@cindex linear algebra, BLAS @cindex matrix, operations @cindex vector, operations @cindex BLAS @cindex CBLAS @cindex Basic Linear Algebra Subroutines (BLAS) The Basic Linear Algebra Subprograms (@sc{blas}) define a set of fundamental operations on vectors and matrices which can be used to create optimized higher-level linear algebra functionality. The library provides a low-level layer which corresponds directly to the C-language @sc{blas} standard, referred to here as ``@sc{cblas}'', and a higher-level interface for operations on GSL vectors and matrices. Users who are interested in simple operations on GSL vector and matrix objects should use the high-level layer, which is declared in the file @code{gsl_blas.h}. This should satisfy the needs of most users. Note that GSL matrices are implemented using dense-storage so the interface only includes the corresponding dense-storage @sc{blas} functions. The full @sc{blas} functionality for band-format and packed-format matrices is available through the low-level @sc{cblas} interface. The interface for the @code{gsl_cblas} layer is specified in the file @code{gsl_cblas.h}. This interface corresponds to the @sc{blas} Technical Forum's draft standard for the C interface to legacy @sc{blas} implementations. Users who have access to other conforming @sc{cblas} implementations can use these in place of the version provided by the library. Note that users who have only a Fortran @sc{blas} library can use a @sc{cblas} conformant wrapper to convert it into a @sc{cblas} library. A reference @sc{cblas} wrapper for legacy Fortran implementations exists as part of the draft @sc{cblas} standard and can be obtained from Netlib. The complete set of @sc{cblas} functions is listed in an appendix (@pxref{GSL CBLAS Library}). There are three levels of @sc{blas} operations, @table @b @item Level 1 Vector operations, e.g. @math{y = \alpha x + y} @item Level 2 Matrix-vector operations, e.g. @math{y = \alpha A x + \beta y} @item Level 3 Matrix-matrix operations, e.g. @math{C = \alpha A B + C} @end table @noindent Each routine has a name which specifies the operation, the type of matrices involved and their precisions. Some of the most common operations and their names are given below, @table @b @item DOT scalar product, @math{x^T y} @item AXPY vector sum, @math{\alpha x + y} @item MV matrix-vector product, @math{A x} @item SV matrix-vector solve, @math{inv(A) x} @item MM matrix-matrix product, @math{A B} @item SM matrix-matrix solve, @math{inv(A) B} @end table @noindent The types of matrices are, @table @b @item GE general @item GB general band @item SY symmetric @item SB symmetric band @item SP symmetric packed @item HE hermitian @item HB hermitian band @item HP hermitian packed @item TR triangular @item TB triangular band @item TP triangular packed @end table @noindent Each operation is defined for four precisions, @table @b @item S single real @item D double real @item C single complex @item Z double complex @end table @noindent Thus, for example, the name @sc{sgemm} stands for ``single-precision general matrix-matrix multiply'' and @sc{zgemm} stands for ``double-precision complex matrix-matrix multiply''. @menu * GSL BLAS Interface:: * BLAS Examples:: * BLAS References and Further Reading:: @end menu @node GSL BLAS Interface @section GSL BLAS Interface GSL provides dense vector and matrix objects, based on the relevant built-in types. The library provides an interface to the @sc{blas} operations which apply to these objects. The interface to this functionality is given in the file @code{gsl_blas.h}. @comment CblasNoTrans, CblasTrans, CblasConjTrans @comment CblasUpper, CblasLower @comment CblasNonUnit, CblasUnit @comment CblasLeft, CblasRight @menu * Level 1 GSL BLAS Interface:: * Level 2 GSL BLAS Interface:: * Level 3 GSL BLAS Interface:: @end menu @node Level 1 GSL BLAS Interface @subsection Level 1 @deftypefun int gsl_blas_sdsdot (float @var{alpha}, const gsl_vector_float * @var{x}, const gsl_vector_float * @var{y}, float * @var{result}) @cindex DOT, Level-1 BLAS This function computes the sum @math{\alpha + x^T y} for the vectors @var{x} and @var{y}, returning the result in @var{result}. @end deftypefun @deftypefun int gsl_blas_sdot (const gsl_vector_float * @var{x}, const gsl_vector_float * @var{y}, float * @var{result}) @deftypefunx int gsl_blas_dsdot (const gsl_vector_float * @var{x}, const gsl_vector_float * @var{y}, double * @var{result}) @deftypefunx int gsl_blas_ddot (const gsl_vector * @var{x}, const gsl_vector * @var{y}, double * @var{result}) These