summaryrefslogtreecommitdiffstats
path: root/c/src/exec/score/src/thread.c
blob: b663eb6bba33c55b6c480b59918eccc16506a99b (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
/*
 *  Thread Handler
 *
 *
 *  COPYRIGHT (c) 1989-1998.
 *  On-Line Applications Research Corporation (OAR).
 *  Copyright assigned to U.S. Government, 1994.
 *
 *  The license and distribution terms for this file may be
 *  found in found in the file LICENSE in this distribution or at
 *  http://www.OARcorp.com/rtems/license.html.
 *
 *  $Id$
 */

#include <rtems/system.h>
#include <rtems/score/apiext.h>
#include <rtems/score/context.h>
#include <rtems/score/interr.h>
#include <rtems/score/isr.h>
#include <rtems/score/object.h>
#include <rtems/score/priority.h>
#include <rtems/score/states.h>
#include <rtems/score/sysstate.h>
#include <rtems/score/thread.h>
#include <rtems/score/threadq.h>
#include <rtems/score/userext.h>
#include <rtems/score/wkspace.h>

/*PAGE
 *
 *  _Thread_Handler_initialization
 *
 *  This routine initializes all thread manager related data structures.
 *
 *  Input parameters:
 *    ticks_per_timeslice - clock ticks per quantum
 *    maximum_proxies     - number of proxies to initialize
 *
 *  Output parameters:  NONE
 */

char *_Thread_Idle_name = "IDLE";

void _Thread_Handler_initialization(
  unsigned32   ticks_per_timeslice,
  unsigned32   maximum_extensions,
  unsigned32   maximum_proxies
)
{
  unsigned32      index;

  /*
   * BOTH stacks hooks must be set or both must be NULL.
   * Do not allow mixture.
   */

  if ( !( ( _CPU_Table.stack_allocate_hook == 0 )
       == ( _CPU_Table.stack_free_hook == 0 ) ) )
    _Internal_error_Occurred(
      INTERNAL_ERROR_CORE,
      TRUE,
      INTERNAL_ERROR_BAD_STACK_HOOK
    );

  _Context_Switch_necessary = FALSE;
  _Thread_Executing         = NULL;
  _Thread_Heir              = NULL;
  _Thread_Allocated_fp      = NULL;

  _Thread_Do_post_task_switch_extension = 0;

  _Thread_Maximum_extensions = maximum_extensions;

  _Thread_Ticks_per_timeslice  = ticks_per_timeslice;

  _Thread_Ready_chain = (Chain_Control *) _Workspace_Allocate_or_fatal_error(
    (PRIORITY_MAXIMUM + 1) * sizeof(Chain_Control)
  );

  for ( index=0; index <= PRIORITY_MAXIMUM ; index++ )
    _Chain_Initialize_empty( &_Thread_Ready_chain[ index ] );

#if defined(RTEMS_MULTIPROCESSING)
  _Thread_MP_Handler_initialization( maximum_proxies );
#endif

  /*
   *  Initialize this class of objects.
   */
 
  _Objects_Initialize_information(
    &_Thread_Internal_information,
    OBJECTS_INTERNAL_THREADS,
    FALSE,
    ( _System_state_Is_multiprocessing ) ?  2 : 1,
    sizeof( Thread_Control ),
    TRUE,
    8,
    TRUE
  );

}

/*PAGE
 *
 *  _Thread_Create_idle
 */

void _Thread_Create_idle( void )
{
  void       *idle;
  unsigned32  idle_task_stack_size;

  /*
   *  The entire workspace is zeroed during its initialization.  Thus, all
   *  fields not explicitly assigned were explicitly zeroed by
   *  _Workspace_Initialization.
   */
 
  _Thread_Idle = _Thread_Internal_allocate();
 
  /*
   *  Initialize the IDLE task.
   */
 
#if (CPU_PROVIDES_IDLE_THREAD_BODY == TRUE)
  idle = (void *) _CPU_Thread_Idle_body;
#else
  idle = (void *) _Thread_Idle_body;
#endif
 
  if ( _CPU_Table.idle_task )
    idle = _CPU_Table.idle_task;
 
  idle_task_stack_size =  _CPU_Table.idle_task_stack_size;
  if ( idle_task_stack_size < STACK_MINIMUM_SIZE )
    idle_task_stack_size = STACK_MINIMUM_SIZE;
 
  _Thread_Initialize(
    &_Thread_Internal_information,
    _Thread_Idle,
    NULL,        /* allocate the stack */
    idle_task_stack_size,
    CPU_IDLE_TASK_IS_FP,
    PRIORITY_MAXIMUM,
    TRUE,        /* preemptable */
    THREAD_CPU_BUDGET_ALGORITHM_NONE,
    NULL,        /* no budget algorithm callout */
    0,           /* all interrupts enabled */
    _Thread_Idle_name
  );
 
