summaryrefslogtreecommitdiff
path: root/gsl-1.9/doc/linalg.texi
diff options
context:
space:
mode:
Diffstat (limited to 'gsl-1.9/doc/linalg.texi')
-rw-r--r--gsl-1.9/doc/linalg.texi1117
1 files changed, 1117 insertions, 0 deletions
diff --git a/gsl-1.9/doc/linalg.texi b/gsl-1.9/doc/linalg.texi
new file mode 100644
index 0000000..839f4d5
--- /dev/null
+++ b/gsl-1.9/doc/linalg.texi
@@ -0,0 +1,1117 @@
+@cindex linear algebra
+@cindex solution of linear systems, Ax=b
+@cindex matrix factorization
+@cindex factorization of matrices
+
+This chapter describes functions for solving linear systems. The
+library provides linear algebra operations which operate directly on
+the @code{gsl_vector} and @code{gsl_matrix} objects. These routines
+use the standard algorithms from Golub & Van Loan's @cite{Matrix
+Computations}.
+
+@cindex LAPACK, recommended for linear algebra
+When dealing with very large systems the routines found in @sc{lapack}
+should be considered. These support specialized data representations
+and other optimizations.
+
+The functions described in this chapter are declared in the header file
+@file{gsl_linalg.h}.
+
+
+@menu
+* LU Decomposition::
+* QR Decomposition::
+* QR Decomposition with Column Pivoting::
+* Singular Value Decomposition::
+* Cholesky Decomposition::
+* Tridiagonal Decomposition of Real Symmetric Matrices::
+* Tridiagonal Decomposition of Hermitian Matrices::
+* Hessenberg Decomposition of Real Matrices::
+* Bidiagonalization::
+* Householder Transformations::
+* Householder solver for linear systems::
+* Tridiagonal Systems::
+* Balancing::
+* Linear Algebra Examples::
+* Linear Algebra References and Further Reading::
+@end menu
+
+@node LU Decomposition
+@section LU Decomposition
+@cindex LU decomposition
+
+A general square matrix @math{A} has an @math{LU} decomposition into
+upper and lower triangular matrices,
+@tex
+\beforedisplay
+$$
+P A = L U
+$$
+\afterdisplay
+@end tex
+@ifinfo
+
+@example
+P A = L U
+@end example
+
+@end ifinfo
+@noindent
+where @math{P} is a permutation matrix, @math{L} is unit lower
+triangular matrix and @math{U} is upper triangular matrix. For square
+matrices this decomposition can be used to convert the linear system
+@math{A x = b} into a pair of triangular systems (@math{L y = P b},
+@math{U x = y}), which can be solved by forward and back-substitution.
+Note that the @math{LU} decomposition is valid for singular matrices.
+
+@deftypefun int gsl_linalg_LU_decomp (gsl_matrix * @var{A}, gsl_permutation * @var{p}, int * @var{signum})
+@deftypefunx int gsl_linalg_complex_LU_decomp (gsl_matrix_complex * @var{A}, gsl_permutation * @var{p}, int * @var{signum})
+These functions factorize the square matrix @var{A} into the @math{LU}
+decomposition @math{PA = LU}. On output the diagonal and upper
+triangular part of the input matrix @var{A} contain the matrix
+@math{U}. The lower triangular part of the input matrix (excluding the
+diagonal) contains @math{L}. The diagonal elements of @math{L} are
+unity, and are not stored.
+
+The permutation matrix @math{P} is encoded in the permutation
+@var{p}. The @math{j}-th column of the matrix @math{P} is given by the
+@math{k}-th column of the identity matrix, where @math{k = p_j} the
+@math{j}-th element of the permutation vector. The sign of the
+permutation is given by @var{signum}. It has the value @math{(-1)^n},
+where @math{n} is the number of interchanges in the permutation.
+
+The algorithm used in the decomposition is Gaussian Elimination with
+partial pivoting (Golub & Van Loan, @cite{Matrix Computations},
+Algorithm 3.4.1).
+@end deftypefun
+
+@cindex linear systems, solution of
+@deftypefun int gsl_linalg_LU_solve (const gsl_matrix * @var{LU}, const gsl_permutation * @var{p}, const gsl_vector * @var{b}, gsl_vector * @var{x})
+@deftypefunx int gsl_linalg_complex_LU_solve (const gsl_matrix_complex * @var{LU}, const gsl_permutation * @var{p}, const gsl_vector_complex * @var{b}, gsl_vector_complex * @var{x})
+These functions solve the square system @math{A x = b} using the @math{LU}
+decomposition of @math{A} into (@var{LU}, @var{p}) given by
+@code{gsl_linalg_LU_decomp} or @code{gsl_linalg_complex_LU_decomp}.
+@end deftypefun
+
+@deftypefun int gsl_linalg_LU_svx (const gsl_matrix * @var{LU}, const gsl_permutation * @var{p}, gsl_vector * @var{x})
+@deftypefunx int gsl_linalg_complex_LU_svx (const gsl_matrix_complex * @var{LU}, const gsl_permutation * @var{p}, gsl_vector_complex * @var{x})
+These functions solve the square system @math{A x = b} in-place using the
+@math{LU} decomposition of @math{A} into (@var{LU},@var{p}). On input
+@var{x} should contain the right-hand side @math{b}, which is replaced
+by the solution on output.
+@end deftypefun
+
+@cindex refinement of solutions in linear systems
+@cindex iterative refinement of solutions in linear systems
+@cindex linear systems, refinement of solutions
+@deftypefun int gsl_linalg_LU_refine (const gsl_matrix * @var{A}, const gsl_matrix * @var{LU}, const gsl_permutation * @var{p}, const gsl_vector * @var{b}, gsl_vector * @var{x}, gsl_vector * @var{residual})
+@deftypefunx int gsl_linalg_complex_LU_refine (const gsl_matrix_complex * @var{A}, const gsl_matrix_complex * @var{LU}, const gsl_permutation * @var{p}, const gsl_vector_complex * @var{b}, gsl_vector_complex * @var{x}, gsl_vector_complex * @var{residual})
+These functions apply an iterative improvement to @var{x}, the solution
+of @math{A x = b}, using the @math{LU} decomposition of @math{A} into
+(@var{LU},@var{p}). The initial residual @math{r = A x - b} is also
+computed and stored in @var{residual}.
