm2)/(m*(m+tlp1));
+ uB_m = x*(2.0*eta*uB_mm1 - x*uB_mm2)/(m*(m-tlp1));
+ A_sum += uA_m;
+ B_sum += uB_m;
+ abs_dA = fabs(uA_m);
+ abs_dB = fabs(uB_m);
+ if(m > 15) {
+ /* Don't bother checking until we have gone out a little ways;
+ * a minor optimization. Also make sure to check both the
+ * current and the previous increment because the odd and even
+ * terms of the sum can have very different behaviour, depending
+ * on the value of eta.
+ */
+ double max_abs_dA = GSL_MAX(abs_dA, A_abs_del_prev);
+ double max_abs_dB = GSL_MAX(abs_dB, B_abs_del_prev);
+ double abs_A = fabs(A_sum);
+ double abs_B = fabs(B_sum);
+ if( max_abs_dA/(max_abs_dA + abs_A) < 4.0*GSL_DBL_EPSILON
+ && max_abs_dB/(max_abs_dB + abs_B) < 4.0*GSL_DBL_EPSILON
+ ) break;
+ }
+ A_abs_del_prev = abs_dA;
+ B_abs_del_prev = abs_dB;
+ uA_mm2 = uA_mm1;
+ uA_mm1 = uA_m;
+ uB_mm2 = uB_mm1;
+ uB_mm1 = uB_m;
+ m++;
+ }
+
+ FA.val = A_sum * ClamA.val * pow_x * x;
+ FA.err = fabs(A_sum) * ClamA.err * pow_x * x + 2.0*GSL_DBL_EPSILON*fabs(FA.val);
+ FB.val = B_sum * ClamB.val / pow_x;
+ FB.err = fabs(B_sum) * ClamB.err / pow_x + 2.0*GSL_DBL_EPSILON*fabs(FB.val);
+
+ F->val = FA.val;
+ F->err = FA.err;
+
+ G->val = (FA.val * cos_phi_lam - FB.val)/sin_phi_lam;
+ G->err = (FA.err * fabs(cos_phi_lam) + FB.err)/fabs(sin_phi_lam);
+
+ if(m >= max_iter)
+ GSL_ERROR ("error", GSL_EMAXITER);
+ else
+ return GSL_ERROR_SELECT_2(stat_A, stat_B);
+}
+
+
+/* Evaluate the Frobenius series for F_0(eta,x) and G_0(eta,x).
+ * See [Bardin et al., CPC 3, 73 (1972), (14)-(17)];
+ * note the misprint in (17): nu_0=1 is correct, not nu_0=0.
+ */
+static
+int
+coulomb_FG0_series(const double eta, const double x,
+ gsl_sf_result * F, gsl_sf_result * G)
+{
+ const int max_iter = 800;
+ const double x2 = x*x;
+ const double tex = 2.0*eta*x;
+ gsl_sf_result C0;
+ int stat_CL = CLeta(0.0, eta, &C0);
+ gsl_sf_result r1pie;
+ int psi_stat = gsl_sf_psi_1piy_e(eta, &r1pie);
+ double u_mm2 = 0.0; /* u_0 */
+ double u_mm1 = x; /* u_1 */
+ double u_m;
+ double v_mm2 = 1.0; /* nu_0 */
+ double v_mm1 = tex*(2.0*M_EULER-1.0+r1pie.val); /* nu_1 */
+ double v_m;
+ double u_sum = u_mm2 + u_mm1;
+ double v_sum = v_mm2 + v_mm1;
+ double u_abs_del_prev = fabs(u_sum);
+ double v_abs_del_prev = fabs(v_sum);
+ int m = 2;
+ double u_sum_err = 2.0 * GSL_DBL_EPSILON * fabs(u_sum);
+ double v_sum_err = 2.0 * GSL_DBL_EPSILON * fabs(v_sum);
+ double ln2x = log(2.0*x);
+
+ while(m < max_iter) {
+ double abs_du;
+ double abs_dv;
+ double m_mm1 = m*(m-1.0);
+ u_m = (tex*u_mm1 - x2*u_mm2)/m_mm1;
+ v_m = (tex*v_mm1 - x2*v_mm2 - 2.0*eta*(2*m-1)*u_m)/m_mm1;
+ u_sum += u_m;
+ v_sum += v_m;
+ abs_du = fabs(u_m);
+ abs_dv = fabs(v_m);
+ u_sum_err += 2.0 * GSL_DBL_EPSILON * abs_du;
+ v_sum_err += 2.0 * GSL_DBL_EPSILON * abs_dv;
+ if(m > 15) {
+ /* Don't bother checking until we have gone out a little ways;
+ * a minor optimization. Also make sure to check both the
+ * current and the previous increment because the odd and even
+ * terms of the sum can have very different behaviour, depending
+ * on the value of eta.
