summaryrefslogtreecommitdiff
path: root/gsl-1.9/doc/blas.texi
blob: 65ad95b759f2d7c91f1bdf60512ff7b0a3fb83ad (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
@cindex linear algebra, BLAS
@cindex matrix, operations
@cindex vector, operations
@cindex BLAS
@cindex CBLAS
@cindex Basic Linear Algebra Subroutines (BLAS)

The Basic Linear Algebra Subprograms (@sc{blas}) define a set of fundamental
operations on vectors and matrices which can be used to create optimized
higher-level linear algebra functionality.

The library provides a low-level layer which corresponds directly to the
C-language @sc{blas} standard, referred to here as ``@sc{cblas}'', and a
higher-level interface for operations on GSL vectors and matrices.
Users who are interested in simple operations on GSL vector and matrix
objects should use the high-level layer, which is declared in the file
@code{gsl_blas.h}.  This should satisfy the needs of most users.  Note
that GSL matrices are implemented using dense-storage so the interface
only includes the corresponding dense-storage @sc{blas} functions.  The full
@sc{blas} functionality for band-format and packed-format matrices is
available through the low-level @sc{cblas} interface.

The interface for the @code{gsl_cblas} layer is specified in the file
@code{gsl_cblas.h}.  This interface corresponds to the @sc{blas} Technical
Forum's draft standard for the C interface to legacy @sc{blas}
implementations. Users who have access to other conforming @sc{cblas}
implementations can use these in place of the version provided by the
library.  Note that users who have only a Fortran @sc{blas} library can
use a @sc{cblas} conformant wrapper to convert it into a @sc{cblas}
library.  A reference @sc{cblas} wrapper for legacy Fortran
implementations exists as part of the draft @sc{cblas} standard and can
be obtained from Netlib.  The complete set of @sc{cblas} functions is
listed in an appendix (@pxref{GSL CBLAS Library}).

There are three levels of @sc{blas} operations,

@table @b
@item Level 1
Vector operations, e.g. @math{y = \alpha x + y}
@item Level 2
Matrix-vector operations, e.g. @math{y = \alpha A x + \beta y}
@item Level 3
Matrix-matrix operations, e.g. @math{C = \alpha A B + C}
@end table

@noindent
Each routine has a name which specifies the operation, the type of
matrices involved and their precisions.  Some of the most common
operations and their names are given below,

@table @b
@item DOT
scalar product, @math{x^T y}
@item AXPY
vector sum, @math{\alpha x + y}
@item MV
matrix-vector product, @math{A x}
@item SV
matrix-vector solve, @math{inv(A) x}
@item MM
matrix-matrix product, @math{A B}
@item SM
matrix-matrix solve, @math{inv(A) B}
@end table

@noindent
The types of matrices are,

@table @b
@item GE
general
@item GB
general band
@item SY
symmetric
@item SB
symmetric band
@item SP
symmetric packed
@item HE
hermitian
@item HB
hermitian band
@item HP
hermitian packed
@item TR
triangular 
@item TB
triangular band
@item TP
triangular packed
@end table

@noindent
Each operation is defined for four precisions,

@table @b
@item S
single real
@item D
double real
@item C
single complex
@item Z
double complex
@end table

@noindent
Thus, for example, the name @sc{sgemm} stands for ``single-precision
general matrix-matrix multiply'' and @sc{zgemm} stands for
``double-precision complex matrix-matrix multiply''.

@menu
* GSL BLAS Interface::          
* BLAS Examples::               
* BLAS References and Further Reading::  
@end menu

@node GSL BLAS Interface
@section GSL BLAS Interface

GSL provides dense vector and matrix objects, based on the relevant
built-in types.  The library provides an interface to the @sc{blas}
operations which apply to these objects.  The interface to this
functionality is given in the file @code{gsl_blas.h}.

@comment CblasNoTrans, CblasTrans, CblasConjTrans
@comment CblasUpper, CblasLower
@comment CblasNonUnit, CblasUnit
@comment CblasLeft, CblasRight

@menu
* Level 1 GSL BLAS Interface::  
* Level 2 GSL BLAS Interface::  
* Level 3 GSL BLAS Interface::  
@end menu

@node Level 1 GSL BLAS Interface
@subsection Level 1 

@deftypefun int gsl_blas_sdsdot (float @var{alpha}, const gsl_vector_float * @var{x}, const gsl_vector_float * @var{y}, float * @var{result})
@cindex DOT, Level-1 BLAS
This function computes the sum @math{\alpha + x^T y} for the vectors
@var{x} and @var{y}, returning the result in @var{result}.
@end deftypefun

@deftypefun int gsl_blas_sdot (const gsl_vector_float * @var{x}, const gsl_vector_float * @var{y}, float * @var{result})
@deftypefunx int gsl_blas_dsdot (const gsl_vector_float * @var{x}, const gsl_vector_float * @var{y}, double * @var{result})
@deftypefunx int gsl_blas_ddot (const gsl_vector * @var{x}, const gsl_vector * @var{y}, double * @var{result})
These functions compute the scalar product @math{x^T y} for the vectors
@var{x} and @var{y}, returning the result in @var{result}.
@end deftypefun

@deftypefun int gsl_blas_cdotu (const gsl_vector_complex_float * @var{x}, const gsl_vector_complex_float * @var{y}, gsl_complex_float * @var{dotu})
@deftypefunx int gsl_blas_zdotu (const gsl_vector_complex * @var{x}, const gsl_vector_complex * @var{y}, gsl_complex * @var{dotu})
These functions compute the complex scalar product @math{x^T y} for the
vectors @var{x} and @var{y}, returning the result in @var{result}
@end deftypefun

