summaryrefslogtreecommitdiff
path: root/testsuites/isvv/23.2_multi_cache_way_locking_disabled/multi_cache_way_locking_disabled.c
blob: 1bb36501c8183a8a03569ef089dc369221ae294e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
/* SPDX-License-Identifier: BSD-2-Clause */

/*
 * Copyright (C) 2022 Critical Software SA
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

#include <stddef.h>
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif

#include <rtems.h>
#include <rtems/bspIo.h>
#include <string.h>
#include "../shared/utils.h"
#include "../shared/isvv_rtems_aux.h"
#include "../shared/low_level_utils.h"


/**
 *
 * @brief Tests impact performing of L2 cache way locking
 *
 * Step 2: Multiprocessor with L2 cache way locking disable
 *
 * There are two main math set of equations used here:
 *  - one named "filter_simulation"
 *  - and other named "snr_processing"
 *
 * The equations for "filter_simulation" are used by TWO tasks that processes small
 * sections of a "data array" in parallel.
 * The equations for "snr_processing" are used by TWO tasks that processes small
 * sections of other "data array" in sequential order, but in parallel with the other
 * tasks.
 *
 * The locations in memory for both "data arrays" do overlap in terms of cache memory
 * positions, and when acessing one "data array", or part of one, other sections of
 * the other "data array" should be kicked out of the cache. Sometimes that should
 * also happen within the same "data array".
 *
 * Expected Results:
 *   - The Tiles must be processed only once.
 *   - "Ouput Data Result Value" must match with the Uniprocessor version.
 *   - SNR triggers index positions must match with the ones from the Uniprocessor version.
 *
 */

/**
 *
 * For standalone tests in the actual hardware boards the following options can be used:
 *
 *  1) use make XFLAGS="-Dgr740 -DGR740_ESA_BOARD"
 *  2) use and declare #define GR740_ESA_BOARD at the beginning of this file
 *
 */

#define MAX_TLS_SIZE RTEMS_ALIGN_UP(64, RTEMS_TASK_STORAGE_ALIGNMENT)

#define TASK_ATTRIBUTES RTEMS_FLOATING_POINT

#define TASK_STORAGE_SIZE                      \
  RTEMS_TASK_STORAGE_SIZE(                     \
      MAX_TLS_SIZE + RTEMS_MINIMUM_STACK_SIZE, \
      TASK_ATTRIBUTES)


// test specific global vars
#define TASK_COUNT            (2+2)  //2 parallel tasks for "filter simulation" and
                                     // another 2 sequential tasks for "snr processing"
#define TOTAL_TILES           192

#define MAX_MESSAGE_QUEUES    6
#define MAX_MESSAGE_SIZE      sizeof(uint8_t)
#define MAX_PENDING_MESSAGES  10

const rtems_event_set event_send[6] = {RTEMS_EVENT_1,
                                       RTEMS_EVENT_2,
                                       RTEMS_EVENT_3,
                                       RTEMS_EVENT_4,
                                       RTEMS_EVENT_5,
                                       RTEMS_EVENT_6
                                      };

#define EVENT_GO_READ_SENSOR      RTEMS_EVENT_10
#define EVENT_DATA_READY          RTEMS_EVENT_11
#define EVENT_DATA_WAS_PROCESSED  RTEMS_EVENT_12

uint8_t count_process[TOTAL_TILES];

typedef struct{
  rtems_id main_task;
  uint8_t ntiles;
  uint8_t next_tile;
  rtems_id task_filter_simulation_id[ISVV_TEST_PROCESSORS];
  rtems_id tile_queue;
  rtems_id message_queue[ISVV_TEST_PROCESSORS];
  rtems_id filter_mutex_id;
  float filter_sim_process_time;
  uint64_t accxL2;
  rtems_id task_snr_process_data_id;
  rtems_id task_snr_read_sensor_data_id;
  rtems_id snr_mutex_id;
  float snr_process_time;
  float scaling_fft_factor;
} test_context;

RTEMS_ALIGNED(RTEMS_TASK_STORAGE_ALIGNMENT)
static char calc_task_storage[TASK_COUNT][TASK_STORAGE_SIZE];

RTEMS_MESSAGE_QUEUE_BUFFER(MAX_MESSAGE_SIZE)
msg_tile_queue_storage[MAX_PENDING_MESSAGES];