+ */
+ double max_abs_du = GSL_MAX(abs_du, u_abs_del_prev);
+ double max_abs_dv = GSL_MAX(abs_dv, v_abs_del_prev);
+ double abs_u = fabs(u_sum);
+ double abs_v = fabs(v_sum);
+ if( max_abs_du/(max_abs_du + abs_u) < 40.0*GSL_DBL_EPSILON
+ && max_abs_dv/(max_abs_dv + abs_v) < 40.0*GSL_DBL_EPSILON
+ ) break;
+ }
+ u_abs_del_prev = abs_du;
+ v_abs_del_prev = abs_dv;
+ u_mm2 = u_mm1;
+ u_mm1 = u_m;
+ v_mm2 = v_mm1;
+ v_mm1 = v_m;
+ m++;
+ }
+
+ F->val = C0.val * u_sum;
+ F->err = C0.err * fabs(u_sum);
+ F->err += fabs(C0.val) * u_sum_err;
+ F->err += 2.0 * GSL_DBL_EPSILON * fabs(F->val);
+
+ G->val = (v_sum + 2.0*eta*u_sum * ln2x) / C0.val;
+ G->err = (fabs(v_sum) + fabs(2.0*eta*u_sum * ln2x)) / fabs(C0.val) * fabs(C0.err/C0.val);
+ G->err += (v_sum_err + fabs(2.0*eta*u_sum_err*ln2x)) / fabs(C0.val);
+ G->err += 2.0 * GSL_DBL_EPSILON * fabs(G->val);
+
+ if(m == max_iter)
+ GSL_ERROR ("error", GSL_EMAXITER);
+ else
+ return GSL_ERROR_SELECT_2(psi_stat, stat_CL);
+}
+
+
+/* Evaluate the Frobenius series for F_{-1/2}(eta,x) and G_{-1/2}(eta,x).
+ * Homegrown algebra.
+ */
+static
+int
+coulomb_FGmhalf_series(const double eta, const double x,
+ gsl_sf_result * F, gsl_sf_result * G)
+{
+ const int max_iter = 800;
+ const double rx = sqrt(x);
+ const double x2 = x*x;
+ const double tex = 2.0*eta*x;
+ gsl_sf_result Cmhalf;
+ int stat_CL = CLeta(-0.5, eta, &Cmhalf);
+ double u_mm2 = 1.0; /* u_0 */
+ double u_mm1 = tex * u_mm2; /* u_1 */
+ double u_m;
+ double v_mm2, v_mm1, v_m;
+ double f_sum, g_sum;
+ double tmp1;
+ gsl_sf_result rpsi_1pe;
+ gsl_sf_result rpsi_1p2e;
+ int m = 2;
+
+ gsl_sf_psi_1piy_e(eta, &rpsi_1pe);
+ gsl_sf_psi_1piy_e(2.0*eta, &rpsi_1p2e);
+
+ v_mm2 = 2.0*M_EULER - M_LN2 - rpsi_1pe.val + 2.0*rpsi_1p2e.val;
+ v_mm1 = tex*(v_mm2 - 2.0*u_mm2);
+
+ f_sum = u_mm2 + u_mm1;
+ g_sum = v_mm2 + v_mm1;
+
+ while(m < max_iter) {
+ double m2 = m*m;
+ u_m = (tex*u_mm1 - x2*u_mm2)/m2;
+ v_m = (tex*v_mm1 - x2*v_mm2 - 2.0*m*u_m)/m2;
+ f_sum += u_m;
+ g_sum += v_m;
+ if( f_sum != 0.0
+ && g_sum != 0.0
+ && (fabs(u_m/f_sum) + fabs(v_m/g_sum) < 10.0*GSL_DBL_EPSILON)) break;
+ u_mm2 = u_mm1;
+ u_mm1 = u_m;
+ v_mm2 = v_mm1;
+ v_mm1 = v_m;
+ m++;
+ }
+
+ F->val = Cmhalf.val * rx * f_sum;
+ F->err = Cmhalf.err * fabs(rx * f_sum) + 2.0*GSL_DBL_EPSILON*fabs(F->val);
+
+ tmp1 = f_sum*log(x);
+ G->val = -rx*(tmp1 + g_sum)/Cmhalf.val;
+ G->err = fabs(rx)*(fabs(tmp1) + fabs(g_sum))/fabs(Cmhalf.val) * fabs(Cmhalf.err/Cmhalf.val);
+
+ if(m == max_iter)
+ GSL_ERROR ("error", GSL_EMAXITER);
+ else
+ return stat_CL;
+}
+
+
+/* Evolve the backwards recurrence for F,F'.
+ *
+ * F_{lam-1} = (S_lam F_lam + F_lam') / R_lam
+ * F_{lam-1}' = (S_lam F_{lam-1} - R_lam F_lam)
+ * where
+ * R_lam = sqrt(1 + (eta/lam)^2)
+ * S_lam = lam/x + eta/lam
+ *
+ */
+static
+int
+coulomb_F_recur(double lam_min, int kmax,
+ double eta, double x,
+ double F_lam_max, double Fp_lam_max,
+ double * F_lam_min, double * Fp_lam_min
+ )
+{
+ double x_inv = 1.0/x;
+ double fcl = F_lam_max;
+ double fpl = Fp_lam_max;
+ double lam_max = lam_min + kmax;
+ double lam = lam_max;
+ int k;
+
+ for(k=kmax-1; k>=0; k--) {
+ double el = eta/lam;
+ double rl = hypot(1.0, el);
+ double sl = el + lam*x_inv;
+ double fc_lm1;
+ fc_lm1 = (fcl*sl + fpl)/rl;
+ fpl = fc_lm1*sl - fcl*rl;
+ fcl = fc_lm1;
+ lam -= 1.0;
+ }
+
+ *F_lam_min = fcl;
+ *Fp_lam_min = fpl;
+ return GSL_SUCCESS;
+}
+
+
+/* Evolve the forward recurrence for G,G'.
+ *
+ * G_{lam+1} = (S_lam G_lam - G_lam')/R_lam
+ * G_{lam+1}' = R_{lam+1} G_lam - S_lam G_{lam+1}
+ *
+ * where S_lam and R_lam are as above in the F recursion.