  /*
   *  WARNING!!! This is necessary to "kick" start the system and
   *             MUST be done before _Thread_Start is invoked.
   */
 
  _Thread_Heir      =
  _Thread_Executing = _Thread_Idle;
 
  _Thread_Start(
    _Thread_Idle,
    THREAD_START_NUMERIC,
    idle,
    NULL,
    0
  );
 
}

/*PAGE
 *
 *  _Thread_Start_multitasking
 *
 *  This kernel routine readies the requested thread, the thread chain
 *  is adjusted.  A new heir thread may be selected.
 *
 *  Input parameters:
 *    system_thread - pointer to system initialization thread control block
 *    idle_thread   - pointer to idle thread control block
 *
 *  Output parameters:  NONE
 *
 *  NOTE:  This routine uses the "blocking" heir selection mechanism.
 *         This insures the correct heir after a thread restart.
 *
 *  INTERRUPT LATENCY:
 *    ready chain
 *    select heir
 */

void _Thread_Start_multitasking( void )
{
  /*
   *  The system is now multitasking and completely initialized.  
   *  This system thread now either "goes away" in a single processor 
   *  system or "turns into" the server thread in an MP system.
   */

  _System_state_Set( SYSTEM_STATE_UP );

  _Context_Switch_necessary = FALSE;

  _Thread_Executing = _Thread_Heir;

   /*
    * Get the init task(s) running.
    *
    * Note: Thread_Dispatch() is normally used to dispatch threads.  As
    *       part of its work, Thread_Dispatch() restores floating point
    *       state for the heir task.
    *
    *       This code avoids Thread_Dispatch(), and so we have to restore
    *       (actually initialize) the floating point state "by hand".
    *
    *       Ignore the CPU_USE_DEFERRED_FP_SWITCH because we must always
    *       switch in the first thread if it is FP.
    */
 

#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
   /*
    *  don't need to worry about saving BSP's floating point state
    */

   if ( _Thread_Heir->fp_context != NULL )
     _Context_Restore_fp( &_Thread_Heir->fp_context );
#endif

  _Context_Switch( &_Thread_BSP_context, &_Thread_Heir->Registers );
}

/*PAGE
 *
 *  _Thread_Dispatch
 *
 *  This kernel routine determines if a dispatch is needed, and if so
 *  dispatches to the heir thread.  Once the heir is running an attempt
 *  is made to dispatch any ASRs.
 *
 *  ALTERNATE ENTRY POINTS:
 *    void _Thread_Enable_dispatch();
 *
 *  Input parameters:  NONE
 *
 *  Output parameters:  NONE
 *
 *  INTERRUPT LATENCY:
 *    dispatch thread
 *    no dispatch thread
 */

#if ( CPU_INLINE_ENABLE_DISPATCH == FALSE )
void _Thread_Enable_dispatch( void )
{
  if ( --_Thread_Dispatch_disable_level )
    return;
  _Thread_Dispatch();
}
#endif

void _Thread_Dispatch( void )
{
  Thread_Control   *executing;
  Thread_Control   *heir;
  ISR_Level         level;

  executing   = _Thread_Executing;
  _ISR_Disable( level );
  while ( _Context_Switch_necessary == TRUE ) {
    heir = _Thread_Heir;
    _Thread_Dispatch_disable_level = 1;
    _Context_Switch_necessary = FALSE;
    _Thread_Executing = heir;
    executing->rtems_ada_self = rtems_ada_self;
    rtems_ada_self = heir->rtems_ada_self;
    _ISR_Enable( level );

    heir->ticks_executed++;

    _User_extensions_Thread_switch( executing, heir );

    if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE )
      heir->cpu_time_budget = _Thread_Ticks_per_timeslice;

    /*
     *  If the CPU has hardware floating point, then we must address saving
     *  and restoring it as part of the context switch.
     *
     *  The second conditional compilation section selects the algorithm used
     *  to context switch between floating point tasks.  The deferred algorithm
     *  can be significantly better in a system with few floating point tasks
     *  because it reduces the total number of save and restore FP context
     *  operations.  However, this algorithm can not be used on all CPUs due
     *  to unpredictable use of FP registers by some compilers for integer
     *  operations.
     */

#if ( CPU_HARDWARE_FP == TRUE )
#if ( CPU_USE_DEFERRED_FP_SWITCH == TRUE )
    if ( (heir->fp_context != NULL) && !_Thread_Is_allocated_fp( heir ) ) {
      if ( _Thread_Allocated_fp != NULL )
        _Context_Save_fp( &_Thread_Allocated_fp->fp_context );
      _Context_Restore_fp( &heir->fp_context );
      _Thread_Allocated_fp = heir;
    }
#else
    if ( executing->fp_context != NULL )
      _Context_Save_fp( &executing->fp_context );

    if ( heir->fp_context != NULL )
      _Context_Restore_fp( &heir->fp_context );
#endif
#endif

