summaryrefslogtreecommitdiff
path: root/gsl-1.9/doc/linalg.texi
diff options
context:
space:
mode:
authorJoel Sherrill <joel.sherrill@OARcorp.com>2011-04-08 17:33:11 +0000
committerJoel Sherrill <joel.sherrill@OARcorp.com>2011-04-08 17:33:11 +0000
commit73f643f3f4a55310b2c8c1a9858906b2dd676e72 (patch)
treeb1df97f18dace4a5702b0bc7aafdfee8a2f25ada /gsl-1.9/doc/linalg.texi
parentee523abdace8337d05ec4a179fcdf5de3fe0f634 (diff)
2011-04-08 Joel Sherrill <joel.sherrill@oarcorp.com>
* AUTHORS, BUGS, COPYING, ChangeLog, INSTALL, Makefile.am, Makefile.in, NEWS, README, SUPPORT, THANKS, TODO, acconfig.h, aclocal.m4, autogen.sh, config.guess, config.h.in, config.sub, configure, configure.ac, gsl-config.in, gsl-histogram.c, gsl-randist.c, gsl.m4, gsl.pc.in, gsl.spec.in, gsl_machine.h, gsl_math.h, gsl_mode.h, gsl_nan.h, gsl_pow_int.h, gsl_precision.h, gsl_types.h, gsl_version.h.in, install-sh, ltmain.sh, mdate-sh, missing, mkinstalldirs, templates_off.h, templates_on.h, test_gsl_histogram.sh, version.c, blas/ChangeLog, blas/Makefile.am, blas/Makefile.in, blas/TODO, blas/blas.c, blas/gsl_blas.h, blas/gsl_blas_types.h, block/ChangeLog, block/Makefile.am, block/Makefile.in, block/block.c, block/block_source.c, block/file.c, block/fprintf_source.c, block/fwrite_source.c, block/gsl_block.h, block/gsl_block_char.h, block/gsl_block_complex_double.h, block/gsl_block_complex_float.h, block/gsl_block_complex_long_double.h, block/gsl_block_double.h, block/gsl_block_float.h, block/gsl_block_int.h, block/gsl_block_long.h, block/gsl_block_long_double.h, block/gsl_block_short.h, block/gsl_block_uchar.h, block/gsl_block_uint.h, block/gsl_block_ulong.h, block/gsl_block_ushort.h, block/gsl_check_range.h, block/init.c, block/init_source.c, block/test.c, block/test_complex_io.c, block/test_complex_source.c, block/test_io.c, block/test_source.c, bspline/ChangeLog, bspline/Makefile.am, bspline/Makefile.in, bspline/TODO, bspline/bspline.c, bspline/gsl_bspline.h, bspline/test.c, cblas/ChangeLog, cblas/Makefile.am, cblas/Makefile.in, cblas/TODO, cblas/caxpy.c, cblas/cblas.h, cblas/ccopy.c, cblas/cdotc_sub.c, cblas/cdotu_sub.c, cblas/cgbmv.c, cblas/cgemm.c, cblas/cgemv.c, cblas/cgerc.c, cblas/cgeru.c, cblas/chbmv.c, cblas/chemm.c, cblas/chemv.c, cblas/cher.c, cblas/cher2.c, cblas/cher2k.c, cblas/cherk.c, cblas/chpmv.c, cblas/chpr.c, cblas/chpr2.c, cblas/cscal.c, cblas/csscal.c, cblas/cswap.c, cblas/csymm.c, cblas/csyr2k.c, cblas/csyrk.c, cblas/ctbmv.c, cblas/ctbsv.c, cblas/ctpmv.c, cblas/ctpsv.c, cblas/ctrmm.c, cblas/ctrmv.c, cblas/ctrsm.c, cblas/ctrsv.c, cblas/dasum.c, cblas/daxpy.c, cblas/dcopy.c, cblas/ddot.c, cblas/dgbmv.c, cblas/dgemm.c, cblas/dgemv.c, cblas/dger.c, cblas/dnrm2.c, cblas/drot.c, cblas/drotg.c, cblas/drotm.c, cblas/drotmg.c, cblas/dsbmv.c, cblas/dscal.c, cblas/dsdot.c, cblas/dspmv.c, cblas/dspr.c, cblas/dspr2.c, cblas/dswap.c, cblas/dsymm.c, cblas/dsymv.c, cblas/dsyr.c, cblas/dsyr2.c, cblas/dsyr2k.c, cblas/dsyrk.c, cblas/dtbmv.c, cblas/dtbsv.c, cblas/dtpmv.c, cblas/dtpsv.c, cblas/dtrmm.c, cblas/dtrmv.c, cblas/dtrsm.c, cblas/dtrsv.c, cblas/dzasum.c, cblas/dznrm2.c, cblas/gsl_cblas.h, cblas/hypot.c, cblas/icamax.c, cblas/idamax.c, cblas/isamax.c, cblas/izamax.c, cblas/sasum.c, cblas/saxpy.c, cblas/scasum.c, cblas/scnrm2.c, cblas/scopy.c, cblas/sdot.c, cblas/sdsdot.c, cblas/sgbmv.c, cblas/sgemm.c, cblas/sgemv.c, cblas/sger.c, cblas/snrm2.c, cblas/source_asum_c.h, cblas/source_asum_r.h, cblas/source_axpy_c.h, cblas/source_axpy_r.h, cblas/source_copy_c.h, cblas/source_copy_r.h, cblas/source_dot_c.h, cblas/source_dot_r.h, cblas/source_gbmv_c.h, cblas/source_gbmv_r.h, cblas/source_gemm_c.h, cblas/source_gemm_r.h, cblas/source_gemv_c.h, cblas/source_gemv_r.h, cblas/source_ger.h, cblas/source_gerc.h, cblas/source_geru.h, cblas/source_hbmv.h, cblas/source_hemm.h, cblas/source_hemv.h, cblas/source_her.h, cblas/source_her2.h, cblas/source_her2k.h, cblas/source_herk.h, cblas/source_hpmv.h, cblas/source_hpr.h, cblas/source_hpr2.h, cblas/source_iamax_c.h, cblas/source_iamax_r.h, cblas/source_nrm2_c.h, cblas/source_nrm2_r.h, cblas/source_rot.h, cblas/source_rotg.h, cblas/source_rotm.h, cblas/source_rotmg.h, cblas/source_sbmv.h, cblas/source_scal_c.h, cblas/source_scal_c_s.h, cblas/source_scal_r.h, cblas/source_spmv.h, cblas/source_spr.h, cblas/source_spr2.h, cblas/source_swap_c.h, cblas/source_swap_r.h, cblas/source_symm_c.h, cblas/source_symm_r.h, cblas/source_symv.h, cblas/source_syr.h, cblas/source_syr2.h, cblas/source_syr2k_c.h, cblas/source_syr2k_r.h, cblas/source_syrk_c.h, cblas/source_syrk_r.h, cblas/source_tbmv_c.h, cblas/source_tbmv_r.h, cblas/source_tbsv_c.h, cblas/source_tbsv_r.h, cblas/source_tpmv_c.h, cblas/source_tpmv_r.h, cblas/source_tpsv_c.h, cblas/source_tpsv_r.h, cblas/source_trmm_c.h, cblas/source_trmm_r.h, cblas/source_trmv_c.h, cblas/source_trmv_r.h, cblas/source_trsm_c.h, cblas/source_trsm_r.h, cblas/source_trsv_c.h, cblas/source_trsv_r.h, cblas/srot.c, cblas/srotg.c, cblas/srotm.c, cblas/srotmg.c, cblas/ssbmv.c, cblas/sscal.c, cblas/sspmv.c, cblas/sspr.c, cblas/sspr2.c, cblas/sswap.c, cblas/ssymm.c, cblas/ssymv.c, cblas/ssyr.c, cblas/ssyr2.c, cblas/ssyr2k.c, cblas/ssyrk.c, cblas/stbmv.c, cblas/stbsv.c, cblas/stpmv.c, cblas/stpsv.c, cblas/strmm.c, cblas/strmv.c, cblas/strsm.c, cblas/strsv.c, cblas/test.c, cblas/test_amax.c, cblas/test_asum.c, cblas/test_axpy.c, cblas/test_copy.c, cblas/test_dot.c, cblas/test_gbmv.c, cblas/test_gemm.c, cblas/test_gemv.c, cblas/test_ger.c, cblas/test_hbmv.c, cblas/test_hemm.c, cblas/test_hemv.c, cblas/test_her.c, cblas/test_her2.c, cblas/test_her2k.c, cblas/test_herk.c, cblas/test_hpmv.c, cblas/test_hpr.c, cblas/test_hpr2.c, cblas/test_nrm2.c, cblas/test_rot.c, cblas/test_rotg.c, cblas/test_rotm.c, cblas/test_rotmg.c, cblas/test_sbmv.c, cblas/test_scal.c, cblas/test_spmv.c, cblas/test_spr.c, cblas/test_spr2.c, cblas/test_swap.c, cblas/test_symm.c, cblas/test_symv.c, cblas/test_syr.c, cblas/test_syr2.c, cblas/test_syr2k.c, cblas/test_syrk.c, cblas/test_tbmv.c, cblas/test_tbsv.c, cblas/test_tpmv.c, cblas/test_tpsv.c, cblas/test_trmm.c, cblas/test_trmv.c, cblas/test_trsm.c, cblas/test_trsv.c, cblas/tests.c, cblas/tests.h, cblas/xerbla.c, cblas/zaxpy.c, cblas/zcopy.c, cblas/zdotc_sub.c, cblas/zdotu_sub.c, cblas/zdscal.c, cblas/zgbmv.c, cblas/zgemm.c, cblas/zgemv.c, cblas/zgerc.c, cblas/zgeru.c, cblas/zhbmv.c, cblas/zhemm.c, cblas/zhemv.c, cblas/zher.c, cblas/zher2.c, cblas/zher2k.c, cblas/zherk.c, cblas/zhpmv.c, cblas/zhpr.c, cblas/zhpr2.c, cblas/zscal.c, cblas/zswap.c, cblas/zsymm.c, cblas/zsyr2k.c, cblas/zsyrk.c, cblas/ztbmv.c, cblas/ztbsv.c, cblas/ztpmv.c, cblas/ztpsv.c, cblas/ztrmm.c, cblas/ztrmv.c, cblas/ztrsm.c, cblas/ztrsv.c, cdf/ChangeLog, cdf/Makefile.am, cdf/Makefile.in, cdf/beta.c, cdf/beta_inc.c, cdf/betainv.c, cdf/binomial.c, cdf/cauchy.c, cdf/cauchyinv.c, cdf/chisq.c, cdf/chisqinv.c, cdf/error.h, cdf/exponential.c, cdf/exponentialinv.c, cdf/exppow.c, cdf/fdist.c, cdf/fdistinv.c, cdf/flat.c, cdf/flatinv.c, cdf/gamma.c, cdf/gammainv.c, cdf/gauss.c, cdf/gaussinv.c, cdf/geometric.c, cdf/gsl_cdf.h, cdf/gumbel1.c, cdf/gumbel1inv.c, cdf/gumbel2.c, cdf/gumbel2inv.c, cdf/hypergeometric.c, cdf/laplace.c, cdf/laplaceinv.c, cdf/logistic.c, cdf/logisticinv.c, cdf/lognormal.c, cdf/lognormalinv.c, cdf/nbinomial.c, cdf/pareto.c, cdf/paretoinv.c, cdf/pascal.c, cdf/poisson.c, cdf/rat_eval.h, cdf/rayleigh.c, cdf/rayleighinv.c, cdf/tdist.c, cdf/tdistinv.c, cdf/test.c, cdf/test_auto.c, cdf/weibull.c, cdf/weibullinv.c, cheb/ChangeLog, cheb/Makefile.am, cheb/Makefile.in, cheb/deriv.c, cheb/eval.c, cheb/gsl_chebyshev.h, cheb/init.c, cheb/integ.c, cheb/test.c, combination/ChangeLog, combination/Makefile.am, combination/Makefile.in, combination/combination.c, combination/file.c, combination/gsl_combination.h, combination/init.c, combination/test.c, complex/ChangeLog, complex/Makefile.am, complex/Makefile.in, complex/TODO, complex/gsl_complex.h, complex/gsl_complex_math.h, complex/math.c, complex/results.h, complex/results1.h, complex/results_real.h, complex/test.c, const/ChangeLog, const/Makefile.am, const/Makefile.in, const/TODO, const/gsl_const.h, const/gsl_const_cgs.h, const/gsl_const_cgsm.h, const/gsl_const_mks.h, const/gsl_const_mksa.h, const/gsl_const_num.h, const/test.c, deriv/ChangeLog, deriv/Makefile.am, deriv/Makefile.in, deriv/deriv.c, deriv/gsl_deriv.h, deriv/test.c, dht/ChangeLog, dht/Makefile.am, dht/Makefile.in, dht/dht.c, dht/gsl_dht.h, dht/test.c, diff/ChangeLog, diff/Makefile.am, diff/Makefile.in, diff/diff.c, diff/gsl_diff.h, diff/test.c, doc/12-cities.eps, doc/ChangeLog, doc/Makefile.am, doc/Makefile.in, doc/algorithm.sty, doc/algorithmic.sty, doc/autoconf.texi, doc/blas.texi, doc/bspline.eps, doc/bspline.texi, doc/calc.sty, doc/cblas.texi, doc/cheb.eps, doc/cheb.texi, doc/combination.texi, doc/complex.texi, doc/const.texi, doc/debug.texi, doc/dht.texi, doc/diff.texi, doc/dwt-orig.eps, doc/dwt-samp.eps, doc/dwt.texi, doc/eigen.texi, doc/err.texi, doc/fdl.texi, doc/fft-complex-radix2-f.eps, doc/fft-complex-radix2-t.eps, doc/fft-complex-radix2.eps, doc/fft-real-mixedradix.eps, doc/fft.texi, doc/fftalgorithms.bib, doc/fftalgorithms.tex, doc/final-route