+ */
+static
+int
+coulomb_G_recur(const double lam_min, const int kmax,
+ const double eta, const double x,
+ const double G_lam_min, const double Gp_lam_min,
+ double * G_lam_max, double * Gp_lam_max
+ )
+{
+ double x_inv = 1.0/x;
+ double gcl = G_lam_min;
+ double gpl = Gp_lam_min;
+ double lam = lam_min + 1.0;
+ int k;
+
+ for(k=1; k<=kmax; k++) {
+ double el = eta/lam;
+ double rl = hypot(1.0, el);
+ double sl = el + lam*x_inv;
+ double gcl1 = (sl*gcl - gpl)/rl;
+ gpl = rl*gcl - sl*gcl1;
+ gcl = gcl1;
+ lam += 1.0;
+ }
+
+ *G_lam_max = gcl;
+ *Gp_lam_max = gpl;
+ return GSL_SUCCESS;
+}
+
+
+/* Evaluate the first continued fraction, giving
+ * the ratio F'/F at the upper lambda value.
+ * We also determine the sign of F at that point,
+ * since it is the sign of the last denominator
+ * in the continued fraction.
+ */
+static
+int
+coulomb_CF1(double lambda,
+ double eta, double x,
+ double * fcl_sign,
+ double * result,
+ int * count
+ )
+{
+ const double CF1_small = 1.e-30;
+ const double CF1_abort = 1.0e+05;
+ const double CF1_acc = 2.0*GSL_DBL_EPSILON;
+ const double x_inv = 1.0/x;
+ const double px = lambda + 1.0 + CF1_abort;
+
+ double pk = lambda + 1.0;
+ double F = eta/pk + pk*x_inv;
+ double D, C;
+ double df;
+
+ *fcl_sign = 1.0;
+ *count = 0;
+
+ if(fabs(F) < CF1_small) F = CF1_small;
+ D = 0.0;
+ C = F;
+
+ do {
+ double pk1 = pk + 1.0;
+ double ek = eta / pk;
+ double rk2 = 1.0 + ek*ek;
+ double tk = (pk + pk1)*(x_inv + ek/pk1);
+ D = tk - rk2 * D;
+ C = tk - rk2 / C;
+ if(fabs(C) < CF1_small) C = CF1_small;
+ if(fabs(D) < CF1_small) D = CF1_small;
+ D = 1.0/D;
+ df = D * C;
+ F = F * df;
+ if(D < 0.0) {
+ /* sign of result depends on sign of denominator */
+ *fcl_sign = - *fcl_sign;
+ }
+ pk = pk1;
+ if( pk > px ) {
+ *result = F;
+ GSL_ERROR ("error", GSL_ERUNAWAY);
+ }
+ ++(*count);
+ }
+ while(fabs(df-1.0) > CF1_acc);
+
+ *result = F;
+ return GSL_SUCCESS;
+}
+
+
+#if 0
+static
+int
+old_coulomb_CF1(const double lambda,
+ double eta, double x,
+ double * fcl_sign,
+ double * result
+ )
+{
+ const double CF1_abort = 1.e5;
+ const double CF1_acc = 10.0*GSL_DBL_EPSILON;
+ const double x_inv = 1.0/x;
+ const double px = lambda + 1.0 + CF1_abort;
+
+ double pk = lambda + 1.0;
+
+ double D;
+ double df;
+
+ double F;
+ double p;
+ double pk1;
+ double ek;
+
+ double fcl = 1.0;
+
+ double tk;
+
+ while(1) {
+ ek = eta/pk;
+ F = (ek + pk*x_inv)*fcl + (fcl - 1.0)*x_inv;
+ pk1 = pk + 1.0;
+ if(fabs(eta*x + pk*pk1) > CF1_acc) break;
+ fcl = (1.0 + ek*ek)/(1.0 + eta*eta/(pk1*pk1));
+ pk = 2.0 + pk;
+ }
+
+ D = 1.0/((pk + pk1)*(x_inv + ek/pk1));
+ df = -fcl*(1.0 + ek*ek)*D;
+
+ if(fcl != 1.0) fcl = -1.0;
+ if(D < 0.0) fcl = -fcl;
+
+ F = F + df;
+
+ p = 1.0;
+ do {
+ pk = pk1;
+ pk1 = pk + 1.0;
+ ek = eta / pk;
+ tk = (pk + pk1)*(x_inv + ek/pk1);
+ D = tk - D*(1.0+ek*ek);
+ if(fabs(D) < sqrt(CF1_acc)) {
+ p += 1.0;
+ if(p > 2.0) {
+ printf("HELP............\n");
+ }
+ }
+ D = 1.0/D;
+ if(D < 0.0) {
+ /* sign of result depends on sign of denominator */
+ fcl = -fcl;
+ }
+ df = df*(D*tk - 1.0);
+ F = F + df;
+ if( pk > px ) {
+ GSL_ERROR ("error", GSL_ERUNAWAY);
+ }
+ }
+ while(fabs(df) > fabs(F)*CF1_acc);
+
+ *fcl_sign = fcl;
+ *result = F;
+ return GSL_SUCCESS;
+}
+#endif /* 0 */
+
+
+/* Evaluate the second continued fraction to
+ * obtain the ratio
+ * (G' + i F')/(G + i F) := P + i Q
+ * at the specified lambda value.