+@end deftypefun
+
+@cindex inverse of a matrix, by LU decomposition
+@cindex matrix inverse
+@deftypefun int gsl_linalg_LU_invert (const gsl_matrix * @var{LU}, const gsl_permutation * @var{p}, gsl_matrix * @var{inverse})
+@deftypefunx int gsl_linalg_complex_LU_invert (const gsl_matrix_complex * @var{LU}, const gsl_permutation * @var{p}, gsl_matrix_complex * @var{inverse})
+These functions compute the inverse of a matrix @math{A} from its
+@math{LU} decomposition (@var{LU},@var{p}), storing the result in the
+matrix @var{inverse}. The inverse is computed by solving the system
+@math{A x = b} for each column of the identity matrix. It is preferable
+to avoid direct use of the inverse whenever possible, as the linear
+solver functions can obtain the same result more efficiently and
+reliably (consult any introductory textbook on numerical linear algebra
+for details).
+@end deftypefun
+
+@cindex determinant of a matrix, by LU decomposition
+@cindex matrix determinant
+@deftypefun double gsl_linalg_LU_det (gsl_matrix * @var{LU}, int @var{signum})
+@deftypefunx gsl_complex gsl_linalg_complex_LU_det (gsl_matrix_complex * @var{LU}, int @var{signum})
+These functions compute the determinant of a matrix @math{A} from its
+@math{LU} decomposition, @var{LU}. The determinant is computed as the
+product of the diagonal elements of @math{U} and the sign of the row
+permutation @var{signum}.
+@end deftypefun
+
+@cindex logarithm of the determinant of a matrix
+@deftypefun double gsl_linalg_LU_lndet (gsl_matrix * @var{LU})
+@deftypefunx double gsl_linalg_complex_LU_lndet (gsl_matrix_complex * @var{LU})
+These functions compute the logarithm of the absolute value of the
+determinant of a matrix @math{A}, @math{\ln|\det(A)|}, from its @math{LU}
+decomposition, @var{LU}. This function may be useful if the direct
+computation of the determinant would overflow or underflow.
+@end deftypefun
+
+@cindex sign of the determinant of a matrix
+@deftypefun int gsl_linalg_LU_sgndet (gsl_matrix * @var{LU}, int @var{signum})
+@deftypefunx gsl_complex gsl_linalg_complex_LU_sgndet (gsl_matrix_complex * @var{LU}, int @var{signum})
+These functions compute the sign or phase factor of the determinant of a
+matrix @math{A}, @math{\det(A)/|\det(A)|}, from its @math{LU} decomposition,
+@var{LU}.
+@end deftypefun
+
+@node QR Decomposition
+@section QR Decomposition
+@cindex QR decomposition
+
+A general rectangular @math{M}-by-@math{N} matrix @math{A} has a
+@math{QR} decomposition into the product of an orthogonal
+@math{M}-by-@math{M} square matrix @math{Q} (where @math{Q^T Q = I}) and
+an @math{M}-by-@math{N} right-triangular matrix @math{R},
+@tex
+\beforedisplay
+$$
+A = Q R
+$$
+\afterdisplay
+@end tex
+@ifinfo
+
+@example
+A = Q R
+@end example
+
+@end ifinfo
+@noindent
+This decomposition can be used to convert the linear system @math{A x =
+b} into the triangular system @math{R x = Q^T b}, which can be solved by
+back-substitution. Another use of the @math{QR} decomposition is to
+compute an orthonormal basis for a set of vectors. The first @math{N}
+columns of @math{Q} form an orthonormal basis for the range of @math{A},
+@math{ran(A)}, when @math{A} has full column rank.
+
+@deftypefun int gsl_linalg_QR_decomp (gsl_matrix * @var{A}, gsl_vector * @var{tau})
+This function factorizes the @math{M}-by-@math{N} matrix @var{A} into
+the @math{QR} decomposition @math{A = Q R}. On output the diagonal and
+upper triangular part of the input matrix contain the matrix
+@math{R}. The vector @var{tau} and the columns of the lower triangular
+part of the matrix @var{A} contain the Householder coefficients and
+Householder vectors which encode the orthogonal matrix @var{Q}. The
+vector @var{tau} must be of length @math{k=\min(M,N)}. The matrix
+@math{Q} is related to these components by, @math{Q = Q_k ... Q_2 Q_1}
+where @math{Q_i = I - \tau_i v_i v_i^T} and @math{v_i} is the
+Householder vector @math{v_i =
+(0,...,1,A(i+1,i),A(i+2,i),...,A(m,i))}. This is the same storage scheme
+as used by @sc{lapack}.
+
+The algorithm used to perform the decomposition is Householder QR (Golub
+& Van Loan, @cite{Matrix Computations}, Algorithm 5.2.1).
+@end deftypefun
+
+@deftypefun int gsl_linalg_QR_solve (const gsl_matrix * @var{QR}, const gsl_vector * @var{tau}, const gsl_vector * @var{b}, gsl_vector * @var{x})
+This function solves the square system @math{A x = b} using the @math{QR}
+decomposition of @math{A} into (@var{QR}, @var{tau}) given by
+@code{gsl_linalg_QR_decomp}. The least-squares solution for rectangular systems can
+be found using @code{gsl_linalg_QR_lssolve}.
+@end deftypefun
+
+@deftypefun int gsl_linalg_QR_svx (const gsl_matrix * @var{QR}, const gsl_vector * @var{tau}, gsl_vector * @var{x})
+This function solves the square system @math{A x = b} in-place using the
+@math{QR} decomposition of @math{A} into (@var{QR},@var{tau}) given by
+@code{gsl_linalg_QR_decomp}. On input @var{x} should contain the
+right-hand side @math{b}, which is replaced by the solution on output.
+@end deftypefun
+
+@deftypefun int gsl_linalg_QR_lssolve (const gsl_matrix * @var{QR}, const gsl_vector * @var{tau}, const gsl_vector * @var{b}, gsl_vector * @var{x}, gsl_vector * @var{residual})
+This function finds the least squares solution to the overdetermined
+system @math{A x = b} where the matrix @var{A} has more rows than
+columns. The least squares solution minimizes the Euclidean norm of the
+residual, @math{||Ax - b||}.The routine uses the @math{QR} decomposition
+of @math{A} into (@var{QR}, @var{tau}) given by
+@code{gsl_linalg_QR_decomp}. The solution is returned in @var{x}. The
+residual is computed as a by-product and stored in @var{residual}.
+@end deftypefun
+
+@deftypefun int gsl_linalg_QR_QTvec (const gsl_matrix * @var{QR}, const gsl_vector * @var{tau}, gsl_vector * @var{v})
+This function applies the matrix @math{Q^T} encoded in the decomposition
+(@var{QR},@var{tau}) to the vector @var{v}, storing the result @math{Q^T
+v} in @var{v}. The matrix multiplication is carried out directly using
+the encoding of the Householder vectors without needing to form the full
+matrix @math{Q^T}.