.eps, doc/fit-exp.eps, doc/fit-wlinear.eps, doc/fit-wlinear2.eps, doc/fitting.texi, doc/freemanuals.texi, doc/gpl.texi, doc/gsl-config.1, doc/gsl-design.texi, doc/gsl-histogram.1, doc/gsl-randist.1, doc/gsl-ref.info, doc/gsl-ref.info-1, doc/gsl-ref.info-2, doc/gsl-ref.info-3, doc/gsl-ref.info-4, doc/gsl-ref.info-5, doc/gsl-ref.info-6, doc/gsl-ref.texi, doc/gsl.3, doc/histogram.eps, doc/histogram.texi, doc/histogram2d.eps, doc/ieee754.texi, doc/initial-route.eps, doc/integration.texi, doc/interp.texi, doc/interp2.eps, doc/interpp2.eps, doc/intro.texi, doc/landau.dat, doc/linalg.texi, doc/math.texi, doc/mdate-sh, doc/min-interval.eps, doc/min.texi, doc/montecarlo.texi, doc/multifit.texi, doc/multimin.eps, doc/multimin.texi, doc/multiroots.texi, doc/ntuple.eps, doc/ntuple.texi, doc/ode-initval.texi, doc/permutation.texi, doc/poly.texi, doc/qrng.eps, doc/qrng.texi, doc/rand-bernoulli.tex, doc/rand-beta.tex, doc/rand-binomial.tex, doc/rand-bivariate-gaussian.tex, doc/rand-cauchy.tex, doc/rand-chisq.tex, doc/rand-erlang.tex, doc/rand-exponential.tex, doc/rand-exppow.tex, doc/rand-fdist.tex, doc/rand-flat.tex, doc/rand-gamma.tex, doc/rand-gaussian-tail.tex, doc/rand-gaussian.tex, doc/rand-geometric.tex, doc/rand-gumbel.tex, doc/rand-gumbel1.tex, doc/rand-gumbel2.tex, doc/rand-hypergeometric.tex, doc/rand-landau.tex, doc/rand-laplace.tex, doc/rand-levy.tex, doc/rand-levyskew.tex, doc/rand-logarithmic.tex, doc/rand-logistic.tex, doc/rand-lognormal.tex, doc/rand-nbinomial.tex, doc/rand-pareto.tex, doc/rand-pascal.tex, doc/rand-poisson.tex, doc/rand-rayleigh-tail.tex, doc/rand-rayleigh.tex, doc/rand-tdist.tex, doc/rand-weibull.tex, doc/randist.texi, doc/random-walk.tex, doc/randplots.gnp, doc/rng.texi, doc/roots-bisection.eps, doc/roots-false-position.eps, doc/roots-newtons-method.eps, doc/roots-secant-method.eps, doc/roots.texi, doc/siman-energy.eps, doc/siman-test.eps, doc/siman.texi, doc/sort.texi, doc/specfunc-airy.texi, doc/specfunc-bessel.texi, doc/specfunc-clausen.texi, doc/specfunc-coulomb.texi, doc/specfunc-coupling.texi, doc/specfunc-dawson.texi, doc/specfunc-debye.texi, doc/specfunc-dilog.texi, doc/specfunc-elementary.texi, doc/specfunc-ellint.texi, doc/specfunc-elljac.texi, doc/specfunc-erf.texi, doc/specfunc-exp.texi, doc/specfunc-expint.texi, doc/specfunc-fermi-dirac.texi, doc/specfunc-gamma.texi, doc/specfunc-gegenbauer.texi, doc/specfunc-hyperg.texi, doc/specfunc-laguerre.texi, doc/specfunc-lambert.texi, doc/specfunc-legendre.texi, doc/specfunc-log.texi, doc/specfunc-mathieu.texi, doc/specfunc-pow-int.texi, doc/specfunc-psi.texi, doc/specfunc-synchrotron.texi, doc/specfunc-transport.texi, doc/specfunc-trig.texi, doc/specfunc-zeta.texi, doc/specfunc.texi, doc/stamp-vti, doc/statistics.texi, doc/sum.texi, doc/texinfo.tex, doc/usage.texi, doc/vdp.eps, doc/vectors.texi, doc/version-ref.texi, doc/examples/blas.c, doc/examples/blas.out, doc/examples/block.c, doc/examples/block.out, doc/examples/bspline.c, doc/examples/cblas.c, doc/examples/cblas.out, doc/examples/cdf.c, doc/examples/cdf.out, doc/examples/cheb.c, doc/examples/combination.c, doc/examples/combination.out, doc/examples/const.c, doc/examples/const.out, doc/examples/demo_fn.c, doc/examples/demo_fn.h, doc/examples/diff.c, doc/examples/diff.out, doc/examples/dwt.c, doc/examples/dwt.dat, doc/examples/ecg.dat, doc/examples/eigen.c, doc/examples/eigen_nonsymm.c, doc/examples/expfit.c, doc/examples/fft.c, doc/examples/fftmr.c, doc/examples/fftreal.c, doc/examples/fitting.c, doc/examples/fitting2.c, doc/examples/fitting3.c, doc/examples/histogram.c, doc/examples/histogram2d.c, doc/examples/ieee.c, doc/examples/ieeeround.c, doc/examples/integration.c, doc/examples/integration.out, doc/examples/interp.c, doc/examples/interpp.c, doc/examples/intro.c, doc/examples/intro.out, doc/examples/linalglu.c, doc/examples/linalglu.out, doc/examples/matrix.c, doc/examples/matrixw.c, doc/examples/min.c, doc/examples/min.out, doc/examples/monte.c, doc/examples/nlfit.c, doc/examples/ntupler.c, doc/examples/ntuplew.c, doc/examples/ode-initval.c, doc/examples/odefixed.c, doc/examples/permseq.c, doc/examples/permshuffle.c, doc/examples/polyroots.c, doc/examples/polyroots.out, doc/examples/qrng.c, doc/examples/randpoisson.2.out, doc/examples/randpoisson.c, doc/examples/randpoisson.out, doc/examples/randwalk.c, doc/examples/rng.c, doc/examples/rng.out, doc/examples/rngunif.2.out, doc/examples/rngunif.c, doc/examples/rngunif.out, doc/examples/rootnewt.c, doc/examples/roots.c, doc/examples/siman.c, doc/examples/sortsmall.c, doc/examples/sortsmall.out, doc/examples/specfun.c, doc/examples/specfun.out, doc/examples/specfun_e.c, doc/examples/specfun_e.out, doc/examples/stat.c, doc/examples/stat.out, doc/examples/statsort.c, doc/examples/statsort.out, doc/examples/sum.c, doc/examples/sum.out, doc/examples/vector.c, doc/examples/vectorr.c, doc/examples/vectorview.c, doc/examples/vectorview.out, doc/examples/vectorw.c, eigen/ChangeLog, eigen/Makefile.am, eigen/Makefile.in, eigen/TODO, eigen/francis.c, eigen/gsl_eigen.h, eigen/herm.c, eigen/hermv.c, eigen/jacobi.c, eigen/nonsymm.c, eigen/nonsymmv.c, eigen/qrstep.c, eigen/schur.c, eigen/schur.h, eigen/sort.c, eigen/symm.c, eigen/symmv.c, eigen/test.c, err/ChangeLog, err/Makefile.am, err/Makefile.in, err/TODO, err/error.c, err/gsl_errno.h, err/gsl_message.h, err/message.c, err/stream.c, err/strerror.c, err/test.c, fft/ChangeLog, fft/Makefile.am, fft/Makefile.in, fft/TODO, fft/bitreverse.c, fft/bitreverse.h, fft/c_init.c, fft/c_main.c, fft/c_pass.h, fft/c_pass_2.c, fft/c_pass_3.c, fft/c_pass_4.c, fft/c_pass_5.c, fft/c_pass_6.c, fft/c_pass_7.c, fft/c_pass_n.c, fft/c_radix2.c, fft/compare.h, fft/compare_source.c, fft/complex_internal.h, fft/dft.c, fft/dft_source.c, fft/factorize.c, fft/factorize.h, fft/fft.c, fft/gsl_dft_complex.h, fft/gsl_dft_complex_float.h, fft/gsl_fft.h, fft/gsl_fft_complex.h, fft/gsl_fft_complex_float.h, fft/gsl_fft_halfcomplex.h, fft/gsl_fft_halfcomplex_float.h, fft/gsl_fft_real.h, fft/gsl_fft_real_float.h, fft/hc_init.c, fft/hc_main.c, fft/hc_pass.h, fft/hc_pass_2.c, fft/hc_pass_3.c, fft/hc_pass_4.c, fft/hc_pass_5.c, fft/hc_pass_n.c, fft/hc_radix2.c, fft/hc_unpack.c, fft/real_init.c, fft/real_main.c, fft/real_pass.h, fft/real_pass_2.c, fft/real_pass_3.c, fft/real_pass_4.c, fft/real_pass_5.c, fft/real_pass_n.c, fft/real_radix2.c, fft/real_unpack.c, fft/signals.c, fft/signals.h, fft/signals_source.c, fft/test.c, fft/test_complex_source.c, fft/test_real_source.c, fft/test_trap_source.c, fft/urand.c, fit/ChangeLog, fit/Makefile.am, fit/Makefile.in, fit/gsl_fit.h, fit/linear.c, fit/test.c, gsl/Makefile.am, gsl/Makefile.in, histogram/ChangeLog, histogram/Makefile.am, histogram/Makefile.in, histogram/TODO, histogram/add.c, histogram/add2d.c, histogram/calloc_range.c, histogram/calloc_range2d.c, histogram/copy.c, histogram/copy2d.c, histogram/file.c, histogram/file2d.c, histogram/find.c, histogram/find2d.c, histogram/get.c, histogram/get2d.c, histogram/gsl_histogram.h, histogram/gsl_histogram2d.h, histogram/init.c, histogram/init2d.c, histogram/maxval.c, histogram/maxval2d.c, histogram/oper.c, histogram/oper2d.c, histogram/params.c, histogram/params2d.c, histogram/pdf.c, histogram/pdf2d.c, histogram/reset.c, histogram/reset2d.c, histogram/stat.c, histogram/stat2d.c, histogram/test.c, histogram/test1d.c, histogram/test1d_resample.c, histogram/test1d_trap.c, histogram/test2d.c, histogram/test2d_resample.c, histogram/test2d_trap.c, histogram/urand.c, ieee-utils/ChangeLog, ieee-utils/Makefile.am, ieee-utils/Makefile.in, ieee-utils/TODO, ieee-utils/endian.c, ieee-utils/env.c, ieee-utils/fp-aix.c, ieee-utils/fp-darwin.c, ieee-utils/fp-darwin86.c, ieee-utils/fp-freebsd.c, ieee-utils/fp-gnuc99.c, ieee-utils/fp-gnum68k.c, ieee-utils/fp-gnuppc.c, ieee-utils/fp-gnusparc.c, ieee-utils/fp-gnux86.c, ieee-utils/fp-hpux.c, ieee-utils/fp-hpux11.c, ieee-utils/fp-irix.c, ieee-utils/fp-netbsd.c, ieee-utils/fp-openbsd.c, ieee-utils/fp-os2emx.c, ieee-utils/fp-solaris.c, ieee-utils/fp-sunos4.c, ieee-utils/fp-tru64.c, ieee-utils/fp-unknown.c, ieee-utils/fp.c, ieee-utils/gsl_ieee_utils.h, ieee-utils/make_rep.c, ieee-utils/print.c, ieee-utils/read.c, ieee-utils/standardize.c, ieee-utils/test.c, integration/ChangeLog, integration/Makefile.am, integration/Makefile.in, integration/TODO, integration/append.c, integration/err.c, integration/gsl_integration.h, integration/initialise.c, integration/positivity.c, integration/ptsort.c, integration/qag.c, integration/qagp.c, integration/qags.c, integration/qawc.c, integration/qawf.c, integration/qawo.c, integration/qaws.c, integration/qc25c.c, integration/qc25f.c, integration/qc25s.c, integration/qcheb.c, integration/qelg.c, integration/qk.c, integration/qk15.c, integration/qk21.c, integration/qk31.c, integration/qk41.c, integration/qk51.c, integration/qk61.c, integration/qmomo.c, integration/qmomof.c, integration/qng.c, integration/qng.h, integration/qpsrt.c, integration/qpsrt2.c, integration/reset.c, integration/set_initial.c, integration/test.c, integration/tests.c, integration/tests.h, integration/util.c, integration/workspace.c, interpolation/ChangeLog, interpolation