+ */
+static
+int
+coulomb_CF2(const double lambda, const double eta, const double x,
+ double * result_P, double * result_Q, int * count
+ )
+{
+ int status = GSL_SUCCESS;
+
+ const double CF2_acc = 4.0*GSL_DBL_EPSILON;
+ const double CF2_abort = 2.0e+05;
+
+ const double wi = 2.0*eta;
+ const double x_inv = 1.0/x;
+ const double e2mm1 = eta*eta + lambda*(lambda + 1.0);
+
+ double ar = -e2mm1;
+ double ai = eta;
+
+ double br = 2.0*(x - eta);
+ double bi = 2.0;
+
+ double dr = br/(br*br + bi*bi);
+ double di = -bi/(br*br + bi*bi);
+
+ double dp = -x_inv*(ar*di + ai*dr);
+ double dq = x_inv*(ar*dr - ai*di);
+
+ double A, B, C, D;
+
+ double pk = 0.0;
+ double P = 0.0;
+ double Q = 1.0 - eta*x_inv;
+
+ *count = 0;
+
+ do {
+ P += dp;
+ Q += dq;
+ pk += 2.0;
+ ar += pk;
+ ai += wi;
+ bi += 2.0;
+ D = ar*dr - ai*di + br;
+ di = ai*dr + ar*di + bi;
+ C = 1.0/(D*D + di*di);
+ dr = C*D;
+ di = -C*di;
+ A = br*dr - bi*di - 1.;
+ B = bi*dr + br*di;
+ C = dp*A - dq*B;
+ dq = dp*B + dq*A;
+ dp = C;
+ if(pk > CF2_abort) {
+ status = GSL_ERUNAWAY;
+ break;
+ }
+ ++(*count);
+ }
+ while(fabs(dp)+fabs(dq) > (fabs(P)+fabs(Q))*CF2_acc);
+
+ if(Q < CF2_abort*GSL_DBL_EPSILON*fabs(P)) {
+ status = GSL_ELOSS;
+ }
+
+ *result_P = P;
+ *result_Q = Q;
+ return status;
+}
+
+
+/* WKB evaluation of F, G. Assumes 0 < x < turning point.
+ * Overflows are trapped, GSL_EOVRFLW is signalled,
+ * and an exponent is returned such that:
+ *
+ * result_F = fjwkb * exp(-exponent)
+ * result_G = gjwkb * exp( exponent)
+ *
+ * See [Biedenharn et al. Phys. Rev. 97, 542-554 (1955), Section IV]
+ *
+ * Unfortunately, this is not very accurate in general. The
+ * test cases typically have 3-4 digits of precision. One could
+ * argue that this is ok for general use because, for instance,
+ * F is exponentially small in this region and so the absolute
+ * accuracy is still roughly acceptable. But it would be better
+ * to have a systematic method for improving the precision. See
+ * the Abad+Sesma method discussion below.
+ */
+static
+int
+coulomb_jwkb(const double lam, const double eta, const double x,
+ gsl_sf_result * fjwkb, gsl_sf_result * gjwkb,
+ double * exponent)
+{
+ const double llp1 = lam*(lam+1.0) + 6.0/35.0;
+ const double llp1_eff = GSL_MAX(llp1, 0.0);
+ const double rho_ghalf = sqrt(x*(2.0*eta - x) + llp1_eff);
+ const double sinh_arg = sqrt(llp1_eff/(eta*eta+llp1_eff)) * rho_ghalf / x;
+ const double sinh_inv = log(sinh_arg + hypot(1.0,sinh_arg));
+
+ const double phi = fabs(rho_ghalf - eta*atan2(rho_ghalf,x-eta) - sqrt(llp1_eff) * sinh_inv);
+
+ const double zeta_half = pow(3.0*phi/2.0, 1.0/3.0);
+ const double prefactor = sqrt(M_PI*phi*x/(6.0 * rho_ghalf));
+
+ double F = prefactor * 3.0/zeta_half;
+ double G = prefactor * 3.0/zeta_half; /* Note the sqrt(3) from Bi normalization */
+ double F_exp;
+ double G_exp;
+
+ const double airy_scale_exp = phi;
+ gsl_sf_result ai;
+ gsl_sf_result bi;
+ gsl_sf_airy_Ai_scaled_e(zeta_half*zeta_half, GSL_MODE_DEFAULT, &ai);
+ gsl_sf_airy_Bi_scaled_e(zeta_half*zeta_half, GSL_MODE_DEFAULT, &bi);
+ F *= ai.val;
+ G *= bi.val;
+ F_exp = log(F) - airy_scale_exp;
+ G_exp = log(G) + airy_scale_exp;
+
+ if(G_exp >= GSL_LOG_DBL_MAX) {
+ fjwkb->val = F;
+ gjwkb->val = G;
+ fjwkb->err = 1.0e-3 * fabs(F); /* FIXME: real error here ... could be smaller */
+ gjwkb->err = 1.0e-3 * fabs(G);
+ *exponent = airy_scale_exp;
+ GSL_ERROR ("error", GSL_EOVRFLW);
+ }
+ else {
+ fjwkb->val = exp(F_exp);
+ gjwkb->val = exp(G_exp);
+ fjwkb->err = 1.0e-3 * fabs(fjwkb->val);
+ gjwkb->err = 1.0e-3 * fabs(gjwkb->val);
+ *exponent = 0.0;
+ return GSL_SUCCESS;
+ }
+}
+
+
+/* Asymptotic evaluation of F and G below the minimal turning point.
+ *
+ * This is meant to be a drop-in replacement for coulomb_jwkb().
+ * It uses the expressions in [Abad+Sesma]. This requires some
+ * work because I am not sure where it is valid. They mumble
+ * something about |x| < |lam|^(-1/2) or 8|eta x| > lam when |x| < 1.
+ * This seems true, but I thought the result was based on a uniform
+ * expansion and could be controlled by simply using more terms.