+@end deftypefun
+
+@deftypefun int gsl_linalg_QR_Qvec (const gsl_matrix * @var{QR}, const gsl_vector * @var{tau}, gsl_vector * @var{v})
+This function applies the matrix @math{Q} encoded in the decomposition
+(@var{QR},@var{tau}) to the vector @var{v}, storing the result @math{Q
+v} in @var{v}. The matrix multiplication is carried out directly using
+the encoding of the Householder vectors without needing to form the full
+matrix @math{Q}.
+@end deftypefun
+
+@deftypefun int gsl_linalg_QR_Rsolve (const gsl_matrix * @var{QR}, const gsl_vector * @var{b}, gsl_vector * @var{x})
+This function solves the triangular system @math{R x = b} for
+@var{x}. It may be useful if the product @math{b' = Q^T b} has already
+been computed using @code{gsl_linalg_QR_QTvec}.
+@end deftypefun
+
+@deftypefun int gsl_linalg_QR_Rsvx (const gsl_matrix * @var{QR}, gsl_vector * @var{x})
+This function solves the triangular system @math{R x = b} for @var{x}
+in-place. On input @var{x} should contain the right-hand side @math{b}
+and is replaced by the solution on output. This function may be useful if
+the product @math{b' = Q^T b} has already been computed using
+@code{gsl_linalg_QR_QTvec}.
+@end deftypefun
+
+@deftypefun int gsl_linalg_QR_unpack (const gsl_matrix * @var{QR}, const gsl_vector * @var{tau}, gsl_matrix * @var{Q}, gsl_matrix * @var{R})
+This function unpacks the encoded @math{QR} decomposition
+(@var{QR},@var{tau}) into the matrices @var{Q} and @var{R}, where
+@var{Q} is @math{M}-by-@math{M} and @var{R} is @math{M}-by-@math{N}.
+@end deftypefun
+
+@deftypefun int gsl_linalg_QR_QRsolve (gsl_matrix * @var{Q}, gsl_matrix * @var{R}, const gsl_vector * @var{b}, gsl_vector * @var{x})
+This function solves the system @math{R x = Q^T b} for @var{x}. It can
+be used when the @math{QR} decomposition of a matrix is available in
+unpacked form as (@var{Q}, @var{R}).
+@end deftypefun
+
+@deftypefun int gsl_linalg_QR_update (gsl_matrix * @var{Q}, gsl_matrix * @var{R}, gsl_vector * @var{w}, const gsl_vector * @var{v})
+This function performs a rank-1 update @math{w v^T} of the @math{QR}
+decomposition (@var{Q}, @var{R}). The update is given by @math{Q'R' = Q
+R + w v^T} where the output matrices @math{Q'} and @math{R'} are also
+orthogonal and right triangular. Note that @var{w} is destroyed by the
+update.
+@end deftypefun
+
+@deftypefun int gsl_linalg_R_solve (const gsl_matrix * @var{R}, const gsl_vector * @var{b}, gsl_vector * @var{x})
+This function solves the triangular system @math{R x = b} for the
+@math{N}-by-@math{N} matrix @var{R}.
+@end deftypefun
+
+@deftypefun int gsl_linalg_R_svx (const gsl_matrix * @var{R}, gsl_vector * @var{x})
+This function solves the triangular system @math{R x = b} in-place. On
+input @var{x} should contain the right-hand side @math{b}, which is
+replaced by the solution on output.
+@end deftypefun
+
+@node QR Decomposition with Column Pivoting
+@section QR Decomposition with Column Pivoting
+@cindex QR decomposition with column pivoting
+
+The @math{QR} decomposition can be extended to the rank deficient case
+by introducing a column permutation @math{P},
+@tex
+\beforedisplay
+$$
+A P = Q R
+$$
+\afterdisplay
+@end tex
+@ifinfo
+
+@example
+A P = Q R
+@end example
+
+@end ifinfo
+@noindent
+The first @math{r} columns of @math{Q} form an orthonormal basis
+for the range of @math{A} for a matrix with column rank @math{r}. This
+decomposition can also be used to convert the linear system @math{A x =
+b} into the triangular system @math{R y = Q^T b, x = P y}, which can be
+solved by back-substitution and permutation. We denote the @math{QR}
+decomposition with column pivoting by @math{QRP^T} since @math{A = Q R
+P^T}.
+
+@deftypefun int gsl_linalg_QRPT_decomp (gsl_matrix * @var{A}, gsl_vector * @var{tau}, gsl_permutation * @var{p}, int * @var{signum}, gsl_vector * @var{norm})
+This function factorizes the @math{M}-by-@math{N} matrix @var{A} into
+the @math{QRP^T} decomposition @math{A = Q R P^T}. On output the
+diagonal and upper triangular part of the input matrix contain the
+matrix @math{R}. The permutation matrix @math{P} is stored in the
+permutation @var{p}. The sign of the permutation is given by
+@var{signum}. It has the value @math{(-1)^n}, where @math{n} is the
+number of interchanges in the permutation. The vector @var{tau} and the
+columns of the lower triangular part of the matrix @var{A} contain the
+Householder coefficients and vectors which encode the orthogonal matrix
+@var{Q}. The vector @var{tau} must be of length @math{k=\min(M,N)}. The
+matrix @math{Q} is related to these components by, @math{Q = Q_k ... Q_2
+Q_1} where @math{Q_i = I - \tau_i v_i v_i^T} and @math{v_i} is the
+Householder vector @math{v_i =
+(0,...,1,A(i+1,i),A(i+2,i),...,A(m,i))}. This is the same storage scheme
+as used by @sc{lapack}. The vector @var{norm} is a workspace of length
+@var{N} used for column pivoting.
+
+The algorithm used to perform the decomposition is Householder QR with
+column pivoting (Golub & Van Loan, @cite{Matrix Computations}, Algorithm
+5.4.1).
+@end deftypefun
+
+@deftypefun int gsl_linalg_QRPT_decomp2 (const gsl_matrix * @var{A}, gsl_matrix * @var{q}, gsl_matrix * @var{r}, gsl_vector * @var{tau}, gsl_permutation * @var{p}, int * @var{signum}, gsl_vector * @var{norm})
+This function factorizes the matrix @var{A} into the decomposition
+@math{A = Q R P^T} without modifying @var{A} itself and storing the
+output in the separate matrices @var{q} and @var{r}.
+@end deftypefun
+
+@deftypefun int gsl_linalg_QRPT_solve (const gsl_matrix * @var{QR}, const gsl_vector * @var{tau}, const gsl_permutation * @var{p}, const gsl_vector * @var{b}, gsl_vector * @var{x})
+This function solves the square system @math{A x = b} using the @math{QRP^T}
+decomposition of @math{A} into (@var{QR}, @var{tau}, @var{p}) given by
+@code{gsl_linalg_QRPT_decomp}.
