summaryrefslogtreecommitdiffstats
path: root/bsps/arm/stm32h7/hal/stm32h7xx_hal_rtc.c
blob: 140826c0fdc901cb9c2378f9082f59cb13884a4e (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
/**
  ******************************************************************************
  * @file    stm32h7xx_hal_rtc.c
  * @author  MCD Application Team
  * @brief   RTC HAL module driver.
  *          This file provides firmware functions to manage the following
  *          functionalities of the Real-Time Clock (RTC) peripheral:
  *           + Initialization/de-initialization
  *           + Calendar (Time and Date) configuration
  *           + Alarms (Alarm A and Alarm B) configuration
  *           + WakeUp Timer configuration
  *           + TimeStamp configuration
  *           + Tampers configuration
  *           + Backup Data Registers configuration
  *           + RTC Tamper and TimeStamp Pins Selection
  *           + Interrupts and flags management
  *
  ******************************************************************************
  * @attention
  *
  * Copyright (c) 2017 STMicroelectronics.
  * All rights reserved.
  *
  * This software is licensed under terms that can be found in the LICENSE file
  * in the root directory of this software component.
  * If no LICENSE file comes with this software, it is provided AS-IS.
  *
  ******************************************************************************
  @verbatim
 ===============================================================================
                          ##### RTC Operating Condition #####
 ===============================================================================
  [..] The real-time clock (RTC) and the RTC backup registers can be powered
       from the VBAT voltage when the main VDD supply is powered off.
       To retain the content of the RTC backup registers and supply the RTC
       when VDD is turned off, VBAT pin can be connected to an optional
       standby voltage supplied by a battery or by another source.

                   ##### Backup Domain Reset #####
 ===============================================================================
  [..] The backup domain reset sets all RTC registers and the RCC_BDCR register
       to their reset values.
       A backup domain reset is generated when one of the following events occurs:
    (#) Software reset, triggered by setting the BDRST bit in the
        RCC Backup domain control register (RCC_BDCR).
    (#) VDD or VBAT power on, if both supplies have previously been powered off.
    (#) Tamper detection event resets all data backup registers.

                   ##### Backup Domain Access #####
 ===================================================================
  [..] After reset, the backup domain (RTC registers, RTC backup data
       registers and backup SRAM) is protected against possible unwanted write
       accesses.

  [..] To enable access to the RTC Domain and RTC registers, proceed as follows:
    (#) Call the function HAL_RCCEx_PeriphCLKConfig with RCC_PERIPHCLK_RTC for
        PeriphClockSelection and select RTCClockSelection (LSE, LSI or HSEdiv32)
    (#) Enable RTC Clock using the __HAL_RCC_RTC_ENABLE() macro.

                  ##### How to use RTC Driver #####
 ===================================================================
  [..]
    (+) Enable the RTC domain access (see description in the section above).
    (+) Configure the RTC Prescaler (Asynchronous and Synchronous) and RTC hour
        format using the HAL_RTC_Init() function.

  *** Time and Date configuration ***
  ===================================
  [..]
    (+) To configure the RTC Calendar (Time and Date) use the HAL_RTC_SetTime()
        and HAL_RTC_SetDate() functions.
    (+) To read the RTC Calendar, use the HAL_RTC_GetTime() and HAL_RTC_GetDate() functions.

  *** Alarm configuration ***
  ===========================
  [..]
    (+) To configure the RTC Alarm use the HAL_RTC_SetAlarm() function.
            You can also configure the RTC Alarm with interrupt mode using the
            HAL_RTC_SetAlarm_IT() function.
    (+) To read the RTC Alarm, use the HAL_RTC_GetAlarm() function.

                  ##### RTC and low power modes #####
 ===================================================================
  [..] The MCU can be woken up from a low power mode by an RTC alternate
       function.
  [..] The RTC alternate functions are the RTC alarms (Alarm A and Alarm B),
       RTC wakeup, RTC tamper event detection and RTC time stamp event detection.
       These RTC alternate functions can wake up the system from the Stop and
       Standby low power modes.
  [..] The system can also wake up from low power modes without depending
       on an external interrupt (Auto-wakeup mode), by using the RTC alarm
       or the RTC wakeup events.
  [..] The RTC provides a programmable time base for waking up from the
       Stop or Standby mode at regular intervals.
       Wakeup from STOP and STANDBY modes is possible only when the RTC clock source
       is LSE or LSI.

