summaryrefslogtreecommitdiff
path: root/gsl-1.9/linalg/exponential.c
diff options
context:
space:
mode:
Diffstat (limited to 'gsl-1.9/linalg/exponential.c')
-rw-r--r--gsl-1.9/linalg/exponential.c187
1 files changed, 187 insertions, 0 deletions
diff --git a/gsl-1.9/linalg/exponential.c b/gsl-1.9/linalg/exponential.c
new file mode 100644
index 0000000..3d0df25
--- /dev/null
+++ b/gsl-1.9/linalg/exponential.c
@@ -0,0 +1,187 @@
+/* linalg/exponential.c
+ *
+ * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002 Gerard Jungman, Brian Gough
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or (at
+ * your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful, but
+ * WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+ */
+
+/* Author: G. Jungman */
+
+/* Calculate the matrix exponential, following
+ * Moler + Van Loan, SIAM Rev. 20, 801 (1978).
+ */
+
+#include <config.h>
+#include <stdlib.h>
+#include <gsl/gsl_math.h>
+#include <gsl/gsl_mode.h>
+#include <gsl/gsl_errno.h>
+#include <gsl/gsl_blas.h>
+
+#include "gsl_linalg.h"
+
+
+/* store one of the suggested choices for the
+ * Taylor series / square method from Moler + VanLoan
+ */
+struct moler_vanloan_optimal_suggestion
+{
+ int k;
+ int j;
+};
+typedef struct moler_vanloan_optimal_suggestion mvl_suggestion_t;
+
+
+/* table from Moler and Van Loan
+ * mvl_tab[gsl_mode_t][matrix_norm_group]
+ */
+static mvl_suggestion_t mvl_tab[3][6] =
+{
+ /* double precision */
+ {
+ { 5, 1 }, { 5, 4 }, { 7, 5 }, { 9, 7 }, { 10, 10 }, { 8, 14 }
+ },
+
+ /* single precision */
+ {
+ { 2, 1 }, { 4, 0 }, { 7, 1 }, { 6, 5 }, { 5, 9 }, { 7, 11 }
+ },
+
+ /* approx precision */
+ {
+ { 1, 0 }, { 3, 0 }, { 5, 1 }, { 4, 5 }, { 4, 8 }, { 2, 11 }
+ }
+};
+
+
+inline
+static double
+sup_norm(const gsl_matrix * A)
+{
+ double min, max;
+ gsl_matrix_minmax(A, &min, &max);
+ return GSL_MAX_DBL(fabs(min), fabs(max));
+}
+
+
+static
+mvl_suggestion_t
+obtain_suggestion(const gsl_matrix * A, gsl_mode_t mode)
+{
+ const unsigned int mode_prec = GSL_MODE_PREC(mode);
+ const double norm_A = sup_norm(A);
+ if(norm_A < 0.01) return mvl_tab[mode_prec][0];
+ else if(norm_A < 0.1) return mvl_tab[mode_prec][1];
+ else if(norm_A < 1.0) return mvl_tab[mode_prec][2];
+ else if(norm_A < 10.0) return mvl_tab[mode_prec][3];
+ else if(norm_A < 100.0) return mvl_tab[mode_prec][4];
+ else if(norm_A < 1000.0) return mvl_tab[mode_prec][5];
+ else
+ {
+ /* outside the table we simply increase the number
+ * of squarings, bringing the reduced matrix into
+ * the range of the table; this is obviously suboptimal,
+ * but that is the price paid for not having those extra
+ * table entries
+ */
+ const double extra = log(1.01*norm_A/1000.0) / M_LN2;
+ const int extra_i = (unsigned int) ceil(extra);
+ mvl_suggestion_t s = mvl_tab[mode][5];
+ s.j += extra_i;
+ return s;
+ }
+}
+
+
+/* use series representation to calculate matrix exponential;
+ * this is used for small matrices; we use the sup_norm
+ * to measure the size of the terms in the expansion
+ */
+static void
+matrix_exp_series(
+ const gsl_matrix * B,
+ gsl_matrix * eB,
+ int number_of_terms
+ )
+{
+ int count;
+ gsl_matrix * temp = gsl_matrix_calloc(B->size1, B->size2);
+
+ /* init the Horner polynomial evaluation,
+ * eB = 1 + B/number_of_terms; we use
+ * eB to collect the partial results
+ */
+ gsl_matrix_memcpy(eB, B);
+ gsl_matrix_scale(eB, 1.0/number_of_terms);
+ gsl_matrix_add_diagonal(eB, 1.0);
+ for(count = number_of_terms-1; count >= 1; --count)
+ {
+ /* mult_temp = 1 + B eB / count */
+ gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, B, eB, 0.0, temp);
+ gsl_matrix_scale(temp, 1.0/count);
+ gsl_matrix_add_diagonal(temp, 1.0);
+
+ /* transfer partial result out of temp */
+ gsl_matrix_memcpy(eB, temp);
+ }
+
+ /* now eB holds the full result; we're done */
+ gsl_matrix_free(temp);
+}
+
+
+int
+gsl_linalg_exponential_ss(
+ const gsl_matrix * A,
+ gsl_matrix * eA,
+ gsl_mode_t mode
+ )
+{
+ if(A->size1 != A->size2)
+ {
+ GSL_ERROR("cannot exponentiate a non-square matrix", GSL_ENOTSQR);
+ }
+ else if(A->size1 != eA->size1 || A->size2 != eA->size2)
+ {
+ GSL_ERROR("exponential of matrix must have same dimension as matrix", GSL_EBADLEN);
+ }
+ else
+ {
+ int i;
+ const mvl_suggestion_t sugg = obtain_suggestion(A, mode);
+ const double divisor = exp(M_LN2 * sugg.j);
+
+ gsl_matrix * reduced_A = gsl_matrix_alloc(A->size1, A->size2);
+
+ /* decrease A by the calculated divisor */
+ gsl_matrix_memcpy(reduced_A, A);
+ gsl_matrix_scale(reduced_A, 1.0/divisor);
+
+ /* calculate exp of reduced matrix; store in eA as temp */
+ matrix_exp_series(reduced_A, eA, sugg.k);
+
+ /* square repeatedly; use reduced_A for scratch */
+ for(i = 0; i < sugg.j; ++i)
+ {
+ gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, eA, eA, 0.0, reduced_A);
+ gsl_matrix_memcpy(eA, reduced_A);
+ }
+
+ gsl_matrix_free(reduced_A);
+
+ return GSL_SUCCESS;
+ }
+}
+