summaryrefslogtreecommitdiff
path: root/gsl-1.9/poly/zsolve_cubic.c
diff options
context:
space:
mode:
Diffstat (limited to 'gsl-1.9/poly/zsolve_cubic.c')
-rw-r--r--gsl-1.9/poly/zsolve_cubic.c153
1 files changed, 153 insertions, 0 deletions
diff --git a/gsl-1.9/poly/zsolve_cubic.c b/gsl-1.9/poly/zsolve_cubic.c
new file mode 100644
index 0000000..548423e
--- /dev/null
+++ b/gsl-1.9/poly/zsolve_cubic.c
@@ -0,0 +1,153 @@
+/* poly/zsolve_cubic.c
+ *
+ * Copyright (C) 1996, 1997, 1998, 1999, 2000 Brian Gough
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or (at
+ * your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful, but
+ * WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+ */
+
+/* zsolve_cubic.c - finds the complex roots of x^3 + a x^2 + b x + c = 0 */
+
+#include <config.h>
+#include <math.h>
+#include <gsl/gsl_math.h>
+#include <gsl/gsl_complex.h>
+#include <gsl/gsl_poly.h>
+
+#define SWAP(a,b) do { double tmp = b ; b = a ; a = tmp ; } while(0)
+
+int
+gsl_poly_complex_solve_cubic (double a, double b, double c,
+ gsl_complex *z0, gsl_complex *z1,
+ gsl_complex *z2)
+{
+ double q = (a * a - 3 * b);
+ double r = (2 * a * a * a - 9 * a * b + 27 * c);
+
+ double Q = q / 9;
+ double R = r / 54;
+
+ double Q3 = Q * Q * Q;
+ double R2 = R * R;
+
+ double CR2 = 729 * r * r;
+ double CQ3 = 2916 * q * q * q;
+
+ if (R == 0 && Q == 0)
+ {
+ GSL_REAL (*z0) = -a / 3;
+ GSL_IMAG (*z0) = 0;
+ GSL_REAL (*z1) = -a / 3;
+ GSL_IMAG (*z1) = 0;
+ GSL_REAL (*z2) = -a / 3;
+ GSL_IMAG (*z2) = 0;
+ return 3;
+ }
+ else if (CR2 == CQ3)
+ {
+ /* this test is actually R2 == Q3, written in a form suitable
+ for exact computation with integers */
+
+ /* Due to finite precision some double roots may be missed, and
+ will be considered to be a pair of complex roots z = x +/-
+ epsilon i close to the real axis. */
+
+ double sqrtQ = sqrt (Q);
+
+ if (R > 0)
+ {
+ GSL_REAL (*z0) = -2 * sqrtQ - a / 3;
+ GSL_IMAG (*z0) = 0;
+ GSL_REAL (*z1) = sqrtQ - a / 3;
+ GSL_IMAG (*z1) = 0;
+ GSL_REAL (*z2) = sqrtQ - a / 3;
+ GSL_IMAG (*z2) = 0;
+ }
+ else
+ {
+ GSL_REAL (*z0) = -sqrtQ - a / 3;
+ GSL_IMAG (*z0) = 0;
+ GSL_REAL (*z1) = -sqrtQ - a / 3;
+ GSL_IMAG (*z1) = 0;
+ GSL_REAL (*z2) = 2 * sqrtQ - a / 3;
+ GSL_IMAG (*z2) = 0;
+ }
+ return 3;
+ }
+ else if (CR2 < CQ3) /* equivalent to R2 < Q3 */
+ {
+ double sqrtQ = sqrt (Q);
+ double sqrtQ3 = sqrtQ * sqrtQ * sqrtQ;
+ double theta = acos (R / sqrtQ3);
+ double norm = -2 * sqrtQ;
+ double r0 = norm * cos (theta / 3) - a / 3;
+ double r1 = norm * cos ((theta + 2.0 * M_PI) / 3) - a / 3;
+ double r2 = norm * cos ((theta - 2.0 * M_PI) / 3) - a / 3;
+
+ /* Sort r0, r1, r2 into increasing order */
+
+ if (r0 > r1)
+ SWAP (r0, r1);
+
+ if (r1 > r2)
+ {
+ SWAP (r1, r2);
+
+ if (r0 > r1)
+ SWAP (r0, r1);
+ }
+
+ GSL_REAL (*z0) = r0;
+ GSL_IMAG (*z0) = 0;
+
+ GSL_REAL (*z1) = r1;
+ GSL_IMAG (*z1) = 0;
+
+ GSL_REAL (*z2) = r2;
+ GSL_IMAG (*z2) = 0;
+
+ return 3;
+ }
+ else
+ {
+ double sgnR = (R >= 0 ? 1 : -1);
+ double A = -sgnR * pow (fabs (R) + sqrt (R2 - Q3), 1.0 / 3.0);
+ double B = Q / A;
+
+ if (A + B < 0)
+ {
+ GSL_REAL (*z0) = A + B - a / 3;
+ GSL_IMAG (*z0) = 0;
+
+ GSL_REAL (*z1) = -0.5 * (A + B) - a / 3;
+ GSL_IMAG (*z1) = -(sqrt (3.0) / 2.0) * fabs(A - B);
+
+ GSL_REAL (*z2) = -0.5 * (A + B) - a / 3;
+ GSL_IMAG (*z2) = (sqrt (3.0) / 2.0) * fabs(A - B);
+ }
+ else
+ {
+ GSL_REAL (*z0) = -0.5 * (A + B) - a / 3;
+ GSL_IMAG (*z0) = -(sqrt (3.0) / 2.0) * fabs(A - B);
+
+ GSL_REAL (*z1) = -0.5 * (A + B) - a / 3;
+ GSL_IMAG (*z1) = (sqrt (3.0) / 2.0) * fabs(A - B);
+
+ GSL_REAL (*z2) = A + B - a / 3;
+ GSL_IMAG (*z2) = 0;
+ }
+
+ return 3;
+ }
+}