  *** Callback registration ***
  =============================================
  When The compilation define USE_HAL_RTC_REGISTER_CALLBACKS is set to 0 or
  not defined, the callback registration feature is not available and all callbacks
  are set to the corresponding weak functions. This is the recommended configuration
  in order to optimize memory/code consumption footprint/performances.

  The compilation define  USE_RTC_REGISTER_CALLBACKS when set to 1
  allows the user to configure dynamically the driver callbacks.
  Use Function HAL_RTC_RegisterCallback() to register an interrupt callback.

  Function HAL_RTC_RegisterCallback() allows to register following callbacks:
    (+) AlarmAEventCallback          : RTC Alarm A Event callback.
    (+) AlarmBEventCallback          : RTC Alarm B Event callback.
    (+) TimeStampEventCallback       : RTC TimeStamp Event callback.
    (+) WakeUpTimerEventCallback     : RTC WakeUpTimer Event callback.
    (+) Tamper1EventCallback         : RTC Tamper 1 Event callback.
    (+) Tamper2EventCallback         : RTC Tamper 2 Event callback.
    (+) Tamper3EventCallback         : RTC Tamper 3 Event callback.
    (+) MspInitCallback              : RTC MspInit callback.
    (+) MspDeInitCallback            : RTC MspDeInit callback.
  This function takes as parameters the HAL peripheral handle, the Callback ID
  and a pointer to the user callback function.

  Use function HAL_RTC_UnRegisterCallback() to reset a callback to the default
  weak function.
  HAL_RTC_UnRegisterCallback() takes as parameters the HAL peripheral handle,
  and the Callback ID.
  This function allows to reset following callbacks:
    (+) AlarmAEventCallback          : RTC Alarm A Event callback.
    (+) AlarmBEventCallback          : RTC Alarm B Event callback.
    (+) TimeStampEventCallback       : RTC TimeStamp Event callback.
    (+) WakeUpTimerEventCallback     : RTC WakeUpTimer Event callback.
    (+) Tamper1EventCallback         : RTC Tamper 1 Event callback.
    (+) Tamper2EventCallback         : RTC Tamper 2 Event callback.
    (+) Tamper3EventCallback         : RTC Tamper 3 Event callback.
    (+) MspInitCallback              : RTC MspInit callback.
    (+) MspDeInitCallback            : RTC MspDeInit callback.

  By default, after the HAL_RTC_Init() and when the state is HAL_RTC_STATE_RESET,
  all callbacks are set to the corresponding weak functions :
  examples AlarmAEventCallback(), WakeUpTimerEventCallback().
  Exception done for MspInit and MspDeInit callbacks that are reset to the legacy weak function
  in the HAL_RTC_Init()/HAL_RTC_DeInit() only when these callbacks are null
  (not registered beforehand).
  If not, MspInit or MspDeInit are not null, HAL_RTC_Init()/HAL_RTC_DeInit()
  keep and use the user MspInit/MspDeInit callbacks (registered beforehand)

  Callbacks can be registered/unregistered in HAL_RTC_STATE_READY state only.
  Exception done MspInit/MspDeInit that can be registered/unregistered
  in HAL_RTC_STATE_READY or HAL_RTC_STATE_RESET state,
  thus registered (user) MspInit/DeInit callbacks can be used during the Init/DeInit.
  In that case first register the MspInit/MspDeInit user callbacks
  using HAL_RTC_RegisterCallback() before calling HAL_RTC_DeInit()
  or HAL_RTC_Init() function.

  When The compilation define USE_HAL_RTC_REGISTER_CALLBACKS is set to 0 or
  not defined, the callback registration feature is not available and all callbacks
  are set to the corresponding weak functions.
   @endverbatim

  */

/* Includes ------------------------------------------------------------------*/
#include "stm32h7xx_hal.h"

/** @addtogroup STM32H7xx_HAL_Driver
  * @{
  */


/** @addtogroup RTC
  * @brief RTC HAL module driver
  * @{
  */

#ifdef HAL_RTC_MODULE_ENABLED

/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Exported functions --------------------------------------------------------*/