@deftypefun int gsl_blas_cdotc (const gsl_vector_complex_float * @var{x}, const gsl_vector_complex_float * @var{y}, gsl_complex_float * @var{dotc})
@deftypefunx int gsl_blas_zdotc (const gsl_vector_complex * @var{x}, const gsl_vector_complex * @var{y}, gsl_complex * @var{dotc})
These functions compute the complex conjugate scalar product @math{x^H
y} for the vectors @var{x} and @var{y}, returning the result in
@var{result}
@end deftypefun

@deftypefun float gsl_blas_snrm2 (const gsl_vector_float * @var{x})
@deftypefunx double gsl_blas_dnrm2 (const gsl_vector * @var{x})
@cindex NRM2, Level-1 BLAS
These functions compute the Euclidean norm 
@c{$||x||_2 = \sqrt{\sum x_i^2}$}
@math{||x||_2 = \sqrt @{\sum x_i^2@}} of the vector @var{x}.
@end deftypefun

@deftypefun float gsl_blas_scnrm2 (const gsl_vector_complex_float * @var{x})
@deftypefunx double gsl_blas_dznrm2 (const gsl_vector_complex * @var{x})
These functions compute the Euclidean norm of the complex vector @var{x},
@tex
\beforedisplay
$$
||x||_2 = \sqrt{\sum (\Re(x_i)^2 + \Im(x_i)^2)}.
$$
\afterdisplay
@end tex
@ifinfo

@example
||x||_2 = \sqrt @{\sum (\Re(x_i)^2 + \Im(x_i)^2)@}.
@end example
@end ifinfo
@end deftypefun

@deftypefun float gsl_blas_sasum (const gsl_vector_float * @var{x})
@deftypefunx double gsl_blas_dasum (const gsl_vector * @var{x})
@cindex ASUM, Level-1 BLAS
These functions compute the absolute sum @math{\sum |x_i|} of the
elements of the vector @var{x}.
@end deftypefun

@deftypefun float gsl_blas_scasum (const gsl_vector_complex_float * @var{x})
@deftypefunx double gsl_blas_dzasum (const gsl_vector_complex * @var{x})
These functions compute the sum of the magnitudes of the real and
imaginary parts of the complex vector @var{x}, 
@c{$\sum \left( |\Re(x_i)| + |\Im(x_i)| \right)$}
@math{\sum |\Re(x_i)| + |\Im(x_i)|}.
@end deftypefun

@deftypefun CBLAS_INDEX_t gsl_blas_isamax (const gsl_vector_float * @var{x})
@deftypefunx CBLAS_INDEX_t gsl_blas_idamax (const gsl_vector * @var{x})
@deftypefunx CBLAS_INDEX_t gsl_blas_icamax (const gsl_vector_complex_float * @var{x})
@deftypefunx CBLAS_INDEX_t gsl_blas_izamax (const gsl_vector_complex * @var{x})
@cindex AMAX, Level-1 BLAS
These functions return the index of the largest element of the vector
@var{x}. The largest element is determined by its absolute magnitude for
real vectors and by the sum of the magnitudes of the real and imaginary
parts @math{|\Re(x_i)| + |\Im(x_i)|} for complex vectors.  If the
largest value occurs several times then the index of the first
occurrence is returned.
@end deftypefun

@deftypefun int gsl_blas_sswap (gsl_vector_float * @var{x}, gsl_vector_float * @var{y})
@deftypefunx int gsl_blas_dswap (gsl_vector * @var{x}, gsl_vector * @var{y})
@deftypefunx int gsl_blas_cswap (gsl_vector_complex_float * @var{x}, gsl_vector_complex_float * @var{y})
@deftypefunx int gsl_blas_zswap (gsl_vector_complex * @var{x}, gsl_vector_complex * @var{y})
@cindex SWAP, Level-1 BLAS
These functions exchange the elements of the vectors @var{x} and @var{y}.
@end deftypefun

@deftypefun int gsl_blas_scopy (const gsl_vector_float * @var{x}, gsl_vector_float * @var{y})
@deftypefunx int gsl_blas_dcopy (const gsl_vector * @var{x}, gsl_vector * @var{y})
@deftypefunx int gsl_blas_ccopy (const gsl_vector_complex_float * @var{x}, gsl_vector_complex_float * @var{y})
@deftypefunx int gsl_blas_zcopy (const gsl_vector_complex * @var{x}, gsl_vector_complex * @var{y})
@cindex COPY, Level-1 BLAS
These functions copy the elements of the vector @var{x} into the vector
@var{y}.
@end deftypefun


@deftypefun int gsl_blas_saxpy (float @var{alpha}, const gsl_vector_float * @var{x}, gsl_vector_float * @var{y})
@deftypefunx int gsl_blas_daxpy (double @var{alpha}, const gsl_vector * @var{x}, gsl_vector * @var{y})
@deftypefunx int gsl_blas_caxpy (const gsl_complex_float @var{alpha}, const gsl_vector_complex_float * @var{x}, gsl_vector_complex_float * @var{y})
@deftypefunx int gsl_blas_zaxpy (const gsl_complex @var{alpha}, const gsl_vector_complex * @var{x}, gsl_vector_complex * @var{y})
@cindex AXPY, Level-1 BLAS
@cindex DAXPY, Level-1 BLAS
@cindex SAXPY, Level-1 BLAS
These functions compute the sum @math{y = \alpha x + y} for the vectors
@var{x} and @var{y}.
@end deftypefun

@deftypefun void gsl_blas_sscal (float @var{alpha}, gsl_vector_float * @var{x})
@deftypefunx void gsl_blas_dscal (double @var{alpha}, gsl_vector * @var{x})
@deftypefunx void gsl_blas_cscal (const gsl_complex_float @var{alpha}, gsl_vector_complex_float * @var{x})
@deftypefunx void gsl_blas_zscal (const gsl_complex @var{alpha}, gsl_vector_complex * @var{x})
@deftypefunx void gsl_blas_csscal (float @var{alpha}, gsl_vector_complex_float * @var{x})
@deftypefunx void gsl_blas_zdscal (double @var{alpha}, gsl_vector_complex * @var{x})
@cindex SCAL, Level-1 BLAS
These functions rescale the vector @var{x} by the multiplicative factor
@var{alpha}.
@end deftypefun

