summaryrefslogtreecommitdiffstats
path: root/c/src/lib/libbsp/arm/lpc32xx/misc/i2c.c
blob: 8dfdc58cfc3162a2e7bf3c2bb1f4e7a44b3432c1 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
/**
 * @file
 *
 * @ingroup lpc32xx_i2c
 *
 * @brief I2C support implementation.
 */

/*
 * Copyright (c) 2010-2011 embedded brains GmbH.  All rights reserved.
 *
 *  embedded brains GmbH
 *  Obere Lagerstr. 30
 *  82178 Puchheim
 *  Germany
 *  <rtems@embedded-brains.de>
 *
 * The license and distribution terms for this file may be
 * found in the file LICENSE in this distribution or at
 * http://www.rtems.com/license/LICENSE.
 */

#include <rtems.h>

#include <bsp.h>
#include <bsp/i2c.h>

void lpc32xx_i2c_reset(volatile lpc32xx_i2c *i2c)
{
  i2c->ctrl = I2C_CTRL_RESET;
}

rtems_status_code lpc32xx_i2c_init(
  volatile lpc32xx_i2c *i2c,
  unsigned clock_in_hz
)
{
  uint32_t i2cclk = 0;

  if (i2c == &lpc32xx.i2c_1) {
    i2cclk |= I2CCLK_1_EN | I2CCLK_1_HIGH_DRIVE;
  } else if (i2c == &lpc32xx.i2c_2) {
    i2cclk |= I2CCLK_2_EN | I2CCLK_2_HIGH_DRIVE;
  } else {
    return RTEMS_INVALID_ID;
  }

  LPC32XX_I2CCLK_CTRL |= i2cclk;

  lpc32xx_i2c_reset(i2c);

  return lpc32xx_i2c_clock(i2c, clock_in_hz);
}

rtems_status_code lpc32xx_i2c_clock(
  volatile lpc32xx_i2c *i2c,
  unsigned clock_in_hz
)
{
  uint32_t clk_div = lpc32xx_hclk() / clock_in_hz;
  uint32_t clk_lo = 0;
  uint32_t clk_hi = 0;

  switch (clock_in_hz) {
    case 100000:
      clk_lo = clk_div / 2;
      break;
    case 400000:
      clk_lo = (64 * clk_div) / 100;
      break;
    default:
      return RTEMS_INVALID_CLOCK;
  }

  clk_hi = clk_div - clk_lo;

  i2c->clk_lo = clk_lo;
  i2c->clk_hi = clk_hi;

  return RTEMS_SUCCESSFUL;
}

static rtems_status_code wait_for_transaction_done(volatile lpc32xx_i2c *i2c)
{
  uint32_t stat = 0;

  do {
    stat = i2c->stat;
  } while ((stat & I2C_STAT_TDI) == 0);

  if ((stat & I2C_STAT_TFE) != 0) {
    i2c->stat = I2C_STAT_TDI;

    return RTEMS_SUCCESSFUL;
  } else {
    lpc32xx_i2c_reset(i2c);

    return RTEMS_IO_ERROR;
  }
}

static rtems_status_code tx(volatile lpc32xx_i2c *i2c, uint32_t data)
{
  uint32_t stat = 0;

  do {
    stat = i2c->stat;
  } while ((stat & (I2C_STAT_TFE | I2C_STAT_TDI)) == 0);

  if ((stat & I2C_STAT_TDI) == 0) {
    i2c->rx_or_tx = data;

    return RTEMS_SUCCESSFUL;
  } else {
    lpc32xx_i2c_reset(i2c);

    return RTEMS_IO_ERROR;
  }
}

rtems_status_code lpc32xx_i2c_write_start(
  volatile lpc32xx_i2c *i2c,
  unsigned addr
)
{
  return tx(i2c, I2C_TX_ADDR(addr) | I2C_TX_START);
}

rtems_status_code lpc32xx_i2c_read_start(
  volatile lpc32xx_i2c *i2c,
  unsigned addr
)
{
  return tx(i2c, I2C_TX_ADDR(addr) | I2C_TX_START | I2C_TX_READ);
}

rtems_status_code lpc32xx_i2c_write_with_optional_stop(
  volatile lpc32xx_i2c *i2c,
  const uint8_t *out,
  size_t n,
  bool stop
)
{
  rtems_status_code sc = RTEMS_SUCCESSFUL;
  size_t i = 0;

  for (i = 0; i < n - 1 && sc == RTEMS_SUCCESSFUL; ++i) {
    sc = tx(i2c, out [i]);
  }

  if (sc == RTEMS_SUCCESSFUL) {
    uint32_t stop_flag = stop ? I2C_TX_STOP : 0;

    sc = tx(i2c, out [n - 1] | stop_flag);
  }

  if (stop && sc == RTEMS_SUCCESSFUL) {
    sc = wait_for_transaction_done(i2c);
  }

  return sc;
}

static bool can_tx_for_rx(volatile lpc32xx_i2c *i2c)
{
  return (i2c->stat & (I2C_STAT_TFF | I2C_STAT_RFF)) == 0;
}

static bool can_rx(volatile lpc32xx_i2c *i2c)
{
  return (i2c->stat & I2C_STAT_RFE) == 0;
}

rtems_status_code lpc32xx_i2c_read_with_optional_stop(
  volatile lpc32xx_i2c *i2c,
  uint8_t *in,
  size_t n,
  bool stop
)
{
  rtems_status_code sc = RTEMS_SUCCESSFUL;
  size_t last = n - 1;
  size_t rx = 0;
  size_t tx = 0;

  if (!stop) {
    return RTEMS_NOT_IMPLEMENTED;
  }

  while (rx <= last) {
    while (tx < last && can_tx_for_rx(i2c)) {
      i2c->rx_or_tx = 0;
      ++tx;
    }

    if (tx == last && can_tx_for_rx(i2c)) {
      uint32_t stop_flag = stop ? I2C_TX_STOP : 0;

      i2c->rx_or_tx = stop_flag;
      ++tx;
    }

    while (rx <= last && can_rx(i2c)) {
      in [rx] = (uint8_t) i2c->rx_or_tx;
      ++rx;
    }
  }

  if (stop) {
    sc = wait_for_transaction_done(i2c);
  }

  return sc;
}

rtems_status_code lpc32xx_i2c_write_and_read(
  volatile lpc32xx_i2c *i2c,
  unsigned addr,
  const uint8_t *out,
  size_t out_size,
  uint8_t *in,
  size_t in_size
)
{
  rtems_status_code sc = RTEMS_SUCCESSFUL;

  if (out_size > 0) {
    bool stop = in_size == 0;

    sc = lpc32xx_i2c_write_start(i2c, addr);
    if (sc != RTEMS_SUCCESSFUL) {
      return sc;
    }

    sc = lpc32xx_i2c_write_with_optional_stop(i2c, out, out_size, stop);
    if (sc != RTEMS_SUCCESSFUL) {
      return sc;
    }
  }

  if (in_size > 0) {
    sc = lpc32xx_i2c_read_start(i2c, addr);
    if (sc != RTEMS_SUCCESSFUL) {
      return sc;
    }

    lpc32xx_i2c_read_with_optional_stop(i2c, in, in_size, true);
  }

  return RTEMS_SUCCESSFUL;
}