/** @addtogroup RTC_Exported_Functions
  * @{
  */

/** @addtogroup RTC_Exported_Functions_Group1
 *  @brief    Initialization and Configuration functions
 *
@verbatim
 ===============================================================================
              ##### Initialization and de-initialization functions #####
 ===============================================================================
   [..] This section provides functions allowing to initialize and configure the
         RTC Prescaler (Synchronous and Asynchronous), RTC Hour format, disable
         RTC registers Write protection, enter and exit the RTC initialization mode,
         RTC registers synchronization check and reference clock detection enable.
         (#) The RTC Prescaler is programmed to generate the RTC 1Hz time base.
             It is split into 2 programmable prescalers to minimize power consumption.
             (++) A 7-bit asynchronous prescaler and a 15-bit synchronous prescaler.
             (++) When both prescalers are used, it is recommended to configure the
                 asynchronous prescaler to a high value to minimize power consumption.
         (#) All RTC registers are Write protected. Writing to the RTC registers
             is enabled by writing a key into the Write Protection register, RTC_WPR.
         (#) To configure the RTC Calendar, user application should enter
             initialization mode. In this mode, the calendar counter is stopped
             and its value can be updated. When the initialization sequence is
             complete, the calendar restarts counting after 4 RTCCLK cycles.
         (#) To read the calendar through the shadow registers after Calendar
             initialization, calendar update or after wakeup from low power modes
             the software must first clear the RSF flag. The software must then
             wait until it is set again before reading the calendar, which means
             that the calendar registers have been correctly copied into the
             RTC_TR and RTC_DR shadow registers.The HAL_RTC_WaitForSynchro() function
             implements the above software sequence (RSF clear and RSF check).

@endverbatim
  * @{
  */

/**
  * @brief  Initialize the RTC peripheral
  * @param  hrtc RTC handle
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_RTC_Init(RTC_HandleTypeDef *hrtc)
{
  HAL_StatusTypeDef status = HAL_ERROR;

  /* Check RTC handler */
  if(hrtc != NULL)
  {
    /* Check the parameters */
    assert_param(IS_RTC_ALL_INSTANCE(hrtc->Instance));
    assert_param(IS_RTC_HOUR_FORMAT(hrtc->Init.HourFormat));
    assert_param(IS_RTC_ASYNCH_PREDIV(hrtc->Init.AsynchPrediv));
    assert_param(IS_RTC_SYNCH_PREDIV(hrtc->Init.SynchPrediv));
    assert_param(IS_RTC_OUTPUT(hrtc->Init.OutPut));
    assert_param(IS_RTC_OUTPUT_REMAP(hrtc->Init.OutPutRemap));
    assert_param(IS_RTC_OUTPUT_POL(hrtc->Init.OutPutPolarity));
    assert_param(IS_RTC_OUTPUT_TYPE(hrtc->Init.OutPutType));
#if defined(TAMP)
    assert_param(IS_RTC_OUTPUT_PULLUP(hrtc->Init.OutPutPullUp));
#endif /* TAMP */

#if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
    if(hrtc->State == HAL_RTC_STATE_RESET)
    {
      /* Allocate lock resource and initialize it */
      hrtc->Lock = HAL_UNLOCKED;

      hrtc->AlarmAEventCallback          =  HAL_RTC_AlarmAEventCallback;             /* Legacy weak AlarmAEventCallback      */
      hrtc->AlarmBEventCallback          =  HAL_RTCEx_AlarmBEventCallback;           /* Legacy weak AlarmBEventCallback      */
      hrtc->TimeStampEventCallback       =  HAL_RTCEx_TimeStampEventCallback;        /* Legacy weak TimeStampEventCallback   */
      hrtc->WakeUpTimerEventCallback     =  HAL_RTCEx_WakeUpTimerEventCallback;      /* Legacy weak WakeUpTimerEventCallback */
      hrtc->Tamper1EventCallback         =  HAL_RTCEx_Tamper1EventCallback;          /* Legacy weak Tamper1EventCallback     */
      hrtc->Tamper2EventCallback         =  HAL_RTCEx_Tamper2EventCallback;          /* Legacy weak Tamper2EventCallback     */
      hrtc->Tamper3EventCallback         =  HAL_RTCEx_Tamper3EventCallback;          /* Legacy weak Tamper3EventCallback     */