    _Context_Switch( &executing->Registers, &heir->Registers );

    executing = _Thread_Executing;

    _ISR_Disable( level );
  }

  _Thread_Dispatch_disable_level = 0;

  _ISR_Enable( level );

  if ( _Thread_Do_post_task_switch_extension ||
       executing->do_post_task_switch_extension ) {
    executing->do_post_task_switch_extension = FALSE;
    _API_extensions_Run_postswitch();
  }
 
}

/*PAGE
 *
 *  _Thread_Stack_Allocate
 *
 *  Allocate the requested stack space for the thread.
 *  return the actual size allocated after any adjustment
 *  or return zero if the allocation failed.
 *  Set the Start.stack field to the address of the stack
 */

static unsigned32 _Thread_Stack_Allocate(
  Thread_Control *the_thread,
  unsigned32 stack_size)
{
  void *stack_addr = 0;
 
  if ( !_Stack_Is_enough( stack_size ) )
    stack_size = STACK_MINIMUM_SIZE;
 
  /*
   * Call ONLY the CPU table stack allocate hook, _or_ the
   * the RTEMS workspace allocate.  This is so the stack free
   * routine can call the correct deallocation routine.
   */

  if ( _CPU_Table.stack_allocate_hook )
  {
    stack_addr = (*_CPU_Table.stack_allocate_hook)( stack_size );
  } else {

    /*
     *  First pad the requested size so we allocate enough memory
     *  so the context initialization can align it properly.  The address
     *  returned the workspace allocate must be directly stored in the
     *  stack control block because it is later used in the free sequence.
     *
     *  Thus it is the responsibility of the CPU dependent code to 
     *  get and keep the stack adjust factor, the stack alignment, and 
     *  the context initialization sequence in sync.
     */

    stack_size = _Stack_Adjust_size( stack_size );
    stack_addr = _Workspace_Allocate( stack_size );
  }
 
  if ( !stack_addr )
      stack_size = 0;
 
  the_thread->Start.stack = stack_addr;
 
  return stack_size;
}

/*
 *  _Thread_Stack_Free
 *
 *  Deallocate the Thread's stack.
 */

static void _Thread_Stack_Free(
  Thread_Control *the_thread
)
{
    /*
     *  If the API provided the stack space, then don't free it.
     */

    if ( !the_thread->Start.core_allocated_stack )
      return;

    /*
     * Call ONLY the CPU table stack free hook, or the
     * the RTEMS workspace free.  This is so the free
     * routine properly matches the allocation of the stack.
     */

    if ( _CPU_Table.stack_free_hook )
        (*_CPU_Table.stack_free_hook)( the_thread->Start.Initial_stack.area );
    else
        _Workspace_Free( the_thread->Start.Initial_stack.area );
}

/*PAGE
 *
 *  _Thread_Initialize
 *
 *  XXX
 */

boolean _Thread_Initialize(
  Objects_Information                  *information,
  Thread_Control                       *the_thread,
  void                                 *stack_area,
  unsigned32                            stack_size,
  boolean                               is_fp,
  Priority_Control                      priority,
  boolean                               is_preemptible,
  Thread_CPU_budget_algorithms          budget_algorithm,
  Thread_CPU_budget_algorithm_callout   budget_callout,
  unsigned32                            isr_level,
  Objects_Name                          name
)
{
  unsigned32           actual_stack_size = 0;
  void                *stack = NULL;
  void                *fp_area;
  void                *extensions_area;

  /*
   *  Initialize the Ada self pointer
   */

  the_thread->rtems_ada_self = NULL;

  /*
   *  Allocate and Initialize the stack for this thread.
   */


  if ( !stack_area ) {
    if ( !_Stack_Is_enough( stack_size ) )
      actual_stack_size = STACK_MINIMUM_SIZE;
    else
      actual_stack_size = stack_size;

    actual_stack_size = _Thread_Stack_Allocate( the_thread, actual_stack_size );
 
    if ( !actual_stack_size ) 
      return FALSE;                     /* stack allocation failed */

    stack = the_thread->Start.stack;
    the_thread->Start.core_allocated_stack = TRUE;
  } else {
    stack = stack_area;
    actual_stack_size = stack_size;
    the_thread->Start.core_allocated_stack = FALSE;
  }

  _Stack_Initialize(
     &the_thread->Start.Initial_stack,
     stack,
     actual_stack_size
  );

  /*
   *  Allocate the floating point area for this thread
   */
  
  if ( is_fp ) {

    fp_area = _Workspace_Allocate( CONTEXT_FP_SIZE );
    if ( !fp_area ) {
      _Thread_Stack_Free( the_thread );
      return FALSE;
    }
    fp_area = _Context_Fp_start( fp_area, 0 );

  } else
    fp_area = NULL;

  the_thread->fp_context       = fp_area;
  the_thread->Start.fp_context = fp_area;

