summaryrefslogtreecommitdiffstats
path: root/c/src/lib/libcpu/shared/src/cache_manager.c
blob: 89ec88ffec4667190ab786de0f79b3d381eab91d (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
/*
 *  Cache Manager
 *
 *  COPYRIGHT (c) 1989-1999.
 *  On-Line Applications Research Corporation (OAR).
 *
 *  The license and distribution terms for this file may be
 *  found in the file LICENSE in this distribution or at
 *  http://www.rtems.org/license/LICENSE.
 *
 *
 *  The functions in this file implement the API to the RTEMS Cache Manager and
 *  are divided into data cache and instruction cache functions. Data cache
 *  functions only have bodies if a data cache is supported. Instruction
 *  cache functions only have bodies if an instruction cache is supported.
 *  Support for a particular cache exists only if CPU_x_CACHE_ALIGNMENT is
 *  defined, where x E {DATA, INSTRUCTION}. These definitions are found in
 *  the Cache Manager Wrapper header files, often
 *
 *  rtems/c/src/lib/libcpu/CPU/cache_.h
 *
 *  The cache implementation header file can define
 *  CPU_CACHE_SUPPORT_PROVIDES_RANGE_FUNCTIONS
 *  if it provides cache maintenance functions which operate on multiple lines.
 *  Otherwise a generic loop with single line operations will be used.
 *
 *  The functions below are implemented with CPU dependent inline routines
 *  found in the cache.c files for each CPU. In the event that a CPU does
 *  not support a specific function for a cache it has, the CPU dependent
 *  routine does nothing (but does exist).
 *
 *  At this point, the Cache Manager makes no considerations, and provides no
 *  support for BSP specific issues such as a secondary cache. In such a system,
 *  the CPU dependent routines would have to be modified, or a BSP layer added
 *  to this Manager.
 */

#include <rtems.h>
#include "cache_.h"
#include <rtems/score/smpimpl.h>
#include <rtems/score/smplock.h>
#include <rtems/score/chainimpl.h>
#include <rtems/score/sysstate.h>

#if defined( RTEMS_SMP )

typedef void (*Cache_manager_Function_ptr)(const void *d_addr, size_t n_bytes);

typedef struct {
  Chain_Node Node;
  Cache_manager_Function_ptr func;
  const void *addr;
  size_t size;
  cpu_set_t *recipients;
  size_t setsize;
  Atomic_Ulong done;
} Cache_manager_SMP_node;

typedef struct {
  SMP_lock_Control Lock;
  Chain_Control List;
} Cache_manager_SMP_control;

static Cache_manager_SMP_control _Cache_manager_SMP_control = {
  .Lock = SMP_LOCK_INITIALIZER("cachemgr"),
  .List = CHAIN_INITIALIZER_EMPTY(_Cache_manager_SMP_control.List)
};

void
_SMP_Cache_manager_message_handler(void)
{
  SMP_lock_Context lock_context;
  Cache_manager_SMP_node *node;
  Cache_manager_SMP_node *next;
  uint32_t cpu_self_idx;

  _SMP_lock_ISR_disable_and_acquire( &_Cache_manager_SMP_control.Lock,
      &lock_context );
  cpu_self_idx = _SMP_Get_current_processor();

  node = (Cache_manager_SMP_node*)_Chain_First(
      &_Cache_manager_SMP_control.List );
  while ( !_Chain_Is_tail( &_Cache_manager_SMP_control.List, &node->Node ) ) {
    next = (Cache_manager_SMP_node*)_Chain_Next( &node->Node );
    if ( CPU_ISSET_S ( cpu_self_idx, node->setsize, node->recipients ) ) {
      CPU_CLR_S ( cpu_self_idx, node->setsize, node->recipients );

      node->func( node->addr, node->size );

      if ( CPU_COUNT_S( node->setsize, node->recipients ) == 0 ) {
        _Chain_Extract_unprotected( &node->Node );
        _Atomic_Store_ulong( &node->done, 1, ATOMIC_ORDER_RELEASE );
      }
    }
    node = next;
  }

  _SMP_lock_Release_and_ISR_enable( &_Cache_manager_SMP_control.Lock,
      &lock_context );
}

#if defined(CPU_DATA_CACHE_ALIGNMENT) || \
    (defined(CPU_INSTRUCTION_CACHE_ALIGNMENT) && \
    defined(CPU_CACHE_NO_INSTRUCTION_CACHE_SNOOPING))

static void
_Cache_manager_Process_cache_messages( void )
{
  unsigned long message;
  Per_CPU_Control *cpu_self;
  ISR_Level isr_level;