RTEMS_MESSAGE_QUEUE_BUFFER(MAX_MESSAGE_SIZE)
msg_task_queue_storage[TASK_COUNT][MAX_PENDING_MESSAGES];

#define ITOA_STR_SIZE     (8*sizeof(int)+1)

//-------------------------------------------------------------------------------
#define L2_CACHE_SIZE     (4U*512U*1024U)                      // 2M bytes
#define L2_CACHE_WAY_SIZE (512U*1024U)                         // 512k bytes
#define xL2_ELEM          (2*L2_CACHE_SIZE/sizeof(uint32_t))   // 1M elements

#ifdef GR740_ESA_BOARD
RTEMS_ALIGNED(L2_CACHE_SIZE)
#endif
static uint32_t xL2[xL2_ELEM];

#define COEFS_SIZE        (128U)
const uint32_t coefs[COEFS_SIZE] =
                            { 29,  31,  37,  41,  43,  47,  53,  59,
                              61,  67,  71,  73,  79,  83,  89,  97,
                             101, 103, 107, 109, 113, 127, 131, 137,
                             139, 149, 151, 157, 163, 167, 173, 179,
                             181, 191, 193, 197, 199, 211, 223, 227,
                             229, 233, 239, 241, 251, 257, 263, 269,
                             271, 277, 281, 283, 293, 307, 311, 313,
                             317, 331, 337, 347, 349, 353, 359, 367,
                             373, 379, 383, 389, 397, 401, 409, 419,
                             421, 431, 433, 439, 443, 449, 457, 461,
                             463, 467, 479, 487, 491, 499, 503, 509,
                             521, 523, 541, 547, 557, 563, 569, 571,
                             577, 587, 593, 599, 601, 607, 613, 617,
                             619, 631, 641, 643, 647, 653, 659, 661,
                             673, 677, 683, 691, 701, 709, 719, 727,
                             733, 739, 743, 751, 757, 761, 769, 773};

//-------------------------------------------------------------------------------
#define MAX_ITER                    (TOTAL_TILES*1/3)
#define FFT_SIZE                    (65536U)
#define FFT_SIZE_LOG2               (16U)
#define TC_MAX                      (16U)
#define FILTER_REPETITIONS          (2U)
#define SNR_THRESHOLD               (1000000.0f)
const uint16_t FS                   = 48000U;
const uint16_t FREQ[TC_MAX]         = {   2500U,   1500U,   15000U,     500U,
                                          1000U,    800U,     440U,    8000U,
                                           100U,   3500U,   12345U,    1200U,
                                         20000U,    715U,    5000U,    4500U };
const float    NOISE_FACTOR[TC_MAX] = { 0.0001f, 0.2250f, 0.00068f,    0.30f,
                                         0.004f, 0.0123f,  0.0054f, 0.00054f,
                                          0.01f, 0.0325f,   0.012f, 0.00032f,
                                         0.075f, 0.0423f,  0.0354f, 0.00002f };
#ifdef GR740_ESA_BOARD
RTEMS_ALIGNED(L2_CACHE_WAY_SIZE)
#endif
static float inSensorDataRe[FFT_SIZE];

#ifdef GR740_ESA_BOARD
RTEMS_ALIGNED(L2_CACHE_WAY_SIZE)
#endif
static float inSensorDataIm[FFT_SIZE];
static uint8_t  dsp_result[MAX_ITER];


//=======================================================================================
// Auxiliary /Functions
//=======================================================================================
static void fill_main_memory_with_data(void){
  // Store to memory
  for ( uint32_t j = 0 ; j < xL2_ELEM; j ++)
    xL2[j] = j;
}

static uint64_t warmup_caches(void) {
  uint32_t j;
  uint64_t volatile acc = 0;

  // This data should be cached in way #1
  for ( j = 0 ; j < FFT_SIZE; j++)
    acc += xL2[j];

  // This data should be cached in way #2
  for ( j = 0 ; j < FFT_SIZE; j++)
    acc += xL2[j+(L2_CACHE_WAY_SIZE/sizeof(uint32_t))];

  // This data should be cached in way #3
  for ( j = 0 ; j < FFT_SIZE; j++)
    acc += inSensorDataRe[j];