/Makefile.am, interpolation/Makefile.in, interpolation/TODO, interpolation/accel.c, interpolation/akima.c, interpolation/bsearch.c, interpolation/bsearch.h, interpolation/cspline.c, interpolation/gsl_interp.h, interpolation/gsl_spline.h, interpolation/integ_eval.h, interpolation/interp.c, interpolation/linear.c, interpolation/poly.c, interpolation/spline.c, interpolation/test.c, linalg/ChangeLog, linalg/Makefile.am, linalg/Makefile.in, linalg/TODO, linalg/apply_givens.c, linalg/balance.c, linalg/balancemat.c, linalg/bidiag.c, linalg/cholesky.c, linalg/exponential.c, linalg/givens.c, linalg/gsl_linalg.h, linalg/hermtd.c, linalg/hessenberg.c, linalg/hh.c, linalg/householder.c, linalg/householdercomplex.c, linalg/lq.c, linalg/lu.c, linalg/luc.c, linalg/multiply.c, linalg/ptlq.c, linalg/qr.c, linalg/qrpt.c, linalg/svd.c, linalg/svdstep.c, linalg/symmtd.c, linalg/test.c, linalg/tridiag.c, linalg/tridiag.h, matrix/ChangeLog, matrix/Makefile.am, matrix/Makefile.in, matrix/TODO, matrix/copy.c, matrix/copy_source.c, matrix/file.c, matrix/file_source.c, matrix/getset.c, matrix/getset_source.c, matrix/gsl_matrix.h, matrix/gsl_matrix_char.h, matrix/gsl_matrix_complex_double.h, matrix/gsl_matrix_complex_float.h, matrix/gsl_matrix_complex_long_double.h, matrix/gsl_matrix_double.h, matrix/gsl_matrix_float.h, matrix/gsl_matrix_int.h, matrix/gsl_matrix_long.h, matrix/gsl_matrix_long_double.h, matrix/gsl_matrix_short.h, matrix/gsl_matrix_uchar.h, matrix/gsl_matrix_uint.h, matrix/gsl_matrix_ulong.h, matrix/gsl_matrix_ushort.h, matrix/init.c, matrix/init_source.c, matrix/matrix.c, matrix/matrix_source.c, matrix/minmax.c, matrix/minmax_source.c, matrix/oper.c, matrix/oper_complex_source.c, matrix/oper_source.c, matrix/prop.c, matrix/prop_source.c, matrix/rowcol.c, matrix/rowcol_source.c, matrix/submatrix.c, matrix/submatrix_source.c, matrix/swap.c, matrix/swap_source.c, matrix/test.c, matrix/test_complex_source.c, matrix/test_source.c, matrix/test_static.c, matrix/view.c, matrix/view.h, matrix/view_source.c, min/ChangeLog, min/Makefile.am, min/Makefile.in, min/bracketing.c, min/brent.c, min/convergence.c, min/fsolver.c, min/golden.c, min/gsl_min.h, min/min.h, min/test.c, min/test.h, min/test_funcs.c, monte/ChangeLog, monte/Makefile.am, monte/Makefile.in, monte/README, monte/TODO, monte/gsl_monte.h, monte/gsl_monte_miser.h, monte/gsl_monte_plain.h, monte/gsl_monte_vegas.h, monte/miser.c, monte/plain.c, monte/test.c, monte/test_main.c, monte/vegas.c, multifit/ChangeLog, multifit/Makefile.am, multifit/Makefile.in, multifit/TODO, multifit/convergence.c, multifit/covar.c, multifit/fdfsolver.c, multifit/fsolver.c, multifit/gradient.c, multifit/gsl_multifit.h, multifit/gsl_multifit_nlin.h, multifit/lmder.c, multifit/lmiterate.c, multifit/lmpar.c, multifit/lmset.c, multifit/lmutil.c, multifit/multilinear.c, multifit/qrsolv.c, multifit/test.c, multifit/test_brown.c, multifit/test_enso.c, multifit/test_estimator.c, multifit/test_filip.c, multifit/test_fn.c, multifit/test_hahn1.c, multifit/test_kirby2.c, multifit/test_longley.c, multifit/test_nelson.c, multifit/test_pontius.c, multifit/work.c, multimin/ChangeLog, multimin/Makefile.am, multimin/Makefile.in, multimin/TODO, multimin/conjugate_fr.c, multimin/conjugate_pr.c, multimin/convergence.c, multimin/diff.c, multimin/directional_minimize.c, multimin/fdfminimizer.c, multimin/fminimizer.c, multimin/gsl_multimin.h, multimin/linear_minimize.c, multimin/linear_wrapper.c, multimin/simplex.c, multimin/steepest_descent.c, multimin/test.c, multimin/test_funcs.c, multimin/test_funcs.h, multimin/vector_bfgs.c, multimin/vector_bfgs2.c, multiroots/ChangeLog, multiroots/Makefile.am, multiroots/Makefile.in, multiroots/broyden.c, multiroots/convergence.c, multiroots/dnewton.c, multiroots/dogleg.c, multiroots/enorm.c, multiroots/fdfsolver.c, multiroots/fdjac.c, multiroots/fsolver.c, multiroots/gnewton.c, multiroots/gsl_multiroots.h, multiroots/hybrid.c, multiroots/hybridj.c, multiroots/newton.c, multiroots/test.c, multiroots/test_funcs.c, multiroots/test_funcs.h, ntuple/ChangeLog, ntuple/Makefile.am, ntuple/Makefile.in, ntuple/gsl_ntuple.h, ntuple/ntuple.c, ntuple/test.c, ode-initval/ChangeLog, ode-initval/Makefile.am, ode-initval/Makefile.in, ode-initval/TODO, ode-initval/bsimp.c, ode-initval/control.c, ode-initval/cscal.c, ode-initval/cstd.c, ode-initval/evolve.c, ode-initval/gear1.c, ode-initval/gear2.c, ode-initval/gsl_odeiv.h, ode-initval/odeiv_util.h, ode-initval/rk2.c, ode-initval/rk2imp.c, ode-initval/rk2simp.c, ode-initval/rk4.c, ode-initval/rk4imp.c, ode-initval/rk8pd.c, ode-initval/rkck.c, ode-initval/rkf45.c, ode-initval/step.c, ode-initval/test.c, permutation/ChangeLog, permutation/Makefile.am, permutation/Makefile.in, permutation/canonical.c, permutation/file.c, permutation/gsl_permutation.h, permutation/gsl_permute.h, permutation/gsl_permute_char.h, permutation/gsl_permute_complex_double.h, permutation/gsl_permute_complex_float.h, permutation/gsl_permute_complex_long_double.h, permutation/gsl_permute_double.h, permutation/gsl_permute_float.h, permutation/gsl_permute_int.h, permutation/gsl_permute_long.h, permutation/gsl_permute_long_double.h, permutation/gsl_permute_short.h, permutation/gsl_permute_uchar.h, permutation/gsl_permute_uint.h, permutation/gsl_permute_ulong.h, permutation/gsl_permute_ushort.h, permutation/gsl_permute_vector.h, permutation/gsl_permute_vector_char.h, permutation/gsl_permute_vector_complex_double.h, permutation/gsl_permute_vector_complex_float.h, permutation/gsl_permute_vector_complex_long_double.h, permutation/gsl_permute_vector_double.h, permutation/gsl_permute_vector_float.h, permutation/gsl_permute_vector_int.h, permutation/gsl_permute_vector_long.h, permutation/gsl_permute_vector_long_double.h, permutation/gsl_permute_vector_short.h, permutation/gsl_permute_vector_uchar.h, permutation/gsl_permute_vector_uint.h, permutation/gsl_permute_vector_ulong.h, permutation/gsl_permute_vector_ushort.h, permutation/init.c, permutation/permutation.c, permutation/permute.c, permutation/permute_source.c, permutation/test.c, poly/ChangeLog, poly/Makefile.am, poly/Makefile.in, poly/TODO, poly/balance.c, poly/companion.c, poly/dd.c, poly/eval.c, poly/gsl_poly.h, poly/qr.c, poly/solve_cubic.c, poly/solve_quadratic.c, poly/test.c, poly/zsolve.c, poly/zsolve_cubic.c, poly/zsolve_init.c, poly/zsolve_quadratic.c, qrng/ChangeLog, qrng/Makefile.am, qrng/Makefile.in, qrng/TODO, qrng/gsl_qrng.h, qrng/niederreiter-2.c, qrng/qrng.c, qrng/sobol.c, qrng/test.c, randist/ChangeLog, randist/Makefile.am, randist/Makefile.in, randist/TODO, randist/bernoulli.c, randist/beta.c, randist/bigauss.c, randist/binomial.c, randist/binomial_tpe.c, randist/cauchy.c, randist/chisq.c, randist/dirichlet.c, randist/discrete.c, randist/erlang.c, randist/exponential.c, randist/exppow.c, randist/fdist.c, randist/flat.c, randist/gamma.c, randist/gauss.c, randist/gausstail.c, randist/gausszig.c, randist/geometric.c, randist/gsl_randist.h, randist/gumbel.c, randist/hyperg.c, randist/landau.c, randist/laplace.c, randist/levy.c, randist/logarithmic.c, randist/logistic.c, randist/lognormal.c, randist/multinomial.c, randist/nbinomial.c, randist/pareto.c, randist/pascal.c, randist/poisson.c, randist/rayleigh.c, randist/shuffle.c, randist/sphere.c, randist/tdist.c, randist/test.c, randist/weibull.c, rng/ChangeLog, rng/Makefile.am, rng/Makefile.in, rng/TODO, rng/borosh13.c, rng/cmrg.c, rng/coveyou.c, rng/default.c, rng/file.c, rng/fishman18.c, rng/fishman20.c, rng/fishman2x.c, rng/gfsr4.c, rng/gsl_rng.h, rng/knuthran.c, rng/knuthran2.c, rng/knuthran2002.c, rng/lecuyer21.c, rng/minstd.c, rng/mrg.c, rng/mt.c, rng/r250.c, rng/ran0.c, rng/ran1.c, rng/ran2.c, rng/ran3.c, rng/rand.c, rng/rand48.c, rng/random.c, rng/randu.c, rng/ranf.c, rng/ranlux.c, rng/ranlxd.c, rng/ranlxs.c, rng/ranmar.c, rng/rng.c, rng/schrage.c, rng/slatec.c, rng/taus.c, rng/taus113.c, rng/test.c, rng/transputer.c, rng/tt.c, rng/types.c, rng/uni.c, rng/uni32.c, rng/vax.c, rng/waterman14.c, rng/zuf.c, roots/ChangeLog, roots/Makefile.am, roots/Makefile.in, roots/TODO, roots/bisection.c, roots/brent.c, roots/convergence.c, roots/falsepos.c, roots/fdfsolver.c, roots/fsolver.c, roots/gsl_roots.h, roots/newton.c, roots/roots.h, roots/secant.c, roots/steffenson.c, roots/test.c, roots/test.h, roots/test_funcs.c, siman/ChangeLog, siman/Makefile.am, siman/Makefile.in, siman/TODO, siman/gsl_siman.h, siman/siman.c, siman/siman_test_driver.sh, siman/siman_tsp.c, siman/test.c, sort/ChangeLog, sort/Makefile.am, sort/Makefile.in, sort/TODO, sort/gsl_heapsort.h, sort/gsl_sort.h, sort/gsl_sort_char.h, sort/gsl_sort_double.h, sort/gsl_sort_float.h, sort/gsl_sort_int.h, sort/gsl_sort_long.h, sort/gsl_sort_long_double.h, sort/gsl_sort_short.h, sort/gsl_sort_uchar.h, sort/gsl_sort_uint.h, sort/gsl_sort_ulong.h, sort/gsl_sort_ushort.h, sort/gsl_sort_vector.h, sort/gsl_sort_vector_char.h, sort/gsl_sort_vector_double.h, sort/gsl_sort_vector_float.h, sort/gsl_sort_vector_int.h, sort/gsl_sort_vector_long.h, sort/gsl_sort_vector_long_double.h, sort/gsl_sort_vector_short.h, sort/gsl_sort_vector_uchar.h, sort/gsl_sort_vector_uint.h, sort/gsl_sort_vector