+@end deftypefun
+
+@deftypefun int gsl_linalg_QRPT_svx (const gsl_matrix * @var{QR}, const gsl_vector * @var{tau}, const gsl_permutation * @var{p}, gsl_vector * @var{x})
+This function solves the square system @math{A x = b} in-place using the
+@math{QRP^T} decomposition of @math{A} into
+(@var{QR},@var{tau},@var{p}). On input @var{x} should contain the
+right-hand side @math{b}, which is replaced by the solution on output.
+@end deftypefun
+
+@deftypefun int gsl_linalg_QRPT_QRsolve (const gsl_matrix * @var{Q}, const gsl_matrix * @var{R}, const gsl_permutation * @var{p}, const gsl_vector * @var{b}, gsl_vector * @var{x})
+This function solves the square system @math{R P^T x = Q^T b} for
+@var{x}. It can be used when the @math{QR} decomposition of a matrix is
+available in unpacked form as (@var{Q}, @var{R}).
+@end deftypefun
+
+@deftypefun int gsl_linalg_QRPT_update (gsl_matrix * @var{Q}, gsl_matrix * @var{R}, const gsl_permutation * @var{p}, gsl_vector * @var{u}, const gsl_vector * @var{v})
+This function performs a rank-1 update @math{w v^T} of the @math{QRP^T}
+decomposition (@var{Q}, @var{R}, @var{p}). The update is given by
+@math{Q'R' = Q R + w v^T} where the output matrices @math{Q'} and
+@math{R'} are also orthogonal and right triangular. Note that @var{w} is
+destroyed by the update. The permutation @var{p} is not changed.
+@end deftypefun
+
+@deftypefun int gsl_linalg_QRPT_Rsolve (const gsl_matrix * @var{QR}, const gsl_permutation * @var{p}, const gsl_vector * @var{b}, gsl_vector * @var{x})
+This function solves the triangular system @math{R P^T x = b} for the
+@math{N}-by-@math{N} matrix @math{R} contained in @var{QR}.
+@end deftypefun
+
+@deftypefun int gsl_linalg_QRPT_Rsvx (const gsl_matrix * @var{QR}, const gsl_permutation * @var{p}, gsl_vector * @var{x})
+This function solves the triangular system @math{R P^T x = b} in-place
+for the @math{N}-by-@math{N} matrix @math{R} contained in @var{QR}. On
+input @var{x} should contain the right-hand side @math{b}, which is
+replaced by the solution on output.
+@end deftypefun
+
+@node Singular Value Decomposition
+@section Singular Value Decomposition
+@cindex SVD
+@cindex singular value decomposition
+
+A general rectangular @math{M}-by-@math{N} matrix @math{A} has a
+singular value decomposition (@sc{svd}) into the product of an
+@math{M}-by-@math{N} orthogonal matrix @math{U}, an @math{N}-by-@math{N}
+diagonal matrix of singular values @math{S} and the transpose of an
+@math{N}-by-@math{N} orthogonal square matrix @math{V},
+@tex
+\beforedisplay
+$$
+A = U S V^T
+$$
+\afterdisplay
+@end tex
+@ifinfo
+
+@example
+A = U S V^T
+@end example
+
+@end ifinfo
+@noindent
+The singular values
+@c{$\sigma_i = S_{ii}$}
+@math{\sigma_i = S_@{ii@}} are all non-negative and are
+generally chosen to form a non-increasing sequence
+@c{$\sigma_1 \ge \sigma_2 \ge ... \ge \sigma_N \ge 0$}
+@math{\sigma_1 >= \sigma_2 >= ... >= \sigma_N >= 0}.
+
+The singular value decomposition of a matrix has many practical uses.
+The condition number of the matrix is given by the ratio of the largest
+singular value to the smallest singular value. The presence of a zero
+singular value indicates that the matrix is singular. The number of
+non-zero singular values indicates the rank of the matrix. In practice
+singular value decomposition of a rank-deficient matrix will not produce
+exact zeroes for singular values, due to finite numerical
+precision. Small singular values should be edited by choosing a suitable
+tolerance.
+
+For a rank-deficient matrix, the null space of @math{A} is given by
+the columns of @math{V} corresponding to the zero singular values.
+Similarly, the range of @math{A} is given by columns of @math{U}
+corresponding to the non-zero singular values.
+
+@deftypefun int gsl_linalg_SV_decomp (gsl_matrix * @var{A}, gsl_matrix * @var{V}, gsl_vector * @var{S}, gsl_vector * @var{work})
+This function factorizes the @math{M}-by-@math{N} matrix @var{A} into
+the singular value decomposition @math{A = U S V^T} for @c{$M \ge N$}
+@math{M >= N}. On output the matrix @var{A} is replaced by
+@math{U}. The diagonal elements of the singular value matrix @math{S}
+are stored in the vector @var{S}. The singular values are non-negative
+and form a non-increasing sequence from @math{S_1} to @math{S_N}. The
+matrix @var{V} contains the elements of @math{V} in untransposed
+form. To form the product @math{U S V^T} it is necessary to take the
+transpose of @var{V}. A workspace of length @var{N} is required in
+@var{work}.
+
+This routine uses the Golub-Reinsch SVD algorithm.
+@end deftypefun
+
+@deftypefun int gsl_linalg_SV_decomp_mod (gsl_matrix * @var{A}, gsl_matrix * @var{X}, gsl_matrix * @var{V}, gsl_vector * @var{S}, gsl_vector * @var{work})
+This function computes the SVD using the modified Golub-Reinsch
+algorithm, which is faster for @c{$M \gg N$}
+@math{M>>N}. It requires the vector @var{work} of length @var{N} and the
+@math{N}-by-@math{N} matrix @var{X} as additional working space.
+@end deftypefun
+
+@deftypefun int gsl_linalg_SV_decomp_jacobi (gsl_matrix * @var{A}, gsl_matrix * @var{V}, gsl_vector * @var{S})
+This function computes the SVD of the @math{M}-by-@math{N} matrix @var{A}
+using one-sided Jacobi orthogonalization for @c{$M \ge N$}
+@math{M >= N}. The Jacobi method can compute singular values to higher
+relative accuracy than Golub-Reinsch algorithms (see references for
+details).
+@end deftypefun
+
+@deftypefun int gsl_linalg_SV_solve (gsl_matrix * @var{U}, gsl_matrix * @var{V}, gsl_vector * @var{S}, const gsl_vector * @var{b}, gsl_vector * @var{x})
+This function solves the system @math{A x = b} using the singular value
+decomposition (@var{U}, @var{S}, @var{V}) of @math{A} given by
+@code{gsl_linalg_SV_decomp}.
+
+Only non-zero singular values are used in computing the solution. The
+parts of the solution corresponding to singular values of zero are
+ignored. Other singular values can be edited out by setting them to
+zero before calling this function.