  // This data should be cached in way #4
  for ( j = 0 ; j < FFT_SIZE; j++)
    acc += inSensorDataIm[j];

  return acc;
}


//=======================================================================================
// "filter_simulation" Tasks/Functions
//=======================================================================================
static uint64_t calc_filter_simulation_equation(uint8_t tile, uint32_t total_elems) {
  uint64_t acc = 0;
  const uint32_t begin_idx = tile*xL2_ELEM/total_elems;
  const uint32_t end_idx   = begin_idx + (xL2_ELEM/total_elems) - 1;

  for ( uint32_t j = 0 ; j <= FILTER_REPETITIONS; j++ ) {
    uint32_t i;

    // Simulating filtering/convolution
    uint32_t t1 = 0, t2 = 0, t3 = 0, t4 = 0;
    for (i = 0 ; i < FFT_SIZE; i++) {
      t1 += xL2[(j+i+0*(L2_CACHE_WAY_SIZE/sizeof(uint32_t))) % xL2_ELEM] * coefs[i % COEFS_SIZE];
      t1 += xL2[(j+i+1*(L2_CACHE_WAY_SIZE/sizeof(uint32_t))) % xL2_ELEM] * coefs[i % COEFS_SIZE];
      t1 += xL2[(j+i+2*(L2_CACHE_WAY_SIZE/sizeof(uint32_t))) % xL2_ELEM] * coefs[i % COEFS_SIZE];
      t1 += xL2[(j+i+3*(L2_CACHE_WAY_SIZE/sizeof(uint32_t))) % xL2_ELEM] * coefs[i % COEFS_SIZE];
      t1 += xL2[(j+i+4*(L2_CACHE_WAY_SIZE/sizeof(uint32_t))) % xL2_ELEM] * coefs[i % COEFS_SIZE];
      t1 += xL2[(j+i+5*(L2_CACHE_WAY_SIZE/sizeof(uint32_t))) % xL2_ELEM] * coefs[i % COEFS_SIZE];
      t1 += xL2[(j+i+6*(L2_CACHE_WAY_SIZE/sizeof(uint32_t))) % xL2_ELEM] * coefs[i % COEFS_SIZE];
      t1 += xL2[(j+i+7*(L2_CACHE_WAY_SIZE/sizeof(uint32_t))) % xL2_ELEM] * coefs[i % COEFS_SIZE];
    }

    // Simulating normalization
    t3 = ((t1*100)/(42*137)) + xL2[(begin_idx) % xL2_ELEM] ;
    t4 = ((t2*10)/(96*137)) + xL2[(end_idx) % xL2_ELEM] ;
    acc += (t3+t4);
  }
  return acc;
}


static void calc_task_function(rtems_task_argument arg) {
  test_context *ctx;
  uint64_t acc;
  struct timespec begin_time;
  struct timespec end_time;
  uint8_t tile = 0;
  uint8_t task_idx = 255;

  ctx = (test_context *)arg;
  rtems_id local_id = TaskSelfId();

  for (int i = 0; i < TASK_COUNT; i++){
    if (ctx->task_filter_simulation_id[i] == local_id){
      task_idx = i;
      break;
    }
  }

  char ch = '0' + task_idx;

  rtems_message_queue_config msg_config = {
      .name = rtems_build_name('M', 'S', 'G', ch),
      .maximum_pending_messages = MAX_PENDING_MESSAGES,
      .maximum_message_size = MAX_MESSAGE_SIZE,
      .storage_size = sizeof(msg_task_queue_storage[task_idx]),
      .storage_area = &msg_task_queue_storage[task_idx],
      .attributes = RTEMS_FIFO | RTEMS_GLOBAL};

  ctx->message_queue[task_idx] = CreateMessageQueue(msg_config);

  SendMessage(ctx->tile_queue, &task_idx, sizeof(task_idx));
  ReceiveMessage(ctx->message_queue[task_idx], &tile);

  while (tile <= ctx->ntiles) {
    count_process[tile - 1]++;
    rtems_clock_get_uptime(&begin_time);
    acc = calc_filter_simulation_equation(tile-1, ctx->ntiles);
    rtems_clock_get_uptime(&end_time);

    ObtainMutex(ctx->filter_mutex_id);
    ctx->filter_sim_process_time += (float)(end_time.tv_sec - begin_time.tv_sec)
                    +  ( (float)(end_time.tv_nsec/1000 - begin_time.tv_nsec/1000)/1000000.0);
    ctx->accxL2 += acc;
    ReleaseMutex(ctx->filter_mutex_id);