+ */
+#if 0
+static
+int
+coulomb_AS_xlt2eta(const double lam, const double eta, const double x,
+ gsl_sf_result * f_AS, gsl_sf_result * g_AS,
+ double * exponent)
+{
+ /* no time to do this now... */
+}
+#endif /* 0 */
+
+
+
+/*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/
+
+int
+gsl_sf_coulomb_wave_FG_e(const double eta, const double x,
+ const double lam_F,
+ const int k_lam_G, /* lam_G = lam_F - k_lam_G */
+ gsl_sf_result * F, gsl_sf_result * Fp,
+ gsl_sf_result * G, gsl_sf_result * Gp,
+ double * exp_F, double * exp_G)
+{
+ const double lam_G = lam_F - k_lam_G;
+
+ if(x < 0.0 || lam_F <= -0.5 || lam_G <= -0.5) {
+ GSL_SF_RESULT_SET(F, 0.0, 0.0);
+ GSL_SF_RESULT_SET(Fp, 0.0, 0.0);
+ GSL_SF_RESULT_SET(G, 0.0, 0.0);
+ GSL_SF_RESULT_SET(Gp, 0.0, 0.0);
+ *exp_F = 0.0;
+ *exp_G = 0.0;
+ GSL_ERROR ("domain error", GSL_EDOM);
+ }
+ else if(x == 0.0) {
+ gsl_sf_result C0;
+ CLeta(0.0, eta, &C0);
+ GSL_SF_RESULT_SET(F, 0.0, 0.0);
+ GSL_SF_RESULT_SET(Fp, 0.0, 0.0);
+ GSL_SF_RESULT_SET(G, 0.0, 0.0); /* FIXME: should be Inf */
+ GSL_SF_RESULT_SET(Gp, 0.0, 0.0); /* FIXME: should be Inf */
+ *exp_F = 0.0;
+ *exp_G = 0.0;
+ if(lam_F == 0.0){
+ GSL_SF_RESULT_SET(Fp, C0.val, C0.err);
+ }
+ if(lam_G == 0.0) {
+ GSL_SF_RESULT_SET(Gp, 1.0/C0.val, fabs(C0.err/C0.val)/fabs(C0.val));
+ }
+ GSL_ERROR ("domain error", GSL_EDOM);
+ /* After all, since we are asking for G, this is a domain error... */
+ }
+ else if(x < 1.2 && 2.0*M_PI*eta < 0.9*(-GSL_LOG_DBL_MIN) && fabs(eta*x) < 10.0) {
+ /* Reduce to a small lambda value and use the series
+ * representations for F and G. We cannot allow eta to
+ * be large and positive because the connection formula
+ * for G_lam is badly behaved due to an underflow in sin(phi_lam)
+ * [see coulomb_FG_series() and coulomb_connection() above].
+ * Note that large negative eta is ok however.
+ */
+ const double SMALL = GSL_SQRT_DBL_EPSILON;
+ const int N = (int)(lam_F + 0.5);
+ const int span = GSL_MAX(k_lam_G, N);
+ const double lam_min = lam_F - N; /* -1/2 <= lam_min < 1/2 */
+ double F_lam_F, Fp_lam_F;
+ double G_lam_G, Gp_lam_G;
+ double F_lam_F_err, Fp_lam_F_err;
+ double Fp_over_F_lam_F;
+ double F_sign_lam_F;
+ double F_lam_min_unnorm, Fp_lam_min_unnorm;
+ double Fp_over_F_lam_min;
+ gsl_sf_result F_lam_min;
+ gsl_sf_result G_lam_min, Gp_lam_min;
+ double F_scale;
+ double Gerr_frac;
+ double F_scale_frac_err;
+ double F_unnorm_frac_err;
+
+ /* Determine F'/F at lam_F. */
+ int CF1_count;
+ int stat_CF1 = coulomb_CF1(lam_F, eta, x, &F_sign_lam_F, &Fp_over_F_lam_F, &CF1_count);
+
+ int stat_ser;
+ int stat_Fr;
+ int stat_Gr;
+
+ /* Recurse down with unnormalized F,F' values. */
+ F_lam_F = SMALL;
+ Fp_lam_F = Fp_over_F_lam_F * F_lam_F;
+ if(span != 0) {
+ stat_Fr = coulomb_F_recur(lam_min, span, eta, x,
+ F_lam_F, Fp_lam_F,
+ &F_lam_min_unnorm, &Fp_lam_min_unnorm
+ );
+ }
+ else {
+ F_lam_min_unnorm = F_lam_F;
+ Fp_lam_min_unnorm = Fp_lam_F;
+ stat_Fr = GSL_SUCCESS;
+ }
+
+ /* Determine F and G at lam_min. */
+ if(lam_min == -0.5) {
+ stat_ser = coulomb_FGmhalf_series(eta, x, &F_lam_min, &G_lam_min);
+ }
+ else if(lam_min == 0.0) {
+ stat_ser = coulomb_FG0_series(eta, x, &F_lam_min, &G_lam_min);
+ }
+ else if(lam_min == 0.5) {
+ /* This cannot happen. */
+ F->val = F_lam_F;
+ F->err = 2.0 * GSL_DBL_EPSILON * fabs(F->val);
+ Fp->val = Fp_lam_F;
+ Fp->err = 2.0 * GSL_DBL_EPSILON * fabs(Fp->val);
+ G->val = G_lam_G;
+ G->err = 2.0 * GSL_DBL_EPSILON * fabs(G->val);
+ Gp->val = Gp_lam_G;
+ Gp->err = 2.0 * GSL_DBL_EPSILON * fabs(Gp->val);
+ *exp_F = 0.0;
+ *exp_G = 0.0;
+ GSL_ERROR ("error", GSL_ESANITY);
+ }
+ else {