@deftypefun int gsl_blas_srotg (float @var{a}[], float @var{b}[], float @var{c}[], float @var{s}[])
@deftypefunx int gsl_blas_drotg (double @var{a}[], double @var{b}[], double @var{c}[], double @var{s}[])
@cindex ROTG, Level-1 BLAS
@cindex Givens Rotation, BLAS
These functions compute a Givens rotation @math{(c,s)} which zeroes the
vector @math{(a,b)},
@tex
\beforedisplay
$$
\left(
\matrix{c&s\cr
-s&c\cr}
\right)
\left(
\matrix{a\cr
b\cr}
\right)
=
\left(
\matrix{r'\cr
0\cr}
\right)
$$
\afterdisplay
@end tex
@ifinfo

@example
[  c  s ] [ a ] = [ r ]
[ -s  c ] [ b ]   [ 0 ]
@end example

@end ifinfo
@noindent
The variables @var{a} and @var{b} are overwritten by the routine.
@end deftypefun

@deftypefun int gsl_blas_srot (gsl_vector_float * @var{x}, gsl_vector_float * @var{y}, float @var{c}, float @var{s})
@deftypefunx int gsl_blas_drot (gsl_vector * @var{x}, gsl_vector * @var{y}, const double @var{c}, const double @var{s})
These functions apply a Givens rotation @math{(x', y') = (c x + s y, -s
x + c y)} to the vectors @var{x}, @var{y}.
@end deftypefun

@deftypefun int gsl_blas_srotmg (float @var{d1}[], float @var{d2}[], float @var{b1}[], float @var{b2}, float @var{P}[])
@deftypefunx int gsl_blas_drotmg (double @var{d1}[], double @var{d2}[], double @var{b1}[], double @var{b2}, double @var{P}[])
@cindex Modified Givens Rotation, BLAS
@cindex Givens Rotation, Modified, BLAS
These functions compute a modified Givens transformation.  The modified
Givens transformation is defined in the original Level-1 @sc{blas}
specification, given in the references.
@end deftypefun

@deftypefun int gsl_blas_srotm (gsl_vector_float * @var{x}, gsl_vector_float * @var{y}, const float @var{P}[])
@deftypefunx int gsl_blas_drotm (gsl_vector * @var{x}, gsl_vector * @var{y}, const double @var{P}[])
These functions apply a modified Givens transformation.  
@end deftypefun

@node Level 2 GSL BLAS Interface
@subsection Level 2 

@deftypefun int gsl_blas_sgemv (CBLAS_TRANSPOSE_t @var{TransA}, float @var{alpha}, const gsl_matrix_float * @var{A}, const gsl_vector_float * @var{x}, float @var{beta}, gsl_vector_float * @var{y})
@deftypefunx int gsl_blas_dgemv (CBLAS_TRANSPOSE_t @var{TransA}, double @var{alpha}, const gsl_matrix * @var{A}, const gsl_vector * @var{x}, double @var{beta}, gsl_vector * @var{y})
@deftypefunx int gsl_blas_cgemv (CBLAS_TRANSPOSE_t @var{TransA}, const gsl_complex_float @var{alpha}, const gsl_matrix_complex_float * @var{A}, const gsl_vector_complex_float * @var{x}, const gsl_complex_float @var{beta}, gsl_vector_complex_float * @var{y})
@deftypefunx int gsl_blas_zgemv (CBLAS_TRANSPOSE_t @var{TransA}, const gsl_complex @var{alpha}, const gsl_matrix_complex * @var{A}, const gsl_vector_complex * @var{x}, const gsl_complex @var{beta}, gsl_vector_complex * @var{y})
@cindex GEMV, Level-2 BLAS
These functions compute the matrix-vector product and sum @math{y =
\alpha op(A) x + \beta y}, where @math{op(A) = A},
@math{A^T}, @math{A^H} for @var{TransA} = @code{CblasNoTrans},
@code{CblasTrans}, @code{CblasConjTrans}.
@end deftypefun


@deftypefun int gsl_blas_strmv (CBLAS_UPLO_t @var{Uplo}, CBLAS_TRANSPOSE_t @var{TransA}, CBLAS_DIAG_t @var{Diag}, const gsl_matrix_float * @var{A}, gsl_vector_float * @var{x})
@deftypefunx int gsl_blas_dtrmv (CBLAS_UPLO_t @var{Uplo}, CBLAS_TRANSPOSE_t @var{TransA}, CBLAS_DIAG_t @var{Diag}, const gsl_matrix * @var{A}, gsl_vector * @var{x})
@deftypefunx int gsl_blas_ctrmv (CBLAS_UPLO_t @var{Uplo}, CBLAS_TRANSPOSE_t @var{TransA}, CBLAS_DIAG_t @var{Diag}, const gsl_matrix_complex_float * @var{A}, gsl_vector_complex_float * @var{x})
@deftypefunx int gsl_blas_ztrmv (CBLAS_UPLO_t @var{Uplo}, CBLAS_TRANSPOSE_t @var{TransA}, CBLAS_DIAG_t @var{Diag}, const gsl_matrix_complex * @var{A}, gsl_vector_complex * @var{x})
@cindex TRMV, Level-2 BLAS
These functions compute the matrix-vector product 
@math{x = op(A) x} for the triangular matrix @var{A}, where
@math{op(A) = A}, @math{A^T}, @math{A^H} for @var{TransA} =
@code{CblasNoTrans}, @code{CblasTrans}, @code{CblasConjTrans}.  When
@var{Uplo} is @code{CblasUpper} then the upper triangle of @var{A} is
used, and when @var{Uplo} is @code{CblasLower} then the lower triangle
of @var{A} is used.  If @var{Diag} is @code{CblasNonUnit} then the
diagonal of the matrix is used, but if @var{Diag} is @code{CblasUnit}
then the diagonal elements of the matrix @var{A} are taken as unity and
are not referenced.
@end deftypefun