  /*
   *  Allocate the extensions area for this thread
   */

  if ( _Thread_Maximum_extensions ) {
    extensions_area = _Workspace_Allocate(
      (_Thread_Maximum_extensions + 1) * sizeof( void * )
    );

    if ( !extensions_area ) {
      if ( fp_area )
        (void) _Workspace_Free( fp_area );

      _Thread_Stack_Free( the_thread );

      return FALSE;
    }
  } else 
    extensions_area = NULL;
  
  the_thread->extensions = (void **) extensions_area;

  /*
   *  General initialization
   */

  the_thread->Start.is_preemptible   = is_preemptible;
  the_thread->Start.budget_algorithm = budget_algorithm;
  the_thread->Start.budget_callout   = budget_callout;
  the_thread->Start.isr_level        = isr_level;

  the_thread->current_state          = STATES_DORMANT;
  the_thread->resource_count         = 0;
  the_thread->real_priority          = priority;
  the_thread->Start.initial_priority = priority;
  the_thread->ticks_executed         = 0;
 
  _Thread_Set_priority( the_thread, priority );

  /*
   *  Open the object
   */

  _Objects_Open( information, &the_thread->Object, name );

  /*
   *  Invoke create extensions
   */

  if ( !_User_extensions_Thread_create( the_thread ) ) {

    if ( extensions_area )
      (void) _Workspace_Free( extensions_area );

    if ( fp_area )
      (void) _Workspace_Free( fp_area );

    _Thread_Stack_Free( the_thread );

    return FALSE;
  }

  return TRUE;
   
}

/*
 *  _Thread_Start
 *
 *  DESCRIPTION:
 *
 *  XXX
 */
 
boolean _Thread_Start(
  Thread_Control       *the_thread,
  Thread_Start_types    the_prototype,
  void                 *entry_point,
  void                 *pointer_argument,
  unsigned32            numeric_argument
)
{
  if ( _States_Is_dormant( the_thread->current_state ) ) {
 
    the_thread->Start.entry_point      = (Thread_Entry) entry_point;
   
    the_thread->Start.prototype        = the_prototype;
    the_thread->Start.pointer_argument = pointer_argument;
    the_thread->Start.numeric_argument = numeric_argument;
 
    _Thread_Load_environment( the_thread );
 
    _Thread_Ready( the_thread );
 
    _User_extensions_Thread_start( the_thread );
 
    return TRUE;
  }
 
  return FALSE;
 
}

/*
 *  _Thread_Restart
 *
 *  DESCRIPTION:
 *
 *  XXX
 */
 
boolean _Thread_Restart(
  Thread_Control      *the_thread,
  void                *pointer_argument,
  unsigned32           numeric_argument
)
{
  if ( !_States_Is_dormant( the_thread->current_state ) ) {
 
    _Thread_Set_transient( the_thread );
    the_thread->resource_count = 0;
    the_thread->is_preemptible   = the_thread->Start.is_preemptible;
    the_thread->budget_algorithm = the_thread->Start.budget_algorithm;
    the_thread->budget_callout   = the_thread->Start.budget_callout;

    the_thread->Start.pointer_argument = pointer_argument;
    the_thread->Start.numeric_argument = numeric_argument;
 
    if ( !_Thread_queue_Extract_with_proxy( the_thread ) ) {
 
      if ( _Watchdog_Is_active( &the_thread->Timer ) )
        (void) _Watchdog_Remove( &the_thread->Timer );
    }

    if ( the_thread->current_priority != the_thread->Start.initial_priority ) {
      the_thread->real_priority = the_thread->Start.initial_priority;
      _Thread_Set_priority( the_thread, the_thread->Start.initial_priority );
    }
 
    _Thread_Load_environment( the_thread );
 
    _Thread_Ready( the_thread );
 
    _User_extensions_Thread_restart( the_thread );
 
    if ( _Thread_Is_executing ( the_thread ) )
      _Thread_Restart_self();
 
    return TRUE;
  }
 
  return FALSE;
}

/*
 *  _Thread_Close
 *
 *  DESCRIPTION:
 *
 *  XXX
 */
 
void _Thread_Close(
  Objects_Information  *information,
  Thread_Control       *the_thread
)
{
  _Objects_Close( information, &the_thread->Object );
 
  _Thread_Set_state( the_thread, STATES_TRANSIENT );
 
  if ( !_Thread_queue_Extract_with_proxy( the_thread ) ) {
 
    if ( _Watchdog_Is_active( &the_thread->Timer ) )
      (void) _Watchdog_Remove( &the_thread->Timer );
  }

  _User_extensions_Thread_delete( the_thread );
 