  _ISR_Disable_without_giant( isr_level );

  cpu_self = _Per_CPU_Get();

  message = _Atomic_Load_ulong( &cpu_self->message, ATOMIC_ORDER_RELAXED );

  if ( message & SMP_MESSAGE_CACHE_MANAGER ) {
    if ( _Atomic_Compare_exchange_ulong( &cpu_self->message, &message,
        message & ~SMP_MESSAGE_CACHE_MANAGER, ATOMIC_ORDER_RELAXED,
        ATOMIC_ORDER_RELAXED ) ) {
      _SMP_Cache_manager_message_handler();
    }
  }

  _ISR_Enable_without_giant( isr_level );
}

/*
 * We can not make this function static as we need to access it
 * from the test program.
 */
void
_Cache_manager_Send_smp_msg(
    const size_t setsize,
    const cpu_set_t *set,
    Cache_manager_Function_ptr func,
    const void * addr,
    size_t size
  );

void
_Cache_manager_Send_smp_msg(
    const size_t setsize,
    const cpu_set_t *set,
    Cache_manager_Function_ptr func,
    const void * addr,
    size_t size
  )
{
  uint32_t i;
  Cache_manager_SMP_node node;
  size_t set_size = CPU_ALLOC_SIZE( _SMP_Get_processor_count() );
  char cpu_set_copy[set_size];
  SMP_lock_Context lock_context;

  if ( ! _System_state_Is_up( _System_state_Get() ) ) {
    func( addr, size );
    return;
  }

  memset( cpu_set_copy, 0, set_size );
  if( set == NULL ) {
    for( i=0; i<_SMP_Get_processor_count(); ++i )
      CPU_SET_S( i, set_size, (cpu_set_t *)cpu_set_copy );
  } else {
    for( i=0; i<_SMP_Get_processor_count(); ++i )
      if( CPU_ISSET_S( i, set_size, set ) )
        CPU_SET_S( i, set_size, (cpu_set_t *)cpu_set_copy );
  }

  node.func = func;
  node.addr = addr;
  node.size = size;
  node.setsize = set_size;
  node.recipients = (cpu_set_t *)cpu_set_copy;
  _Atomic_Store_ulong( &node.done, 0, ATOMIC_ORDER_RELAXED );


  _SMP_lock_ISR_disable_and_acquire( &_Cache_manager_SMP_control.Lock,
      &lock_context );
  _Chain_Prepend_unprotected( &_Cache_manager_SMP_control.List, &node.Node );
  _SMP_lock_Release_and_ISR_enable( &_Cache_manager_SMP_control.Lock,
      &lock_context );

  _SMP_Send_message_multicast( set_size, node.recipients,
      SMP_MESSAGE_CACHE_MANAGER );

  _Cache_manager_Process_cache_messages();

  while ( !_Atomic_Load_ulong( &node.done, ATOMIC_ORDER_ACQUIRE ) );
}
#endif

void
rtems_cache_flush_multiple_data_lines_processor_set(
  const void *addr,
  size_t size,
  const size_t setsize,
  const cpu_set_t *set
)
{
#if defined(CPU_DATA_CACHE_ALIGNMENT)
  _Cache_manager_Send_smp_msg( setsize, set,
      rtems_cache_flush_multiple_data_lines, addr, size );
#endif
}

void
rtems_cache_invalidate_multiple_data_lines_processor_set(
  const void *addr,
  size_t size,
  const size_t setsize,
  const cpu_set_t *set
)
{
#if defined(CPU_DATA_CACHE_ALIGNMENT)
  _Cache_manager_Send_smp_msg( setsize, set,
      rtems_cache_invalidate_multiple_data_lines, addr, size );
#endif
}

void
rtems_cache_flush_entire_data_processor_set(
  const size_t setsize,
  const cpu_set_t *set
)
{
#if defined(CPU_DATA_CACHE_ALIGNMENT)
  _Cache_manager_Send_smp_msg( setsize, set,
      (Cache_manager_Function_ptr)rtems_cache_flush_entire_data, 0, 0 );
#endif
}

void
rtems_cache_invalidate_entire_data_processor_set(
  const size_t setsize,
  const cpu_set_t *set
)
{
#if defined(CPU_DATA_CACHE_ALIGNMENT)
  _Cache_manager_Send_smp_msg( setsize, set,
      (Cache_manager_Function_ptr)rtems_cache_invalidate_entire_data, 0, 0 );
#endif
}
#endif

/*
 * THESE FUNCTIONS ONLY HAVE BODIES IF WE HAVE A DATA CACHE
 */

/*
 * This function is called to flush the data cache by performing cache
 * copybacks. It must determine how many cache lines need to be copied
 * back and then perform the copybacks.
 */
void
rtems_cache_flush_multiple_data_lines( const void * d_addr, size_t n_bytes )
{
#if defined(CPU_DATA_CACHE_ALIGNMENT)
#if defined(CPU_CACHE_SUPPORT_PROVIDES_RANGE_FUNCTIONS)
  _CPU_cache_flush_data_range( d_addr, n_bytes );
#else
  const void * final_address;