@deftypefun int gsl_blas_strsv (CBLAS_UPLO_t @var{Uplo}, CBLAS_TRANSPOSE_t @var{TransA}, CBLAS_DIAG_t @var{Diag}, const gsl_matrix_float * @var{A}, gsl_vector_float * @var{x})
@deftypefunx int gsl_blas_dtrsv (CBLAS_UPLO_t @var{Uplo}, CBLAS_TRANSPOSE_t @var{TransA}, CBLAS_DIAG_t @var{Diag}, const gsl_matrix * @var{A}, gsl_vector * @var{x})
@deftypefunx int gsl_blas_ctrsv (CBLAS_UPLO_t @var{Uplo}, CBLAS_TRANSPOSE_t @var{TransA}, CBLAS_DIAG_t @var{Diag}, const gsl_matrix_complex_float * @var{A}, gsl_vector_complex_float * @var{x})
@deftypefunx int gsl_blas_ztrsv (CBLAS_UPLO_t @var{Uplo}, CBLAS_TRANSPOSE_t @var{TransA}, CBLAS_DIAG_t @var{Diag}, const gsl_matrix_complex * @var{A}, gsl_vector_complex * @var{x})
@cindex TRSV, Level-2 BLAS
These functions compute @math{inv(op(A)) x} for @var{x}, where
@math{op(A) = A}, @math{A^T}, @math{A^H} for @var{TransA} =
@code{CblasNoTrans}, @code{CblasTrans}, @code{CblasConjTrans}.  When
@var{Uplo} is @code{CblasUpper} then the upper triangle of @var{A} is
used, and when @var{Uplo} is @code{CblasLower} then the lower triangle
of @var{A} is used.  If @var{Diag} is @code{CblasNonUnit} then the
diagonal of the matrix is used, but if @var{Diag} is @code{CblasUnit}
then the diagonal elements of the matrix @var{A} are taken as unity and
are not referenced.
@end deftypefun


@deftypefun int gsl_blas_ssymv (CBLAS_UPLO_t @var{Uplo}, float @var{alpha}, const gsl_matrix_float * @var{A}, const gsl_vector_float * @var{x}, float @var{beta}, gsl_vector_float * @var{y})
@deftypefunx int gsl_blas_dsymv (CBLAS_UPLO_t @var{Uplo}, double @var{alpha}, const gsl_matrix * @var{A}, const gsl_vector * @var{x}, double @var{beta}, gsl_vector * @var{y})
@cindex SYMV, Level-2 BLAS
These functions compute the matrix-vector product and sum @math{y =
\alpha A x + \beta y} for the symmetric matrix @var{A}.  Since the
matrix @var{A} is symmetric only its upper half or lower half need to be
stored.  When @var{Uplo} is @code{CblasUpper} then the upper triangle
and diagonal of @var{A} are used, and when @var{Uplo} is
@code{CblasLower} then the lower triangle and diagonal of @var{A} are
used.
@end deftypefun

@deftypefun int gsl_blas_chemv (CBLAS_UPLO_t @var{Uplo}, const gsl_complex_float @var{alpha}, const gsl_matrix_complex_float * @var{A}, const gsl_vector_complex_float * @var{x}, const gsl_complex_float @var{beta}, gsl_vector_complex_float * @var{y})
@deftypefunx int gsl_blas_zhemv (CBLAS_UPLO_t @var{Uplo}, const gsl_complex @var{alpha}, const gsl_matrix_complex * @var{A}, const gsl_vector_complex * @var{x}, const gsl_complex @var{beta}, gsl_vector_complex * @var{y})
@cindex HEMV, Level-2 BLAS
These functions compute the matrix-vector product and sum @math{y =
\alpha A x + \beta y} for the hermitian matrix @var{A}.  Since the
matrix @var{A} is hermitian only its upper half or lower half need to be
stored.  When @var{Uplo} is @code{CblasUpper} then the upper triangle
and diagonal of @var{A} are used, and when @var{Uplo} is
@code{CblasLower} then the lower triangle and diagonal of @var{A} are
used.  The imaginary elements of the diagonal are automatically assumed
to be zero and are not referenced.
@end deftypefun

@deftypefun int gsl_blas_sger (float @var{alpha}, const gsl_vector_float * @var{x}, const gsl_vector_float * @var{y}, gsl_matrix_float * @var{A})
@deftypefunx int gsl_blas_dger (double @var{alpha}, const gsl_vector * @var{x}, const gsl_vector * @var{y}, gsl_matrix * @var{A})
@deftypefunx int gsl_blas_cgeru (const gsl_complex_float @var{alpha}, const gsl_vector_complex_float * @var{x}, const gsl_vector_complex_float * @var{y}, gsl_matrix_complex_float * @var{A})
@deftypefunx int gsl_blas_zgeru (const gsl_complex @var{alpha}, const gsl_vector_complex * @var{x}, const gsl_vector_complex * @var{y}, gsl_matrix_complex * @var{A})
@cindex GER, Level-2 BLAS
@cindex GERU, Level-2 BLAS
These functions compute the rank-1 update @math{A = \alpha x y^T + A} of
the matrix @var{A}.
@end deftypefun

@deftypefun int gsl_blas_cgerc (const gsl_complex_float @var{alpha}, const gsl_vector_complex_float * @var{x}, const gsl_vector_complex_float * @var{y}, gsl_matrix_complex_float * @var{A})
@deftypefunx int gsl_blas_zgerc (const gsl_complex @var{alpha}, const gsl_vector_complex * @var{x}, const gsl_vector_complex * @var{y}, gsl_matrix_complex * @var{A})
@cindex GERC, Level-2 BLAS
These functions compute the conjugate rank-1 update @math{A = \alpha x
y^H + A} of the matrix @var{A}.
@end deftypefun

