summaryrefslogtreecommitdiff
path: root/gsl-1.9/poly/zsolve_cubic.c
blob: 548423ea4267291a187972bff935e8288f263e0c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
/* poly/zsolve_cubic.c
 * 
 * Copyright (C) 1996, 1997, 1998, 1999, 2000 Brian Gough
 * 
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or (at
 * your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 */

/* zsolve_cubic.c - finds the complex roots of x^3 + a x^2 + b x + c = 0 */

#include <config.h>
#include <math.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_complex.h>
#include <gsl/gsl_poly.h>

#define SWAP(a,b) do { double tmp = b ; b = a ; a = tmp ; } while(0)

int
gsl_poly_complex_solve_cubic (double a, double b, double c, 
                              gsl_complex *z0, gsl_complex *z1, 
                              gsl_complex *z2)
{
  double q = (a * a - 3 * b);
  double r = (2 * a * a * a - 9 * a * b + 27 * c);

  double Q = q / 9;
  double R = r / 54;

  double Q3 = Q * Q * Q;
  double R2 = R * R;

  double CR2 = 729 * r * r;
  double CQ3 = 2916 * q * q * q;

  if (R == 0 && Q == 0)
    {
      GSL_REAL (*z0) = -a / 3;
      GSL_IMAG (*z0) = 0;
      GSL_REAL (*z1) = -a / 3;
      GSL_IMAG (*z1) = 0;
      GSL_REAL (*z2) = -a / 3;
      GSL_IMAG (*z2) = 0;
      return 3;
    }
  else if (CR2 == CQ3) 
    {
      /* this test is actually R2 == Q3, written in a form suitable
         for exact computation with integers */

      /* Due to finite precision some double roots may be missed, and
         will be considered to be a pair of complex roots z = x +/-
         epsilon i close to the real axis. */

      double sqrtQ = sqrt (Q);

      if (R > 0)
        {
          GSL_REAL (*z0) = -2 * sqrtQ - a / 3;
          GSL_IMAG (*z0) = 0;
          GSL_REAL (*z1) = sqrtQ - a / 3;
          GSL_IMAG (*z1) = 0;
          GSL_REAL (*z2) = sqrtQ - a / 3;
          GSL_IMAG (*z2) = 0;
        }
      else
        {
          GSL_REAL (*z0) = -sqrtQ - a / 3;
          GSL_IMAG (*z0) = 0;
          GSL_REAL (*z1) = -sqrtQ - a / 3;
          GSL_IMAG (*z1) = 0;
          GSL_REAL (*z2) = 2 * sqrtQ - a / 3;
          GSL_IMAG (*z2) = 0;
        }
      return 3;
    }
  else if (CR2 < CQ3)  /* equivalent to R2 < Q3 */
    {
      double sqrtQ = sqrt (Q);
      double sqrtQ3 = sqrtQ * sqrtQ * sqrtQ;
      double theta = acos (R / sqrtQ3);
      double norm = -2 * sqrtQ;
      double r0 = norm * cos (theta / 3) - a / 3;
      double r1 = norm * cos ((theta + 2.0 * M_PI) / 3) - a / 3;
      double r2 = norm * cos ((theta - 2.0 * M_PI) / 3) - a / 3;

      /* Sort r0, r1, r2 into increasing order */

      if (r0 > r1)
        SWAP (r0, r1);

      if (r1 > r2)
        {
          SWAP (r1, r2);

          if (r0 > r1)
            SWAP (r0, r1);
        }

      GSL_REAL (*z0) = r0;
      GSL_IMAG (*z0) = 0;

      GSL_REAL (*z1) = r1;
      GSL_IMAG (*z1) = 0;

      GSL_REAL (*z2) = r2;
      GSL_IMAG (*z2) = 0;

      return 3;
    }
  else
    {
      double sgnR = (R >= 0 ? 1 : -1);
      double A = -sgnR * pow (fabs (R) + sqrt (R2 - Q3), 1.0 / 3.0);
      double B = Q / A;

      if (A + B < 0)
        {
          GSL_REAL (*z0) = A + B - a / 3;
          GSL_IMAG (*z0) = 0;

          GSL_REAL (*z1) = -0.5 * (A + B) - a / 3;
          GSL_IMAG (*z1) = -(sqrt (3.0) / 2.0) * fabs(A - B);

          GSL_REAL (*z2) = -0.5 * (A + B) - a / 3;
          GSL_IMAG (*z2) = (sqrt (3.0) / 2.0) * fabs(A - B);
        }
      else
        {
          GSL_REAL (*z0) = -0.5 * (A + B) - a / 3;
          GSL_IMAG (*z0) = -(sqrt (3.0) / 2.0) * fabs(A - B);

          GSL_REAL (*z1) = -0.5 * (A + B) - a / 3;
          GSL_IMAG (*z1) = (sqrt (3.0) / 2.0) * fabs(A - B);

          GSL_REAL (*z2) = A + B - a / 3;
          GSL_IMAG (*z2) = 0;
        }

      return 3;
    }
}