+ stat_ser = coulomb_FG_series(lam_min, eta, x, &F_lam_min, &G_lam_min);
+ }
+
+ /* Determine remaining quantities. */
+ Fp_over_F_lam_min = Fp_lam_min_unnorm / F_lam_min_unnorm;
+ Gp_lam_min.val = Fp_over_F_lam_min*G_lam_min.val - 1.0/F_lam_min.val;
+ Gp_lam_min.err = fabs(Fp_over_F_lam_min)*G_lam_min.err;
+ Gp_lam_min.err += fabs(1.0/F_lam_min.val) * fabs(F_lam_min.err/F_lam_min.val);
+ F_scale = F_lam_min.val / F_lam_min_unnorm;
+
+ /* Apply scale to the original F,F' values. */
+ F_scale_frac_err = fabs(F_lam_min.err/F_lam_min.val);
+ F_unnorm_frac_err = 2.0*GSL_DBL_EPSILON*(CF1_count+span+1);
+ F_lam_F *= F_scale;
+ F_lam_F_err = fabs(F_lam_F) * (F_unnorm_frac_err + F_scale_frac_err);
+ Fp_lam_F *= F_scale;
+ Fp_lam_F_err = fabs(Fp_lam_F) * (F_unnorm_frac_err + F_scale_frac_err);
+
+ /* Recurse up to get the required G,G' values. */
+ stat_Gr = coulomb_G_recur(lam_min, GSL_MAX(N-k_lam_G,0), eta, x,
+ G_lam_min.val, Gp_lam_min.val,
+ &G_lam_G, &Gp_lam_G
+ );
+
+ F->val = F_lam_F;
+ F->err = F_lam_F_err;
+ F->err += 2.0 * GSL_DBL_EPSILON * fabs(F_lam_F);
+
+ Fp->val = Fp_lam_F;
+ Fp->err = Fp_lam_F_err;
+ Fp->err += 2.0 * GSL_DBL_EPSILON * fabs(Fp_lam_F);
+
+ Gerr_frac = fabs(G_lam_min.err/G_lam_min.val) + fabs(Gp_lam_min.err/Gp_lam_min.val);
+
+ G->val = G_lam_G;
+ G->err = Gerr_frac * fabs(G_lam_G);
+ G->err += 2.0 * (CF1_count+1) * GSL_DBL_EPSILON * fabs(G->val);
+
+ Gp->val = Gp_lam_G;
+ Gp->err = Gerr_frac * fabs(Gp->val);
+ Gp->err += 2.0 * (CF1_count+1) * GSL_DBL_EPSILON * fabs(Gp->val);
+
+ *exp_F = 0.0;
+ *exp_G = 0.0;
+
+ return GSL_ERROR_SELECT_4(stat_ser, stat_CF1, stat_Fr, stat_Gr);
+ }
+ else if(x < 2.0*eta) {
+ /* Use WKB approximation to obtain F and G at the two
+ * lambda values, and use the Wronskian and the
+ * continued fractions for F'/F to obtain F' and G'.
+ */
+ gsl_sf_result F_lam_F, G_lam_F;
+ gsl_sf_result F_lam_G, G_lam_G;
+ double exp_lam_F, exp_lam_G;
+ int stat_lam_F;
+ int stat_lam_G;
+ int stat_CF1_lam_F;
+ int stat_CF1_lam_G;
+ int CF1_count;
+ double Fp_over_F_lam_F;
+ double Fp_over_F_lam_G;
+ double F_sign_lam_F;
+ double F_sign_lam_G;
+
+ stat_lam_F = coulomb_jwkb(lam_F, eta, x, &F_lam_F, &G_lam_F, &exp_lam_F);
+ if(k_lam_G == 0) {
+ stat_lam_G = stat_lam_F;
+ F_lam_G = F_lam_F;
+ G_lam_G = G_lam_F;
+ exp_lam_G = exp_lam_F;
+ }
+ else {
+ stat_lam_G = coulomb_jwkb(lam_G, eta, x, &F_lam_G, &G_lam_G, &exp_lam_G);
+ }
+
+ stat_CF1_lam_F = coulomb_CF1(lam_F, eta, x, &F_sign_lam_F, &Fp_over_F_lam_F, &CF1_count);
+ if(k_lam_G == 0) {
+ stat_CF1_lam_G = stat_CF1_lam_F;
+ F_sign_lam_G = F_sign_lam_F;
+ Fp_over_F_lam_G = Fp_over_F_lam_F;
+ }
+ else {
+ stat_CF1_lam_G = coulomb_CF1(lam_G, eta, x, &F_sign_lam_G, &Fp_over_F_lam_G, &CF1_count);
+ }
+
+ F->val = F_lam_F.val;
+ F->err = F_lam_F.err;
+
+ G->val = G_lam_G.val;
+ G->err = G_lam_G.err;
+
+ Fp->val = Fp_over_F_lam_F * F_lam_F.val;
+ Fp->err = fabs(Fp_over_F_lam_F) * F_lam_F.err;
+ Fp->err += 2.0*GSL_DBL_EPSILON*fabs(Fp->val);
+
+ Gp->val = Fp_over_F_lam_G * G_lam_G.val - 1.0/F_lam_G.val;
+ Gp->err = fabs(Fp_over_F_lam_G) * G_lam_G.err;
+ Gp->err += fabs(1.0/F_lam_G.val) * fabs(F_lam_G.err/F_lam_G.val);
+
+ *exp_F = exp_lam_F;
+ *exp_G = exp_lam_G;
+
+ if(stat_lam_F == GSL_EOVRFLW || stat_lam_G == GSL_EOVRFLW) {
+ GSL_ERROR ("overflow", GSL_EOVRFLW);
+ }
+ else {
+ return GSL_ERROR_SELECT_2(stat_lam_F, stat_lam_G);
+ }
+ }
+ else {
+ /* x > 2 eta, so we know that we can find a lambda value such
+ * that x is above the turning point. We do this, evaluate
+ * using Steed's method at that oscillatory point, then
+ * use recursion on F and G to obtain the required values.