#if defined(TAMP)
      hrtc->InternalTamper1EventCallback =  HAL_RTCEx_InternalTamper1EventCallback;
      hrtc->InternalTamper2EventCallback =  HAL_RTCEx_InternalTamper2EventCallback;
      hrtc->InternalTamper3EventCallback =  HAL_RTCEx_InternalTamper3EventCallback;
      hrtc->InternalTamper4EventCallback =  HAL_RTCEx_InternalTamper4EventCallback;
      hrtc->InternalTamper5EventCallback =  HAL_RTCEx_InternalTamper5EventCallback;
      hrtc->InternalTamper6EventCallback =  HAL_RTCEx_InternalTamper6EventCallback;
      hrtc->InternalTamper8EventCallback =  HAL_RTCEx_InternalTamper8EventCallback;
#endif /* TAMP */


      if(hrtc->MspInitCallback == NULL)
      {
        hrtc->MspInitCallback = HAL_RTC_MspInit;
      }
      /* Init the low level hardware */
      hrtc->MspInitCallback(hrtc);

      if(hrtc->MspDeInitCallback == NULL)
      {
        hrtc->MspDeInitCallback = HAL_RTC_MspDeInit;
      }
    }
#else /*  (USE_HAL_RTC_REGISTER_CALLBACKS == 1) */
    if(hrtc->State == HAL_RTC_STATE_RESET)
    {
      /* Allocate lock resource and initialize it */
      hrtc->Lock = HAL_UNLOCKED;

      /* Initialize RTC MSP */
      HAL_RTC_MspInit(hrtc);
    }
#endif /*  (USE_HAL_RTC_REGISTER_CALLBACKS == 1) */

    /* Set RTC state */
    hrtc->State = HAL_RTC_STATE_BUSY;

    /* Check whether the calendar needs to be initialized */
    if (__HAL_RTC_IS_CALENDAR_INITIALIZED(hrtc) == 0U)
    {
      /* Disable the write protection for RTC registers */
      __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);

     /* Enter Initialization mode */
      status = RTC_EnterInitMode(hrtc);
      if (status == HAL_OK)
      {
#if defined(TAMP)
        /* Clear RTC_CR FMT, OSEL, POL and TAMPOE Bits */
        hrtc->Instance->CR &= ~(RTC_CR_FMT | RTC_CR_POL | RTC_CR_OSEL | RTC_CR_TAMPOE);
#else
        /* Clear RTC_CR FMT, OSEL and POL Bits */
        hrtc->Instance->CR &= ~(RTC_CR_FMT | RTC_CR_OSEL | RTC_CR_POL);
#endif /* TAMP */

        /* Set RTC_CR register */
        hrtc->Instance->CR |= (hrtc->Init.HourFormat | hrtc->Init.OutPut | hrtc->Init.OutPutPolarity);

        /* Configure the RTC PRER */
        hrtc->Instance->PRER = (hrtc->Init.AsynchPrediv << RTC_PRER_PREDIV_A_Pos) | (hrtc->Init.SynchPrediv << RTC_PRER_PREDIV_S_Pos);

        /* Exit Initialization mode */
        status = RTC_ExitInitMode(hrtc);
      }
      if(status == HAL_OK)
      {
#if defined(TAMP)
        hrtc->Instance->CR &= ~(RTC_CR_TAMPALRM_PU | RTC_CR_TAMPALRM_TYPE | RTC_CR_OUT2EN);
        hrtc->Instance->CR |= (hrtc->Init.OutPutPullUp | hrtc->Init.OutPutType | hrtc->Init.OutPutRemap);
#else
        hrtc->Instance->OR &= ~(RTC_OR_ALARMOUTTYPE | RTC_OR_OUT_RMP);
        hrtc->Instance->OR |= (hrtc->Init.OutPutType | hrtc->Init.OutPutRemap);
#endif /* TAMP */
      }

    /* Enable the write protection for RTC registers */
    __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
    }
    else
    {
      /* The calendar is already initialized */
      status = HAL_OK;
    }

    if (status == HAL_OK)
    {
      /* Set RTC state */
      hrtc->State = HAL_RTC_STATE_READY;
    }
  }

  /* return status */
  return status;
}

/**
  * @brief  DeInitialize the RTC peripheral.
  * @note   This function doesn't reset the RTC Backup Data registers.
  * @param  hrtc RTC handle
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_RTC_DeInit(RTC_HandleTypeDef *hrtc)
{
  HAL_StatusTypeDef status = HAL_ERROR;
  uint32_t          tickstart;

  /* Check RTC handler */
  if(hrtc != NULL)
  {
    /* Check the parameters */
    assert_param(IS_RTC_ALL_INSTANCE(hrtc->Instance));

    /* Set RTC state */
    hrtc->State = HAL_RTC_STATE_BUSY;

    /* Disable the write protection for RTC registers */
    __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);