functions compute the scalar product @math{x^T y} for the vectors @var{x} and @var{y}, returning the result in @var{result}. @end deftypefun @deftypefun int gsl_blas_cdotu (const gsl_vector_complex_float * @var{x}, const gsl_vector_complex_float * @var{y}, gsl_complex_float * @var{dotu}) @deftypefunx int gsl_blas_zdotu (const gsl_vector_complex * @var{x}, const gsl_vector_complex * @var{y}, gsl_complex * @var{dotu}) These functions compute the complex scalar product @math{x^T y} for the vectors @var{x} and @var{y}, returning the result in @var{result} @end deftypefun @deftypefun int gsl_blas_cdotc (const gsl_vector_complex_float * @var{x}, const gsl_vector_complex_float * @var{y}, gsl_complex_float * @var{dotc}) @deftypefunx int gsl_blas_zdotc (const gsl_vector_complex * @var{x}, const gsl_vector_complex * @var{y}, gsl_complex * @var{dotc}) These functions compute the complex conjugate scalar product @math{x^H y} for the vectors @var{x} and @var{y}, returning the result in @var{result} @end deftypefun @deftypefun float gsl_blas_snrm2 (const gsl_vector_float * @var{x}) @deftypefunx double gsl_blas_dnrm2 (const gsl_vector * @var{x}) @cindex NRM2, Level-1 BLAS These functions compute the Euclidean norm @c{$||x||_2 = \sqrt{\sum x_i^2}$} @math{||x||_2 = \sqrt @{\sum x_i^2@}} of the vector @var{x}. @end deftypefun @deftypefun float gsl_blas_scnrm2 (const gsl_vector_complex_float * @var{x}) @deftypefunx double gsl_blas_dznrm2 (const gsl_vector_complex * @var{x}) These functions compute the Euclidean norm of the complex vector @var{x}, @tex \beforedisplay $$ ||x||_2 = \sqrt{\sum (\Re(x_i)^2 + \Im(x_i)^2)}. $$ \afterdisplay @end tex @ifinfo @example ||x||_2 = \sqrt @{\sum (\Re(x_i)^2 + \Im(x_i)^2)@}. @end example @end ifinfo @end deftypefun @deftypefun float gsl_blas_sasum (const gsl_vector_float * @var{x}) @deftypefunx double gsl_blas_dasum (const gsl_vector * @var{x}) @cindex ASUM, Level-1 BLAS These functions compute the absolute sum @math{\sum |x_i|} of the elements of the vector @var{x}. @end deftypefun @deftypefun float gsl_blas_scasum (const gsl_vector_complex_float * @var{x}) @deftypefunx double gsl_blas_dzasum (const gsl_vector_complex * @var{x}) These functions compute the sum of the magnitudes of the real and imaginary parts of the complex vector @var{x}, @c{$\sum \left( |\Re(x_i)| + |\Im(x_i)| \right)$} @math{\sum |\Re(x_i)| + |\Im(x_i)|}. @end deftypefun @deftypefun CBLAS_INDEX_t gsl_blas_isamax (const gsl_vector_float * @var{x}) @deftypefunx CBLAS_INDEX_t gsl_blas_idamax (const gsl_vector * @var{x}) @deftypefunx CBLAS_INDEX_t gsl_blas_icamax (const gsl_vector_complex_float * @var{x}) @deftypefunx CBLAS_INDEX_t gsl_blas_izamax (const gsl_vector_complex * @var{x}) @cindex AMAX, Level-1 BLAS These functions return the index of the largest element of the vector @var{x}. The largest element is determined by its absolute magnitude for real vectors and by the sum of the magnitudes of the real and imaginary parts @math{|\Re(x_i)| + |\Im(x_i)|} for complex vectors. If the largest value occurs several times then the index of the first occurrence is returned. @end deftypefun @deftypefun int gsl_blas_sswap (gsl_vector_float * @var{x}, gsl_vector_float * @var{y}) @deftypefunx int gsl_blas_dswap (gsl_vector * @var{x}, gsl_vector * @var{y}) @deftypefunx int gsl_blas_cswap (gsl_vector_complex_float * @var{x}, gsl_vector_complex_float * @var{y}) @deftypefunx int gsl_blas_zswap (gsl_vector_complex * @var{x}, gsl_vector_complex * @var{y}) @cindex SWAP, Level-1 BLAS These functions exchange the elements of the vectors @var{x} and @var{y}. @end deftypefun @deftypefun int gsl_blas_scopy (const gsl_vector_float * @var{x}, gsl_vector_float * @var{y}) @deftypefunx int gsl_blas_dcopy (const gsl_vector * @var{x}, gsl_vector * @var{y}) @deftypefunx int gsl_blas_ccopy (const gsl_vector_complex_float * @var{x}, gsl_vector_complex_float * @var{y}) @deftypefunx int gsl_blas_zcopy (const gsl_vector_complex * @var{x}, gsl_vector_complex * @var{y}) @cindex COPY, Level-1 BLAS These functions copy the elements of the vector @var{x} into the vector @var{y}. @end deftypefun @deftypefun int gsl_blas_saxpy (float @var{alpha}, const gsl_vector_float * @var{x}, gsl_vector_float * @var{y}) @deftypefunx int gsl_blas_daxpy (double @var{alpha}, const gsl_vector * @var{x}, gsl_vector * @var{y}) @deftypefunx int gsl_blas_caxpy (const gsl_complex_float @var{alpha}, const gsl_vector_complex_float * @var{x}, gsl_vector_complex_float * @var{y}) @deftypefunx int gsl_blas_zaxpy (const gsl_complex @var{alpha}, const gsl_vector_complex * @var{x}, gsl_vector_complex * @var{y}) @cindex AXPY, Level-1 BLAS @cindex DAXPY, Level-1 BLAS @cindex SAXPY, Level-1 BLAS These functions compute the sum @math{y = \alpha x + y} for the vectors @var{x} and @var{y}. @end deftypefun @deftypefun void gsl_blas_sscal (float @var{alpha}, gsl_vector_float * @var{x}) @deftypefunx void gsl_blas_dscal (double @var{alpha}, gsl_vector * @var{x}) @deftypefunx void gsl_blas_cscal (const gsl_complex_float @var{alpha}, gsl_vector_complex_float * @var{x}) @deftypefunx void gsl_blas_zscal (const gsl_complex @var{alpha}, gsl_vector_complex * @var{x}) @deftypefunx void gsl_blas_csscal (float @var{alpha}, gsl_vector_complex_float * @var{x}) @deftypefunx void gsl_blas_zdscal (double @var{alpha}, gsl_vector_complex * @var{x}) @cindex SCAL, Level-1 BLAS These functions rescale the vector @var{x} by the multiplicative factor @var{alpha}. @end deftypefun @deftypefun int gsl_blas_srotg (float @var{a}[], float @var{b}[], float @var{c}[], float @var{s}[]) @deftypefunx int gsl_blas_drotg (double @var{a}[], double @var{b}[], double @var{c}[], double @var{s}[]) @cindex ROTG, Level-1 BLAS @cindex Givens Rotation, BLAS These functions compute a Givens rotation @math{(c,s)} which zeroes the vector @math{(a,b)}, @tex \beforedisplay $$ \left( \matrix{c&s\cr -s&c\cr} \right) \left( \matrix{a\cr b\cr} \right) = \left( \matrix{r'\cr 0\cr} \right) $$ \afterdisplay @end tex @ifinfo @example [ c s ] [ a ] = [ r ] [ -s c ] [ b ] [ 0 ] @end example @end ifinfo @noindent The variables @var{a} and @var{b} are overwritten by the routine. @end deftypefun @deftypefun int gsl_blas_srot (gsl_vector_float * @var{x}, gsl_vector_float * @var{y}, float @var{c}, float @var{s}) @deftypefunx int gsl_blas_drot (gsl_vector * @var{x}, gsl_vector * @var{y}, const double @var{c}, const double @var{s}) These functions apply a Givens rotation @math{(x', y') = (c x + s y, -s x + c y)} to the vectors @var{x}, @var{y}. @end deftypefun @deftypefun int gsl_blas_srotmg (float @var{d1}[], float @var{d2}[], float @var{b1}[], float @var{b2}, float @var{P}[]) @deftypefunx int gsl_blas_drotmg (double @var{d1}[], double @var{d2}[], double @var{b1}[], double @var{b2}, double @var{P}[]) @cindex Modified Givens Rotation, BLAS @cindex Givens Rotation, Modified, BLAS These functions compute a modified Givens transformation. The modified Givens transformation is defined in the original Level-1 @sc{blas} specification, given in the references. @end deftypefun @deftypefun int gsl_blas_srotm (gsl_vector_float * @var{x}, gsl_vector_float * @var{y}, const float @var{P}[]) @deftypefunx int gsl_blas_drotm (gsl_vector * @var{x}, gsl_vector * @var{y}, const double @var{P}[]) These functions apply a modified Givens transformation. @end deftypefun @node Level 2 GSL BLAS Interface @subsection Level 2 @deftypefun int gsl_blas_sgemv (CBLAS_TRANSPOSE_t @var{TransA}, float @var{alpha}, const gsl_matrix_float * @var{A}, const gsl_vector_float * @var{x}, float @var{beta}, gsl_vector_float * @var{y}) @deftypefunx int gsl_blas_dgemv (CBLAS_TRANSPOSE_t @var{TransA}, double @var{alpha}, const gsl_matrix * @var{A}, const gsl_vector * @var{x}, double @var{beta}, gsl_vector * @var{y}) @deftypefunx int gsl_blas_cgemv (CBLAS_TRANSPOSE_t @var{TransA}, const gsl_complex_float @var{alpha}, const gsl_matrix_complex_float * @var{A}, const gsl_vector_complex_float * @var{x}, const gsl_complex_float @var{beta}, gsl_vector_complex_float * @var{y}) @deftypefunx int gsl_blas_zgemv (CBLAS_TRANSPOSE_t @var{TransA}, const gsl_complex @var{alpha}, const gsl_matrix_complex * @var{A}, const gsl_vector_complex * @var{x}, const gsl_complex @var{beta}, gsl_vector_complex * @var{y}) @cindex GEMV, Level-2 BLAS These functions compute the matrix-vector product and sum @math{y = \alpha op(A) x + \beta y}, where @math{op(A) = A}, @math{A^T}, @math{A^H} for @var{TransA} = @code{CblasNoTrans}, @code{CblasTrans}, @code{CblasConjTrans}. @end deftypefun @deftypefun int gsl_blas_strmv (CBLAS_UPLO_t @var{Uplo}, CBLAS_TRANSPOSE_t @var{TransA}, CBLAS_DIAG_t @var{Diag}, const gsl_matrix_float * @var{A}, gsl_vector_float * @var{x}) @deftypefunx int gsl_blas_dtrmv (CBLAS_UPLO_t @var{Uplo}, CBLAS_TRANSPOSE_t @var{TransA}, CBLAS_DIAG_t @var{Diag}, const gsl_matrix * @var{A}, gsl_vector * @var{x}) @deftypefunx int gsl_blas_ctrmv (CBLAS_UPLO_t @var{Uplo}, CBLAS_TRANSPOSE_t @var{TransA}, CBLAS_DIAG_t @var{Diag}, const gsl_matrix_complex_float * @var{A}, gsl_vector_complex_float * @var{x}) @deftypefunx int gsl_blas_ztrmv (CBLAS_UPLO_t @var{Uplo}, CBLAS_TRANSPOSE_t @var{TransA}, CBLAS_DIAG_t @var{Diag}, const