_ulong.h, sort/gsl_sort_vector_ushort.h, sort/sort.c, sort/sortind.c, sort/sortvec.c, sort/sortvec_source.c, sort/sortvecind.c, sort/sortvecind_source.c, sort/subset.c, sort/subset_source.c, sort/subsetind.c, sort/subsetind_source.c, sort/test.c, sort/test_heapsort.c, sort/test_source.c, specfunc/ChangeLog, specfunc/Makefile.am, specfunc/Makefile.in, specfunc/TODO, specfunc/airy.c, specfunc/airy_der.c, specfunc/airy_zero.c, specfunc/atanint.c, specfunc/bessel.c, specfunc/bessel.h, specfunc/bessel_I0.c, specfunc/bessel_I1.c, specfunc/bessel_In.c, specfunc/bessel_Inu.c, specfunc/bessel_J0.c, specfunc/bessel_J1.c, specfunc/bessel_Jn.c, specfunc/bessel_Jnu.c, specfunc/bessel_K0.c, specfunc/bessel_K1.c, specfunc/bessel_Kn.c, specfunc/bessel_Knu.c, specfunc/bessel_Y0.c, specfunc/bessel_Y1.c, specfunc/bessel_Yn.c, specfunc/bessel_Ynu.c, specfunc/bessel_amp_phase.c, specfunc/bessel_amp_phase.h, specfunc/bessel_i.c, specfunc/bessel_j.c, specfunc/bessel_k.c, specfunc/bessel_olver.c, specfunc/bessel_olver.h, specfunc/bessel_sequence.c, specfunc/bessel_temme.c, specfunc/bessel_temme.h, specfunc/bessel_y.c, specfunc/bessel_zero.c, specfunc/beta.c, specfunc/beta_inc.c, specfunc/cheb_eval.c, specfunc/cheb_eval_mode.c, specfunc/chebyshev.h, specfunc/check.h, specfunc/clausen.c, specfunc/coulomb.c, specfunc/coulomb_bound.c, specfunc/coupling.c, specfunc/dawson.c, specfunc/debye.c, specfunc/dilog.c, specfunc/elementary.c, specfunc/ellint.c, specfunc/elljac.c, specfunc/erfc.c, specfunc/error.h, specfunc/eval.h, specfunc/exp.c, specfunc/expint.c, specfunc/expint3.c, specfunc/fermi_dirac.c, specfunc/gamma.c, specfunc/gamma_inc.c, specfunc/gegenbauer.c, specfunc/gsl_sf.h, specfunc/gsl_sf_airy.h, specfunc/gsl_sf_bessel.h, specfunc/gsl_sf_clausen.h, specfunc/gsl_sf_coulomb.h, specfunc/gsl_sf_coupling.h, specfunc/gsl_sf_dawson.h, specfunc/gsl_sf_debye.h, specfunc/gsl_sf_dilog.h, specfunc/gsl_sf_elementary.h, specfunc/gsl_sf_ellint.h, specfunc/gsl_sf_elljac.h, specfunc/gsl_sf_erf.h, specfunc/gsl_sf_exp.h, specfunc/gsl_sf_expint.h, specfunc/gsl_sf_fermi_dirac.h, specfunc/gsl_sf_gamma.h, specfunc/gsl_sf_gegenbauer.h, specfunc/gsl_sf_hyperg.h, specfunc/gsl_sf_laguerre.h, specfunc/gsl_sf_lambert.h, specfunc/gsl_sf_legendre.h, specfunc/gsl_sf_log.h, specfunc/gsl_sf_mathieu.h, specfunc/gsl_sf_pow_int.h, specfunc/gsl_sf_psi.h, specfunc/gsl_sf_result.h, specfunc/gsl_sf_synchrotron.h, specfunc/gsl_sf_transport.h, specfunc/gsl_sf_trig.h, specfunc/gsl_sf_zeta.h, specfunc/gsl_specfunc.h, specfunc/hyperg.c, specfunc/hyperg.h, specfunc/hyperg_0F1.c, specfunc/hyperg_1F1.c, specfunc/hyperg_2F0.c, specfunc/hyperg_2F1.c, specfunc/hyperg_U.c, specfunc/laguerre.c, specfunc/lambert.c, specfunc/legendre.h, specfunc/legendre_H3d.c, specfunc/legendre_Qn.c, specfunc/legendre_con.c, specfunc/legendre_poly.c, specfunc/log.c, specfunc/mathieu_angfunc.c, specfunc/mathieu_charv.c, specfunc/mathieu_coeff.c, specfunc/mathieu_radfunc.c, specfunc/mathieu_workspace.c, specfunc/poch.c, specfunc/pow_int.c, specfunc/psi.c, specfunc/recurse.h, specfunc/result.c, specfunc/shint.c, specfunc/sinint.c, specfunc/synchrotron.c, specfunc/test_airy.c, specfunc/test_bessel.c, specfunc/test_coulomb.c, specfunc/test_dilog.c, specfunc/test_gamma.c, specfunc/test_hyperg.c, specfunc/test_legendre.c, specfunc/test_mathieu.c, specfunc/test_sf.c, specfunc/test_sf.h, specfunc/transport.c, specfunc/trig.c, specfunc/zeta.c, statistics/ChangeLog, statistics/Makefile.am, statistics/Makefile.in, statistics/TODO, statistics/absdev.c, statistics/absdev_source.c, statistics/covariance.c, statistics/covariance_source.c, statistics/gsl_statistics.h, statistics/gsl_statistics_char.h, statistics/gsl_statistics_double.h, statistics/gsl_statistics_float.h, statistics/gsl_statistics_int.h, statistics/gsl_statistics_long.h, statistics/gsl_statistics_long_double.h, statistics/gsl_statistics_short.h, statistics/gsl_statistics_uchar.h, statistics/gsl_statistics_uint.h, statistics/gsl_statistics_ulong.h, statistics/gsl_statistics_ushort.h, statistics/kurtosis.c, statistics/kurtosis_source.c, statistics/lag1.c, statistics/lag1_source.c, statistics/mean.c, statistics/mean_source.c, statistics/median.c, statistics/median_source.c, statistics/minmax.c, statistics/minmax_source.c, statistics/p_variance.c, statistics/p_variance_source.c, statistics/quantiles.c, statistics/quantiles_source.c, statistics/skew.c, statistics/skew_source.c, statistics/test.c, statistics/test_float_source.c, statistics/test_int_source.c, statistics/test_nist.c, statistics/ttest.c, statistics/ttest_source.c, statistics/variance.c, statistics/variance_source.c, statistics/wabsdev.c, statistics/wabsdev_source.c, statistics/wkurtosis.c, statistics/wkurtosis_source.c, statistics/wmean.c, statistics/wmean_source.c, statistics/wskew.c, statistics/wskew_source.c, statistics/wvariance.c, statistics/wvariance_source.c, sum/ChangeLog, sum/Makefile.am, sum/Makefile.in, sum/gsl_sum.h, sum/levin_u.c, sum/levin_utrunc.c, sum/test.c, sum/work_u.c, sum/work_utrunc.c, sys/ChangeLog, sys/Makefile.am, sys/Makefile.in, sys/coerce.c, sys/expm1.c, sys/fcmp.c, sys/fdiv.c, sys/gsl_sys.h, sys/hypot.c, sys/infnan.c, sys/invhyp.c, sys/ldfrexp.c, sys/log1p.c, sys/minmax.c, sys/pow_int.c, sys/prec.c, sys/test.c, test/ChangeLog, test/Makefile.am, test/Makefile.in, test/gsl_test.h, test/results.c, utils/Makefile.am, utils/Makefile.in, utils/README, utils/memcpy.c, utils/memmove.c, utils/placeholder.c, utils/strdup.c, utils/strtol.c, utils/strtoul.c, utils/system.h, vector/ChangeLog, vector/Makefile.am, vector/Makefile.in, vector/TODO, vector/copy.c, vector/copy_source.c, vector/file.c, vector/file_source.c, vector/gsl_vector.h, vector/gsl_vector_char.h, vector/gsl_vector_complex.h, vector/gsl_vector_complex_double.h, vector/gsl_vector_complex_float.h, vector/gsl_vector_complex_long_double.h, vector/gsl_vector_double.h, vector/gsl_vector_float.h, vector/gsl_vector_int.h, vector/gsl_vector_long.h, vector/gsl_vector_long_double.h, vector/gsl_vector_short.h, vector/gsl_vector_uchar.h, vector/gsl_vector_uint.h, vector/gsl_vector_ulong.h, vector/gsl_vector_ushort.h, vector/init.c, vector/init_source.c, vector/minmax.c, vector/minmax_source.c, vector/oper.c, vector/oper_source.c, vector/prop.c, vector/prop_source.c, vector/reim.c, vector/reim_source.c, vector/subvector.c, vector/subvector_source.c, vector/swap.c, vector/swap_source.c, vector/test.c, vector/test_complex_source.c, vector/test_source.c, vector/test_static.c, vector/vector.c, vector/vector_source.c, vector/view.c, vector/view.h, vector/view_source.c, wavelet/ChangeLog, wavelet/Makefile.am, wavelet/Makefile.in, wavelet/TODO, wavelet/bspline.c, wavelet/daubechies.c, wavelet/dwt.c, wavelet/gsl_wavelet.h, wavelet/gsl_wavelet2d.h, wavelet/haar.c, wavelet/test.c, wavelet/wavelet.c: New files.
Diffstat (limited to 'gsl-1.9/doc/linalg.texi')
-rw-r--r--gsl-1.9/doc/linalg.texi1117
1 files changed, 1117 insertions, 0 deletions
diff --git a/gsl-1.9/doc/linalg.texi b/gsl-1.9/doc/linalg.texi
new file mode 100644
index 0000000..839f4d5
--- /dev/null
+++ b/gsl-1.9/doc/linalg.texi
@@ -0,0 +1,1117 @@
+@cindex linear algebra
+@cindex solution of linear systems, Ax=b
+@cindex matrix factorization
+@cindex factorization of matrices
+
+This chapter describes functions for solving linear systems. The
+library provides linear algebra operations which operate directly on
+the @code{gsl_vector} and @code{gsl_matrix} objects. These routines
+use the standard algorithms from Golub & Van Loan's @cite{Matrix
+Computations}.
+
+@cindex LAPACK, recommended for linear algebra
+When dealing with very large systems the routines found in @sc{lapack}
+should be considered. These support specialized data representations
+and other optimizations.
+
+The functions described in this chapter are declared in the header file
+@file{gsl_linalg.h}.
+
+
+@menu
+* LU Decomposition::
+* QR Decomposition::
+* QR Decomposition with Column Pivoting::
+* Singular Value Decomposition::
+* Cholesky Decomposition::
+* Tridiagonal Decomposition of Real Symmetric Matrices::
+* Tridiagonal Decomposition of Hermitian Matrices::
+* Hessenberg Decomposition of Real Matrices::
+* Bidiagonalization::
+* Householder Transformations::
+* Householder solver for linear systems::
+* Tridiagonal Systems::
+* Balancing::
+* Linear Algebra Examples::
+* Linear Algebra References and Further Reading::
+@end menu
+
+@node LU Decomposition
+@section LU Decomposition
+@cindex LU decomposition
+
+A general square matrix @math{A} has an @math{LU} decomposition into
+upper and lower triangular matrices,
+@tex
+\beforedisplay
+$$
+P A = L U
+$$
+\afterdisplay
+@end tex
+@ifinfo
+
+@example
+P A = L U
+@end example
+
+@end ifinfo
+@noindent
+where @math{P} is a permutation matrix, @math{L} is unit lower
+triangular matrix and @math{U} is upper triangular matrix. For square
+matrices this decomposition can be used to convert the linear system
+@math{A x = b} into a pair of triangular systems (@math{L y = P b},
+@math{U x = y}), which can be solved by forward and back-substitution.
+Note that the @math{LU} decomposition is valid for singular matrices.