@deftypefun int gsl_blas_ssyr (CBLAS_UPLO_t @var{Uplo}, float @var{alpha}, const gsl_vector_float * @var{x}, gsl_matrix_float * @var{A})
@deftypefunx int gsl_blas_dsyr (CBLAS_UPLO_t @var{Uplo}, double @var{alpha}, const gsl_vector * @var{x}, gsl_matrix * @var{A})
@cindex SYR, Level-2 BLAS
These functions compute the symmetric rank-1 update @math{A = \alpha x
x^T + A} of the symmetric matrix @var{A}.  Since the matrix @var{A} is
symmetric only its upper half or lower half need to be stored.  When
@var{Uplo} is @code{CblasUpper} then the upper triangle and diagonal of
@var{A} are used, and when @var{Uplo} is @code{CblasLower} then the
lower triangle and diagonal of @var{A} are used.
@end deftypefun

@deftypefun int gsl_blas_cher (CBLAS_UPLO_t @var{Uplo}, float @var{alpha}, const gsl_vector_complex_float * @var{x}, gsl_matrix_complex_float * @var{A})
@deftypefunx int gsl_blas_zher (CBLAS_UPLO_t @var{Uplo}, double @var{alpha}, const gsl_vector_complex * @var{x}, gsl_matrix_complex * @var{A})
@cindex HER, Level-2 BLAS
These functions compute the hermitian rank-1 update @math{A = \alpha x
x^H + A} of the hermitian matrix @var{A}.  Since the matrix @var{A} is
hermitian only its upper half or lower half need to be stored.  When
@var{Uplo} is @code{CblasUpper} then the upper triangle and diagonal of
@var{A} are used, and when @var{Uplo} is @code{CblasLower} then the
lower triangle and diagonal of @var{A} are used.  The imaginary elements
of the diagonal are automatically set to zero.
@end deftypefun

@deftypefun int gsl_blas_ssyr2 (CBLAS_UPLO_t @var{Uplo}, float @var{alpha}, const gsl_vector_float * @var{x}, const gsl_vector_float * @var{y}, gsl_matrix_float * @var{A})
@deftypefunx int gsl_blas_dsyr2 (CBLAS_UPLO_t @var{Uplo}, double @var{alpha}, const gsl_vector * @var{x}, const gsl_vector * @var{y}, gsl_matrix * @var{A})
@cindex SYR2, Level-2 BLAS
These functions compute the symmetric rank-2 update @math{A = \alpha x
y^T + \alpha y x^T + A} of the symmetric matrix @var{A}.  Since the
matrix @var{A} is symmetric only its upper half or lower half need to be
stored.  When @var{Uplo} is @code{CblasUpper} then the upper triangle
and diagonal of @var{A} are used, and when @var{Uplo} is
@code{CblasLower} then the lower triangle and diagonal of @var{A} are
used.
@end deftypefun

@deftypefun int gsl_blas_cher2 (CBLAS_UPLO_t @var{Uplo}, const gsl_complex_float @var{alpha}, const gsl_vector_complex_float * @var{x}, const gsl_vector_complex_float * @var{y}, gsl_matrix_complex_float * @var{A})
@deftypefunx int gsl_blas_zher2 (CBLAS_UPLO_t @var{Uplo}, const gsl_complex @var{alpha}, const gsl_vector_complex * @var{x}, const gsl_vector_complex * @var{y}, gsl_matrix_complex * @var{A})
@cindex HER2, Level-2 BLAS
These functions compute the hermitian rank-2 update @math{A = \alpha x
y^H + \alpha^* y x^H A} of the hermitian matrix @var{A}.  Since the
matrix @var{A} is hermitian only its upper half or lower half need to be
stored.  When @var{Uplo} is @code{CblasUpper} then the upper triangle
and diagonal of @var{A} are used, and when @var{Uplo} is
@code{CblasLower} then the lower triangle and diagonal of @var{A} are
used.  The imaginary elements of the diagonal are automatically set to zero.
@end deftypefun

@node Level 3 GSL BLAS Interface
@subsection Level 3


@deftypefun int gsl_blas_sgemm (CBLAS_TRANSPOSE_t @var{TransA}, CBLAS_TRANSPOSE_t @var{TransB}, float @var{alpha}, const gsl_matrix_float * @var{A}, const gsl_matrix_float * @var{B}, float @var{beta}, gsl_matrix_float * @var{C})
@deftypefunx int gsl_blas_dgemm (CBLAS_TRANSPOSE_t @var{TransA}, CBLAS_TRANSPOSE_t @var{TransB}, double @var{alpha}, const gsl_matrix * @var{A}, const gsl_matrix * @var{B}, double @var{beta}, gsl_matrix * @var{C})
@deftypefunx int gsl_blas_cgemm (CBLAS_TRANSPOSE_t @var{TransA}, CBLAS_TRANSPOSE_t @var{TransB}, const gsl_complex_float @var{alpha}, const gsl_matrix_complex_float * @var{A}, const gsl_matrix_complex_float * @var{B}, const gsl_complex_float @var{beta}, gsl_matrix_complex_float * @var{C})
@deftypefunx int gsl_blas_zgemm (CBLAS_TRANSPOSE_t @var{TransA}, CBLAS_TRANSPOSE_t @var{TransB}, const gsl_complex @var{alpha}, const gsl_matrix_complex * @var{A}, const gsl_matrix_complex * @var{B}, const gsl_complex @var{beta}, gsl_matrix_complex * @var{C})
@cindex GEMM, Level-3 BLAS
These functions compute the matrix-matrix product and sum @math{C =
\alpha op(A) op(B) + \beta C} where @math{op(A) = A}, @math{A^T},
@math{A^H} for @var{TransA} = @code{CblasNoTrans}, @code{CblasTrans},
@code{CblasConjTrans} and similarly for the parameter @var{TransB}.
@end deftypefun