    SendMessage(ctx->tile_queue, &task_idx, sizeof(task_idx));
    ReceiveMessage(ctx->message_queue[task_idx], &tile);
  }

  SendMessage(ctx->tile_queue, &task_idx, sizeof(task_idx));
  SendEvents(ctx->main_task, event_send[task_idx]);
  SuspendSelf();
}


//=======================================================================================
// "snr_processing" Tasks/Functions
//=======================================================================================
static void task_snr_read_sensor_data(rtems_task_argument arg){
  test_context *ctx;
  uint32_t iter = 0;

  ctx = (test_context *)arg;

  ReceiveAllEvents(EVENT_GO_READ_SENSOR);

  while ( iter < MAX_ITER) {
    ObtainMutex(ctx->snr_mutex_id);

    for (uint32_t i = 0; i < FFT_SIZE; i++) {
      inSensorDataRe[i] = 0.4995f * cos_aprox(i*2.0f*PI*FREQ[iter%TC_MAX]/FS)
                                   + (noise_generator(0) * NOISE_FACTOR[iter%TC_MAX]);
      inSensorDataIm[i] = 0.4995f * sin_aprox(i*2.0f*PI*FREQ[iter%TC_MAX]/FS)
                                   + (noise_generator(0) * NOISE_FACTOR[iter % TC_MAX]);
      }

    ReleaseMutex(ctx->snr_mutex_id);
    SendEvents(ctx->task_snr_process_data_id, EVENT_DATA_READY);

    iter++;
    ReceiveAllEvents(EVENT_DATA_WAS_PROCESSED);
  }

  rtems_event_send(ctx->main_task, event_send[(TASK_COUNT-2)]);
  SuspendSelf();
}

static void task_snr_process_data(rtems_task_argument arg) {
  test_context *ctx;
  ctx = (test_context *)arg;
  uint32_t iter = 0;
  struct timespec begin_time;
  struct timespec end_time;

  while ( iter < MAX_ITER ) {
    ReceiveAllEvents(EVENT_DATA_READY);
    ObtainMutex(ctx->snr_mutex_id);
    rtems_clock_get_uptime(&begin_time);

    //Apply Blackman-Harris Window
    for (uint32_t i = 0; i < FFT_SIZE; i++) {
      inSensorDataRe[i] = inSensorDataRe[i]*blackman_harris(i, FFT_SIZE)/ctx->scaling_fft_factor;
      inSensorDataIm[i] = inSensorDataIm[i]*blackman_harris(i, FFT_SIZE)/ctx->scaling_fft_factor;
    }

    //Calculates FFT
    fft(&inSensorDataRe[0], &inSensorDataIm[0], FFT_SIZE_LOG2);

    //Calculates the magnitude values
    for (uint32_t i = 0; i < FFT_SIZE; i++) {
      inSensorDataRe[i] = (inSensorDataRe[i] * inSensorDataRe[i]
                             + inSensorDataIm[i] * inSensorDataIm[i]) / ((float)FFT_SIZE);
    }

    //Look for the peak Value and its index (no DC)
    float maxValue = 0.0;
    float maxValueIndex = -1;
    for (uint32_t i = 3; i < (FFT_SIZE / 2); i++) {
      if (inSensorDataRe[i] > maxValue) {
        maxValue = inSensorDataRe[i];
        maxValueIndex = i;
      }
    }

    //Calculates the signal and noise power (no DC)
    float sig = 0.0f;
    float noise = 0.0f;
    for (uint32_t i = 3; i < (FFT_SIZE / 2); i++) {
      if ((i > maxValueIndex - 8) && (i < maxValueIndex + 8)) {
        sig += (2 * inSensorDataRe[i]);
      }
      else {
        noise += (2 * inSensorDataRe[i]);
      }
    }

    if (!(sig > 0.0f)) { sig = 0.0000000001f; }
    if (!(noise > 0.0f)) { noise = 0.0000000001f; }

    //Calculates SNR
    float snr_float = sig/noise;

    if (snr_float > SNR_THRESHOLD) {
      dsp_result[iter] = 1;
    }
    else {
      dsp_result[iter] = 0;
    }
    rtems_clock_get_uptime(&end_time);

    ctx->snr_process_time +=
        (float)(end_time.tv_sec - begin_time.tv_sec) +
        ( (float)((end_time.tv_nsec/1000) - (begin_time.tv_nsec/1000))/1000000.0);