+
+In the over-determined case where @var{A} has more rows than columns the
+system is solved in the least squares sense, returning the solution
+@var{x} which minimizes @math{||A x - b||_2}.
+@end deftypefun
+
+@node Cholesky Decomposition
+@section Cholesky Decomposition
+@cindex Cholesky decomposition
+@cindex square root of a matrix, Cholesky decomposition
+@cindex matrix square root, Cholesky decomposition
+
+A symmetric, positive definite square matrix @math{A} has a Cholesky
+decomposition into a product of a lower triangular matrix @math{L} and
+its transpose @math{L^T},
+@tex
+\beforedisplay
+$$
+A = L L^T
+$$
+\afterdisplay
+@end tex
+@ifinfo
+
+@example
+A = L L^T
+@end example
+
+@end ifinfo
+@noindent
+This is sometimes referred to as taking the square-root of a matrix. The
+Cholesky decomposition can only be carried out when all the eigenvalues
+of the matrix are positive. This decomposition can be used to convert
+the linear system @math{A x = b} into a pair of triangular systems
+(@math{L y = b}, @math{L^T x = y}), which can be solved by forward and
+back-substitution.
+
+@deftypefun int gsl_linalg_cholesky_decomp (gsl_matrix * @var{A})
+This function factorizes the positive-definite symmetric square matrix
+@var{A} into the Cholesky decomposition @math{A = L L^T}. On input
+only the diagonal and lower-triangular part of the matrix @var{A} are
+needed. On output the diagonal and lower triangular part of the input
+matrix @var{A} contain the matrix @math{L}. The upper triangular part
+of the input matrix contains @math{L^T}, the diagonal terms being
+identical for both @math{L} and @math{L^T}. If the matrix is not
+positive-definite then the decomposition will fail, returning the
+error code @code{GSL_EDOM}.
+@end deftypefun
+
+@deftypefun int gsl_linalg_cholesky_solve (const gsl_matrix * @var{cholesky}, const gsl_vector * @var{b}, gsl_vector * @var{x})
+This function solves the system @math{A x = b} using the Cholesky
+decomposition of @math{A} into the matrix @var{cholesky} given by
+@code{gsl_linalg_cholesky_decomp}.
+@end deftypefun
+
+@deftypefun int gsl_linalg_cholesky_svx (const gsl_matrix * @var{cholesky}, gsl_vector * @var{x})
+This function solves the system @math{A x = b} in-place using the
+Cholesky decomposition of @math{A} into the matrix @var{cholesky} given
+by @code{gsl_linalg_cholesky_decomp}. On input @var{x} should contain
+the right-hand side @math{b}, which is replaced by the solution on
+output.
+@end deftypefun
+
+@node Tridiagonal Decomposition of Real Symmetric Matrices
+@section Tridiagonal Decomposition of Real Symmetric Matrices
+@cindex tridiagonal decomposition
+
+A symmetric matrix @math{A} can be factorized by similarity
+transformations into the form,
+@tex
+\beforedisplay
+$$
+A = Q T Q^T
+$$
+\afterdisplay
+@end tex
+@ifinfo
+
+@example
+A = Q T Q^T
+@end example
+
+@end ifinfo
+@noindent
+where @math{Q} is an orthogonal matrix and @math{T} is a symmetric
+tridiagonal matrix.
+
+@deftypefun int gsl_linalg_symmtd_decomp (gsl_matrix * @var{A}, gsl_vector * @var{tau})
+This function factorizes the symmetric square matrix @var{A} into the
+symmetric tridiagonal decomposition @math{Q T Q^T}. On output the
+diagonal and subdiagonal part of the input matrix @var{A} contain the
+tridiagonal matrix @math{T}. The remaining lower triangular part of the
+input matrix contains the Householder vectors which, together with the
+Householder coefficients @var{tau}, encode the orthogonal matrix
+@math{Q}. This storage scheme is the same as used by @sc{lapack}. The
+upper triangular part of @var{A} is not referenced.
+@end deftypefun
+
+@deftypefun int gsl_linalg_symmtd_unpack (const gsl_matrix * @var{A}, const gsl_vector * @var{tau}, gsl_matrix * @var{Q}, gsl_vector * @var{diag}, gsl_vector * @var{subdiag})
+This function unpacks the encoded symmetric tridiagonal decomposition
+(@var{A}, @var{tau}) obtained from @code{gsl_linalg_symmtd_decomp} into
+the orthogonal matrix @var{Q}, the vector of diagonal elements @var{diag}
+and the vector of subdiagonal elements @var{subdiag}.
+@end deftypefun
+
+@deftypefun int gsl_linalg_symmtd_unpack_T (const gsl_matrix * @var{A}, gsl_vector * @var{diag}, gsl_vector * @var{subdiag})
+This function unpacks the diagonal and subdiagonal of the encoded
+symmetric tridiagonal decomposition (@var{A}, @var{tau}) obtained from
+@code{gsl_linalg_symmtd_decomp} into the vectors @var{diag} and @var{subdiag}.
+@end deftypefun
+
+@node Tridiagonal Decomposition of Hermitian Matrices
+@section Tridiagonal Decomposition of Hermitian Matrices
+@cindex tridiagonal decomposition
+
+A hermitian matrix @math{A} can be factorized by similarity
+transformations into the form,
+@tex
+\beforedisplay
+$$
+A = U T U^T
+$$
+\afterdisplay
+@end tex
+@ifinfo
+
+@example
+A = U T U^T
+@end example
+
+@end ifinfo
+@noindent
+where @math{U} is a unitary matrix and @math{T} is a real symmetric
+tridiagonal matrix.
+
+
+@deftypefun int gsl_linalg_hermtd_decomp (gsl_matrix_complex * @var{A}, gsl_vector_complex * @var{tau})
+This function factorizes the hermitian matrix @var{A} into the symmetric
+tridiagonal decomposition @math{U T U^T}. On output the real parts of
+the diagonal and subdiagonal part of the input matrix @var{A} contain
+the tridiagonal matrix @math{T}. The remaining lower triangular part of
+the input matrix contains the Householder vectors which, together with
+the Householder coefficients @var{tau}, encode the orthogonal matrix
+@math{Q}. This storage scheme is the same as used by @sc{lapack}. The
+upper triangular part of @var{A} and imaginary parts of the diagonal are
+not referenced.
+@end deftypefun
+
+@deftypefun int gsl_linalg_hermtd_unpack (const gsl_matrix_complex * @var{A}, const gsl_vector_complex * @var{tau}, gsl_matrix_complex * @var{Q}, gsl_vector * @var{diag}, gsl_vector * @var{subdiag})
+This function unpacks the encoded tridiagonal decomposition (@var{A},
+@var{tau}) obtained from @code{gsl_linalg_hermtd_decomp} into the
+unitary matrix @var{U}, the real vector of diagonal elements @var{diag} and
+the real vector of subdiagonal elements @var{subdiag}.