    /* Enter Initialization mode */
    status = RTC_EnterInitMode(hrtc);

    if (status == HAL_OK)
    {
      /* Reset TR, DR and CR registers */
      hrtc->Instance->TR = 0x00000000U;
      hrtc->Instance->DR = ((uint32_t)(RTC_DR_WDU_0 | RTC_DR_MU_0 | RTC_DR_DU_0));

      /* Reset All CR bits except CR[2:0] (which cannot be written before bit
           WUTE of CR is cleared) */
      hrtc->Instance->CR = 0x00000000U;

      /* Wait till WUTWF is set (to be able to reset CR[2:0] and WUTR) and if
         timeout is reached exit */
      tickstart = HAL_GetTick();

#if defined(TAMP)
      while ((((hrtc->Instance->ICSR) & RTC_ICSR_WUTWF) == 0U) && (status != HAL_TIMEOUT))
#else
      while ((((hrtc->Instance->ISR)  & RTC_ISR_WUTWF)  == 0U) && (status != HAL_TIMEOUT))
#endif /* TAMP */
      {
        if((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE)
        {
          /* Enable the write protection for RTC registers */
          __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);

          /* Set RTC state */
          hrtc->State = HAL_RTC_STATE_TIMEOUT;
          status = HAL_TIMEOUT;

        }
      }
    }

    if (status == HAL_OK)
    {
      /* Reset RTC CR register bits [2:0] */
      hrtc->Instance->CR = 0x00000000U;

      /* Reset other RTC registers */
      hrtc->Instance->WUTR     = RTC_WUTR_WUT;
      hrtc->Instance->PRER     = ((uint32_t)(RTC_PRER_PREDIV_A | 0x000000FFU));
      hrtc->Instance->ALRMAR   = 0x00000000U;
      hrtc->Instance->ALRMBR   = 0x00000000U;
      hrtc->Instance->SHIFTR   = 0x00000000U;
      hrtc->Instance->CALR     = 0x00000000U;
      hrtc->Instance->ALRMASSR = 0x00000000U;
      hrtc->Instance->ALRMBSSR = 0x00000000U;

      /* Exit initialization mode */
      status = RTC_ExitInitMode(hrtc);
    }

    if(status == HAL_OK)
    {
#if defined(TAMP)
      /* Reset TAMP registers */
      ((TAMP_TypeDef *)((uint32_t)hrtc->Instance + TAMP_OFFSET))->CR1 = 0xFFFF0000U;
      ((TAMP_TypeDef *)((uint32_t)hrtc->Instance + TAMP_OFFSET))->CR2 = 0x00000000U;
#else
      /* Reset Tamper configuration register */
      hrtc->Instance->TAMPCR = 0x00000000U;

      /* Reset Option register */
      hrtc->Instance->OR = 0x00000000U;
#endif /* TAMP */

      /* Enable the write protection for RTC registers */
      __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);

#if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
      if(hrtc->MspDeInitCallback == NULL)
      {
        hrtc->MspDeInitCallback = HAL_RTC_MspDeInit;
      }

      /* DeInit the low level hardware: CLOCK, NVIC.*/
      hrtc->MspDeInitCallback(hrtc);
#else
      /* De-Initialize RTC MSP */
      HAL_RTC_MspDeInit(hrtc);
#endif /* (USE_HAL_RTC_REGISTER_CALLBACKS) */

      hrtc->State = HAL_RTC_STATE_RESET;