@deftypefun int gsl_blas_ssymm (CBLAS_SIDE_t @var{Side}, CBLAS_UPLO_t @var{Uplo}, float @var{alpha}, const gsl_matrix_float * @var{A}, const gsl_matrix_float * @var{B}, float @var{beta}, gsl_matrix_float * @var{C})
@deftypefunx int gsl_blas_dsymm (CBLAS_SIDE_t @var{Side}, CBLAS_UPLO_t @var{Uplo}, double @var{alpha}, const gsl_matrix * @var{A}, const gsl_matrix * @var{B}, double @var{beta}, gsl_matrix * @var{C})
@deftypefunx int gsl_blas_csymm (CBLAS_SIDE_t @var{Side}, CBLAS_UPLO_t @var{Uplo}, const gsl_complex_float @var{alpha}, const gsl_matrix_complex_float * @var{A}, const gsl_matrix_complex_float * @var{B}, const gsl_complex_float @var{beta}, gsl_matrix_complex_float * @var{C})
@deftypefunx int gsl_blas_zsymm (CBLAS_SIDE_t @var{Side}, CBLAS_UPLO_t @var{Uplo}, const gsl_complex @var{alpha}, const gsl_matrix_complex * @var{A}, const gsl_matrix_complex * @var{B}, const gsl_complex @var{beta}, gsl_matrix_complex * @var{C})
@cindex SYMM, Level-3 BLAS
These functions compute the matrix-matrix product and sum @math{C =
\alpha A B + \beta C} for @var{Side} is @code{CblasLeft} and @math{C =
\alpha B A + \beta C} for @var{Side} is @code{CblasRight}, where the
matrix @var{A} is symmetric.  When @var{Uplo} is @code{CblasUpper} then
the upper triangle and diagonal of @var{A} are used, and when @var{Uplo}
is @code{CblasLower} then the lower triangle and diagonal of @var{A} are
used.
@end deftypefun

@deftypefun int gsl_blas_chemm (CBLAS_SIDE_t @var{Side}, CBLAS_UPLO_t @var{Uplo}, const gsl_complex_float @var{alpha}, const gsl_matrix_complex_float * @var{A}, const gsl_matrix_complex_float * @var{B}, const gsl_complex_float @var{beta}, gsl_matrix_complex_float * @var{C})
@deftypefunx int gsl_blas_zhemm (CBLAS_SIDE_t @var{Side}, CBLAS_UPLO_t @var{Uplo}, const gsl_complex @var{alpha}, const gsl_matrix_complex * @var{A}, const gsl_matrix_complex * @var{B}, const gsl_complex @var{beta}, gsl_matrix_complex * @var{C})
@cindex HEMM, Level-3 BLAS
These functions compute the matrix-matrix product and sum @math{C =
\alpha A B + \beta C} for @var{Side} is @code{CblasLeft} and @math{C =
\alpha B A + \beta C} for @var{Side} is @code{CblasRight}, where the
matrix @var{A} is hermitian.  When @var{Uplo} is @code{CblasUpper} then
the upper triangle and diagonal of @var{A} are used, and when @var{Uplo}
is @code{CblasLower} then the lower triangle and diagonal of @var{A} are
used.  The imaginary elements of the diagonal are automatically set to
zero.
@end deftypefun

@deftypefun int gsl_blas_strmm (CBLAS_SIDE_t @var{Side}, CBLAS_UPLO_t @var{Uplo}, CBLAS_TRANSPOSE_t @var{TransA}, CBLAS_DIAG_t @var{Diag}, float @var{alpha}, const gsl_matrix_float * @var{A}, gsl_matrix_float * @var{B})
@deftypefunx int gsl_blas_dtrmm (CBLAS_SIDE_t @var{Side}, CBLAS_UPLO_t @var{Uplo}, CBLAS_TRANSPOSE_t @var{TransA}, CBLAS_DIAG_t @var{Diag}, double @var{alpha}, const gsl_matrix * @var{A}, gsl_matrix * @var{B})
@deftypefunx int gsl_blas_ctrmm (CBLAS_SIDE_t @var{Side}, CBLAS_UPLO_t @var{Uplo}, CBLAS_TRANSPOSE_t @var{TransA}, CBLAS_DIAG_t @var{Diag}, const gsl_complex_float @var{alpha}, const gsl_matrix_complex_float * @var{A}, gsl_matrix_complex_float * @var{B})
@deftypefunx int gsl_blas_ztrmm (CBLAS_SIDE_t @var{Side}, CBLAS_UPLO_t @var{Uplo}, CBLAS_TRANSPOSE_t @var{TransA}, CBLAS_DIAG_t @var{Diag}, const gsl_complex @var{alpha}, const gsl_matrix_complex * @var{A}, gsl_matrix_complex * @var{B})
@cindex TRMM, Level-3 BLAS
These functions compute the matrix-matrix product @math{B = \alpha op(A)
B} for @var{Side} is @code{CblasLeft} and @math{B = \alpha B op(A)} for
@var{Side} is @code{CblasRight}.  The matrix @var{A} is triangular and
@math{op(A) = A}, @math{A^T}, @math{A^H} for @var{TransA} =
@code{CblasNoTrans}, @code{CblasTrans}, @code{CblasConjTrans}. When
@var{Uplo} is @code{CblasUpper} then the upper triangle of @var{A} is
used, and when @var{Uplo} is @code{CblasLower} then the lower triangle
of @var{A} is used.  If @var{Diag} is @code{CblasNonUnit} then the
diagonal of @var{A} is used, but if @var{Diag} is @code{CblasUnit} then
the diagonal elements of the matrix @var{A} are taken as unity and are
not referenced.
@end deftypefun