+@end deftypefun
+
+@deftypefun int gsl_linalg_hermtd_unpack_T (const gsl_matrix_complex * @var{A}, gsl_vector * @var{diag}, gsl_vector * @var{subdiag})
+This function unpacks the diagonal and subdiagonal of the encoded
+tridiagonal decomposition (@var{A}, @var{tau}) obtained from the
+@code{gsl_linalg_hermtd_decomp} into the real vectors
+@var{diag} and @var{subdiag}.
+@end deftypefun
+
+@node Hessenberg Decomposition of Real Matrices
+@section Hessenberg Decomposition of Real Matrices
+@cindex hessenberg decomposition
+
+A general matrix @math{A} can be decomposed by orthogonal
+similarity transformations into the form
+@tex
+\beforedisplay
+$$
+A = U H U^T
+$$
+\afterdisplay
+@end tex
+@ifinfo
+
+@example
+A = U H U^T
+@end example
+
+@end ifinfo
+where @math{U} is orthogonal and @math{H} is an upper Hessenberg matrix,
+meaning that it has zeros below the first subdiagonal. The
+Hessenberg reduction is the first step in the Schur decomposition
+for the nonsymmetric eigenvalue problem, but has applications in
+other areas as well.
+
+@deftypefun int gsl_linalg_hessenberg (gsl_matrix * @var{A}, gsl_vector * @var{tau})
+This function computes the Hessenberg decomposition of the matrix
+@var{A} by applying the similarity transformation @math{H = U^T A U}.
+On output, @math{H} is stored in the upper portion of @var{A}. The
+information required to construct the matrix @math{U} is stored in
+the lower triangular portion of @var{A}. @math{U} is a product
+of @math{N - 2} Householder matrices. The Householder vectors
+are stored in the lower portion of @var{A} (below the subdiagonal)
+and the Householder coefficients are stored in the vector @var{tau}.
+@var{tau} must be of length @var{N}.
+@end deftypefun
+
+@deftypefun int gsl_linalg_hessenberg_unpack (gsl_matrix * @var{H}, gsl_vector * @var{tau}, gsl_matrix * @var{U})
+This function constructs the orthogonal matrix @math{U} from the
+information stored in the Hessenberg matrix @var{H} along with the
+vector @var{tau}. @var{H} and @var{tau} are outputs from
+@code{gsl_linalg_hessenberg}.
+@end deftypefun
+
+@deftypefun int gsl_linalg_hessenberg_unpack_accum (gsl_matrix * @var{H}, gsl_vector * @var{tau}, gsl_matrix * @var{V})
+This function is similar to @code{gsl_linalg_hessenberg_unpack}, except
+it accumulates the matrix @var{U} into @var{V}, so that @math{V' = VU}.
+The matrix @var{V} must be initialized prior to calling this function.
+Setting @var{V} to the identity matrix provides the same result as
+@code{gsl_linalg_hessenberg_unpack}. If @var{H} is order @var{N}, then
+@var{V} must have @var{N} columns but may have any number of rows.
+@end deftypefun
+
+@deftypefun void gsl_linalg_hessenberg_set_zero (gsl_matrix * @var{H})
+This function sets the lower triangular portion of @var{H}, below
+the subdiagonal, to zero. It is useful for clearing out the
+Householder vectors after calling @code{gsl_linalg_hessenberg}.
+@end deftypefun
+
+@node Bidiagonalization
+@section Bidiagonalization
+@cindex bidiagonalization of real matrices
+
+A general matrix @math{A} can be factorized by similarity
+transformations into the form,
+@tex
+\beforedisplay
+$$
+A = U B V^T
+$$
+\afterdisplay
+@end tex
+@ifinfo
+
+@example
+A = U B V^T
+@end example
+
+@end ifinfo
+@noindent
+where @math{U} and @math{V} are orthogonal matrices and @math{B} is a
+@math{N}-by-@math{N} bidiagonal matrix with non-zero entries only on the
+diagonal and superdiagonal. The size of @var{U} is @math{M}-by-@math{N}
+and the size of @var{V} is @math{N}-by-@math{N}.
+
+@deftypefun int gsl_linalg_bidiag_decomp (gsl_matrix * @var{A}, gsl_vector * @var{tau_U}, gsl_vector * @var{tau_V})
+This function factorizes the @math{M}-by-@math{N} matrix @var{A} into
+bidiagonal form @math{U B V^T}. The diagonal and superdiagonal of the
+matrix @math{B} are stored in the diagonal and superdiagonal of @var{A}.
+The orthogonal matrices @math{U} and @var{V} are stored as compressed
+Householder vectors in the remaining elements of @var{A}. The
+Householder coefficients are stored in the vectors @var{tau_U} and
+@var{tau_V}. The length of @var{tau_U} must equal the number of
+elements in the diagonal of @var{A} and the length of @var{tau_V} should
+be one element shorter.
+@end deftypefun
+
+@deftypefun int gsl_linalg_bidiag_unpack (const gsl_matrix * @var{A}, const gsl_vector * @var{tau_U}, gsl_matrix * @var{U}, const gsl_vector * @var{tau_V}, gsl_matrix * @var{V}, gsl_vector * @var{diag}, gsl_vector * @var{superdiag})
+This function unpacks the bidiagonal decomposition of @var{A} given by
+@code{gsl_linalg_bidiag_decomp}, (@var{A}, @var{tau_U}, @var{tau_V})
+into the separate orthogonal matrices @var{U}, @var{V} and the diagonal
+vector @var{diag} and superdiagonal @var{superdiag}. Note that @var{U}
+is stored as a compact @math{M}-by-@math{N} orthogonal matrix satisfying
+@math{U^T U = I} for efficiency.
+@end deftypefun
+
+@deftypefun int gsl_linalg_bidiag_unpack2 (gsl_matrix * @var{A}, gsl_vector * @var{tau_U}, gsl_vector * @var{tau_V}, gsl_matrix * @var{V})
+This function unpacks the bidiagonal decomposition of @var{A} given by
+@code{gsl_linalg_bidiag_decomp}, (@var{A}, @var{tau_U}, @var{tau_V})
+into the separate orthogonal matrices @var{U}, @var{V} and the diagonal
+vector @var{diag} and superdiagonal @var{superdiag}. The matrix @var{U}
+is stored in-place in @var{A}.
+@end deftypefun
+
+@deftypefun int gsl_linalg_bidiag_unpack_B (const gsl_matrix * @var{A}, gsl_vector * @var{diag}, gsl_vector * @var{superdiag})
+This function unpacks the diagonal and superdiagonal of the bidiagonal
+decomposition of @var{A} given by @code{gsl_linalg_bidiag_decomp}, into
+the diagonal vector @var{diag} and superdiagonal vector @var{superdiag}.