gsl_matrix_complex * @var{A}, gsl_vector_complex * @var{x}) @cindex TRMV, Level-2 BLAS These functions compute the matrix-vector product @math{x = op(A) x} for the triangular matrix @var{A}, where @math{op(A) = A}, @math{A^T}, @math{A^H} for @var{TransA} = @code{CblasNoTrans}, @code{CblasTrans}, @code{CblasConjTrans}. When @var{Uplo} is @code{CblasUpper} then the upper triangle of @var{A} is used, and when @var{Uplo} is @code{CblasLower} then the lower triangle of @var{A} is used. If @var{Diag} is @code{CblasNonUnit} then the diagonal of the matrix is used, but if @var{Diag} is @code{CblasUnit} then the diagonal elements of the matrix @var{A} are taken as unity and are not referenced. @end deftypefun @deftypefun int gsl_blas_strsv (CBLAS_UPLO_t @var{Uplo}, CBLAS_TRANSPOSE_t @var{TransA}, CBLAS_DIAG_t @var{Diag}, const gsl_matrix_float * @var{A}, gsl_vector_float * @var{x}) @deftypefunx int gsl_blas_dtrsv (CBLAS_UPLO_t @var{Uplo}, CBLAS_TRANSPOSE_t @var{TransA}, CBLAS_DIAG_t @var{Diag}, const gsl_matrix * @var{A}, gsl_vector * @var{x}) @deftypefunx int gsl_blas_ctrsv (CBLAS_UPLO_t @var{Uplo}, CBLAS_TRANSPOSE_t @var{TransA}, CBLAS_DIAG_t @var{Diag}, const gsl_matrix_complex_float * @var{A}, gsl_vector_complex_float * @var{x}) @deftypefunx int gsl_blas_ztrsv (CBLAS_UPLO_t @var{Uplo}, CBLAS_TRANSPOSE_t @var{TransA}, CBLAS_DIAG_t @var{Diag}, const gsl_matrix_complex * @var{A}, gsl_vector_complex * @var{x}) @cindex TRSV, Level-2 BLAS These functions compute @math{inv(op(A)) x} for @var{x}, where @math{op(A) = A}, @math{A^T}, @math{A^H} for @var{TransA} = @code{CblasNoTrans}, @code{CblasTrans}, @code{CblasConjTrans}. When @var{Uplo} is @code{CblasUpper} then the upper triangle of @var{A} is used, and when @var{Uplo} is @code{CblasLower} then the lower triangle of @var{A} is used. If @var{Diag} is @code{CblasNonUnit} then the diagonal of the matrix is used, but if @var{Diag} is @code{CblasUnit} then the diagonal elements of the matrix @var{A} are taken as unity and are not referenced. @end deftypefun @deftypefun int gsl_blas_ssymv (CBLAS_UPLO_t @var{Uplo}, float @var{alpha}, const gsl_matrix_float * @var{A}, const gsl_vector_float * @var{x}, float @var{beta}, gsl_vector_float * @var{y}) @deftypefunx int gsl_blas_dsymv (CBLAS_UPLO_t @var{Uplo}, double @var{alpha}, const gsl_matrix * @var{A}, const gsl_vector * @var{x}, double @var{beta}, gsl_vector * @var{y}) @cindex SYMV, Level-2 BLAS These functions compute the matrix-vector product and sum @math{y = \alpha A x + \beta y} for the symmetric matrix @var{A}. Since the matrix @var{A} is symmetric only its upper half or lower half need to be stored. When @var{Uplo} is @code{CblasUpper} then the upper triangle and diagonal of @var{A} are used, and when @var{Uplo} is @code{CblasLower} then the lower triangle and diagonal of @var{A} are used. @end deftypefun @deftypefun int gsl_blas_chemv (CBLAS_UPLO_t @var{Uplo}, const gsl_complex_float @var{alpha}, const gsl_matrix_complex_float * @var{A}, const gsl_vector_complex_float * @var{x}, const gsl_complex_float @var{beta}, gsl_vector_complex_float * @var{y}) @deftypefunx int gsl_blas_zhemv (CBLAS_UPLO_t @var{Uplo}, const gsl_complex @var{alpha}, const gsl_matrix_complex * @var{A}, const gsl_vector_complex * @var{x}, const gsl_complex @var{beta}, gsl_vector_complex * @var{y}) @cindex HEMV, Level-2 BLAS These functions compute the matrix-vector product and sum @math{y = \alpha A x + \beta y} for the hermitian matrix @var{A}. Since the matrix @var{A} is hermitian only its upper half or lower half need to be stored. When @var{Uplo} is @code{CblasUpper} then the upper triangle and diagonal of @var{A} are used, and when @var{Uplo} is @code{CblasLower} then the lower triangle and diagonal of @var{A} are used. The imaginary elements of the diagonal are automatically assumed to be zero and are not referenced. @end deftypefun @deftypefun int gsl_blas_sger (float @var{alpha}, const gsl_vector_float * @var{x}, const gsl_vector_float * @var{y}, gsl_matrix_float * @var{A}) @deftypefunx int gsl_blas_dger (double @var{alpha}, const gsl_vector * @var{x}, const gsl_vector * @var{y}, gsl_matrix * @var{A}) @deftypefunx int gsl_blas_cgeru (const gsl_complex_float @var{alpha}, const gsl_vector_complex_float * @var{x}, const gsl_vector_complex_float * @var{y}, gsl_matrix_complex_float * @var{A}) @deftypefunx int gsl_blas_zgeru (const gsl_complex @var{alpha}, const gsl_vector_complex * @var{x}, const gsl_vector_complex * @var{y}, gsl_matrix_complex * @var{A}) @cindex GER, Level-2 BLAS @cindex GERU, Level-2 BLAS These functions