summaryrefslogtreecommitdiff
path: root/gsl-1.9/linalg/exponential.c
blob: 3d0df25c6521684ce0fb306d90d7c523b03a5655 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
/* linalg/exponential.c
 * 
 * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002 Gerard Jungman, Brian Gough
 * 
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or (at
 * your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 */

/* Author:  G. Jungman */

/* Calculate the matrix exponential, following
 * Moler + Van Loan, SIAM Rev. 20, 801 (1978).
 */

#include <config.h>
#include <stdlib.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_mode.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_blas.h>

#include "gsl_linalg.h"


/* store one of the suggested choices for the
 * Taylor series / square  method from Moler + VanLoan
 */
struct moler_vanloan_optimal_suggestion
{
  int k;
  int j;
};
typedef  struct moler_vanloan_optimal_suggestion  mvl_suggestion_t;


/* table from Moler and Van Loan
 * mvl_tab[gsl_mode_t][matrix_norm_group]
 */
static mvl_suggestion_t mvl_tab[3][6] =
{
  /* double precision */
  {
    { 5, 1 }, { 5, 4 }, { 7, 5 }, { 9, 7 }, { 10, 10 }, { 8, 14 }
  },

  /* single precision */
  {
    { 2, 1 }, { 4, 0 }, { 7, 1 }, { 6, 5 }, { 5, 9 }, { 7, 11 }
  },

  /* approx precision */
  {
    { 1, 0 }, { 3, 0 }, { 5, 1 }, { 4, 5 }, { 4, 8 }, { 2, 11 }
  }
};


inline
static double
sup_norm(const gsl_matrix * A)
{
  double min, max;
  gsl_matrix_minmax(A, &min, &max);
  return GSL_MAX_DBL(fabs(min), fabs(max));
}


static
mvl_suggestion_t
obtain_suggestion(const gsl_matrix * A, gsl_mode_t mode)
{
  const unsigned int mode_prec = GSL_MODE_PREC(mode);
  const double norm_A = sup_norm(A);
  if(norm_A < 0.01) return mvl_tab[mode_prec][0];
  else if(norm_A < 0.1) return mvl_tab[mode_prec][1];
  else if(norm_A < 1.0) return mvl_tab[mode_prec][2];
  else if(norm_A < 10.0) return mvl_tab[mode_prec][3];
  else if(norm_A < 100.0) return mvl_tab[mode_prec][4];
  else if(norm_A < 1000.0) return mvl_tab[mode_prec][5];
  else
  {
    /* outside the table we simply increase the number
     * of squarings, bringing the reduced matrix into
     * the range of the table; this is obviously suboptimal,
     * but that is the price paid for not having those extra
     * table entries
     */
    const double extra = log(1.01*norm_A/1000.0) / M_LN2;
    const int extra_i = (unsigned int) ceil(extra);
    mvl_suggestion_t s = mvl_tab[mode][5];
    s.j += extra_i;
    return s;
  }
}


/* use series representation to calculate matrix exponential;
 * this is used for small matrices; we use the sup_norm
 * to measure the size of the terms in the expansion
 */
static void
matrix_exp_series(
  const gsl_matrix * B,
  gsl_matrix * eB,
  int number_of_terms
  )
{
  int count;
  gsl_matrix * temp = gsl_matrix_calloc(B->size1, B->size2);

  /* init the Horner polynomial evaluation,
   * eB = 1 + B/number_of_terms; we use
   * eB to collect the partial results
   */  
  gsl_matrix_memcpy(eB, B);
  gsl_matrix_scale(eB, 1.0/number_of_terms);
  gsl_matrix_add_diagonal(eB, 1.0);
  for(count = number_of_terms-1; count >= 1; --count)
  {
    /*  mult_temp = 1 + B eB / count  */
    gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, B, eB, 0.0, temp);
    gsl_matrix_scale(temp, 1.0/count);
    gsl_matrix_add_diagonal(temp, 1.0);

    /*  transfer partial result out of temp */
    gsl_matrix_memcpy(eB, temp);
  }

  /* now eB holds the full result; we're done */
  gsl_matrix_free(temp);
}


int
gsl_linalg_exponential_ss(
  const gsl_matrix * A,
  gsl_matrix * eA,
  gsl_mode_t mode
  )
{
  if(A->size1 != A->size2)
  {
    GSL_ERROR("cannot exponentiate a non-square matrix", GSL_ENOTSQR);
  }
  else if(A->size1 != eA->size1 || A->size2 != eA->size2)
  {
    GSL_ERROR("exponential of matrix must have same dimension as matrix", GSL_EBADLEN);
  }
  else
  {
    int i;
    const mvl_suggestion_t sugg = obtain_suggestion(A, mode);
    const double divisor = exp(M_LN2 * sugg.j);

    gsl_matrix * reduced_A = gsl_matrix_alloc(A->size1, A->size2);

    /*  decrease A by the calculated divisor  */
    gsl_matrix_memcpy(reduced_A, A);
    gsl_matrix_scale(reduced_A, 1.0/divisor);

    /*  calculate exp of reduced matrix; store in eA as temp  */
    matrix_exp_series(reduced_A, eA, sugg.k);

    /*  square repeatedly; use reduced_A for scratch */
    for(i = 0; i < sugg.j; ++i)
    {
      gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, eA, eA, 0.0, reduced_A);
      gsl_matrix_memcpy(eA, reduced_A);
    }

    gsl_matrix_free(reduced_A);

    return GSL_SUCCESS;
  }
}