+
+@deftypefun int gsl_linalg_LU_decomp (gsl_matrix * @var{A}, gsl_permutation * @var{p}, int * @var{signum})
+@deftypefunx int gsl_linalg_complex_LU_decomp (gsl_matrix_complex * @var{A}, gsl_permutation * @var{p}, int * @var{signum})
+These functions factorize the square matrix @var{A} into the @math{LU}
+decomposition @math{PA = LU}. On output the diagonal and upper
+triangular part of the input matrix @var{A} contain the matrix
+@math{U}. The lower triangular part of the input matrix (excluding the
+diagonal) contains @math{L}. The diagonal elements of @math{L} are
+unity, and are not stored.
+
+The permutation matrix @math{P} is encoded in the permutation
+@var{p}. The @math{j}-th column of the matrix @math{P} is given by the
+@math{k}-th column of the identity matrix, where @math{k = p_j} the
+@math{j}-th element of the permutation vector. The sign of the
+permutation is given by @var{signum}. It has the value @math{(-1)^n},
+where @math{n} is the number of interchanges in the permutation.
+
+The algorithm used in the decomposition is Gaussian Elimination with
+partial pivoting (Golub & Van Loan, @cite{Matrix Computations},
+Algorithm 3.4.1).
+@end deftypefun
+
+@cindex linear systems, solution of
+@deftypefun int gsl_linalg_LU_solve (const gsl_matrix * @var{LU}, const gsl_permutation * @var{p}, const gsl_vector * @var{b}, gsl_vector * @var{x})
+@deftypefunx int gsl_linalg_complex_LU_solve (const gsl_matrix_complex * @var{LU}, const gsl_permutation * @var{p}, const gsl_vector_complex * @var{b}, gsl_vector_complex * @var{x})
+These functions solve the square system @math{A x = b} using the @math{LU}
+decomposition of @math{A} into (@var{LU}, @var{p}) given by
+@code{gsl_linalg_LU_decomp} or @code{gsl_linalg_complex_LU_decomp}.
+@end deftypefun
+
+@deftypefun int gsl_linalg_LU_svx (const gsl_matrix * @var{LU}, const gsl_permutation * @var{p}, gsl_vector * @var{x})
+@deftypefunx int gsl_linalg_complex_LU_svx (const gsl_matrix_complex * @var{LU}, const gsl_permutation * @var{p}, gsl_vector_complex * @var{x})
+These functions solve the square system @math{A x = b} in-place using the
+@math{LU} decomposition of @math{A} into (@var{LU},@var{p}). On input
+@var{x} should contain the right-hand side @math{b}, which is replaced
+by the solution on output.
+@end deftypefun
+
+@cindex refinement of solutions in linear systems
+@cindex iterative refinement of solutions in linear systems
+@cindex linear systems, refinement of solutions
+@deftypefun int gsl_linalg_LU_refine (const gsl_matrix * @var{A}, const gsl_matrix * @var{LU}, const gsl_permutation * @var{p}, const gsl_vector * @var{b}, gsl_vector * @var{x}, gsl_vector * @var{residual})
+@deftypefunx int gsl_linalg_complex_LU_refine (const gsl_matrix_complex * @var{A}, const gsl_matrix_complex * @var{LU}, const gsl_permutation * @var{p}, const gsl_vector_complex * @var{b}, gsl_vector_complex * @var{x}, gsl_vector_complex * @var{residual})
+These functions apply an iterative improvement to @var{x}, the solution
+of @math{A x = b}, using the @math{LU} decomposition of @math{A} into
+(@var{LU},@var{p}). The initial residual @math{r = A x - b} is also
+computed and stored in @var{residual}.
+@end deftypefun
+
+@cindex inverse of a matrix, by LU decomposition
+@cindex matrix inverse
+@deftypefun int gsl_linalg_LU_invert (const gsl_matrix * @var{LU}, const gsl_permutation * @var{p}, gsl_matrix * @var{inverse})
+@deftypefunx int gsl_linalg_complex_LU_invert (const gsl_matrix_complex * @var{LU}, const gsl_permutation * @var{p}, gsl_matrix_complex * @var{inverse})
+These functions compute the inverse of a matrix @math{A} from its
+@math{LU} decomposition (@var{LU},@var{p}), storing the result in the
+matrix @var{inverse}. The inverse is computed by solving the system
+@math{A x = b} for each column of the identity matrix. It is preferable
+to avoid direct use of the inverse whenever possible, as the linear
+solver functions can obtain the same result more efficiently and
+reliably (consult any introductory textbook on numerical linear algebra
+for details).
+@end deftypefun
+
+@cindex determinant of a matrix, by LU decomposition
+@cindex matrix determinant
+@deftypefun double gsl_linalg_LU_det (gsl_matrix * @var{LU}, int @var{signum})
+@deftypefunx gsl_complex gsl_linalg_complex_LU_det (gsl_matrix_complex * @var{LU}, int @var{signum})
+These functions compute the determinant of a matrix @math{A} from its
+@math{LU} decomposition, @var{LU}. The determinant is computed as the
+product of the diagonal elements of @math{U} and the sign of the row
+permutation @var{signum}.
+@end deftypefun
+
+@cindex logarithm of the determinant of a matrix
+@deftypefun double gsl_linalg_LU_lndet (gsl_matrix * @var{LU})
+@deftypefunx double gsl_linalg_complex_LU_lndet (gsl_matrix_complex * @var{LU})
+These functions compute the logarithm of the absolute value of the
+determinant of a matrix @math{A}, @math{\ln|\det(A)|}, from its @math{LU}
+decomposition, @var{LU}. This function may be useful if the direct
+computation of the determinant would overflow or underflow.
+@end deftypefun
+
+@cindex sign of the determinant of a matrix
+@deftypefun int gsl_linalg_LU_sgndet (gsl_matrix * @var{LU}, int @var{signum})
+@deftypefunx gsl_complex gsl_linalg_complex_LU_sgndet (gsl_matrix_complex * @var{LU}, int @var{signum})
+These functions compute the sign or phase factor of the determinant of a
+matrix @math{A}, @math{\det(A)/|\det(A)|}, from its @math{LU} decomposition,
+@var{LU}.
+@end deftypefun
+
+@node QR Decomposition
+@section QR Decomposition
+@cindex QR decomposition
+
+A general rectangular @math{M}-by-@math{N} matrix @math{A} has a
+@math{QR} decomposition into the product of an orthogonal
+@math{M}-by-@math{M} square matrix @math{Q} (where @math{Q^T Q = I}) and
+an @math{M}-by-@math{N} right-triangular matrix @math{R},
+@tex
+\beforedisplay
+$$
+A = Q R
+$$
+\afterdisplay
+@end tex
+@ifinfo
+
+@example
+A = Q R
+@end example
+
+@end ifinfo
+@noindent
+This decomposition can be used to convert the linear system @math{A x =
+b} into the triangular system @math{R x = Q^T b}, which can be solved by
+back-substitution. Another use of the @math{QR} decomposition is to
+compute an orthonormal basis for a set of vectors. The first @math{N}
+columns of @math{Q} form an orthonormal basis for the range of @math{A},
+@math{ran(A)}, when @math{A} has full column rank.
+
+@deftypefun int gsl_linalg_QR_decomp (gsl_matrix * @var{A}, gsl_vector * @var{tau})
+This function factorizes the @math{M}-by-@math{N} matrix @var{A} into
+the @math{QR} decomposition @math{A = Q R}. On output the diagonal and
+upper triangular part of the input matrix contain the matrix
+@math{R}. The vector @var{tau} and the columns of the lower triangular
+part of the matrix @var{A} contain the Householder coefficients and
+Householder vectors which encode the orthogonal matrix @var{Q}. The
+vector @var{tau} must be of length @math{k=\min(M,N)}. The matrix
+@math{Q} is related to these components by, @math{Q = Q_k ... Q_2 Q_1}
+where @math{Q_i = I - \tau_i v_i v_i^T} and @math{v_i} is the
+Householder vector @math{v_i =
+(0,...,1,A(i+1,i),A(i+2,i),...,A(m,i))}. This is the same storage scheme
+as used by @sc{lapack}.
+
+The algorithm used to perform the decomposition is Householder QR (Golub
+& Van Loan, @cite{Matrix Computations}, Algorithm 5.2.1).
+@end deftypefun
+
+@deftypefun int gsl_linalg_QR_solve (const gsl_matrix * @var{QR}, const gsl_vector * @var{tau}, const gsl_vector * @var{b}, gsl_vector * @var{x})
+This function solves the square system @math{A x = b} using the @math{QR}
+decomposition of @math{A} into (@var{QR}, @var{tau}) given by
+@code{gsl_linalg_QR_decomp}. The least-squares solution for rectangular systems can
+be found using @code{gsl_linalg_QR_lssolve}.
+@end deftypefun
+
+@deftypefun int gsl_linalg_QR_svx (const gsl_matrix * @var{QR}, const gsl_vector * @var{tau}, gsl_vector * @var{x})
+This function solves the square system @math{A x = b} in-place using the
+@math{QR} decomposition of @math{A} into (@var{QR},@var{tau}) given by
+@code{gsl_linalg_QR_decomp}. On input @var{x} should contain the
+right-hand side @math{b}, which is replaced by the solution on output.
+@end deftypefun
+
+@deftypefun int gsl_linalg_QR_lssolve (const gsl_matrix * @var{QR}, const gsl_vector * @var{tau}, const gsl_vector * @var{b}, gsl_vector * @var{x}, gsl_vector * @var{residual})
+This function finds the least squares solution to the overdetermined
+system @math{A x = b} where the matrix @var{A} has more rows than
+columns. The least squares solution minimizes the Euclidean norm of the
+residual, @math{||Ax - b||}.The routine uses the @math{QR} decomposition
+of @math{A} into (@var{QR}, @var{tau}) given by
+@code{gsl_linalg_QR_decomp}. The solution is returned in @var{x}. The
+residual is computed as a by-product and stored in @var{residual}.
+@end deftypefun
+
+@deftypefun int gsl_linalg_QR_QTvec (const gsl_matrix * @var{QR}, const gsl_vector * @var{tau}, gsl_vector * @var{v})
+This function applies the matrix @math{Q^T} encoded in the decomposition
+(@var{QR},@var{tau}) to the vector @var{v}, storing the result @math{Q^T
+v} in @var{v}. The matrix multiplication is carried out directly using
+the encoding of the Householder vectors without needing to form the full
+matrix @math{Q^T}.
+@end deftypefun
+
+@deftypefun int gsl_linalg_QR_Qvec (const gsl_matrix * @var{QR}, const gsl_vector * @var{tau}, gsl_vector * @var{v})
+This function applies the matrix @math{Q} encoded in the decomposition
+(@var{QR},@var{tau}) to the vector @var{v}, storing the result @math{Q
+v} in @var{v}. The matrix multiplication is carried out directly using
+the encoding of the Householder vectors without needing to form the full
+matrix @math{Q}.
+@end deftypefun
+
+@deftypefun int gsl_linalg_QR_Rsolve (const gsl_matrix * @var{QR}, const gsl_vector * @var{b}, gsl_vector * @var{x})
+This function solves the triangular system @math{R x = b} for
+@var{x}. It may be useful if the product @math{b' = Q^T b} has already
+been computed using @code{gsl_linalg_QR_QTvec}.
+@end deftypefun
+
+@deftypefun int gsl_linalg_QR_Rsvx (const gsl_matrix * @var{QR}, gsl_vector * @var{x})
+This function solves the triangular system @math{R x = b} for @var{x}
+in-place. On input @var{x} should contain the right-hand side @math{b}
+and is replaced by the solution on output. This function may be useful if
+the product @math{b' = Q^T b} has already been computed using
+@code{gsl_linalg_QR_QTvec}.
+@end deftypefun
+
+@deftypefun int gsl_linalg_QR_unpack (const gsl_matrix * @var{QR}, const gsl_vector * @var{tau}, gsl_matrix * @var{Q}, gsl_matrix * @var{R})
+This function unpacks the encoded @math{QR} decomposition
+(@var{QR},@var{tau}) into the matrices @var{Q} and @var{R}, where
+@var{Q} is @math{M}-by-@math{M} and @var{R} is @math{M}-by-@math{N}.
+@end deftypefun
+
+@deftypefun int gsl_linalg_QR_QRsolve (gsl_matrix * @var{Q}, gsl_matrix * @var{R}, const gsl_vector * @var{b}, gsl_vector * @var{x})
+This function solves the system @math{R x = Q^T b} for @var{x}. It can
+be used when the @math{QR} decomposition of a matrix is available in
+unpacked form as (@var{Q}, @var{R}).