#if ( CPU_USE_DEFERRED_FP_SWITCH == TRUE )
  if ( _Thread_Is_allocated_fp( the_thread ) )
    _Thread_Deallocate_fp();
#endif
  the_thread->fp_context = NULL;

  if ( the_thread->Start.fp_context )
  (void) _Workspace_Free( the_thread->Start.fp_context );

  _Thread_Stack_Free( the_thread );

  if ( the_thread->extensions )
    (void) _Workspace_Free( the_thread->extensions );

  the_thread->Start.stack = NULL;
  the_thread->extensions = NULL;
}

/*PAGE
 *
 *  _Thread_Ready
 *
 *  This kernel routine readies the requested thread, the thread chain
 *  is adjusted.  A new heir thread may be selected.
 *
 *  Input parameters:
 *    the_thread - pointer to thread control block
 *
 *  Output parameters:  NONE
 *
 *  NOTE:  This routine uses the "blocking" heir selection mechanism.
 *         This insures the correct heir after a thread restart.
 *
 *  INTERRUPT LATENCY:
 *    ready chain
 *    select heir
 */

void _Thread_Ready(
  Thread_Control *the_thread
)
{
  ISR_Level              level;
  Thread_Control *heir;

  _ISR_Disable( level );

  the_thread->current_state = STATES_READY;

  _Priority_Add_to_bit_map( &the_thread->Priority_map );

  _Chain_Append_unprotected( the_thread->ready, &the_thread->Object.Node );

  _ISR_Flash( level );

  _Thread_Calculate_heir();

  heir = _Thread_Heir;

  if ( !_Thread_Is_executing( heir ) && _Thread_Executing->is_preemptible ) 
    _Context_Switch_necessary = TRUE;

  _ISR_Enable( level );
}

/*PAGE
 *
 *  _Thread_Clear_state
 *
 *  This kernel routine clears the appropriate states in the
 *  requested thread.  The thread ready chain is adjusted if
 *  necessary and the Heir thread is set accordingly.
 *
 *  Input parameters:
 *    the_thread - pointer to thread control block
 *    state      - state set to clear
 *
 *  Output parameters:  NONE
 *
 *  INTERRUPT LATENCY:
 *    priority map
 *    select heir
 */


void _Thread_Clear_state(
  Thread_Control *the_thread,
  States_Control  state
)
{
  ISR_Level       level;
  States_Control  current_state;

  _ISR_Disable( level );
    current_state = the_thread->current_state;
    
    if ( current_state & state ) {
      current_state = 
      the_thread->current_state = _States_Clear( state, current_state );

      if ( _States_Is_ready( current_state ) ) {

        _Priority_Add_to_bit_map( &the_thread->Priority_map );

        _Chain_Append_unprotected(the_thread->ready, &the_thread->Object.Node);

        _ISR_Flash( level );

        if ( the_thread->current_priority < _Thread_Heir->current_priority ) {
          _Thread_Heir = the_thread;
          if ( _Thread_Executing->is_preemptible ||
               the_thread->current_priority == 0 )
            _Context_Switch_necessary = TRUE;
        }
      }
  }
  _ISR_Enable( level );
}

/*PAGE
 *
 * _Thread_Set_state
 *
 * This kernel routine sets the requested state in the THREAD.  The
 * THREAD chain is adjusted if necessary.
 *
 * Input parameters:
 *   the_thread   - pointer to thread control block
 *   state - state to be set
 *
 * Output parameters:  NONE
 *
 *  INTERRUPT LATENCY:
 *    ready chain
 *    select map
 */

void _Thread_Set_state(
  Thread_Control *the_thread,
  States_Control         state
)
{
  ISR_Level             level;
  Chain_Control *ready;

  ready = the_thread->ready;
  _ISR_Disable( level );
  if ( !_States_Is_ready( the_thread->current_state ) ) {
    the_thread->current_state =
       _States_Set( state, the_thread->current_state );
    _ISR_Enable( level );
    return;
  }

  the_thread->current_state = state;

  if ( _Chain_Has_only_one_node( ready ) ) {

    _Chain_Initialize_empty( ready );
    _Priority_Remove_from_bit_map( &the_thread->Priority_map );

  } else
    _Chain_Extract_unprotected( &the_thread->Object.Node );

  _ISR_Flash( level );

  if ( _Thread_Is_heir( the_thread ) )
     _Thread_Calculate_heir();

  if ( _Thread_Is_executing( the_thread ) )
    _Context_Switch_necessary = TRUE;

  _ISR_Enable( level );
}

/*PAGE
 *
 *  _Thread_Set_transient
 *
 *  This kernel routine places the requested thread in the transient state
 *  which will remove it from the ready queue, if necessary.  No
 *  rescheduling is necessary because it is assumed that the transient
 *  state will be cleared before dispatching is enabled.
 *
 *  Input parameters:
 *    the_thread - pointer to thread control block
 *
 *  Output parameters:  NONE
 *
 *  INTERRUPT LATENCY:
 *    only case
 */

void _Thread_Set_transient(
  Thread_Control *the_thread
)
{
  ISR_Level             level;
  unsigned32            old_state;
  Chain_Control *ready;

  ready = the_thread->ready;
  _ISR_Disable( level );

  old_state = the_thread->current_state;
  the_thread->current_state = _States_Set( STATES_TRANSIENT, old_state );

  if ( _States_Is_ready( old_state ) ) {
    if ( _Chain_Has_only_one_node( ready ) ) {