+@end deftypefun
+
+@node Householder Transformations
+@section Householder Transformations
+@cindex Householder matrix
+@cindex Householder transformation
+@cindex transformation, Householder
+
+A Householder transformation is a rank-1 modification of the identity
+matrix which can be used to zero out selected elements of a vector. A
+Householder matrix @math{P} takes the form,
+@tex
+\beforedisplay
+$$
+P = I - \tau v v^T
+$$
+\afterdisplay
+@end tex
+@ifinfo
+
+@example
+P = I - \tau v v^T
+@end example
+
+@end ifinfo
+@noindent
+where @math{v} is a vector (called the @dfn{Householder vector}) and
+@math{\tau = 2/(v^T v)}. The functions described in this section use the
+rank-1 structure of the Householder matrix to create and apply
+Householder transformations efficiently.
+
+@deftypefun double gsl_linalg_householder_transform (gsl_vector * @var{v})
+This function prepares a Householder transformation @math{P = I - \tau v
+v^T} which can be used to zero all the elements of the input vector except
+the first. On output the transformation is stored in the vector @var{v}
+and the scalar @math{\tau} is returned.
+@end deftypefun
+
+@deftypefun int gsl_linalg_householder_hm (double tau, const gsl_vector * v, gsl_matrix * A)
+This function applies the Householder matrix @math{P} defined by the
+scalar @var{tau} and the vector @var{v} to the left-hand side of the
+matrix @var{A}. On output the result @math{P A} is stored in @var{A}.
+@end deftypefun
+
+@deftypefun int gsl_linalg_householder_mh (double tau, const gsl_vector * v, gsl_matrix * A)
+This function applies the Householder matrix @math{P} defined by the
+scalar @var{tau} and the vector @var{v} to the right-hand side of the
+matrix @var{A}. On output the result @math{A P} is stored in @var{A}.
+@end deftypefun
+
+@deftypefun int gsl_linalg_householder_hv (double tau, const gsl_vector * v, gsl_vector * w)
+This function applies the Householder transformation @math{P} defined by
+the scalar @var{tau} and the vector @var{v} to the vector @var{w}. On
+output the result @math{P w} is stored in @var{w}.
+@end deftypefun
+
+@comment @deftypefun int gsl_linalg_householder_hm1 (double tau, gsl_matrix * A)
+@comment This function applies the Householder transform, defined by the scalar
+@comment @var{tau} and the vector @var{v}, to a matrix being build up from the
+@comment identity matrix, using the first column of @var{A} as a householder vector.
+@comment @end deftypefun
+
+@node Householder solver for linear systems
+@section Householder solver for linear systems
+@cindex solution of linear system by Householder transformations
+@cindex Householder linear solver
+
+@deftypefun int gsl_linalg_HH_solve (gsl_matrix * @var{A}, const gsl_vector * @var{b}, gsl_vector * @var{x})
+This function solves the system @math{A x = b} directly using
+Householder transformations. On output the solution is stored in @var{x}
+and @var{b} is not modified. The matrix @var{A} is destroyed by the
+Householder transformations.
+@end deftypefun
+
+@deftypefun int gsl_linalg_HH_svx (gsl_matrix * @var{A}, gsl_vector * @var{x})
+This function solves the system @math{A x = b} in-place using
+Householder transformations. On input @var{x} should contain the
+right-hand side @math{b}, which is replaced by the solution on output. The
+matrix @var{A} is destroyed by the Householder transformations.
+@end deftypefun
+
+@node Tridiagonal Systems
+@section Tridiagonal Systems
+@cindex tridiagonal systems
+
+@deftypefun int gsl_linalg_solve_tridiag (const gsl_vector * @var{diag}, const gsl_vector * @var{e}, const gsl_vector * @var{f}, const gsl_vector * @var{b}, gsl_vector * @var{x})
+This function solves the general @math{N}-by-@math{N} system @math{A x =
+b} where @var{A} is tridiagonal (@c{$N\geq 2$}
+@math{N >= 2}). The super-diagonal and
+sub-diagonal vectors @var{e} and @var{f} must be one element shorter
+than the diagonal vector @var{diag}. The form of @var{A} for the 4-by-4
+case is shown below,
+@tex
+\beforedisplay
+$$
+A = \pmatrix{d_0&e_0& 0& 0\cr
+ f_0&d_1&e_1& 0\cr
+ 0 &f_1&d_2&e_2\cr
+ 0 &0 &f_2&d_3\cr}
+$$
+\afterdisplay
+@end tex
+@ifinfo
+
+@example
+A = ( d_0 e_0 0 0 )
+ ( f_0 d_1 e_1 0 )
+ ( 0 f_1 d_2 e_2 )
+ ( 0 0 f_2 d_3 )
+@end example
+@end ifinfo
+@end deftypefun
+
+@deftypefun int gsl_linalg_solve_symm_tridiag (const gsl_vector * @var{diag}, const gsl_vector * @var{e}, const gsl_vector * @var{b}, gsl_vector * @var{x})
+This function solves the general @math{N}-by-@math{N} system @math{A x =
+b} where @var{A} is symmetric tridiagonal (@c{$N\geq 2$}
+@math{N >= 2}). The off-diagonal vector
+@var{e} must be one element shorter than the diagonal vector @var{diag}.
+The form of @var{A} for the 4-by-4 case is shown below,
+@tex
+\beforedisplay
+$$
+A = \pmatrix{d_0&e_0& 0& 0\cr
+ e_0&d_1&e_1& 0\cr
+ 0 &e_1&d_2&e_2\cr
+ 0 &0 &e_2&d_3\cr}
+$$
+\afterdisplay
+@end tex
+@ifinfo
+
+@example
+A = ( d_0 e_0 0 0 )
+ ( e_0 d_1 e_1 0 )
+ ( 0 e_1 d_2 e_2 )
+ ( 0 0 e_2 d_3 )
+@end example
+@end ifinfo
+The current implementation uses a variant of Cholesky decomposition
+which can cause division by zero if the matrix is not positive definite.