+@end deftypefun
+
+@deftypefun int gsl_linalg_QR_update (gsl_matrix * @var{Q}, gsl_matrix * @var{R}, gsl_vector * @var{w}, const gsl_vector * @var{v})
+This function performs a rank-1 update @math{w v^T} of the @math{QR}
+decomposition (@var{Q}, @var{R}). The update is given by @math{Q'R' = Q
+R + w v^T} where the output matrices @math{Q'} and @math{R'} are also
+orthogonal and right triangular. Note that @var{w} is destroyed by the
+update.
+@end deftypefun
+
+@deftypefun int gsl_linalg_R_solve (const gsl_matrix * @var{R}, const gsl_vector * @var{b}, gsl_vector * @var{x})
+This function solves the triangular system @math{R x = b} for the
+@math{N}-by-@math{N} matrix @var{R}.
+@end deftypefun
+
+@deftypefun int gsl_linalg_R_svx (const gsl_matrix * @var{R}, gsl_vector * @var{x})
+This function solves the triangular system @math{R x = b} in-place. On
+input @var{x} should contain the right-hand side @math{b}, which is
+replaced by the solution on output.
+@end deftypefun
+
+@node QR Decomposition with Column Pivoting
+@section QR Decomposition with Column Pivoting
+@cindex QR decomposition with column pivoting
+
+The @math{QR} decomposition can be extended to the rank deficient case
+by introducing a column permutation @math{P},
+@tex
+\beforedisplay
+$$
+A P = Q R
+$$
+\afterdisplay
+@end tex
+@ifinfo
+
+@example
+A P = Q R
+@end example
+
+@end ifinfo
+@noindent
+The first @math{r} columns of @math{Q} form an orthonormal basis
+for the range of @math{A} for a matrix with column rank @math{r}. This
+decomposition can also be used to convert the linear system @math{A x =
+b} into the triangular system @math{R y = Q^T b, x = P y}, which can be
+solved by back-substitution and permutation. We denote the @math{QR}
+decomposition with column pivoting by @math{QRP^T} since @math{A = Q R
+P^T}.
+
+@deftypefun int gsl_linalg_QRPT_decomp (gsl_matrix * @var{A}, gsl_vector * @var{tau}, gsl_permutation * @var{p}, int * @var{signum}, gsl_vector * @var{norm})
+This function factorizes the @math{M}-by-@math{N} matrix @var{A} into
+the @math{QRP^T} decomposition @math{A = Q R P^T}. On output the
+diagonal and upper triangular part of the input matrix contain the
+matrix @math{R}. The permutation matrix @math{P} is stored in the
+permutation @var{p}. The sign of the permutation is given by
+@var{signum}. It has the value @math{(-1)^n}, where @math{n} is the
+number of interchanges in the permutation. The vector @var{tau} and the
+columns of the lower triangular part of the matrix @var{A} contain the
+Householder coefficients and vectors which encode the orthogonal matrix
+@var{Q}. The vector @var{tau} must be of length @math{k=\min(M,N)}. The
+matrix @math{Q} is related to these components by, @math{Q = Q_k ... Q_2
+Q_1} where @math{Q_i = I - \tau_i v_i v_i^T} and @math{v_i} is the
+Householder vector @math{v_i =
+(0,...,1,A(i+1,i),A(i+2,i),...,A(m,i))}. This is the same storage scheme
+as used by @sc{lapack}. The vector @var{norm} is a workspace of length
+@var{N} used for column pivoting.
+
+The algorithm used to perform the decomposition is Householder QR with
+column pivoting (Golub & Van Loan, @cite{Matrix Computations}, Algorithm
+5.4.1).
+@end deftypefun
+
+@deftypefun int gsl_linalg_QRPT_decomp2 (const gsl_matrix * @var{A}, gsl_matrix * @var{q}, gsl_matrix * @var{r}, gsl_vector * @var{tau}, gsl_permutation * @var{p}, int * @var{signum}, gsl_vector * @var{norm})
+This function factorizes the matrix @var{A} into the decomposition
+@math{A = Q R P^T} without modifying @var{A} itself and storing the
+output in the separate matrices @var{q} and @var{r}.
+@end deftypefun
+
+@deftypefun int gsl_linalg_QRPT_solve (const gsl_matrix * @var{QR}, const gsl_vector * @var{tau}, const gsl_permutation * @var{p}, const gsl_vector * @var{b}, gsl_vector * @var{x})
+This function solves the square system @math{A x = b} using the @math{QRP^T}
+decomposition of @math{A} into (@var{QR}, @var{tau}, @var{p}) given by
+@code{gsl_linalg_QRPT_decomp}.
+@end deftypefun
+
+@deftypefun int gsl_linalg_QRPT_svx (const gsl_matrix * @var{QR}, const gsl_vector * @var{tau}, const gsl_permutation * @var{p}, gsl_vector * @var{x})
+This function solves the square system @math{A x = b} in-place using the
+@math{QRP^T} decomposition of @math{A} into
+(@var{QR},@var{tau},@var{p}). On input @var{x} should contain the
+right-hand side @math{b}, which is replaced by the solution on output.
+@end deftypefun
+
+@deftypefun int gsl_linalg_QRPT_QRsolve (const gsl_matrix * @var{Q}, const gsl_matrix * @var{R}, const gsl_permutation * @var{p}, const gsl_vector * @var{b}, gsl_vector * @var{x})
+This function solves the square system @math{R P^T x = Q^T b} for
+@var{x}. It can be used when the @math{QR} decomposition of a matrix is
+available in unpacked form as (@var{Q}, @var{R}).
+@end deftypefun
+
+@deftypefun int gsl_linalg_QRPT_update (gsl_matrix * @var{Q}, gsl_matrix * @var{R}, const gsl_permutation * @var{p}, gsl_vector * @var{u}, const gsl_vector * @var{v})
+This function performs a rank-1 update @math{w v^T} of the @math{QRP^T}
+decomposition (@var{Q}, @var{R}, @var{p}). The update is given by
+@math{Q'R' = Q R + w v^T} where the output matrices @math{Q'} and
+@math{R'} are also orthogonal and right triangular. Note that @var{w} is
+destroyed by the update. The permutation @var{p} is not changed.
+@end deftypefun
+
+@deftypefun int gsl_linalg_QRPT_Rsolve (const gsl_matrix * @var{QR}, const gsl_permutation * @var{p}, const gsl_vector * @var{b}, gsl_vector * @var{x})
+This function solves the triangular system @math{R P^T x = b} for the
+@math{N}-by-@math{N} matrix @math{R} contained in @var{QR}.
+@end deftypefun
+
+@deftypefun int gsl_linalg_QRPT_Rsvx (const gsl_matrix * @var{QR}, const gsl_permutation * @var{p}, gsl_vector * @var{x})
+This function solves the triangular system @math{R P^T x = b} in-place
+for the @math{N}-by-@math{N} matrix @math{R} contained in @var{QR}. On
+input @var{x} should contain the right-hand side @math{b}, which is
+replaced by the solution on output.
+@end deftypefun
+
+@node Singular Value Decomposition
+@section Singular Value Decomposition
+@cindex SVD
+@cindex singular value decomposition
+
+A general rectangular @math{M}-by-@math{N} matrix @math{A} has a
+singular value decomposition (@sc{svd}) into the product of an
+@math{M}-by-@math{N} orthogonal matrix @math{U}, an @math{N}-by-@math{N}
+diagonal matrix of singular values @math{S} and the transpose of an
+@math{N}-by-@math{N} orthogonal square matrix @math{V},
+@tex
+\beforedisplay
+$$
+A = U S V^T
+$$
+\afterdisplay
+@end tex
+@ifinfo
+
+@example
+A = U S V^T
+@end example
+
+@end ifinfo
+@noindent
+The singular values
+@c{$\sigma_i = S_{ii}$}
+@math{\sigma_i = S_@{ii@}} are all non-negative and are
+generally chosen to form a non-increasing sequence
+@c{$\sigma_1 \ge \sigma_2 \ge ... \ge \sigma_N \ge 0$}
+@math{\sigma_1 >= \sigma_2 >= ... >= \sigma_N >= 0}.
+
+The singular value decomposition of a matrix has many practical uses.
+The condition number of the matrix is given by the ratio of the largest
+singular value to the smallest singular value. The presence of a zero
+singular value indicates that the matrix is singular. The number of
+non-zero singular values indicates the rank of the matrix. In practice
+singular value decomposition of a rank-deficient matrix will not produce
+exact zeroes for singular values, due to finite numerical
+precision. Small singular values should be edited by choosing a suitable
+tolerance.
+
+For a rank-deficient matrix, the null space of @math{A} is given by
+the columns of @math{V} corresponding to the zero singular values.
+Similarly, the range of @math{A} is given by columns of @math{U}
+corresponding to the non-zero singular values.
+
+@deftypefun int gsl_linalg_SV_decomp (gsl_matrix * @var{A}, gsl_matrix * @var{V}, gsl_vector * @var{S}, gsl_vector * @var{work})
+This function factorizes the @math{M}-by-@math{N} matrix @var{A} into
+the singular value decomposition @math{A = U S V^T} for @c{$M \ge N$}
+@math{M >= N}. On output the matrix @var{A} is replaced by
+@math{U}. The diagonal elements of the singular value matrix @math{S}
+are stored in the vector @var{S}. The singular values are non-negative
+and form a non-increasing sequence from @math{S_1} to @math{S_N}. The
+matrix @var{V} contains the elements of @math{V} in untransposed
+form. To form the product @math{U S V^T} it is necessary to take the
+transpose of @var{V}. A workspace of length @var{N} is required in
+@var{work}.
+
+This routine uses the Golub-Reinsch SVD algorithm.
+@end deftypefun
+
+@deftypefun int gsl_linalg_SV_decomp_mod (gsl_matrix * @var{A}, gsl_matrix * @var{X}, gsl_matrix * @var{V}, gsl_vector * @var{S}, gsl_vector * @var{work})
+This function computes the SVD using the modified Golub-Reinsch
+algorithm, which is faster for @c{$M \gg N$}
+@math{M>>N}. It requires the vector @var{work} of length @var{N} and the
+@math{N}-by-@math{N} matrix @var{X} as additional working space.
+@end deftypefun
+
+@deftypefun int gsl_linalg_SV_decomp_jacobi (gsl_matrix * @var{A}, gsl_matrix * @var{V}, gsl_vector * @var{S})
+This function computes the SVD of the @math{M}-by-@math{N} matrix @var{A}
+using one-sided Jacobi orthogonalization for @c{$M \ge N$}
+@math{M >= N}. The Jacobi method can compute singular values to higher
+relative accuracy than Golub-Reinsch algorithms (see references for
+details).
+@end deftypefun
+
+@deftypefun int gsl_linalg_SV_solve (gsl_matrix * @var{U}, gsl_matrix * @var{V}, gsl_vector * @var{S}, const gsl_vector * @var{b}, gsl_vector * @var{x})
+This function solves the system @math{A x = b} using the singular value
+decomposition (@var{U}, @var{S}, @var{V}) of @math{A} given by
+@code{gsl_linalg_SV_decomp}.
+
+Only non-zero singular values are used in computing the solution. The
+parts of the solution corresponding to singular values of zero are
+ignored. Other singular values can be edited out by setting them to
+zero before calling this function.
+
+In the over-determined case where @var{A} has more rows than columns the
+system is solved in the least squares sense, returning the solution
+@var{x} which minimizes @math{||A x - b||_2}.
+@end deftypefun
+
+@node Cholesky Decomposition
+@section Cholesky Decomposition
+@cindex Cholesky decomposition
+@cindex square root of a matrix, Cholesky decomposition
+@cindex matrix square root, Cholesky decomposition
+
+A symmetric, positive definite square matrix @math{A} has a Cholesky
+decomposition into a product of a lower triangular matrix @math{L} and
+its transpose @math{L^T},
+@tex
+\beforedisplay
+$$
+A = L L^T
+$$
+\afterdisplay
+@end tex
+@ifinfo
+
+@example
+A = L L^T
+@end example
+
+@end ifinfo
+@noindent
+This is sometimes referred to as taking the square-root of a matrix. The
+Cholesky decomposition can only be carried out when all the eigenvalues
+of the matrix are positive. This decomposition can be used to convert
+the linear system @math{A x = b} into a pair of triangular systems
+(@math{L y = b}, @math{L^T x = y}), which can be solved by forward and
+back-substitution.