compute the rank-1 update @math{A = \alpha x y^T + A} of the matrix @var{A}. @end deftypefun @deftypefun int gsl_blas_cgerc (const gsl_complex_float @var{alpha}, const gsl_vector_complex_float * @var{x}, const gsl_vector_complex_float * @var{y}, gsl_matrix_complex_float * @var{A}) @deftypefunx int gsl_blas_zgerc (const gsl_complex @var{alpha}, const gsl_vector_complex * @var{x}, const gsl_vector_complex * @var{y}, gsl_matrix_complex * @var{A}) @cindex GERC, Level-2 BLAS These functions compute the conjugate rank-1 update @math{A = \alpha x y^H + A} of the matrix @var{A}. @end deftypefun @deftypefun int gsl_blas_ssyr (CBLAS_UPLO_t @var{Uplo}, float @var{alpha}, const gsl_vector_float * @var{x}, gsl_matrix_float * @var{A}) @deftypefunx int gsl_blas_dsyr (CBLAS_UPLO_t @var{Uplo}, double @var{alpha}, const gsl_vector * @var{x}, gsl_matrix * @var{A}) @cindex SYR, Level-2 BLAS These functions compute the symmetric rank-1 update @math{A = \alpha x x^T + A} of the symmetric matrix @var{A}. Since the matrix @var{A} is symmetric only its upper half or lower half need to be stored. When @var{Uplo} is @code{CblasUpper} then the upper triangle and diagonal of @var{A} are used, and when @var{Uplo} is @code{CblasLower} then the lower triangle and diagonal of @var{A} are used. @end deftypefun @deftypefun int gsl_blas_cher (CBLAS_UPLO_t @var{Uplo}, float @var{alpha}, const gsl_vector_complex_float * @var{x}, gsl_matrix_complex_float * @var{A}) @deftypefunx int gsl_blas_zher (CBLAS_UPLO_t @var{Uplo}, double @var{alpha}, const gsl_vector_complex * @var{x}, gsl_matrix_complex * @var{A}) @cindex HER, Level-2 BLAS These functions compute the hermitian rank-1 update @math{A = \alpha x x^H + A} of the hermitian matrix @var{A}. Since the matrix @var{A} is hermitian only its upper half or lower half need to be stored. When @var{Uplo} is @code{CblasUpper} then the upper triangle and diagonal of @var{A} are used, and when @var{Uplo} is @code{CblasLower} then the lower triangle and diagonal of @var{A} are used. The imaginary elements of the diagonal are automatically set to zero. @end deftypefun @deftypefun int gsl_blas_ssyr2 (CBLAS_UPLO_t @var{Uplo}, float @var{alpha}, const gsl_vector_float * @var{x}, const gsl_vector_float * @var{y}, gsl_matrix_float * @var{A}) @deftypefunx int gsl_blas_dsyr2 (CBLAS_UPLO_t @var{Uplo}, double @var{alpha}, const gsl_vector * @var{x}, const gsl_vector * @var{y}, gsl_matrix * @var{A}) @cindex SYR2, Level-2 BLAS These functions compute the symmetric rank-2 update @math{A = \alpha x y^T + \alpha y x^T + A} of the symmetric matrix @var{A}. Since the matrix @var{A} is symmetric only its upper half or lower half need to be stored. When @var{Uplo} is @code{CblasUpper} then the upper triangle and diagonal of @var{A} are used, and when @var{Uplo} is @code{CblasLower} then the lower triangle and diagonal of @var{A} are used. @end deftypefun @deftypefun int gsl_blas_cher2 (CBLAS_UPLO_t @var{Uplo}, const gsl_complex_float @var{alpha}, const gsl_vector_complex_float * @var{x}, const gsl_vector_complex_float * @var{y}, gsl_matrix_complex_float * @var{A}) @deftypefunx int gsl_blas_zher2 (CBLAS_UPLO_t @var{Uplo}, const gsl_complex @var{alpha}, const gsl_vector_complex * @var{x}, const gsl_vector_complex * @var{y}, gsl_matrix_complex * @var{A}) @cindex HER2, Level-2 BLAS These functions compute the hermitian rank-2 update @math{A = \alpha x y^H + \alpha^* y x^H A} of the hermitian matrix @var{A}. Since the matrix @var{A} is hermitian only its upper half or lower half need to be stored. When @var{Uplo} is @code{CblasUpper} then the upper triangle and diagonal of @var{A} are used, and when @var{Uplo} is @code{CblasLower} then the lower triangle and diagonal of @var{A} are used. The imaginary elements of the diagonal are automatically set to zero. @end deftypefun @node Level 3 GSL BLAS Interface @subsection Level 3 @deftypefun int gsl_blas_sgemm (CBLAS_TRANSPOSE_t @var{TransA}, CBLAS_TRANSPOSE_t @var{TransB}, float @var{alpha}, const gsl_matrix_float * @var{A}, const gsl_matrix_float * @var{B}, float @var{beta}, gsl_matrix_float * @var{C}) @deftypefunx int gsl_blas_dgemm (CBLAS_TRANSPOSE_t @var{TransA}, CBLAS_TRANSPOSE_t @var{TransB}, double @var{alpha}, const gsl_matrix * @var{A}, const gsl_matrix * @var{B}, double @var{beta}, gsl_matrix * @var{C}) @deftypefunx int gsl_blas_cgemm (CBLAS_TRANSPOSE_t @var{TransA}, CBLAS_TRANSPOSE_t @var{TransB}, const gsl_complex_float @var{alpha}, const gsl_matrix_complex_float * @var{A}, const gsl_matrix_complex_float * @var{B}, const gsl_complex_float @var{beta}, gsl_matrix_complex_float * @var{C}) @deftypefunx int gsl_blas_zgemm (CBLAS_TRANSPOSE_t @var{TransA}, CBLAS_TRANSPOSE_t @var{TransB}, const gsl_complex @var{alpha}, const gsl_matrix_complex * @var{A}, const gsl_matrix_complex * @var{B}, const gsl_complex @var{beta}, gsl_matrix_complex * @var{C}) @cindex GEMM, Level-3 BLAS These functions compute the matrix-matrix product and sum @math{C = \alpha op(A) op(B) + \beta C} where @math{op(A) = A}, @math{A^T}, @math{A^H} for @var{TransA} = @code{CblasNoTrans}, @code{CblasTrans}, @code{CblasConjTrans} and similarly for the parameter @var{TransB}. @end deftypefun @deftypefun int gsl_blas_ssymm (CBLAS_SIDE_t @var{Side}, CBLAS_UPLO_t @var{Uplo}, float @var{alpha}, const gsl_matrix_float * @var{A}, const gsl_matrix_float * @var{B}, float @var{beta}, gsl_matrix_float * @var{C}) @deftypefunx int gsl_blas_dsymm (CBLAS_SIDE_t @var{Side}, CBLAS_UPLO_t @var{Uplo}, double @var{alpha}, const gsl_matrix * @var{A}, const gsl_matrix * @var{B}, double @var{beta}, gsl_matrix * @var{C}) @deftypefunx int gsl_blas_csymm (CBLAS_SIDE_t @var{Side}, CBLAS_UPLO_t @var{Uplo}, const gsl_complex_float @var{alpha}, const gsl_matrix_complex_float * @var{A}, const gsl_matrix_complex_float * @var{B}, const gsl_complex_float @var{beta}, gsl_matrix_complex_float * @var{C}) @deftypefunx int gsl_blas_zsymm (CBLAS_SIDE_t @var{Side}, CBLAS_UPLO_t @var{Uplo}, const gsl_complex @var{alpha}, const gsl_matrix_complex * @var{A}, const gsl_matrix_complex * @var{B}, const gsl_complex @var{beta}, gsl_matrix_complex * @var{C}) @cindex SYMM, Level-3 BLAS These functions compute the matrix-matrix product and sum @math{C = \alpha A B + \beta C} for @var{Side} is @code{CblasLeft} and @math{C = \alpha B A + \beta C} for @var{Side} is @code{CblasRight}, where the matrix @var{A} is symmetric. When @var{Uplo} is @code{CblasUpper} then the upper triangle and diagonal of @var{A} are used, and when @var{Uplo} is @code{CblasLower} then the lower triangle and diagonal of @var{A} are used. @end deftypefun @deftypefun int gsl_blas_chemm (CBLAS_SIDE_t @var{Side}, CBLAS_UPLO_t @var{Uplo}, const gsl_complex_float @var{alpha}, const gsl_matrix_complex_float * @var{A}, const gsl_matrix_complex_float * @var{B}, const gsl_complex_float @var{beta}, gsl_matrix_complex_float * @var{C}) @deftypefunx int gsl_blas_zhemm (CBLAS_SIDE_t @var{Side}, CBLAS_UPLO_t @var{Uplo}, const gsl_complex @var{alpha}, const gsl_matrix_complex * @var{A}, const gsl_matrix_complex * @var{B}, const gsl_complex @var{beta}, gsl_matrix_complex * @var{C}) @cindex HEMM, Level-3 BLAS These functions compute the matrix-matrix product and sum @math{C = \alpha A B + \beta C} for @var{Side} is @code{CblasLeft} and @math{C = \alpha B A + \beta C} for @var{Side} is @code{CblasRight}, where the matrix @var{A} is hermitian. When @var{Uplo} is @code{CblasUpper} then the upper triangle and diagonal of @var{A} are used, and when @var{Uplo} is @code{CblasLower} then the lower triangle and diagonal of @var{A} are used. The imaginary elements of the diagonal are automatically set to zero. @end deftypefun @deftypefun int gsl_blas_strmm (CBLAS_SIDE_t @var{Side}, CBLAS_UPLO_t @var{Uplo}, CBLAS_TRANSPOSE_t @var{TransA}, CBLAS_DIAG_t @var{Diag}, float @var{alpha}, const gsl_matrix_float * @var{A}, gsl_matrix_float * @var{B}) @deftypefunx int gsl_blas_dtrmm (CBLAS_SIDE_t @var{Side}, CBLAS_UPLO_t @var{Uplo}, CBLAS_TRANSPOSE_t @var{TransA}, CBLAS_DIAG_t @var{Diag}, double @var{alpha}, const gsl_matrix * @var{A}, gsl_matrix * @var{B}) @deftypefunx int gsl_blas_ctrmm (CBLAS_SIDE_t @var{Side}, CBLAS_UPLO_t @var{Uplo}, CBLAS_TRANSPOSE_t @var{TransA}, CBLAS_DIAG_t @var{Diag}, const gsl_complex_float @var{alpha}, const gsl_matrix_complex_float * @var{A}, gsl_matrix_complex_float * @var{B}) @deftypefunx int gsl_blas_ztrmm (CBLAS_SIDE_t @var{Side}, CBLAS_UPLO_t @var{Uplo}, CBLAS_TRANSPOSE_t @var{TransA}, CBLAS_DIAG_t @var{Diag}, const gsl_complex @var{alpha}, const gsl_matrix_complex * @var{A}, gsl_matrix_complex * @var{B}) @cindex TRMM, Level-3 BLAS These functions compute the matrix-matrix product @math{B = \alpha op(A) B} for @var{Side} is @code{CblasLeft} and @math{B = \alpha B op(A)} for @var{Side} is @code{CblasRight}. The matrix @var{A} is triangular and @math{op(A) = A}, @math{A^T}, @math{A^H} for @var{TransA} = @code{CblasNoTrans}, @code{CblasTrans}, @code{CblasConjTrans}. When @var{Uplo} is @code{CblasUpper} then the upper triangle of @var{A} is used, and when @var{Uplo} is @code{CblasLower} then the lower triangle of @var{A} is used. If @var{Diag} is @code{CblasNonUnit} then the