    ReleaseMutex(ctx->snr_mutex_id);
    iter++;
    SendEvents(ctx->task_snr_read_sensor_data_id, EVENT_DATA_WAS_PROCESSED);
  }

  rtems_event_send(ctx->main_task, event_send[(TASK_COUNT-1)]);
  SuspendSelf();
}


//=======================================================================================
// INIT/MAIN Task
//=======================================================================================
static void Init(rtems_task_argument arg){
  (void)arg;
  test_context ctx;
  uint32_t start_time, end_time, elapsed_time;
  char ch, str[ITOA_STR_SIZE];
  uint32_t total_events = 0;
  uint8_t task = 255;
  bool correctly_processed = true;
  (void) memset(&ctx, 0, sizeof(test_context));
  (void) memset(&count_process[0], 0, TOTAL_TILES);
  (void) memset(&xL2[0], 0, xL2_ELEM);
  (void) memset(&inSensorDataRe[0], 0, FFT_SIZE);
  (void) memset(&inSensorDataIm[0], 0, FFT_SIZE);

#ifdef GR740_ESA_BOARD 
  soc_stats_regs soc_stats;
#endif


//-----------------------------------------------------------------------------
// Create/Initialize Objects
//-----------------------------------------------------------------------------
  rtems_message_queue_config msg_config = {
      .name = rtems_build_name('M', 'S', 'G', 'T'),
      .maximum_pending_messages = RTEMS_ARRAY_SIZE(msg_tile_queue_storage),
      .maximum_message_size = MAX_MESSAGE_SIZE,
      .storage_size = sizeof(msg_tile_queue_storage),
      .storage_area = &msg_tile_queue_storage,
      .attributes = RTEMS_FIFO | RTEMS_GLOBAL};

  ctx.main_task = rtems_task_self();
  ctx.tile_queue = CreateMessageQueue(msg_config);
  ctx.ntiles = TOTAL_TILES;
  ctx.next_tile = 1;

  rtems_task_config calc_task_config = {
      .initial_priority = PRIO_NORMAL,
      .storage_size = TASK_STORAGE_SIZE,
      .maximum_thread_local_storage_size = MAX_TLS_SIZE,
      .initial_modes = RTEMS_DEFAULT_MODES,
      .attributes = TASK_ATTRIBUTES};

  ctx.filter_mutex_id   = CreateMutex(rtems_build_name('M', 'U', 'T', '0'));
  ctx.snr_mutex_id = CreateMutex(rtems_build_name('M', 'U', 'T', '1'));
  SetSelfPriority( PRIO_NORMAL );

  for (uint32_t i = 0; i < TASK_COUNT-2; i++){
    ch = '0' + i;
    calc_task_config.name = rtems_build_name('R', 'U', 'N', ch);
    calc_task_config.storage_area = &calc_task_storage[i][0];

    ctx.task_filter_simulation_id[i] = DoCreateTask(calc_task_config);
    StartTask(ctx.task_filter_simulation_id[i], calc_task_function, &ctx);
    total_events += event_send[i];
  }

  ch = '0' + (TASK_COUNT-2);
  calc_task_config.name = rtems_build_name('R', 'U', 'N', ch);
  calc_task_config.storage_area = &calc_task_storage[(TASK_COUNT-2)][0];
  ctx.task_snr_read_sensor_data_id = DoCreateTask(calc_task_config);
  StartTask(ctx.task_snr_read_sensor_data_id, task_snr_read_sensor_data, &ctx);

  ch = '0' + (TASK_COUNT-1);
  calc_task_config.name = rtems_build_name('R', 'U', 'N', ch);
  calc_task_config.storage_area = &calc_task_storage[(TASK_COUNT-1)][0];
  ctx.task_snr_process_data_id = DoCreateTask(calc_task_config);
  StartTask(ctx.task_snr_process_data_id, task_snr_process_data, &ctx);

//-----------------------------------------------------------------------------
// Setup the testcase
//-----------------------------------------------------------------------------
  fill_main_memory_with_data();
  l1_dcache_flush();
  l1_dcache_disable();