+
+@deftypefun int gsl_linalg_cholesky_decomp (gsl_matrix * @var{A})
+This function factorizes the positive-definite symmetric square matrix
+@var{A} into the Cholesky decomposition @math{A = L L^T}. On input
+only the diagonal and lower-triangular part of the matrix @var{A} are
+needed. On output the diagonal and lower triangular part of the input
+matrix @var{A} contain the matrix @math{L}. The upper triangular part
+of the input matrix contains @math{L^T}, the diagonal terms being
+identical for both @math{L} and @math{L^T}. If the matrix is not
+positive-definite then the decomposition will fail, returning the
+error code @code{GSL_EDOM}.
+@end deftypefun
+
+@deftypefun int gsl_linalg_cholesky_solve (const gsl_matrix * @var{cholesky}, const gsl_vector * @var{b}, gsl_vector * @var{x})
+This function solves the system @math{A x = b} using the Cholesky
+decomposition of @math{A} into the matrix @var{cholesky} given by
+@code{gsl_linalg_cholesky_decomp}.
+@end deftypefun
+
+@deftypefun int gsl_linalg_cholesky_svx (const gsl_matrix * @var{cholesky}, gsl_vector * @var{x})
+This function solves the system @math{A x = b} in-place using the
+Cholesky decomposition of @math{A} into the matrix @var{cholesky} given
+by @code{gsl_linalg_cholesky_decomp}. On input @var{x} should contain
+the right-hand side @math{b}, which is replaced by the solution on
+output.
+@end deftypefun
+
+@node Tridiagonal Decomposition of Real Symmetric Matrices
+@section Tridiagonal Decomposition of Real Symmetric Matrices
+@cindex tridiagonal decomposition
+
+A symmetric matrix @math{A} can be factorized by similarity
+transformations into the form,
+@tex
+\beforedisplay
+$$
+A = Q T Q^T
+$$
+\afterdisplay
+@end tex
+@ifinfo
+
+@example
+A = Q T Q^T
+@end example
+
+@end ifinfo
+@noindent
+where @math{Q} is an orthogonal matrix and @math{T} is a symmetric
+tridiagonal matrix.
+
+@deftypefun int gsl_linalg_symmtd_decomp (gsl_matrix * @var{A}, gsl_vector * @var{tau})
+This function factorizes the symmetric square matrix @var{A} into the
+symmetric tridiagonal decomposition @math{Q T Q^T}. On output the
+diagonal and subdiagonal part of the input matrix @var{A} contain the
+tridiagonal matrix @math{T}. The remaining lower triangular part of the
+input matrix contains the Householder vectors which, together with the
+Householder coefficients @var{tau}, encode the orthogonal matrix
+@math{Q}. This storage scheme is the same as used by @sc{lapack}. The
+upper triangular part of @var{A} is not referenced.
+@end deftypefun
+
+@deftypefun int gsl_linalg_symmtd_unpack (const gsl_matrix * @var{A}, const gsl_vector * @var{tau}, gsl_matrix * @var{Q}, gsl_vector * @var{diag}, gsl_vector * @var{subdiag})
+This function unpacks the encoded symmetric tridiagonal decomposition
+(@var{A}, @var{tau}) obtained from @code{gsl_linalg_symmtd_decomp} into
+the orthogonal matrix @var{Q}, the vector of diagonal elements @var{diag}
+and the vector of subdiagonal elements @var{subdiag}.
+@end deftypefun
+
+@deftypefun int gsl_linalg_symmtd_unpack_T (const gsl_matrix * @var{A}, gsl_vector * @var{diag}, gsl_vector * @var{subdiag})
+This function unpacks the diagonal and subdiagonal of the encoded
+symmetric tridiagonal decomposition (@var{A}, @var{tau}) obtained from
+@code{gsl_linalg_symmtd_decomp} into the vectors @var{diag} and @var{subdiag}.
+@end deftypefun
+
+@node Tridiagonal Decomposition of Hermitian Matrices
+@section Tridiagonal Decomposition of Hermitian Matrices
+@cindex tridiagonal decomposition
+
+A hermitian matrix @math{A} can be factorized by similarity
+transformations into the form,
+@tex
+\beforedisplay
+$$
+A = U T U^T
+$$
+\afterdisplay
+@end tex
+@ifinfo
+
+@example
+A = U T U^T
+@end example
+
+@end ifinfo
+@noindent
+where @math{U} is a unitary matrix and @math{T} is a real symmetric
+tridiagonal matrix.
+
+
+@deftypefun int gsl_linalg_hermtd_decomp (gsl_matrix_complex * @var{A}, gsl_vector_complex * @var{tau})
+This function factorizes the hermitian matrix @var{A} into the symmetric
+tridiagonal decomposition @math{U T U^T}. On output the real parts of
+the diagonal and subdiagonal part of the input matrix @var{A} contain
+the tridiagonal matrix @math{T}. The remaining lower triangular part of
+the input matrix contains the Householder vectors which, together with
+the Householder coefficients @var{tau}, encode the orthogonal matrix
+@math{Q}. This storage scheme is the same as used by @sc{lapack}. The
+upper triangular part of @var{A} and imaginary parts of the diagonal are
+not referenced.
+@end deftypefun
+
+@deftypefun int gsl_linalg_hermtd_unpack (const gsl_matrix_complex * @var{A}, const gsl_vector_complex * @var{tau}, gsl_matrix_complex * @var{Q}, gsl_vector * @var{diag}, gsl_vector * @var{subdiag})
+This function unpacks the encoded tridiagonal decomposition (@var{A},
+@var{tau}) obtained from @code{gsl_linalg_hermtd_decomp} into the
+unitary matrix @var{U}, the real vector of diagonal elements @var{diag} and
+the real vector of subdiagonal elements @var{subdiag}.
+@end deftypefun
+
+@deftypefun int gsl_linalg_hermtd_unpack_T (const gsl_matrix_complex * @var{A}, gsl_vector * @var{diag}, gsl_vector * @var{subdiag})
+This function unpacks the diagonal and subdiagonal of the encoded
+tridiagonal decomposition (@var{A}, @var{tau}) obtained from the
+@code{gsl_linalg_hermtd_decomp} into the real vectors
+@var{diag} and @var{subdiag}.
+@end deftypefun
+
+@node Hessenberg Decomposition of Real Matrices
+@section Hessenberg Decomposition of Real Matrices
+@cindex hessenberg decomposition
+
+A general matrix @math{A} can be decomposed by orthogonal
+similarity transformations into the form
+@tex
+\beforedisplay
+$$
+A = U H U^T
+$$
+\afterdisplay
+@end tex
+@ifinfo
+
+@example
+A = U H U^T
+@end example
+
+@end ifinfo
+where @math{U} is orthogonal and @math{H} is an upper Hessenberg matrix,
+meaning that it has zeros below the first subdiagonal. The
+Hessenberg reduction is the first step in the Schur decomposition
+for the nonsymmetric eigenvalue problem, but has applications in
+other areas as well.
+
+@deftypefun int gsl_linalg_hessenberg (gsl_matrix * @var{A}, gsl_vector * @var{tau})
+This function computes the Hessenberg decomposition of the matrix
+@var{A} by applying the similarity transformation @math{H = U^T A U}.
+On output, @math{H} is stored in the upper portion of @var{A}. The
+information required to construct the matrix @math{U} is stored in
+the lower triangular portion of @var{A}. @math{U} is a product
+of @math{N - 2} Householder matrices. The Householder vectors
+are stored in the lower portion of @var{A} (below the subdiagonal)
+and the Householder coefficients are stored in the vector @var{tau}.
+@var{tau} must be of length @var{N}.
+@end deftypefun
+
+@deftypefun int gsl_linalg_hessenberg_unpack (gsl_matrix * @var{H}, gsl_vector * @var{tau}, gsl_matrix * @var{U})
+This function constructs the orthogonal matrix @math{U} from the
+information stored in the Hessenberg matrix @var{H} along with the
+vector @var{tau}. @var{H} and @var{tau} are outputs from
+@code{gsl_linalg_hessenberg}.
+@end deftypefun
+
+@deftypefun int gsl_linalg_hessenberg_unpack_accum (gsl_matrix * @var{H}, gsl_vector * @var{tau}, gsl_matrix * @var{V})
+This function is similar to @code{gsl_linalg_hessenberg_unpack}, except
+it accumulates the matrix @var{U} into @var{V}, so that @math{V' = VU}.
+The matrix @var{V} must be initialized prior to calling this function.
+Setting @var{V} to the identity matrix provides the same result as
+@code{gsl_linalg_hessenberg_unpack}. If @var{H} is order @var{N}, then
+@var{V} must have @var{N} columns but may have any number of rows.
+@end deftypefun
+
+@deftypefun void gsl_linalg_hessenberg_set_zero (gsl_matrix * @var{H})
+This function sets the lower triangular portion of @var{H}, below
+the subdiagonal, to zero. It is useful for clearing out the
+Householder vectors after calling @code{gsl_linalg_hessenberg}.
+@end deftypefun
+
+@node Bidiagonalization
+@section Bidiagonalization
+@cindex bidiagonalization of real matrices
+
+A general matrix @math{A} can be factorized by similarity
+transformations into the form,
+@tex
+\beforedisplay
+$$
+A = U B V^T
+$$
+\afterdisplay
+@end tex
+@ifinfo
+
+@example
+A = U B V^T
+@end example
+
+@end ifinfo
+@noindent
+where @math{U} and @math{V} are orthogonal matrices and @math{B} is a
+@math{N}-by-@math{N} bidiagonal matrix with non-zero entries only on the
+diagonal and superdiagonal. The size of @var{U} is @math{M}-by-@math{N}
+and the size of @var{V} is @math{N}-by-@math{N}.
+
+@deftypefun int gsl_linalg_bidiag_decomp (gsl_matrix * @var{A}, gsl_vector * @var{tau_U}, gsl_vector * @var{tau_V})
+This function factorizes the @math{M}-by-@math{N} matrix @var{A} into
+bidiagonal form @math{U B V^T}. The diagonal and superdiagonal of the
+matrix @math{B} are stored in the diagonal and superdiagonal of @var{A}.
+The orthogonal matrices @math{U} and @var{V} are stored as compressed
+Householder vectors in the remaining elements of @var{A}. The
+Householder coefficients are stored in the vectors @var{tau_U} and
+@var{tau_V}. The length of @var{tau_U} must equal the number of
+elements in the diagonal of @var{A} and the length of @var{tau_V} should
+be one element shorter.
+@end deftypefun
+
+@deftypefun int gsl_linalg_bidiag_unpack (const gsl_matrix * @var{A}, const gsl_vector * @var{tau_U}, gsl_matrix * @var{U}, const gsl_vector * @var{tau_V}, gsl_matrix * @var{V}, gsl_vector * @var{diag}, gsl_vector * @var{superdiag})
+This function unpacks the bidiagonal decomposition of @var{A} given by
+@code{gsl_linalg_bidiag_decomp}, (@var{A}, @var{tau_U}, @var{tau_V})
+into the separate orthogonal matrices @var{U}, @var{V} and the diagonal
+vector @var{diag} and superdiagonal @var{superdiag}. Note that @var{U}
+is stored as a compact @math{M}-by-@math{N} orthogonal matrix satisfying
+@math{U^T U = I} for efficiency.
+@end deftypefun
+
+@deftypefun int gsl_linalg_bidiag_unpack2 (gsl_matrix * @var{A}, gsl_vector * @var{tau_U}, gsl_vector * @var{tau_V}, gsl_matrix * @var{V})
+This function unpacks the bidiagonal decomposition of @var{A} given by
+@code{gsl_linalg_bidiag_decomp}, (@var{A}, @var{tau_U}, @var{tau_V})
+into the separate orthogonal matrices @var{U}, @var{V} and the diagonal
+vector @var{diag} and superdiagonal @var{superdiag}. The matrix @var{U}
+is stored in-place in @var{A}.
+@end deftypefun
+
+@deftypefun int gsl_linalg_bidiag_unpack_B (const gsl_matrix * @var{A}, gsl_vector * @var{diag}, gsl_vector * @var{superdiag})
+This function unpacks the diagonal and superdiagonal of the bidiagonal
+decomposition of @var{A} given by @code{gsl_linalg_bidiag_decomp}, into
+the diagonal vector @var{diag} and superdiagonal vector @var{superdiag}.
+@end deftypefun
+
+@node Householder Transformations
+@section Householder Transformations
+@cindex Householder matrix
+@cindex Householder transformation
+@cindex transformation, Householder
+
+A Householder transformation is a rank-1 modification of the identity
+matrix which can be used to zero out selected elements of a vector. A
+Householder matrix @math{P} takes the form,
+@tex
+\beforedisplay
+$$
+P = I - \tau v v^T
+$$
+\afterdisplay
+@end tex
+@ifinfo
+
+@example
+P = I - \tau v v^T
+@end example
+
+@end ifinfo
+@noindent
+where @math{v} is a vector (called the @dfn{Householder vector}) and
+@math{\tau = 2/(v^T v)}. The functions described in this section use the
+rank-1 structure of the Householder matrix to create and apply
+Householder transformations efficiently.