@deftypefun int gsl_blas_strsm (CBLAS_SIDE_t @var{Side}, CBLAS_UPLO_t @var{Uplo}, CBLAS_TRANSPOSE_t @var{TransA}, CBLAS_DIAG_t @var{Diag}, float @var{alpha}, const gsl_matrix_float * @var{A}, gsl_matrix_float * @var{B})
@deftypefunx int gsl_blas_dtrsm (CBLAS_SIDE_t @var{Side}, CBLAS_UPLO_t @var{Uplo}, CBLAS_TRANSPOSE_t @var{TransA}, CBLAS_DIAG_t @var{Diag}, double @var{alpha}, const gsl_matrix * @var{A}, gsl_matrix * @var{B})
@deftypefunx int gsl_blas_ctrsm (CBLAS_SIDE_t @var{Side}, CBLAS_UPLO_t @var{Uplo}, CBLAS_TRANSPOSE_t @var{TransA}, CBLAS_DIAG_t @var{Diag}, const gsl_complex_float @var{alpha}, const gsl_matrix_complex_float * @var{A}, gsl_matrix_complex_float * @var{B})
@deftypefunx int gsl_blas_ztrsm (CBLAS_SIDE_t @var{Side}, CBLAS_UPLO_t @var{Uplo}, CBLAS_TRANSPOSE_t @var{TransA}, CBLAS_DIAG_t @var{Diag}, const gsl_complex @var{alpha}, const gsl_matrix_complex * @var{A}, gsl_matrix_complex * @var{B})
@cindex TRSM, Level-3 BLAS
These functions compute the inverse-matrix matrix product 
@math{B = \alpha op(inv(A))B} for @var{Side} is 
@code{CblasLeft} and @math{B = \alpha B op(inv(A))} for
@var{Side} is @code{CblasRight}.  The matrix @var{A} is triangular and
@math{op(A) = A}, @math{A^T}, @math{A^H} for @var{TransA} =
@code{CblasNoTrans}, @code{CblasTrans}, @code{CblasConjTrans}. When
@var{Uplo} is @code{CblasUpper} then the upper triangle of @var{A} is
used, and when @var{Uplo} is @code{CblasLower} then the lower triangle
of @var{A} is used.  If @var{Diag} is @code{CblasNonUnit} then the
diagonal of @var{A} is used, but if @var{Diag} is @code{CblasUnit} then
the diagonal elements of the matrix @var{A} are taken as unity and are
not referenced.
@end deftypefun

@deftypefun int gsl_blas_ssyrk (CBLAS_UPLO_t @var{Uplo}, CBLAS_TRANSPOSE_t @var{Trans}, float @var{alpha}, const gsl_matrix_float * @var{A}, float @var{beta}, gsl_matrix_float * @var{C})
@deftypefunx int gsl_blas_dsyrk (CBLAS_UPLO_t @var{Uplo}, CBLAS_TRANSPOSE_t @var{Trans}, double @var{alpha}, const gsl_matrix * @var{A}, double @var{beta}, gsl_matrix * @var{C})
@deftypefunx int gsl_blas_csyrk (CBLAS_UPLO_t @var{Uplo}, CBLAS_TRANSPOSE_t @var{Trans}, const gsl_complex_float @var{alpha}, const gsl_matrix_complex_float * @var{A}, const gsl_complex_float @var{beta}, gsl_matrix_complex_float * @var{C})
@deftypefunx int gsl_blas_zsyrk (CBLAS_UPLO_t @var{Uplo}, CBLAS_TRANSPOSE_t @var{Trans}, const gsl_complex @var{alpha}, const gsl_matrix_complex * @var{A}, const gsl_complex @var{beta}, gsl_matrix_complex * @var{C})
@cindex SYRK, Level-3 BLAS
These functions compute a rank-k update of the symmetric matrix @var{C},
@math{C = \alpha A A^T + \beta C} when @var{Trans} is
@code{CblasNoTrans} and @math{C = \alpha A^T A + \beta C} when
@var{Trans} is @code{CblasTrans}.  Since the matrix @var{C} is symmetric
only its upper half or lower half need to be stored.  When @var{Uplo} is
@code{CblasUpper} then the upper triangle and diagonal of @var{C} are
used, and when @var{Uplo} is @code{CblasLower} then the lower triangle
and diagonal of @var{C} are used.
@end deftypefun

@deftypefun int gsl_blas_cherk (CBLAS_UPLO_t @var{Uplo}, CBLAS_TRANSPOSE_t @var{Trans}, float @var{alpha}, const gsl_matrix_complex_float * @var{A}, float @var{beta}, gsl_matrix_complex_float * @var{C})
@deftypefunx int gsl_blas_zherk (CBLAS_UPLO_t @var{Uplo}, CBLAS_TRANSPOSE_t @var{Trans}, double @var{alpha}, const gsl_matrix_complex * @var{A}, double @var{beta}, gsl_matrix_complex * @var{C})
@cindex HERK, Level-3 BLAS
These functions compute a rank-k update of the hermitian matrix @var{C},
@math{C = \alpha A A^H + \beta C} when @var{Trans} is
@code{CblasNoTrans} and @math{C = \alpha A^H A + \beta C} when
@var{Trans} is @code{CblasTrans}.  Since the matrix @var{C} is hermitian
only its upper half or lower half need to be stored.  When @var{Uplo} is
@code{CblasUpper} then the upper triangle and diagonal of @var{C} are
used, and when @var{Uplo} is @code{CblasLower} then the lower triangle
and diagonal of @var{C} are used.  The imaginary elements of the
diagonal are automatically set to zero.
@end deftypefun