      /* Release Lock */
      __HAL_UNLOCK(hrtc);
    }
  }

  /* return status */
  return status;
}

#if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
/**
  * @brief  Register a User RTC Callback
  *         To be used instead of the weak predefined callback
  * @param  hrtc RTC handle
  * @param  CallbackID ID of the callback to be registered
  *         This parameter can be one of the following values:
  *          @arg @ref HAL_RTC_ALARM_A_EVENT_CB_ID          Alarm A Event Callback ID
  *          @arg @ref HAL_RTC_ALARM_B_EVENT_CB_ID          Alarm B Event Callback ID
  *          @arg @ref HAL_RTC_TIMESTAMP_EVENT_CB_ID        TimeStamp Event Callback ID
  *          @arg @ref HAL_RTC_WAKEUPTIMER_EVENT_CB_ID      WakeUp Timer Event Callback ID
  *          @arg @ref HAL_RTC_TAMPER1_EVENT_CB_ID          Tamper 1 Callback ID
  *          @arg @ref HAL_RTC_TAMPER2_EVENT_CB_ID          Tamper 2 Callback ID
  *          @arg @ref HAL_RTC_TAMPER3_EVENT_CB_ID          Tamper 3 Callback ID
  *          @arg @ref HAL_RTC_INTERNAL_TAMPER1_EVENT_CB_ID Internal Tamper 1 Callback ID
  *          @arg @ref HAL_RTC_INTERNAL_TAMPER2_EVENT_CB_ID Internal Tamper 2 Callback ID
  *          @arg @ref HAL_RTC_INTERNAL_TAMPER3_EVENT_CB_ID Internal Tamper 3 Callback ID
  *          @arg @ref HAL_RTC_INTERNAL_TAMPER4_EVENT_CB_ID Internal Tamper 4 Callback ID
  *          @arg @ref HAL_RTC_INTERNAL_TAMPER5_EVENT_CB_ID Internal Tamper 5 Callback ID
  *          @arg @ref HAL_RTC_INTERNAL_TAMPER6_EVENT_CB_ID Internal Tamper 6 Callback ID
  *          @arg @ref HAL_RTC_INTERNAL_TAMPER8_EVENT_CB_ID Internal Tamper 8 Callback ID
  *          @arg @ref HAL_RTC_MSPINIT_CB_ID                Msp Init callback ID
  *          @arg @ref HAL_RTC_MSPDEINIT_CB_ID              Msp DeInit callback ID
  * @param  pCallback pointer to the Callback function
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_RTC_RegisterCallback(RTC_HandleTypeDef *hrtc, HAL_RTC_CallbackIDTypeDef CallbackID, pRTC_CallbackTypeDef pCallback)
{
  HAL_StatusTypeDef status = HAL_OK;

  if(pCallback == NULL)
  {
    return HAL_ERROR;
  }

  /* Process locked */
  __HAL_LOCK(hrtc);

  if(HAL_RTC_STATE_READY == hrtc->State)
  {
    switch (CallbackID)
    {
      case HAL_RTC_ALARM_A_EVENT_CB_ID :
        hrtc->AlarmAEventCallback = pCallback;
        break;

      case HAL_RTC_ALARM_B_EVENT_CB_ID :
        hrtc->AlarmBEventCallback = pCallback;
        break;

      case HAL_RTC_TIMESTAMP_EVENT_CB_ID :
        hrtc->TimeStampEventCallback = pCallback;
        break;

      case HAL_RTC_WAKEUPTIMER_EVENT_CB_ID :
        hrtc->WakeUpTimerEventCallback = pCallback;
        break;

      case HAL_RTC_TAMPER1_EVENT_CB_ID :
        hrtc->Tamper1EventCallback = pCallback;
        break;

      case HAL_RTC_TAMPER2_EVENT_CB_ID :
        hrtc->Tamper2EventCallback = pCallback;
        break;

      case HAL_RTC_TAMPER3_EVENT_CB_ID :
        hrtc->Tamper3EventCallback = pCallback;
        break;

#if defined(TAMP)
      case HAL_RTC_INTERNAL_TAMPER1_EVENT_CB_ID :
        hrtc->InternalTamper1EventCallback =  pCallback;
        break;

      case HAL_RTC_INTERNAL_TAMPER2_EVENT_CB_ID :
        hrtc->InternalTamper2EventCallback =  pCallback;
        break;

      case HAL_RTC_INTERNAL_TAMPER3_EVENT_CB_ID :
        hrtc->InternalTamper3EventCallback =  pCallback;
        break;

      case HAL_RTC_INTERNAL_TAMPER4_EVENT_CB_ID :
        hrtc->InternalTamper4EventCallback =  pCallback;
        break;

      case HAL_RTC_INTERNAL_TAMPER5_EVENT_CB_ID :
        hrtc->InternalTamper5EventCallback =  pCallback;
        break;

      case HAL_RTC_INTERNAL_TAMPER6_EVENT_CB_ID :
        hrtc->InternalTamper6EventCallback =  pCallback;
        break;

      case HAL_RTC_INTERNAL_TAMPER8_EVENT_CB_ID :
        hrtc->InternalTamper8EventCallback =  pCallback;
        break;
#endif /* TAMP */

      case HAL_RTC_MSPINIT_CB_ID :
        hrtc->MspInitCallback = pCallback;
        break;

      case HAL_RTC_MSPDEINIT_CB_ID :
        hrtc->MspDeInitCallback = pCallback;
        break;

      default :
        /* Return error status */
        status =  HAL_ERROR;
        break;
    }
  }
  else if(HAL_RTC_STATE_RESET == hrtc->State)
  {
    switch (CallbackID)
    {
      case HAL_RTC_MSPINIT_CB_ID :
        hrtc->MspInitCallback = pCallback;
        break;

      case HAL_RTC_MSPDEINIT_CB_ID :
        hrtc->MspDeInitCallback = pCallback;
        break;

      default :
        /* Return error status */
        status =  HAL_ERROR;
        break;
    }
  }
  else
  {
    /* Return error status */
    status =  HAL_ERROR;
  }