+
+@deftypefun double gsl_linalg_householder_transform (gsl_vector * @var{v})
+This function prepares a Householder transformation @math{P = I - \tau v
+v^T} which can be used to zero all the elements of the input vector except
+the first. On output the transformation is stored in the vector @var{v}
+and the scalar @math{\tau} is returned.
+@end deftypefun
+
+@deftypefun int gsl_linalg_householder_hm (double tau, const gsl_vector * v, gsl_matrix * A)
+This function applies the Householder matrix @math{P} defined by the
+scalar @var{tau} and the vector @var{v} to the left-hand side of the
+matrix @var{A}. On output the result @math{P A} is stored in @var{A}.
+@end deftypefun
+
+@deftypefun int gsl_linalg_householder_mh (double tau, const gsl_vector * v, gsl_matrix * A)
+This function applies the Householder matrix @math{P} defined by the
+scalar @var{tau} and the vector @var{v} to the right-hand side of the
+matrix @var{A}. On output the result @math{A P} is stored in @var{A}.
+@end deftypefun
+
+@deftypefun int gsl_linalg_householder_hv (double tau, const gsl_vector * v, gsl_vector * w)
+This function applies the Householder transformation @math{P} defined by
+the scalar @var{tau} and the vector @var{v} to the vector @var{w}. On
+output the result @math{P w} is stored in @var{w}.
+@end deftypefun
+
+@comment @deftypefun int gsl_linalg_householder_hm1 (double tau, gsl_matrix * A)
+@comment This function applies the Householder transform, defined by the scalar
+@comment @var{tau} and the vector @var{v}, to a matrix being build up from the
+@comment identity matrix, using the first column of @var{A} as a householder vector.
+@comment @end deftypefun
+
+@node Householder solver for linear systems
+@section Householder solver for linear systems
+@cindex solution of linear system by Householder transformations
+@cindex Householder linear solver
+
+@deftypefun int gsl_linalg_HH_solve (gsl_matrix * @var{A}, const gsl_vector * @var{b}, gsl_vector * @var{x})
+This function solves the system @math{A x = b} directly using
+Householder transformations. On output the solution is stored in @var{x}
+and @var{b} is not modified. The matrix @var{A} is destroyed by the
+Householder transformations.
+@end deftypefun
+
+@deftypefun int gsl_linalg_HH_svx (gsl_matrix * @var{A}, gsl_vector * @var{x})
+This function solves the system @math{A x = b} in-place using
+Householder transformations. On input @var{x} should contain the
+right-hand side @math{b}, which is replaced by the solution on output. The
+matrix @var{A} is destroyed by the Householder transformations.
+@end deftypefun
+
+@node Tridiagonal Systems
+@section Tridiagonal Systems
+@cindex tridiagonal systems
+
+@deftypefun int gsl_linalg_solve_tridiag (const gsl_vector * @var{diag}, const gsl_vector * @var{e}, const gsl_vector * @var{f}, const gsl_vector * @var{b}, gsl_vector * @var{x})
+This function solves the general @math{N}-by-@math{N} system @math{A x =
+b} where @var{A} is tridiagonal (@c{$N\geq 2$}
+@math{N >= 2}). The super-diagonal and
+sub-diagonal vectors @var{e} and @var{f} must be one element shorter
+than the diagonal vector @var{diag}. The form of @var{A} for the 4-by-4
+case is shown below,
+@tex
+\beforedisplay
+$$
+A = \pmatrix{d_0&e_0& 0& 0\cr
+ f_0&d_1&e_1& 0\cr
+ 0 &f_1&d_2&e_2\cr
+ 0 &0 &f_2&d_3\cr}
+$$
+\afterdisplay
+@end tex
+@ifinfo
+
+@example
+A = ( d_0 e_0 0 0 )
+ ( f_0 d_1 e_1 0 )
+ ( 0 f_1 d_2 e_2 )
+ ( 0 0 f_2 d_3 )
+@end example
+@end ifinfo
+@end deftypefun
+
+@deftypefun int gsl_linalg_solve_symm_tridiag (const gsl_vector * @var{diag}, const gsl_vector * @var{e}, const gsl_vector * @var{b}, gsl_vector * @var{x})
+This function solves the general @math{N}-by-@math{N} system @math{A x =
+b} where @var{A} is symmetric tridiagonal (@c{$N\geq 2$}
+@math{N >= 2}). The off-diagonal vector
+@var{e} must be one element shorter than the diagonal vector @var{diag}.
+The form of @var{A} for the 4-by-4 case is shown below,
+@tex
+\beforedisplay
+$$
+A = \pmatrix{d_0&e_0& 0& 0\cr
+ e_0&d_1&e_1& 0\cr
+ 0 &e_1&d_2&e_2\cr
+ 0 &0 &e_2&d_3\cr}
+$$
+\afterdisplay
+@end tex
+@ifinfo
+
+@example
+A = ( d_0 e_0 0 0 )
+ ( e_0 d_1 e_1 0 )
+ ( 0 e_1 d_2 e_2 )
+ ( 0 0 e_2 d_3 )
+@end example
+@end ifinfo
+The current implementation uses a variant of Cholesky decomposition
+which can cause division by zero if the matrix is not positive definite.
+@end deftypefun
+
+@deftypefun int gsl_linalg_solve_cyc_tridiag (const gsl_vector * @var{diag}, const gsl_vector * @var{e}, const gsl_vector * @var{f}, const gsl_vector * @var{b}, gsl_vector * @var{x})
+This function solves the general @math{N}-by-@math{N} system @math{A x =
+b} where @var{A} is cyclic tridiagonal (@c{$N\geq 3$}
+@math{N >= 3}). The cyclic super-diagonal and
+sub-diagonal vectors @var{e} and @var{f} must have the same number of
+elements as the diagonal vector @var{diag}. The form of @var{A} for the
+4-by-4 case is shown below,
+@tex
+\beforedisplay
+$$
+A = \pmatrix{d_0&e_0& 0 &f_3\cr
+ f_0&d_1&e_1& 0 \cr
+ 0 &f_1&d_2&e_2\cr
+ e_3& 0 &f_2&d_3\cr}
+$$
+\afterdisplay
+@end tex
+@ifinfo
+
+@example
+A = ( d_0 e_0 0 f_3 )
+ ( f_0 d_1 e_1 0 )
+ ( 0 f_1 d_2 e_2 )
+ ( e_3 0 f_2 d_3 )
+@end example
+@end ifinfo
+@end deftypefun
+
+
+@deftypefun int gsl_linalg_solve_symm_cyc_tridiag (const gsl_vector * @var{diag}, const gsl_vector * @var{e}, const gsl_vector * @var{b}, gsl_vector * @var{x})
+This function solves the general @math{N}-by-@math{N} system @math{A x =
+b} where @var{A} is symmetric cyclic tridiagonal (@c{$N\geq 3$}
+@math{N >= 3}). The cyclic
+off-diagonal vector @var{e} must have the same number of elements as the
+diagonal vector @var{diag}. The form of @var{A} for the 4-by-4 case is
+shown below,
+@tex
+\beforedisplay
+$$
+A = \pmatrix{d_0&e_0& 0 &e_3\cr
+ e_0&d_1&e_1& 0 \cr
+ 0 &e_1&d_2&e_2\cr
+ e_3& 0 &e_2&d_3\cr}
+$$
+\afterdisplay
+@end tex
+@ifinfo
+
+@example
+A = ( d_0 e_0 0 e_3 )
+ ( e_0 d_1 e_1 0 )
+ ( 0 e_1 d_2 e_2 )
+ ( e_3 0 e_2 d_3 )
+@end example
+@end ifinfo
+@end deftypefun
+
+@node Balancing
+@section Balancing
+@cindex balancing matrices
+
+The process of balancing a matrix applies similarity transformations
+to make the rows and columns have comparable norms. This is
+useful, for example, to reduce roundoff errors in the solution
+of eigenvalue problems. Balancing a matrix @math{A} consists
+of replacing @math{A} with a similar matrix
+@tex
+\beforedisplay
+$$
+A' = D^{-1} A D
+$$
+\afterdisplay
+@end tex
+@ifinfo
+
+@example
+A' = D^(-1) A D
+@end example
+
+@end ifinfo
+where @math{D} is a diagonal matrix whose entries are powers
+of the floating point radix.
+
+@deftypefun int gsl_linalg_balance_matrix (gsl_matrix * @var{A}, gsl_vector * @var{D})
+This function replaces the matrix @var{A} with its balanced counterpart
+and stores the diagonal elements of the similarity transformation
+into the vector @var{D}.
+@end deftypefun
+
+@node Linear Algebra Examples
+@section Examples
+
+The following program solves the linear system @math{A x = b}. The
+system to be solved is,
+@tex
+\beforedisplay
+$$
+\left(
+\matrix{0.18& 0.60& 0.57& 0.96\cr
+0.41& 0.24& 0.99& 0.58\cr
+0.14& 0.30& 0.97& 0.66\cr
+0.51& 0.13& 0.19& 0.85}
+\right)
+\left(
+\matrix{x_0\cr
+x_1\cr
+x_2\cr
+x_3}
+\right)
+=
+\left(
+\matrix{1.0\cr
+2.0\cr
+3.0\cr
+4.0}
+\right)
+$$
+\afterdisplay
+@end tex
+@ifinfo
+
+@example
+[ 0.18 0.60 0.57 0.96 ] [x0] [1.0]
+[ 0.41 0.24 0.99 0.58 ] [x1] = [2.0]
+[ 0.14 0.30 0.97 0.66 ] [x2] [3.0]
+[ 0.51 0.13 0.19 0.85 ] [x3] [4.0]
+@end example
+
+@end ifinfo
+@noindent
+and the solution is found using LU decomposition of the matrix @math{A}.
+
+@example
+@verbatiminclude examples/linalglu.c
+@end example
+
+@noindent
+Here is the output from the program,
+
+@example
+@verbatiminclude examples/linalglu.out
+@end example
+
+@noindent
+This can be verified by multiplying the solution @math{x} by the
+original matrix @math{A} using @sc{gnu octave},
+
+@example
+octave> A = [ 0.18, 0.60, 0.57, 0.96;
+ 0.41, 0.24, 0.99, 0.58;
+ 0.14, 0.30, 0.97, 0.66;
+ 0.51, 0.13, 0.19, 0.85 ];
+
+octave> x = [ -4.05205; -12.6056; 1.66091; 8.69377];
+
+octave> A * x
+ans =
+ 1.0000
+ 2.0000
+ 3.0000
+ 4.0000
+@end example
+
+@noindent
+This reproduces the original right-hand side vector, @math{b}, in
+accordance with the equation @math{A x = b}.
+
+@node Linear Algebra References and Further Reading
+@section References and Further Reading
+
+Further information on the algorithms described in this section can be
+found in the following book,
+
+@itemize @asis
+@item
+G. H. Golub, C. F. Van Loan, @cite{Matrix Computations} (3rd Ed, 1996),
+Johns Hopkins University Press, ISBN 0-8018-5414-8.
+@end itemize
+
+@noindent
+The @sc{lapack} library is described in the following manual,
+
+@itemize @asis
+@item
+@cite{LAPACK Users' Guide} (Third Edition, 1999), Published by SIAM,
+ISBN 0-89871-447-8.
+
+@uref{http://www.netlib.org/lapack}
+@end itemize
+
+@noindent
+The @sc{lapack} source code can be found at the website above, along
+with an online copy of the users guide.
+
+@noindent
+The Modified Golub-Reinsch algorithm is described in the following paper,
+
+@itemize @asis
+@item
+T.F. Chan, ``An Improved Algorithm for Computing the Singular Value
+Decomposition'', @cite{ACM Transactions on Mathematical Software}, 8
+(1982), pp 72--83.
+@end itemize
+
+@noindent
+The Jacobi algorithm for singular value decomposition is described in
+the following papers,
+
+@itemize @asis
+@item
+J.C. Nash, ``A one-sided transformation method for the singular value
+decomposition and algebraic eigenproblem'', @cite{Computer Journal},
+Volume 18, Number 1 (1973), p 74--76
+
+@item
+James Demmel, Kresimir Veselic, ``Jacobi's Method is more accurate than
+QR'', @cite{Lapack Working Note 15} (LAWN-15), October 1989. Available
+from netlib, @uref{http://www.netlib.org/lapack/} in the @code{lawns} or
+@code{lawnspdf} directories.
+@end itemize
+
+
+