      _Chain_Initialize_empty( ready );
      _Priority_Remove_from_bit_map( &the_thread->Priority_map );

    } else
      _Chain_Extract_unprotected( &the_thread->Object.Node );
  }

  _ISR_Enable( level );

}

/*PAGE
 *
 *  _Thread_Reset_timeslice
 *
 *  This routine will remove the running thread from the ready chain
 *  and place it immediately at the rear of this chain and then the
 *  timeslice counter is reset.  The heir THREAD will be updated if
 *  the running is also the currently the heir.
 *
 *  Input parameters:   NONE
 *
 *  Output parameters:  NONE
 *
 *  INTERRUPT LATENCY:
 *    ready chain
 *    select heir
 */

void _Thread_Reset_timeslice( void )
{
  ISR_Level       level;
  Thread_Control *executing;
  Chain_Control  *ready;

  executing = _Thread_Executing;
  ready     = executing->ready;
  _ISR_Disable( level );
    if ( _Chain_Has_only_one_node( ready ) ) {
      _ISR_Enable( level );
      return;
    }
    _Chain_Extract_unprotected( &executing->Object.Node );
    _Chain_Append_unprotected( ready, &executing->Object.Node );

  _ISR_Flash( level );

    if ( _Thread_Is_heir( executing ) )
      _Thread_Heir = (Thread_Control *) ready->first;

    _Context_Switch_necessary = TRUE;

  _ISR_Enable( level );
}

/*PAGE
 *
 *  _Thread_Tickle_timeslice
 *
 *  This scheduler routine determines if timeslicing is enabled
 *  for the currently executing thread and, if so, updates the
 *  timeslice count and checks for timeslice expiration.
 *
 *  Input parameters:   NONE
 *
 *  Output parameters:  NONE
 */

void _Thread_Tickle_timeslice( void )
{
  Thread_Control *executing;

  executing = _Thread_Executing;

  /*
   *  Increment the number of ticks this thread has been executing
   */

  executing->ticks_executed++;

  /*
   *  If the thread is not preemptible or is not ready, then 
   *  just return.
   */

  if ( !executing->is_preemptible )
    return;

  if ( !_States_Is_ready( executing->current_state ) )
    return;

  /*
   *  The cpu budget algorithm determines what happens next.
   */

  switch ( executing->budget_algorithm ) {
    case THREAD_CPU_BUDGET_ALGORITHM_NONE:
      break;

    case THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE:
    case THREAD_CPU_BUDGET_ALGORITHM_EXHAUST_TIMESLICE:
      if ( --executing->cpu_time_budget == 0 ) {
        _Thread_Reset_timeslice();
        executing->cpu_time_budget = _Thread_Ticks_per_timeslice;
      }
      break;

    case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT:
      if ( --executing->cpu_time_budget == 0 )
        (*executing->budget_callout)( executing );
      break;
  }
}

/*PAGE
 *
 *  _Thread_Yield_processor
 *
 *  This kernel routine will remove the running THREAD from the ready chain
 *  and place it immediatly at the rear of this chain.  Reset timeslice
 *  and yield the processor functions both use this routine, therefore if
 *  reset is TRUE and this is the only thread on the chain then the
 *  timeslice counter is reset.  The heir THREAD will be updated if the
 *  running is also the currently the heir.
 *
 *  Input parameters:   NONE
 *
 *  Output parameters:  NONE
 *
 *  INTERRUPT LATENCY:
 *    ready chain
 *    select heir
 */

void _Thread_Yield_processor( void )
{
  ISR_Level       level;
  Thread_Control *executing;
  Chain_Control  *ready;

  executing = _Thread_Executing;
  ready     = executing->ready;
  _ISR_Disable( level );
    if ( !_Chain_Has_only_one_node( ready ) ) {
      _Chain_Extract_unprotected( &executing->Object.Node );
      _Chain_Append_unprotected( ready, &executing->Object.Node );

      _ISR_Flash( level );

      if ( _Thread_Is_heir( executing ) )
        _Thread_Heir = (Thread_Control *) ready->first;
      _Context_Switch_necessary = TRUE;
    }
    else if ( !_Thread_Is_heir( executing ) )
      _Context_Switch_necessary = TRUE;