#ifdef GR740_ESA_BOARD
  l2_cache_disable();
  l2_cache_flush();
  l2_cache_enable();
#endif

  l1_dcache_enable();
  uint32_t control_data_word = warmup_caches();

#ifdef GR740_ESA_BOARD
  l2_cache_enable_split_responses();
  clockgating_enable_l4stat();
  soc_stats_configure_regs();
  soc_stats_init(&soc_stats);
#endif

	//Calculates mean of Blackman-Harris terms --> to scale a bit the FFT
  ctx.scaling_fft_factor = 0.0;
  for (uint32_t i = 0; i<FFT_SIZE;  i++){
    ctx.scaling_fft_factor += blackman_harris( i, FFT_SIZE);
  }
  ctx.scaling_fft_factor = ctx.scaling_fft_factor/ ((float) FFT_SIZE);

//-----------------------------------------------------------------------------
// Do the work: distribute the work through the tasks
//-----------------------------------------------------------------------------
  SendEvents(ctx.task_snr_read_sensor_data_id, EVENT_GO_READ_SENSOR);
  start_time = rtems_clock_get_ticks_since_boot();

  rtems_event_set revents =  ReceiveAvailableEvents();
  while ( (revents & total_events) != total_events ) {
    ReceiveMessage(ctx.tile_queue, &task);
    SendMessage(ctx.message_queue[task], &ctx.next_tile, sizeof(ctx.next_tile));
    ctx.next_tile++;
    revents =  ReceiveAvailableEvents();
  }
  // Wait  for the SNR tasks to finish
  ReceiveAllEvents(event_send[(TASK_COUNT-2)]);
  ReceiveAllEvents(event_send[(TASK_COUNT-1)]);

  end_time = rtems_clock_get_ticks_since_boot();
  elapsed_time = end_time - start_time;

#ifdef GR740_ESA_BOARD
  soc_stats_update(&soc_stats);
#endif

//-----------------------------------------------------------------------------
// Show Results
//-----------------------------------------------------------------------------
  print_string("\n");
  print_string("Multicore Elapsed Time -");
  print_string(itoa(elapsed_time, &str[0], 10));
  print_string("\n");

  for (uint8_t i = 0; i < ctx.ntiles; i++){
    if (count_process[i] != 1){
      correctly_processed = false;
      break;
    }
  }

  if (correctly_processed){
    print_string("Each tile only processed once             : true\n");
  }
  else{
    print_string("Each tile only processed once             : false\n");
  }

  print_string("Input Data Result Value                   : 0x");
  print_string(itoa(control_data_word , &str[0], 16));
  print_string("\n");

  print_string("Ouput Data Result Value                   : 0x");
  if (ctx.accxL2>=UINT32_MAX) {
    print_string(itoa( (int32_t) ((ctx.accxL2 >> 32U) & ((uint64_t)UINT32_MAX)) , &str[0], 16));
    print_string(itoa( (int32_t) (ctx.accxL2          & ((uint64_t)UINT32_MAX)) , &str[0], 16));
  }
  else {
    print_string(itoa((int32_t)ctx.accxL2  , &str[0], 16));
  }
  print_string("\n"); 
  print_string("Time used in filter sim processing        : "); 
  print_string(itoa( (int32_t) (ctx.filter_sim_process_time *1000) , &str[0], 10));  
  print_string(" ms\n"); 

  print_string("Time used in SNR processing               : "); 
  print_string(itoa( (int32_t) (ctx.snr_process_time *1000) , &str[0], 10));  
  print_string(" ms\n"); 

  print_string("SNR triggers found at : ");
  for (uint32_t j = 0; j < MAX_ITER; j++)
      if (dsp_result[j] > 0.0){
        print_string(itoa(j, &str[0], 10));
        print_string(" ");
      }
  print_string("\n");