diagonal of @var{A} is used, but if @var{Diag} is @code{CblasUnit} then the diagonal elements of the matrix @var{A} are taken as unity and are not referenced. @end deftypefun @deftypefun int gsl_blas_strsm (CBLAS_SIDE_t @var{Side}, CBLAS_UPLO_t @var{Uplo}, CBLAS_TRANSPOSE_t @var{TransA}, CBLAS_DIAG_t @var{Diag}, float @var{alpha}, const gsl_matrix_float * @var{A}, gsl_matrix_float * @var{B}) @deftypefunx int gsl_blas_dtrsm (CBLAS_SIDE_t @var{Side}, CBLAS_UPLO_t @var{Uplo}, CBLAS_TRANSPOSE_t @var{TransA}, CBLAS_DIAG_t @var{Diag}, double @var{alpha}, const gsl_matrix * @var{A}, gsl_matrix * @var{B}) @deftypefunx int gsl_blas_ctrsm (CBLAS_SIDE_t @var{Side}, CBLAS_UPLO_t @var{Uplo}, CBLAS_TRANSPOSE_t @var{TransA}, CBLAS_DIAG_t @var{Diag}, const gsl_complex_float @var{alpha}, const gsl_matrix_complex_float * @var{A}, gsl_matrix_complex_float * @var{B}) @deftypefunx int gsl_blas_ztrsm (CBLAS_SIDE_t @var{Side}, CBLAS_UPLO_t @var{Uplo}, CBLAS_TRANSPOSE_t @var{TransA}, CBLAS_DIAG_t @var{Diag}, const gsl_complex @var{alpha}, const gsl_matrix_complex * @var{A}, gsl_matrix_complex * @var{B}) @cindex TRSM, Level-3 BLAS These functions compute the inverse-matrix matrix product @math{B = \alpha op(inv(A))B} for @var{Side} is @code{CblasLeft} and @math{B = \alpha B op(inv(A))} for @var{Side} is @code{CblasRight}. The matrix @var{A} is triangular and @math{op(A) = A}, @math{A^T}, @math{A^H} for @var{TransA} = @code{CblasNoTrans}, @code{CblasTrans}, @code{CblasConjTrans}. When @var{Uplo} is @code{CblasUpper} then the upper triangle of @var{A} is used, and when @var{Uplo} is @code{CblasLower} then the lower triangle of @var{A} is used. If @var{Diag} is @code{CblasNonUnit} then the diagonal of @var{A} is used, but if @var{Diag} is @code{CblasUnit} then the diagonal elements of the matrix @var{A} are taken as unity and are not referenced. @end deftypefun @deftypefun int gsl_blas_ssyrk (CBLAS_UPLO_t @var{Uplo}, CBLAS_TRANSPOSE_t @var{Trans}, float @var{alpha}, const gsl_matrix_float * @var{A}, float @var{beta}, gsl_matrix_float * @var{C}) @deftypefunx int gsl_blas_dsyrk (CBLAS_UPLO_t @var{Uplo}, CBLAS_TRANSPOSE_t @var{Trans}, double @var{alpha}, const gsl_matrix * @var{A}, double @var{beta}, gsl_matrix * @var{C}) @deftypefunx int gsl_blas_csyrk (CBLAS_UPLO_t @var{Uplo}, CBLAS_TRANSPOSE_t @var{Trans}, const gsl_complex_float @var{alpha}, const gsl_matrix_complex_float * @var{A}, const gsl_complex_float @var{beta}, gsl_matrix_complex_float * @var{C}) @deftypefunx int gsl_blas_zsyrk (CBLAS_UPLO_t @var{Uplo}, CBLAS_TRANSPOSE_t @var{Trans}, const gsl_complex @var{alpha}, const gsl_matrix_complex * @var{A}, const gsl_complex @var{beta}, gsl_matrix_complex * @var{C}) @cindex SYRK, Level-3 BLAS These functions compute a rank-k update of the symmetric matrix @var{C}, @math{C = \alpha A A^T + \beta C} when @var{Trans} is @code{CblasNoTrans} and @math{C = \alpha A^T A + \beta C} when @var{Trans} is @code{CblasTrans}. Since the matrix @var{C} is symmetric only its upper half or lower half need to be stored. When @var{Uplo} is @code{CblasUpper} then the upper triangle and diagonal of @var{C} are used, and when @var{Uplo} is @code{CblasLower} then the lower triangle and diagonal of @var{C} are used. @end deftypefun @deftypefun int gsl_blas_cherk (CBLAS_UPLO_t @var{Uplo}, CBLAS_TRANSPOSE_t @var{Trans}, float @var{alpha}, const gsl_matrix_complex_float * @var{A}, float @var{beta}, gsl_matrix_complex_float * @var{C}) @deftypefunx int gsl_blas_zherk (CBLAS_UPLO_t @var{Uplo}, CBLAS_TRANSPOSE_t @var{Trans}, double @var{alpha}, const gsl_matrix_complex * @var{A}, double @var{beta}, gsl_matrix_complex * @var{C}) @cindex HERK, Level-3 BLAS These functions compute a rank-k update of the hermitian matrix @var{C}, @math{C = \alpha A A^H + \beta C} when @var{Trans} is @code{CblasNoTrans} and @math{C = \alpha A^H A + \beta C} when @var{Trans} is @code{CblasTrans}. Since the matrix @var{C} is hermitian only its upper half or lower half need to be stored. When @var{Uplo} is @code{CblasUpper} then the upper triangle and diagonal of @var{C} are used, and when @var{Uplo} is @code{CblasLower} then the lower triangle and diagonal of @var{C} are used. The imaginary elements of the diagonal are automatically set to zero. @end deftypefun @deftypefun int gsl_blas_ssyr2k (CBLAS_UPLO_t @var{Uplo}, CBLAS_TRANSPOSE_t @var{Trans}, float @var{alpha}, const gsl_matrix_float * @var{A}, const gsl_matrix_float * @var{B}, float @var{beta}, gsl_matrix_float * @var{C}) @deftypefunx int gsl_blas_dsyr2k (CBLAS_UPLO_t @var{Uplo}, CBLAS_TRANSPOSE_t @var{Trans}, double @var{alpha}, const gsl_matrix * @var{A}, const gsl_matrix * @var{B}, double @var{beta}, gsl_matrix * @var{C}) @deftypefunx int gsl_blas_csyr2k (CBLAS_UPLO_t @var{Uplo}, CBLAS_TRANSPOSE_t @var{Trans}, const gsl_complex_float @var{alpha}, const gsl_matrix_complex_float * @var{A}, const gsl_matrix_complex_float * @var{B}, const gsl_complex_float @var{beta}, gsl_matrix_complex_float * @var{C}) @deftypefunx int gsl_blas_zsyr2k (CBLAS_UPLO_t @var{Uplo}, CBLAS_TRANSPOSE_t @var{Trans}, const gsl_complex @var{alpha}, const gsl_matrix_complex * @var{A}, const gsl_matrix_complex * @var{B}, const gsl_complex @var{beta}, gsl_matrix_complex * @var{C}) @cindex SYR2K, Level-3 BLAS These functions compute a rank-2k update of the symmetric matrix @var{C}, @math{C = \alpha A B^T + \alpha B A^T + \beta C} when @var{Trans} is @code{CblasNoTrans} and @math{C = \alpha A^T B + \alpha B^T A + \beta C} when @var{Trans} is @code{CblasTrans}. Since the matrix @var{C} is symmetric only its upper half or lower half need to be stored. When @var{Uplo} is @code{CblasUpper} then the upper triangle and diagonal of @var{C} are used, and when @var{Uplo} is @code{CblasLower} then the lower triangle and diagonal of @var{C} are used. @end deftypefun @deftypefun int gsl_blas_cher2k (CBLAS_UPLO_t @var{Uplo}, CBLAS_TRANSPOSE_t @var{Trans}, const gsl_complex_float @var{alpha}, const gsl_matrix_complex_float * @var{A}, const gsl_matrix_complex_float * @var{B}, float @var{beta}, gsl_matrix_complex_float * @var{C}) @deftypefunx int gsl_blas_zher2k (CBLAS_UPLO_t @var{Uplo}, CBLAS_TRANSPOSE_t @var{Trans}, const gsl_complex @var{alpha}, const gsl_matrix_complex * @var{A}, const gsl_matrix_complex * @var{B}, double @var{beta}, gsl_matrix_complex * @var{C}) @cindex HER2K, Level-3 BLAS These functions compute a rank-2k update of the hermitian matrix @var{C}, @math{C = \alpha A B^H + \alpha^* B A^H + \beta C} when @var{Trans} is @code{CblasNoTrans} and @math{C = \alpha A^H B + \alpha^* B^H A + \beta C} when @var{Trans} is @code{CblasConjTrans}. Since the matrix @var{C} is hermitian only its upper half or lower half need to be stored. When @var{Uplo} is @code{CblasUpper} then the upper triangle and diagonal of @var{C} are used, and when @var{Uplo} is @code{CblasLower} then the lower triangle and diagonal of @var{C} are used. The imaginary elements of the diagonal are automatically set to zero. @end deftypefun @node BLAS Examples @section Examples The following program computes the product of two matrices using the Level-3 @sc{blas} function @sc{dgemm}, @tex \beforedisplay $$ \left( \matrix{0.11&0.12&0.13\cr 0.21&0.22&0.23\cr} \right) \left( \matrix{1011&1012\cr 1021&1022\cr 1031&1031\cr} \right) = \left( \matrix{367.76&368.12\cr 674.06&674.72\cr} \right) $$ \afterdisplay @end tex @ifinfo @example [ 0.11 0.12 0.13 ] [ 1011 1012 ] [ 367.76 368.12 ] [ 0.21 0.22 0.23 ] [ 1021 1022 ] = [ 674.06 674.72 ] [ 1031 1032 ] @end example @end ifinfo @noindent The matrices are stored in row major order, according to the C convention for arrays. @example @verbatiminclude examples/blas.c @end example @noindent Here is the output from the program, @example $ ./a.out @verbatiminclude examples/blas.out @end example @node BLAS References and Further Reading @section References and Further Reading Information on the @sc{blas} standards, including both the legacy and draft interface standards, is available online from the @sc{blas} Homepage and @sc{blas} Technical Forum web-site. @itemize @asis @item @cite{BLAS Homepage} @* @uref{http://www.netlib.org/blas/} @item @cite{BLAS Technical Forum} @* @uref{http://www.netlib.org/cgi-bin/checkout/blast/blast.pl} @end itemize @noindent The following papers contain the specifications for Level 1, Level 2 and Level 3 @sc{blas}. @itemize @asis @item C. Lawson, R. Hanson, D. Kincaid, F. Krogh, ``Basic Linear Algebra Subprograms for Fortran Usage'', @cite{ACM Transactions on Mathematical Software}, Vol.@: 5 (1979), Pages 308--325. @item J.J. Dongarra, J. DuCroz, S. Hammarling, R. Hanson, ``An Extended Set of Fortran Basic Linear Algebra Subprograms'', @cite{ACM Transactions on Mathematical Software}, Vol.@: 14, No.@: 1 (1988), Pages 1--32. @item J.J. Dongarra, I. Duff, J. DuCroz, S. Hammarling, ``A Set of Level 3 Basic Linear Algebra Subprograms'', @cite{ACM Transactions on Mathematical Software}, Vol.@: 16 (1990), Pages 1--28. @end itemize @noindent Postscript versions of the latter two papers are available from @uref{http://www.netlib.org/blas/}. A @sc{cblas} wrapper for Fortran @sc{blas} libraries is available from the same location.