 /*
  * Set d_addr to the beginning of the cache line; final_address indicates
  * the last address_t which needs to be pushed. Increment d_addr and push
  * the resulting line until final_address is passed.
  */

  if( n_bytes == 0 )
    /* Do nothing if number of bytes to flush is zero */
    return;

  final_address = (void *)((size_t)d_addr + n_bytes - 1);
  d_addr = (void *)((size_t)d_addr & ~(CPU_DATA_CACHE_ALIGNMENT - 1));
  while( d_addr <= final_address )  {
    _CPU_cache_flush_1_data_line( d_addr );
    d_addr = (void *)((size_t)d_addr + CPU_DATA_CACHE_ALIGNMENT);
  }
#endif
#endif
}


/*
 * This function is responsible for performing a data cache invalidate.
 * It must determine how many cache lines need to be invalidated and then
 * perform the invalidations.
 */

void
rtems_cache_invalidate_multiple_data_lines( const void * d_addr, size_t n_bytes )
{
#if defined(CPU_DATA_CACHE_ALIGNMENT)
#if defined(CPU_CACHE_SUPPORT_PROVIDES_RANGE_FUNCTIONS)
  _CPU_cache_invalidate_data_range( d_addr, n_bytes );
#else
  const void * final_address;

 /*
  * Set d_addr to the beginning of the cache line; final_address indicates
  * the last address_t which needs to be invalidated. Increment d_addr and
  * invalidate the resulting line until final_address is passed.
  */

  if( n_bytes == 0 )
    /* Do nothing if number of bytes to invalidate is zero */
    return;

  final_address = (void *)((size_t)d_addr + n_bytes - 1);
  d_addr = (void *)((size_t)d_addr & ~(CPU_DATA_CACHE_ALIGNMENT - 1));
  while( final_address >= d_addr ) {
    _CPU_cache_invalidate_1_data_line( d_addr );
    d_addr = (void *)((size_t)d_addr + CPU_DATA_CACHE_ALIGNMENT);
  }
#endif
#endif
}


/*
 * This function is responsible for performing a data cache flush.
 * It flushes the entire cache.
 */
void
rtems_cache_flush_entire_data( void )
{
#if defined(CPU_DATA_CACHE_ALIGNMENT)
   /*
    * Call the CPU-specific routine
    */
   _CPU_cache_flush_entire_data();
#endif
}


/*
 * This function is responsible for performing a data cache
 * invalidate. It invalidates the entire cache.
 */
void
rtems_cache_invalidate_entire_data( void )
{
#if defined(CPU_DATA_CACHE_ALIGNMENT)
 /*
  * Call the CPU-specific routine
  */

 _CPU_cache_invalidate_entire_data();
#endif
}


/*
 * This function returns the data cache granularity.
 */
size_t
rtems_cache_get_data_line_size( void )
{
#if defined(CPU_DATA_CACHE_ALIGNMENT)
  return CPU_DATA_CACHE_ALIGNMENT;
#else
  return 0;
#endif
}


size_t
rtems_cache_get_data_cache_size( uint32_t level )
{
#if defined(CPU_CACHE_SUPPORT_PROVIDES_CACHE_SIZE_FUNCTIONS)
  return _CPU_cache_get_data_cache_size( level );
#else
  return 0;
#endif
}

/*
 * This function freezes the data cache; cache lines
 * are not replaced.
 */
void
rtems_cache_freeze_data( void )
{
#if defined(CPU_DATA_CACHE_ALIGNMENT)
  _CPU_cache_freeze_data();
#endif
}


/*
 * This function unfreezes the instruction cache.
 */
void rtems_cache_unfreeze_data( void )
{
#if defined(CPU_DATA_CACHE_ALIGNMENT)
  _CPU_cache_unfreeze_data();
#endif
}


/* Turn on the data cache. */
void
rtems_cache_enable_data( void )
{
#if defined(CPU_DATA_CACHE_ALIGNMENT)
  _CPU_cache_enable_data();
#endif
}


/* Turn off the data cache. */
void
rtems_cache_disable_data( void )
{
#if defined(CPU_DATA_CACHE_ALIGNMENT)
  _CPU_cache_disable_data();
#endif
}



/*
 * THESE FUNCTIONS ONLY HAVE BODIES IF WE HAVE AN INSTRUCTION CACHE
 */



/*
 * This function is responsible for performing an instruction cache
 * invalidate. It must determine how many cache lines need to be invalidated
 * and then perform the invalidations.
 */