  /* Release Lock */
  __HAL_UNLOCK(hrtc);

  return status;
}

/**
  * @brief  Unregister an RTC Callback
  *         RTC callback is redirected to the weak predefined callback
  * @param  hrtc RTC handle
  * @param  CallbackID ID of the callback to be unregistered
  *         This parameter can be one of the following values:
  *          @arg @ref HAL_RTC_ALARM_A_EVENT_CB_ID          Alarm A Event Callback ID
  *          @arg @ref HAL_RTC_ALARM_B_EVENT_CB_ID          Alarm B Event Callback ID
  *          @arg @ref HAL_RTC_TIMESTAMP_EVENT_CB_ID        TimeStamp Event Callback ID
  *          @arg @ref HAL_RTC_WAKEUPTIMER_EVENT_CB_ID      WakeUp Timer Event Callback ID
  *          @arg @ref HAL_RTC_TAMPER1_EVENT_CB_ID          Tamper 1 Callback ID
  *          @arg @ref HAL_RTC_TAMPER2_EVENT_CB_ID          Tamper 2 Callback ID
  *          @arg @ref HAL_RTC_TAMPER3_EVENT_CB_ID          Tamper 3 Callback ID
  *          @arg @ref HAL_RTC_INTERNAL_TAMPER1_EVENT_CB_ID Internal Tamper 1 Callback ID
  *          @arg @ref HAL_RTC_INTERNAL_TAMPER2_EVENT_CB_ID Internal Tamper 2 Callback ID
  *          @arg @ref HAL_RTC_INTERNAL_TAMPER3_EVENT_CB_ID Internal Tamper 3 Callback ID
  *          @arg @ref HAL_RTC_INTERNAL_TAMPER4_EVENT_CB_ID Internal Tamper 4 Callback ID
  *          @arg @ref HAL_RTC_INTERNAL_TAMPER5_EVENT_CB_ID Internal Tamper 5 Callback ID
  *          @arg @ref HAL_RTC_INTERNAL_TAMPER6_EVENT_CB_ID Internal Tamper 6 Callback ID
  *          @arg @ref HAL_RTC_INTERNAL_TAMPER8_EVENT_CB_ID Internal Tamper 8 Callback ID
  *          @arg @ref HAL_RTC_MSPINIT_CB_ID Msp Init callback ID
  *          @arg @ref HAL_RTC_MSPDEINIT_CB_ID Msp DeInit callback ID
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_RTC_UnRegisterCallback(RTC_HandleTypeDef *hrtc, HAL_RTC_CallbackIDTypeDef CallbackID)
{
  HAL_StatusTypeDef status = HAL_OK;

  /* Process locked */
  __HAL_LOCK(hrtc);

  if(HAL_RTC_STATE_READY == hrtc->State)
  {
    switch (CallbackID)
    {
      case HAL_RTC_ALARM_A_EVENT_CB_ID :
        hrtc->AlarmAEventCallback = HAL_RTC_AlarmAEventCallback;             /* Legacy weak AlarmAEventCallback    */
        break;

      case HAL_RTC_ALARM_B_EVENT_CB_ID :
        hrtc->AlarmBEventCallback = HAL_RTCEx_AlarmBEventCallback;           /* Legacy weak AlarmBEventCallback */
        break;

      case HAL_RTC_TIMESTAMP_EVENT_CB_ID :
        hrtc->TimeStampEventCallback = HAL_RTCEx_TimeStampEventCallback;     /* Legacy weak TimeStampEventCallback    */
        break;

      case HAL_RTC_WAKEUPTIMER_EVENT_CB_ID :
        hrtc->WakeUpTimerEventCallback = HAL_RTCEx_WakeUpTimerEventCallback; /* Legacy weak WakeUpTimerEventCallback */
        break;

      case HAL_RTC_TAMPER1_EVENT_CB_ID :
        hrtc->Tamper1EventCallback = HAL_RTCEx_Tamper1EventCallback;         /* Legacy weak Tamper1EventCallback   */
        break;

      case HAL_RTC_TAMPER2_EVENT_CB_ID :
        hrtc->Tamper2EventCallback = HAL_RTCEx_Tamper2EventCallback;         /* Legacy weak Tamper2EventCallback         */
        break;

      case HAL_RTC_TAMPER3_EVENT_CB_ID :
        hrtc->Tamper3EventCallback = HAL_RTCEx_Tamper3EventCallback;         /* Legacy weak Tamper3EventCallback         */
        break;