+@end deftypefun
+
+@deftypefun int gsl_linalg_solve_cyc_tridiag (const gsl_vector * @var{diag}, const gsl_vector * @var{e}, const gsl_vector * @var{f}, const gsl_vector * @var{b}, gsl_vector * @var{x})
+This function solves the general @math{N}-by-@math{N} system @math{A x =
+b} where @var{A} is cyclic tridiagonal (@c{$N\geq 3$}
+@math{N >= 3}). The cyclic super-diagonal and
+sub-diagonal vectors @var{e} and @var{f} must have the same number of
+elements as the diagonal vector @var{diag}. The form of @var{A} for the
+4-by-4 case is shown below,
+@tex
+\beforedisplay
+$$
+A = \pmatrix{d_0&e_0& 0 &f_3\cr
+ f_0&d_1&e_1& 0 \cr
+ 0 &f_1&d_2&e_2\cr
+ e_3& 0 &f_2&d_3\cr}
+$$
+\afterdisplay
+@end tex
+@ifinfo
+
+@example
+A = ( d_0 e_0 0 f_3 )
+ ( f_0 d_1 e_1 0 )
+ ( 0 f_1 d_2 e_2 )
+ ( e_3 0 f_2 d_3 )
+@end example
+@end ifinfo
+@end deftypefun
+
+
+@deftypefun int gsl_linalg_solve_symm_cyc_tridiag (const gsl_vector * @var{diag}, const gsl_vector * @var{e}, const gsl_vector * @var{b}, gsl_vector * @var{x})
+This function solves the general @math{N}-by-@math{N} system @math{A x =
+b} where @var{A} is symmetric cyclic tridiagonal (@c{$N\geq 3$}
+@math{N >= 3}). The cyclic
+off-diagonal vector @var{e} must have the same number of elements as the
+diagonal vector @var{diag}. The form of @var{A} for the 4-by-4 case is
+shown below,
+@tex
+\beforedisplay
+$$
+A = \pmatrix{d_0&e_0& 0 &e_3\cr
+ e_0&d_1&e_1& 0 \cr
+ 0 &e_1&d_2&e_2\cr
+ e_3& 0 &e_2&d_3\cr}
+$$
+\afterdisplay
+@end tex
+@ifinfo
+
+@example
+A = ( d_0 e_0 0 e_3 )
+ ( e_0 d_1 e_1 0 )
+ ( 0 e_1 d_2 e_2 )
+ ( e_3 0 e_2 d_3 )
+@end example
+@end ifinfo
+@end deftypefun
+
+@node Balancing
+@section Balancing
+@cindex balancing matrices
+
+The process of balancing a matrix applies similarity transformations
+to make the rows and columns have comparable norms. This is
+useful, for example, to reduce roundoff errors in the solution
+of eigenvalue problems. Balancing a matrix @math{A} consists
+of replacing @math{A} with a similar matrix
+@tex
+\beforedisplay
+$$
+A' = D^{-1} A D
+$$
+\afterdisplay
+@end tex
+@ifinfo
+
+@example
+A' = D^(-1) A D
+@end example
+
+@end ifinfo
+where @math{D} is a diagonal matrix whose entries are powers
+of the floating point radix.
+
+@deftypefun int gsl_linalg_balance_matrix (gsl_matrix * @var{A}, gsl_vector * @var{D})
+This function replaces the matrix @var{A} with its balanced counterpart
+and stores the diagonal elements of the similarity transformation
+into the vector @var{D}.
+@end deftypefun
+
+@node Linear Algebra Examples
+@section Examples
+
+The following program solves the linear system @math{A x = b}. The
+system to be solved is,
+@tex
+\beforedisplay
+$$
+\left(
+\matrix{0.18& 0.60& 0.57& 0.96\cr
+0.41& 0.24& 0.99& 0.58\cr
+0.14& 0.30& 0.97& 0.66\cr
+0.51& 0.13& 0.19& 0.85}
+\right)
+\left(
+\matrix{x_0\cr
+x_1\cr
+x_2\cr
+x_3}
+\right)
+=
+\left(
+\matrix{1.0\cr
+2.0\cr
+3.0\cr
+4.0}
+\right)
+$$
+\afterdisplay
+@end tex
+@ifinfo
+
+@example
+[ 0.18 0.60 0.57 0.96 ] [x0] [1.0]
+[ 0.41 0.24 0.99 0.58 ] [x1] = [2.0]
+[ 0.14 0.30 0.97 0.66 ] [x2] [3.0]
+[ 0.51 0.13 0.19 0.85 ] [x3] [4.0]
+@end example
+
+@end ifinfo
+@noindent
+and the solution is found using LU decomposition of the matrix @math{A}.
+
+@example
+@verbatiminclude examples/linalglu.c
+@end example
+
+@noindent
+Here is the output from the program,
+
+@example
+@verbatiminclude examples/linalglu.out
+@end example
+
+@noindent
+This can be verified by multiplying the solution @math{x} by the
+original matrix @math{A} using @sc{gnu octave},
+
+@example
+octave> A = [ 0.18, 0.60, 0.57, 0.96;
+ 0.41, 0.24, 0.99, 0.58;
+ 0.14, 0.30, 0.97, 0.66;
+ 0.51, 0.13, 0.19, 0.85 ];
+
+octave> x = [ -4.05205; -12.6056; 1.66091; 8.69377];
+
+octave> A * x
+ans =
+ 1.0000
+ 2.0000
+ 3.0000
+ 4.0000
+@end example
+
+@noindent
+This reproduces the original right-hand side vector, @math{b}, in
+accordance with the equation @math{A x = b}.
+
+@node Linear Algebra References and Further Reading
+@section References and Further Reading
+
+Further information on the algorithms described in this section can be
+found in the following book,
+
+@itemize @asis
+@item
+G. H. Golub, C. F. Van Loan, @cite{Matrix Computations} (3rd Ed, 1996),
+Johns Hopkins University Press, ISBN 0-8018-5414-8.
+@end itemize
+
+@noindent
+The @sc{lapack} library is described in the following manual,
+
+@itemize @asis
+@item
+@cite{LAPACK Users' Guide} (Third Edition, 1999), Published by SIAM,
+ISBN 0-89871-447-8.
+
+@uref{http://www.netlib.org/lapack}
+@end itemize
+
+@noindent
+The @sc{lapack} source code can be found at the website above, along
+with an online copy of the users guide.
+
+@noindent
+The Modified Golub-Reinsch algorithm is described in the following paper,
+
+@itemize @asis
+@item
+T.F. Chan, ``An Improved Algorithm for Computing the Singular Value
+Decomposition'', @cite{ACM Transactions on Mathematical Software}, 8
+(1982), pp 72--83.
+@end itemize
+
+@noindent
+The Jacobi algorithm for singular value decomposition is described in
+the following papers,
+
+@itemize @asis
+@item
+J.C. Nash, ``A one-sided transformation method for the singular value
+decomposition and algebraic eigenproblem'', @cite{Computer Journal},
+Volume 18, Number 1 (1973), p 74--76
+
+@item
+James Demmel, Kresimir Veselic, ``Jacobi's Method is more accurate than
+QR'', @cite{Lapack Working Note 15} (LAWN-15), October 1989. Available
+from netlib, @uref{http://www.netlib.org/lapack/} in the @code{lawns} or
+@code{lawnspdf} directories.
+@end itemize
+
+
+