  _ISR_Enable( level );
}

/*PAGE
 *
 *  _Thread_Load_environment
 *
 *  Load starting environment for another thread from its start area in the
 *  thread.  Only called from t_restart and t_start.
 *
 *  Input parameters:
 *    the_thread - thread control block pointer
 *
 *  Output parameters:  NONE
 */

void _Thread_Load_environment(
  Thread_Control *the_thread
)
{
  boolean is_fp = FALSE;

  if ( the_thread->Start.fp_context ) {
    the_thread->fp_context = the_thread->Start.fp_context;
    _Context_Initialize_fp( &the_thread->fp_context );
    is_fp = TRUE;
  }

  the_thread->do_post_task_switch_extension = FALSE;
  the_thread->is_preemptible   = the_thread->Start.is_preemptible;
  the_thread->budget_algorithm = the_thread->Start.budget_algorithm;
  the_thread->budget_callout   = the_thread->Start.budget_callout;

  _Context_Initialize(
    &the_thread->Registers,
    the_thread->Start.Initial_stack.area,
    the_thread->Start.Initial_stack.size,
    the_thread->Start.isr_level,
    _Thread_Handler,
    is_fp
  );

}

/*PAGE
 *
 *  _Thread_Handler
 *
 *  This routine is the "primal" entry point for all threads.
 *  _Context_Initialize() dummies up the thread's initial context
 *  to cause the first Context_Switch() to jump to _Thread_Handler().
 *
 *  This routine is the default thread exitted error handler.  It is
 *  returned to when a thread exits.  The configured fatal error handler
 *  is invoked to process the exit.
 *
 *  NOTE:
 *
 *  On entry, it is assumed all interrupts are blocked and that this
 *  routine needs to set the initial isr level.  This may or may not 
 *  actually be needed by the context switch routine and as a result
 *  interrupts may already be at there proper level.  Either way,
 *  setting the initial isr level properly here is safe.
 *  
 *  Currently this is only really needed for the posix port,
 *  ref: _Context_Switch in unix/cpu.c
 *
 *  Input parameters:   NONE
 *
 *  Output parameters:  NONE
 */

void _Thread_Handler( void )
{
  ISR_Level  level;
  Thread_Control *executing;
 
  executing = _Thread_Executing;
 
  /*
   * have to put level into a register for those cpu's that use
   * inline asm here
   */
 
  level = executing->Start.isr_level;
  _ISR_Set_level(level);

  /*
   * Take care that 'begin' extensions get to complete before
   * 'switch' extensions can run.  This means must keep dispatch
   * disabled until all 'begin' extensions complete.
   */
 
  _User_extensions_Thread_begin( executing );
 
  /*
   *  At this point, the dispatch disable level BETTER be 1.
   */

  _Thread_Enable_dispatch();
 
  switch ( executing->Start.prototype ) {
    case THREAD_START_NUMERIC:
      (*(Thread_Entry_numeric) executing->Start.entry_point)(
        executing->Start.numeric_argument
      );
      break;
    case THREAD_START_POINTER:
      (*(Thread_Entry_pointer) executing->Start.entry_point)(
        executing->Start.pointer_argument
      );
      break;
    case THREAD_START_BOTH_POINTER_FIRST:
      (*(Thread_Entry_both_pointer_first) executing->Start.entry_point)( 
        executing->Start.pointer_argument,
        executing->Start.numeric_argument
      );
      break;
    case THREAD_START_BOTH_NUMERIC_FIRST:
      (*(Thread_Entry_both_numeric_first) executing->Start.entry_point)( 
        executing->Start.numeric_argument,
        executing->Start.pointer_argument
      );
      break;
  }

  _User_extensions_Thread_exitted( executing );

  _Internal_error_Occurred(
    INTERNAL_ERROR_CORE,
    TRUE,
    INTERNAL_ERROR_THREAD_EXITTED
  );
}

/*PAGE
 *
 *  _Thread_Delay_ended
 *
 *  This routine processes a thread whose delay period has ended.
 *  It is called by the watchdog handler.
 *
 *  Input parameters:
 *    id - thread id
 *
 *  Output parameters: NONE
 */

void _Thread_Delay_ended(
  Objects_Id  id,
  void       *ignored
)
{
  Thread_Control    *the_thread;
  Objects_Locations  location;

  the_thread = _Thread_Get( id, &location );
  switch ( location ) {
    case OBJECTS_ERROR:
    case OBJECTS_REMOTE:  /* impossible */
      break;
    case OBJECTS_LOCAL:
      _Thread_Unblock( the_thread );
      _Thread_Unnest_dispatch();
      break;
  }
}

/*PAGE
 *
 *  _Thread_Change_priority
 *
 *  This kernel routine changes the priority of the thread.  The
 *  thread chain is adjusted if necessary.
 *
 *  Input parameters:
 *    the_thread   - pointer to thread control block
 *    new_priority - ultimate priority
 *    prepend_it   - TRUE if the thread should be prepended to the chain
 *
 *  Output parameters:  NONE
 *
 *  INTERRUPT LATENCY:
 *    ready chain
 *    select heir
 */

void _Thread_Change_priority(
  Thread_Control   *the_thread,
  Priority_Control  new_priority,
  boolean           prepend_it
)
{
  ISR_Level level;
  /* boolean   do_prepend = FALSE; */