#if defined(CPU_INSTRUCTION_CACHE_ALIGNMENT)
#if !defined(CPU_CACHE_SUPPORT_PROVIDES_RANGE_FUNCTIONS)
static void
_invalidate_multiple_instruction_lines_no_range_functions(
  const void * i_addr,
  size_t n_bytes
)
{
  const void * final_address;

 /*
  * Set i_addr to the beginning of the cache line; final_address indicates
  * the last address_t which needs to be invalidated. Increment i_addr and
  * invalidate the resulting line until final_address is passed.
  */

  if( n_bytes == 0 )
    /* Do nothing if number of bytes to invalidate is zero */
    return;

  final_address = (void *)((size_t)i_addr + n_bytes - 1);
  i_addr = (void *)((size_t)i_addr & ~(CPU_INSTRUCTION_CACHE_ALIGNMENT - 1));
  while( final_address >= i_addr ) {
    _CPU_cache_invalidate_1_instruction_line( i_addr );
    i_addr = (void *)((size_t)i_addr + CPU_INSTRUCTION_CACHE_ALIGNMENT);
  }
}
#endif
#endif

void
rtems_cache_invalidate_multiple_instruction_lines(
  const void * i_addr,
  size_t n_bytes
)
{
#if defined(CPU_INSTRUCTION_CACHE_ALIGNMENT)
#if defined(CPU_CACHE_SUPPORT_PROVIDES_RANGE_FUNCTIONS)

#if defined(RTEMS_SMP) && defined(CPU_CACHE_NO_INSTRUCTION_CACHE_SNOOPING)
  _Cache_manager_Send_smp_msg( 0, 0, _CPU_cache_invalidate_instruction_range,
      i_addr, n_bytes );
#else
  _CPU_cache_invalidate_instruction_range( i_addr, n_bytes );
#endif

#else

#if defined(RTEMS_SMP) && defined(CPU_CACHE_NO_INSTRUCTION_CACHE_SNOOPING)
  _Cache_manager_Send_smp_msg( 0, 0,
      _invalidate_multiple_instruction_lines_no_range_functions, i_addr,
      n_bytes );
#else
  _invalidate_multiple_instruction_lines_no_range_functions( i_addr, n_bytes );
#endif

#endif
#endif
}


/*
 * This function is responsible for performing an instruction cache
 * invalidate. It invalidates the entire cache.
 */
void
rtems_cache_invalidate_entire_instruction( void )
{
#if defined(CPU_INSTRUCTION_CACHE_ALIGNMENT)
 /*
  * Call the CPU-specific routine
  */

#if defined(RTEMS_SMP) && defined(CPU_CACHE_NO_INSTRUCTION_CACHE_SNOOPING)
  _Cache_manager_Send_smp_msg( 0, 0,
      (Cache_manager_Function_ptr)_CPU_cache_invalidate_entire_instruction,
      0, 0 );
#else
 _CPU_cache_invalidate_entire_instruction();
#endif
#endif
}


/*
 * This function returns the instruction cache granularity.
 */
size_t
rtems_cache_get_instruction_line_size( void )
{
#if defined(CPU_INSTRUCTION_CACHE_ALIGNMENT)
  return CPU_INSTRUCTION_CACHE_ALIGNMENT;
#else
  return 0;
#endif
}


size_t
rtems_cache_get_instruction_cache_size( uint32_t level )
{
#if defined(CPU_CACHE_SUPPORT_PROVIDES_CACHE_SIZE_FUNCTIONS)
  return _CPU_cache_get_instruction_cache_size( level );
#else
  return 0;
#endif
}


/*
 * This function freezes the instruction cache; cache lines
 * are not replaced.
 */
void
rtems_cache_freeze_instruction( void )
{
#if defined(CPU_INSTRUCTION_CACHE_ALIGNMENT)
  _CPU_cache_freeze_instruction();
#endif
}


/*
 * This function unfreezes the instruction cache.
 */
void rtems_cache_unfreeze_instruction( void )
{
#if defined(CPU_INSTRUCTION_CACHE_ALIGNMENT)
  _CPU_cache_unfreeze_instruction();
#endif
}


/* Turn on the instruction cache. */
void
rtems_cache_enable_instruction( void )
{
#if defined(CPU_INSTRUCTION_CACHE_ALIGNMENT)
  _CPU_cache_enable_instruction();
#endif
}


/* Turn off the instruction cache. */
void
rtems_cache_disable_instruction( void )
{
#if defined(CPU_INSTRUCTION_CACHE_ALIGNMENT)
  _CPU_cache_disable_instruction();
#endif
}