+ *
+ * lam_0 = a value of lambda such that x is below the turning point
+ * lam_min = minimum of lam_0 and the requested lam_G, since
+ * we must go at least as low as lam_G
+ */
+ const double SMALL = GSL_SQRT_DBL_EPSILON;
+ const double C = sqrt(1.0 + 4.0*x*(x-2.0*eta));
+ const int N = ceil(lam_F - C + 0.5);
+ const double lam_0 = lam_F - GSL_MAX(N, 0);
+ const double lam_min = GSL_MIN(lam_0, lam_G);
+ double F_lam_F, Fp_lam_F;
+ double G_lam_G, Gp_lam_G;
+ double F_lam_min_unnorm, Fp_lam_min_unnorm;
+ double F_lam_min, Fp_lam_min;
+ double G_lam_min, Gp_lam_min;
+ double Fp_over_F_lam_F;
+ double Fp_over_F_lam_min;
+ double F_sign_lam_F, F_sign_lam_min;
+ double P_lam_min, Q_lam_min;
+ double alpha;
+ double gamma;
+ double F_scale;
+
+ int CF1_count;
+ int CF2_count;
+ int stat_CF1 = coulomb_CF1(lam_F, eta, x, &F_sign_lam_F, &Fp_over_F_lam_F, &CF1_count);
+ int stat_CF2;
+ int stat_Fr;
+ int stat_Gr;
+
+ int F_recur_count;
+ int G_recur_count;
+
+ double err_amplify;
+
+ F_lam_F = F_sign_lam_F * SMALL; /* unnormalized */
+ Fp_lam_F = Fp_over_F_lam_F * F_lam_F;
+
+ /* Backward recurrence to get F,Fp at lam_min */
+ F_recur_count = GSL_MAX(k_lam_G, N);
+ stat_Fr = coulomb_F_recur(lam_min, F_recur_count, eta, x,
+ F_lam_F, Fp_lam_F,
+ &F_lam_min_unnorm, &Fp_lam_min_unnorm
+ );
+ Fp_over_F_lam_min = Fp_lam_min_unnorm / F_lam_min_unnorm;
+
+ /* Steed evaluation to complete evaluation of F,Fp,G,Gp at lam_min */
+ stat_CF2 = coulomb_CF2(lam_min, eta, x, &P_lam_min, &Q_lam_min, &CF2_count);
+ alpha = Fp_over_F_lam_min - P_lam_min;
+ gamma = alpha/Q_lam_min;
+
+ F_sign_lam_min = GSL_SIGN(F_lam_min_unnorm) ;
+
+ F_lam_min = F_sign_lam_min / sqrt(alpha*alpha/Q_lam_min + Q_lam_min);
+ Fp_lam_min = Fp_over_F_lam_min * F_lam_min;
+ G_lam_min = gamma * F_lam_min;
+ Gp_lam_min = (P_lam_min * gamma - Q_lam_min) * F_lam_min;
+
+ /* Apply scale to values of F,Fp at lam_F (the top). */
+ F_scale = F_lam_min / F_lam_min_unnorm;
+ F_lam_F *= F_scale;
+ Fp_lam_F *= F_scale;
+
+ /* Forward recurrence to get G,Gp at lam_G (the top). */
+ G_recur_count = GSL_MAX(N-k_lam_G,0);
+ stat_Gr = coulomb_G_recur(lam_min, G_recur_count, eta, x,
+ G_lam_min, Gp_lam_min,
+ &G_lam_G, &Gp_lam_G
+ );
+
+ err_amplify = CF1_count + CF2_count + F_recur_count + G_recur_count + 1;
+
+ F->val = F_lam_F;
+ F->err = 8.0*err_amplify*GSL_DBL_EPSILON * fabs(F->val);
+
+ Fp->val = Fp_lam_F;
+ Fp->err = 8.0*err_amplify*GSL_DBL_EPSILON * fabs(Fp->val);
+
+ G->val = G_lam_G;
+ G->err = 8.0*err_amplify*GSL_DBL_EPSILON * fabs(G->val);
+
+ Gp->val = Gp_lam_G;
+ Gp->err = 8.0*err_amplify*GSL_DBL_EPSILON * fabs(Gp->val);
+
+ *exp_F = 0.0;
+ *exp_G = 0.0;
+
+ return GSL_ERROR_SELECT_4(stat_CF1, stat_CF2, stat_Fr, stat_Gr);
+ }
+}
+
+
+int
+gsl_sf_coulomb_wave_F_array(double lam_min, int kmax,
+ double eta, double x,
+ double * fc_array,
+ double * F_exp)
+{
+ if(x == 0.0) {
+ int k;
+ *F_exp = 0.0;
+ for(k=0; k<=kmax; k++) {
+ fc_array[k] = 0.0;
+ }
+ if(lam_min == 0.0){
+ gsl_sf_result f_0;
+ CLeta(0.0, eta, &f_0);
+ fc_array[0] = f_0.val;
+ }
+ return GSL_SUCCESS;
+ }
+ else {
+ const double x_inv = 1.0/x;
+ const double lam_max = lam_min + kmax;
+ gsl_sf_result F, Fp;
+ gsl_sf_result G, Gp;
+ double G_exp;
+
+ int stat_FG = gsl_sf_coulomb_wave_FG_e(eta, x, lam_max, 0,
+ &F, &Fp, &G, &Gp, F_exp, &G_exp);
+
+ double fcl = F.val;