  /*
   *  If this is a case where prepending the task to its priority is
   *  potentially desired, then we need to consider whether to do it.
   *  This usually occurs when a task lowers its priority implcitly as
   *  the result of losing inherited priority.  Normal explicit priority
   *  change calls (e.g. rtems_task_set_priority) should always do an
   *  append not a prepend.
   */
 
  /*
   *  Techically, the prepend should conditional on the thread lowering
   *  its priority but that does allow cxd2004 of the acvc 2.0.1 to 
   *  pass with rtems 4.0.0.  This should change when gnat redoes its
   *  priority scheme.
   */
/*
  if ( prepend_it &&
       _Thread_Is_executing( the_thread ) && 
       new_priority >= the_thread->current_priority )
    prepend_it = TRUE;
*/
                  
  _Thread_Set_transient( the_thread );

  if ( the_thread->current_priority != new_priority )
    _Thread_Set_priority( the_thread, new_priority );

  _ISR_Disable( level );

  the_thread->current_state =
    _States_Clear( STATES_TRANSIENT, the_thread->current_state );

  if ( ! _States_Is_ready( the_thread->current_state ) ) {
    _ISR_Enable( level );
    return;
  }

  _Priority_Add_to_bit_map( &the_thread->Priority_map );
  if ( prepend_it )
    _Chain_Prepend_unprotected( the_thread->ready, &the_thread->Object.Node );
  else
    _Chain_Append_unprotected( the_thread->ready, &the_thread->Object.Node );

  _ISR_Flash( level );

  _Thread_Calculate_heir();

  if ( !_Thread_Is_executing_also_the_heir() &&
       _Thread_Executing->is_preemptible )
    _Context_Switch_necessary = TRUE;
  _ISR_Enable( level );
}

/*PAGE
 *
 * _Thread_Set_priority
 *
 * This directive enables and disables several modes of
 * execution for the requesting thread.
 *
 *  Input parameters:
 *    the_thread   - pointer to thread priority
 *    new_priority - new priority
 *
 *  Output: NONE
 */

void _Thread_Set_priority(
  Thread_Control   *the_thread,
  Priority_Control  new_priority
)
{
  the_thread->current_priority = new_priority;
  the_thread->ready            = &_Thread_Ready_chain[ new_priority ];

  _Priority_Initialize_information( &the_thread->Priority_map, new_priority );
}

/*PAGE
 *
 *  _Thread_Evaluate_mode
 *
 *  XXX
 */

boolean _Thread_Evaluate_mode( void )
{
  Thread_Control     *executing;

  executing = _Thread_Executing;

  if ( !_States_Is_ready( executing->current_state ) ||
       ( !_Thread_Is_heir( executing ) && executing->is_preemptible ) ) {
    _Context_Switch_necessary = TRUE;
    return TRUE;
  }

  return FALSE;
}

/*PAGE
 *
 *  _Thread_Get
 *
 *  NOTE:  If we are not using static inlines, this must be a real
 *         subroutine call.
 *
 *  NOTE:  XXX... This routine may be able to be optimized.
 */

#ifndef USE_INLINES

Thread_Control *_Thread_Get (
  Objects_Id           id,
  Objects_Locations   *location
)
{
  Objects_Classes      the_class;
  Objects_Information *information;
 
  if ( _Objects_Are_ids_equal( id, OBJECTS_ID_OF_SELF ) ) {
    _Thread_Disable_dispatch();
    *location = OBJECTS_LOCAL;
    return( _Thread_Executing );
  }
 
  the_class = _Objects_Get_class( id );
 
  if ( the_class > OBJECTS_CLASSES_LAST ) {
    *location = OBJECTS_ERROR;
    return (Thread_Control *) 0;
  } 
 
  information = _Objects_Information_table[ the_class ];
 
  if ( !information || !information->is_thread ) { 
    *location = OBJECTS_ERROR;
    return (Thread_Control *) 0;
  }
 
  return (Thread_Control *) _Objects_Get( information, id, location );
}

#endif

/*PAGE
 *
 *  _Thread_Idle_body
 *
 *  This kernel routine is the idle thread.  The idle thread runs any time
 *  no other thread is ready to run.  This thread loops forever with
 *  interrupts enabled.
 *
 *  Input parameters:
 *    ignored - this parameter is ignored
 *
 *  Output parameters:  NONE
 */
 
#if (CPU_PROVIDES_IDLE_THREAD_BODY == FALSE)
Thread _Thread_Idle_body(
  unsigned32 ignored
)
{
  for( ; ; ) ;
}
#endif