@deftypefun int gsl_blas_ssyr2k (CBLAS_UPLO_t @var{Uplo}, CBLAS_TRANSPOSE_t @var{Trans}, float @var{alpha}, const gsl_matrix_float * @var{A}, const gsl_matrix_float * @var{B}, float @var{beta}, gsl_matrix_float * @var{C})
@deftypefunx int gsl_blas_dsyr2k (CBLAS_UPLO_t @var{Uplo}, CBLAS_TRANSPOSE_t @var{Trans}, double @var{alpha}, const gsl_matrix * @var{A}, const gsl_matrix * @var{B}, double @var{beta}, gsl_matrix * @var{C})
@deftypefunx int gsl_blas_csyr2k (CBLAS_UPLO_t @var{Uplo}, CBLAS_TRANSPOSE_t @var{Trans}, const gsl_complex_float @var{alpha}, const gsl_matrix_complex_float * @var{A}, const gsl_matrix_complex_float * @var{B}, const gsl_complex_float @var{beta}, gsl_matrix_complex_float * @var{C})
@deftypefunx int gsl_blas_zsyr2k (CBLAS_UPLO_t @var{Uplo}, CBLAS_TRANSPOSE_t @var{Trans}, const gsl_complex @var{alpha}, const gsl_matrix_complex * @var{A}, const gsl_matrix_complex * @var{B}, const gsl_complex @var{beta}, gsl_matrix_complex * @var{C})
@cindex SYR2K, Level-3 BLAS
These functions compute a rank-2k update of the symmetric matrix @var{C},
@math{C = \alpha A B^T + \alpha B A^T + \beta C} when @var{Trans} is
@code{CblasNoTrans} and @math{C = \alpha A^T B + \alpha B^T A + \beta C} when
@var{Trans} is @code{CblasTrans}.  Since the matrix @var{C} is symmetric
only its upper half or lower half need to be stored.  When @var{Uplo} is
@code{CblasUpper} then the upper triangle and diagonal of @var{C} are
used, and when @var{Uplo} is @code{CblasLower} then the lower triangle
and diagonal of @var{C} are used.
@end deftypefun

@deftypefun int gsl_blas_cher2k (CBLAS_UPLO_t @var{Uplo}, CBLAS_TRANSPOSE_t @var{Trans}, const gsl_complex_float @var{alpha}, const gsl_matrix_complex_float * @var{A}, const gsl_matrix_complex_float * @var{B}, float @var{beta}, gsl_matrix_complex_float * @var{C})
@deftypefunx int gsl_blas_zher2k (CBLAS_UPLO_t @var{Uplo}, CBLAS_TRANSPOSE_t @var{Trans}, const gsl_complex @var{alpha}, const gsl_matrix_complex * @var{A}, const gsl_matrix_complex * @var{B}, double @var{beta}, gsl_matrix_complex * @var{C})
@cindex HER2K, Level-3 BLAS
These functions compute a rank-2k update of the hermitian matrix @var{C},
@math{C = \alpha A B^H + \alpha^* B A^H + \beta C} when @var{Trans} is
@code{CblasNoTrans} and @math{C = \alpha A^H B + \alpha^* B^H A + \beta C} when
@var{Trans} is @code{CblasConjTrans}.  Since the matrix @var{C} is hermitian
only its upper half or lower half need to be stored.  When @var{Uplo} is
@code{CblasUpper} then the upper triangle and diagonal of @var{C} are
used, and when @var{Uplo} is @code{CblasLower} then the lower triangle
and diagonal of @var{C} are used.  The imaginary elements of the
diagonal are automatically set to zero.
@end deftypefun

@node BLAS Examples
@section Examples

The following program computes the product of two matrices using the
Level-3 @sc{blas} function @sc{dgemm},
@tex
\beforedisplay
$$
\left(
\matrix{0.11&0.12&0.13\cr
0.21&0.22&0.23\cr}
\right)
\left(
\matrix{1011&1012\cr
1021&1022\cr
1031&1031\cr}
\right)
=
\left(
\matrix{367.76&368.12\cr
674.06&674.72\cr}
\right)
$$
\afterdisplay
@end tex
@ifinfo

@example
[ 0.11 0.12 0.13 ]  [ 1011 1012 ]     [ 367.76 368.12 ]
[ 0.21 0.22 0.23 ]  [ 1021 1022 ]  =  [ 674.06 674.72 ]
                    [ 1031 1032 ]
@end example

@end ifinfo
@noindent
The matrices are stored in row major order, according to the C convention 
for arrays.

@example
@verbatiminclude examples/blas.c
@end example

@noindent
Here is the output from the program,

@example
$ ./a.out
@verbatiminclude examples/blas.out
@end example

@node BLAS References and Further Reading
@section References and Further Reading

Information on the @sc{blas} standards, including both the legacy and
draft interface standards, is available online from the @sc{blas}
Homepage and @sc{blas} Technical Forum web-site.

@itemize @asis
@item
@cite{BLAS Homepage} @*
@uref{http://www.netlib.org/blas/}
@item
@cite{BLAS Technical Forum} @*
@uref{http://www.netlib.org/cgi-bin/checkout/blast/blast.pl}
@end itemize

@noindent
The following papers contain the specifications for Level 1, Level 2 and
Level 3 @sc{blas}.

@itemize @asis
@item
C. Lawson, R. Hanson, D. Kincaid, F. Krogh, ``Basic Linear Algebra
Subprograms for Fortran Usage'', @cite{ACM Transactions on Mathematical
Software}, Vol.@: 5 (1979), Pages 308--325.

@item
J.J. Dongarra, J. DuCroz, S. Hammarling, R. Hanson, ``An Extended Set of
Fortran Basic Linear Algebra Subprograms'', @cite{ACM Transactions on
Mathematical Software}, Vol.@: 14, No.@: 1 (1988), Pages 1--32.

@item
J.J. Dongarra, I. Duff, J. DuCroz, S. Hammarling, ``A Set of
Level 3 Basic Linear Algebra Subprograms'', @cite{ACM Transactions on
Mathematical Software}, Vol.@: 16 (1990), Pages 1--28.
@end itemize

@noindent
Postscript versions of the latter two papers are available from
@uref{http://www.netlib.org/blas/}. A @sc{cblas} wrapper for Fortran @sc{blas}
libraries is available from the same location.