summaryrefslogtreecommitdiff
path: root/gsl-1.9/diff/diff.c
blob: 83aae18b7fb8b822fa824fc1713e2f4f8d58472d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
/* diff/diff.c
 * 
 * Copyright (C) 1996, 1997, 1998, 1999, 2000 David Morrison
 * 
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or (at
 * your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 */

#include <config.h>
#include <stdlib.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_diff.h>

int
gsl_diff_backward (const gsl_function * f,
                   double x, double *result, double *abserr)
{
  /* Construct a divided difference table with a fairly large step
     size to get a very rough estimate of f''.  Use this to estimate
     the step size which will minimize the error in calculating f'. */

  int i, k;
  double h = GSL_SQRT_DBL_EPSILON;
  double a[3], d[3], a2;

  /* Algorithm based on description on pg. 204 of Conte and de Boor
     (CdB) - coefficients of Newton form of polynomial of degree 2. */

  for (i = 0; i < 3; i++)
    {
      a[i] = x + (i - 2.0) * h;
      d[i] = GSL_FN_EVAL (f, a[i]);
    }

  for (k = 1; k < 4; k++)
    {
      for (i = 0; i < 3 - k; i++)
        {
          d[i] = (d[i + 1] - d[i]) / (a[i + k] - a[i]);
        }
    }

  /* Adapt procedure described on pg. 282 of CdB to find best value of
     step size. */

  a2 = fabs (d[0] + d[1] + d[2]);

  if (a2 < 100.0 * GSL_SQRT_DBL_EPSILON)
    {
      a2 = 100.0 * GSL_SQRT_DBL_EPSILON;
    }

  h = sqrt (GSL_SQRT_DBL_EPSILON / (2.0 * a2));

  if (h > 100.0 * GSL_SQRT_DBL_EPSILON)
    {
      h = 100.0 * GSL_SQRT_DBL_EPSILON;
    }

  *result = (GSL_FN_EVAL (f, x) - GSL_FN_EVAL (f, x - h)) / h;
  *abserr = fabs (10.0 * a2 * h);

  return GSL_SUCCESS;
}

int
gsl_diff_forward (const gsl_function * f,
                  double x, double *result, double *abserr)
{
  /* Construct a divided difference table with a fairly large step
     size to get a very rough estimate of f''.  Use this to estimate
     the step size which will minimize the error in calculating f'. */

  int i, k;
  double h = GSL_SQRT_DBL_EPSILON;
  double a[3], d[3], a2;

  /* Algorithm based on description on pg. 204 of Conte and de Boor
     (CdB) - coefficients of Newton form of polynomial of degree 2. */

  for (i = 0; i < 3; i++)
    {
      a[i] = x + i * h;
      d[i] = GSL_FN_EVAL (f, a[i]);
    }

  for (k = 1; k < 4; k++)
    {
      for (i = 0; i < 3 - k; i++)
        {
          d[i] = (d[i + 1] - d[i]) / (a[i + k] - a[i]);
        }
    }

  /* Adapt procedure described on pg. 282 of CdB to find best value of
     step size. */

  a2 = fabs (d[0] + d[1] + d[2]);

  if (a2 < 100.0 * GSL_SQRT_DBL_EPSILON)
    {
      a2 = 100.0 * GSL_SQRT_DBL_EPSILON;
    }

  h = sqrt (GSL_SQRT_DBL_EPSILON / (2.0 * a2));

  if (h > 100.0 * GSL_SQRT_DBL_EPSILON)
    {
      h = 100.0 * GSL_SQRT_DBL_EPSILON;
    }

  *result = (GSL_FN_EVAL (f, x + h) - GSL_FN_EVAL (f, x)) / h;
  *abserr = fabs (10.0 * a2 * h);

  return GSL_SUCCESS;
}

int
gsl_diff_central (const gsl_function * f,
                  double x, double *result, double *abserr)
{
  /* Construct a divided difference table with a fairly large step
     size to get a very rough estimate of f'''.  Use this to estimate
     the step size which will minimize the error in calculating f'. */

  int i, k;
  double h = GSL_SQRT_DBL_EPSILON;
  double a[4], d[4], a3;

  /* Algorithm based on description on pg. 204 of Conte and de Boor
     (CdB) - coefficients of Newton form of polynomial of degree 3. */

  for (i = 0; i < 4; i++)
    {
      a[i] = x + (i - 2.0) * h;
      d[i] = GSL_FN_EVAL (f, a[i]);
    }

  for (k = 1; k < 5; k++)
    {
      for (i = 0; i < 4 - k; i++)
        {
          d[i] = (d[i + 1] - d[i]) / (a[i + k] - a[i]);
        }
    }

  /* Adapt procedure described on pg. 282 of CdB to find best
     value of step size. */

  a3 = fabs (d[0] + d[1] + d[2] + d[3]);

  if (a3 < 100.0 * GSL_SQRT_DBL_EPSILON)
    {
      a3 = 100.0 * GSL_SQRT_DBL_EPSILON;
    }

  h = pow (GSL_SQRT_DBL_EPSILON / (2.0 * a3), 1.0 / 3.0);

  if (h > 100.0 * GSL_SQRT_DBL_EPSILON)
    {
      h = 100.0 * GSL_SQRT_DBL_EPSILON;
    }

  *result = (GSL_FN_EVAL (f, x + h) - GSL_FN_EVAL (f, x - h)) / (2.0 * h);
  *abserr = fabs (100.0 * a3 * h * h);

  return GSL_SUCCESS;
}