#ifdef GR740_ESA_BOARD
  print_string("L1 Instr Cache misses (read) CPU_0        : ");
  print_string(itoa(soc_stats.l1_inst_cache_miss[0], &str[0], 10));
  print_string("\n");
  print_string("L1 Instr Cache misses (read) CPU_1        : ");
  print_string(itoa(soc_stats.l1_inst_cache_miss[1], &str[0], 10));
  print_string("\n");
  print_string("L1 Instr Cache misses (read) CPU_2        : ");
  print_string(itoa(soc_stats.l1_inst_cache_miss[2], &str[0], 10));
  print_string("\n");
  print_string("L1 Instr Cache misses (read) CPU_3        : ");
  print_string(itoa(soc_stats.l1_inst_cache_miss[3], &str[0], 10));
  print_string("\n");
  print_string("L1 Data Cache misses (read) CPU_0         : ");
  print_string(itoa(soc_stats.l1_data_cache_miss[0], &str[0], 10));
  print_string("\n");
  print_string("L1 Data Cache misses (read) CPU_1         : ");
  print_string(itoa(soc_stats.l1_data_cache_miss[1], &str[0], 10));
  print_string("\n");
  print_string("L1 Data Cache misses (read) CPU_2         : ");
  print_string(itoa(soc_stats.l1_data_cache_miss[2], &str[0], 10));
  print_string("\n");
  print_string("L1 Data Cache misses (read) CPU_3         : ");
  print_string(itoa(soc_stats.l1_data_cache_miss[3], &str[0], 10));
  print_string("\n");
  print_string("L2 Cache hits  (read + writes)            : ");
  print_string(itoa(soc_stats.l2_cache_hits, &str[0], 10));
  print_string("\n");
  print_string("L2 Cache misses (read + writes)           : ");
  print_string(itoa(soc_stats.l2_cache_miss, &str[0], 10));
  print_string("\n");
  print_string("AHB Splits                                : ");
  print_string(itoa(soc_stats.ahb_split_delay, &str[0], 10));
  print_string("\n");
  print_string("\n");
#endif


// --------------------------------------------------------------------------
// Delete Objects and Finalize testcase
// --------------------------------------------------------------------------
  for (uint32_t i = 0; i < (TASK_COUNT-2); i++){
    DeleteTask(ctx.task_filter_simulation_id[i]);
    DeleteMessageQueue(ctx.message_queue[i]);
  }

  DeleteTask(ctx.task_snr_process_data_id);
  DeleteTask(ctx.task_snr_read_sensor_data_id);

  DeleteMutex(ctx.filter_mutex_id);
  DeleteMutex(ctx.snr_mutex_id);

  DeleteMessageQueue(ctx.tile_queue);
  rtems_fatal(RTEMS_FATAL_SOURCE_EXIT, 0);
}

#define CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER

#define CONFIGURE_MAXIMUM_PROCESSORS ISVV_TEST_PROCESSORS

#define CONFIGURE_MAXIMUM_MESSAGE_QUEUES MAX_MESSAGE_QUEUES

#define CONFIGURE_MAXIMUM_SEMAPHORES 2

#define CONFIGURE_MAXIMUM_TASKS ( TASK_COUNT + 1 )

#define CONFIGURE_SCHEDULER_EDF_SMP

#define CONFIGURE_MINIMUM_TASK_STACK_SIZE \
  RTEMS_MINIMUM_STACK_SIZE + CPU_STACK_ALIGNMENT

#define CONFIGURE_EXTRA_TASK_STACKS RTEMS_MINIMUM_STACK_SIZE

#define CONFIGURE_IDLE_TASK_STORAGE_SIZE TASK_STORAGE_SIZE
#define CONFIGURE_INIT_TASK_CONSTRUCT_STORAGE_SIZE 2 * TASK_STORAGE_SIZE

#define CONFIGURE_MINIMUM_TASKS_WITH_USER_PROVIDED_STORAGE \
  CONFIGURE_MAXIMUM_TASKS

#define CONFIGURE_MICROSECONDS_PER_TICK 1000

#define CONFIGURE_MAXIMUM_FILE_DESCRIPTORS 0

#define CONFIGURE_DISABLE_NEWLIB_REENTRANCY

#define CONFIGURE_APPLICATION_DISABLE_FILESYSTEM

#define CONFIGURE_MAXIMUM_THREAD_LOCAL_STORAGE_SIZE MAX_TLS_SIZE

#define CONFIGURE_RTEMS_INIT_TASKS_TABLE

#define CONFIGURE_INIT_TASK_ATTRIBUTES (RTEMS_SYSTEM_TASK | TASK_ATTRIBUTES)

#define CONFIGURE_INIT_TASK_INITIAL_MODES RTEMS_DEFAULT_MODES

#define CONFIGURE_INIT

#include <rtems/confdefs.h>