+ double fpl = Fp.val;
+ double lam = lam_max;
+ int k;
+
+ fc_array[kmax] = F.val;
+
+ for(k=kmax-1; k>=0; k--) {
+ double el = eta/lam;
+ double rl = hypot(1.0, el);
+ double sl = el + lam*x_inv;
+ double fc_lm1 = (fcl*sl + fpl)/rl;
+ fc_array[k] = fc_lm1;
+ fpl = fc_lm1*sl - fcl*rl;
+ fcl = fc_lm1;
+ lam -= 1.0;
+ }
+
+ return stat_FG;
+ }
+}
+
+
+int
+gsl_sf_coulomb_wave_FG_array(double lam_min, int kmax,
+ double eta, double x,
+ double * fc_array, double * gc_array,
+ double * F_exp, double * G_exp)
+{
+ const double x_inv = 1.0/x;
+ const double lam_max = lam_min + kmax;
+ gsl_sf_result F, Fp;
+ gsl_sf_result G, Gp;
+
+ int stat_FG = gsl_sf_coulomb_wave_FG_e(eta, x, lam_max, kmax,
+ &F, &Fp, &G, &Gp, F_exp, G_exp);
+
+ double fcl = F.val;
+ double fpl = Fp.val;
+ double lam = lam_max;
+ int k;
+
+ double gcl, gpl;
+
+ fc_array[kmax] = F.val;
+
+ for(k=kmax-1; k>=0; k--) {
+ double el = eta/lam;
+ double rl = hypot(1.0, el);
+ double sl = el + lam*x_inv;
+ double fc_lm1;
+ fc_lm1 = (fcl*sl + fpl)/rl;
+ fc_array[k] = fc_lm1;
+ fpl = fc_lm1*sl - fcl*rl;
+ fcl = fc_lm1;
+ lam -= 1.0;
+ }
+
+ gcl = G.val;
+ gpl = Gp.val;
+ lam = lam_min + 1.0;
+
+ gc_array[0] = G.val;
+
+ for(k=1; k<=kmax; k++) {
+ double el = eta/lam;
+ double rl = hypot(1.0, el);
+ double sl = el + lam*x_inv;
+ double gcl1 = (sl*gcl - gpl)/rl;
+ gc_array[k] = gcl1;
+ gpl = rl*gcl - sl*gcl1;
+ gcl = gcl1;
+ lam += 1.0;
+ }
+
+ return stat_FG;
+}
+
+
+int
+gsl_sf_coulomb_wave_FGp_array(double lam_min, int kmax,
+ double eta, double x,
+ double * fc_array, double * fcp_array,
+ double * gc_array, double * gcp_array,
+ double * F_exp, double * G_exp)
+
+{
+ const double x_inv = 1.0/x;
+ const double lam_max = lam_min + kmax;
+ gsl_sf_result F, Fp;
+ gsl_sf_result G, Gp;
+
+ int stat_FG = gsl_sf_coulomb_wave_FG_e(eta, x, lam_max, kmax,
+ &F, &Fp, &G, &Gp, F_exp, G_exp);
+
+ double fcl = F.val;
+ double fpl = Fp.val;
+ double lam = lam_max;
+ int k;
+
+ double gcl, gpl;
+
+ fc_array[kmax] = F.val;
+ fcp_array[kmax] = Fp.val;
+
+ for(k=kmax-1; k>=0; k--) {
+ double el = eta/lam;
+ double rl = hypot(1.0, el);
+ double sl = el + lam*x_inv;
+ double fc_lm1;
+ fc_lm1 = (fcl*sl + fpl)/rl;
+ fc_array[k] = fc_lm1;
+ fpl = fc_lm1*sl - fcl*rl;
+ fcp_array[k] = fpl;
+ fcl = fc_lm1;
+ lam -= 1.0;
+ }
+
+ gcl = G.val;
+ gpl = Gp.val;
+ lam = lam_min + 1.0;
+
+ gc_array[0] = G.val;
+ gcp_array[0] = Gp.val;
+
+ for(k=1; k<=kmax; k++) {
+ double el = eta/lam;
+ double rl = hypot(1.0, el);
+ double sl = el + lam*x_inv;
+ double gcl1 = (sl*gcl - gpl)/rl;
+ gc_array[k] = gcl1;
+ gpl = rl*gcl - sl*gcl1;
+ gcp_array[k] = gpl;
+ gcl = gcl1;
+ lam += 1.0;
+ }
+
+ return stat_FG;
+}
+
+
+int
+gsl_sf_coulomb_wave_sphF_array(double lam_min, int kmax,
+ double eta, double x,
+ double * fc_array,
+ double * F_exp)
+{
+ if(x < 0.0 || lam_min < -0.5) {
+ GSL_ERROR ("domain error", GSL_EDOM);
+ }
+ else if(x < 10.0/GSL_DBL_MAX) {
+ int k;
+ for(k=0; k<=kmax; k++) {
+ fc_array[k] = 0.0;
+ }
+ if(lam_min == 0.0) {
+ fc_array[0] = sqrt(C0sq(eta));
+ }
+ *F_exp = 0.0;
+ if(x == 0.0)
+ return GSL_SUCCESS;
+ else
+ GSL_ERROR ("underflow", GSL_EUNDRFLW);
+ }
+ else {
+ int k;
+ int stat_F = gsl_sf_coulomb_wave_F_array(lam_min, kmax,
+ eta, x,
+ fc_array,
+ F_exp);
+
+ for(k=0; k<=kmax; k++) {
+ fc_array[k] = fc_array[k] / x;
+ }
+ return stat_F;
+ }
+}
+
+