#if defined(TAMP)
      case HAL_RTC_INTERNAL_TAMPER1_EVENT_CB_ID :
        hrtc->InternalTamper1EventCallback =  HAL_RTCEx_InternalTamper1EventCallback;
        break;

      case HAL_RTC_INTERNAL_TAMPER2_EVENT_CB_ID :
        hrtc->InternalTamper2EventCallback =  HAL_RTCEx_InternalTamper2EventCallback;
        break;

      case HAL_RTC_INTERNAL_TAMPER3_EVENT_CB_ID :
        hrtc->InternalTamper3EventCallback =  HAL_RTCEx_InternalTamper3EventCallback;
        break;

      case HAL_RTC_INTERNAL_TAMPER4_EVENT_CB_ID :
        hrtc->InternalTamper4EventCallback =  HAL_RTCEx_InternalTamper4EventCallback;
        break;

      case HAL_RTC_INTERNAL_TAMPER5_EVENT_CB_ID :
        hrtc->InternalTamper5EventCallback =  HAL_RTCEx_InternalTamper5EventCallback;
        break;

      case HAL_RTC_INTERNAL_TAMPER6_EVENT_CB_ID :
        hrtc->InternalTamper6EventCallback =  HAL_RTCEx_InternalTamper6EventCallback;
        break;

      case HAL_RTC_INTERNAL_TAMPER8_EVENT_CB_ID :
        hrtc->InternalTamper8EventCallback =  HAL_RTCEx_InternalTamper8EventCallback;
        break;
#endif /* TAMP */

      case HAL_RTC_MSPINIT_CB_ID :
        hrtc->MspInitCallback = HAL_RTC_MspInit;
        break;

      case HAL_RTC_MSPDEINIT_CB_ID :
        hrtc->MspDeInitCallback = HAL_RTC_MspDeInit;
        break;

      default :
        /* Return error status */
        status =  HAL_ERROR;
        break;
    }
  }
  else if(HAL_RTC_STATE_RESET == hrtc->State)
  {
    switch (CallbackID)
    {
      case HAL_RTC_MSPINIT_CB_ID :
        hrtc->MspInitCallback = HAL_RTC_MspInit;
        break;

      case HAL_RTC_MSPDEINIT_CB_ID :
        hrtc->MspDeInitCallback = HAL_RTC_MspDeInit;
        break;

      default :
        /* Return error status */
        status =  HAL_ERROR;
        break;
    }
  }
  else
  {
    /* Return error status */
    status =  HAL_ERROR;
  }

  /* Release Lock */
  __HAL_UNLOCK(hrtc);

  return status;
}
#endif /* USE_HAL_RTC_REGISTER_CALLBACKS */

/**
  * @brief  Initialize the RTC MSP.
  * @param  hrtc RTC handle
  * @retval None
  */
__weak void HAL_RTC_MspInit(RTC_HandleTypeDef *hrtc)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(hrtc);

  /* NOTE : This function should not be modified, when the callback is needed,
            the HAL_RTC_MspInit could be implemented in the user file
   */
}

/**
  * @brief  DeInitialize the RTC MSP.
  * @param  hrtc RTC handle
  * @retval None
  */
__weak void HAL_RTC_MspDeInit(RTC_HandleTypeDef *hrtc)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(hrtc);

  /* NOTE : This function should not be modified, when the callback is needed,
            the HAL_RTC_MspDeInit could be implemented in the user file
   */
}

/**
  * @}
  */

/** @addtogroup RTC_Exported_Functions_Group2
 *  @brief   RTC Time and Date functions
 *
@verbatim
 ===============================================================================
                 ##### RTC Time and Date functions #####
 ===============================================================================

 [..] This section provides functions allowing to configure Time and Date features

@endverbatim
  * @{
  */

/**
  * @brief  Set RTC current time.
  * @param  hrtc RTC handle
  * @param  sTime Pointer to Time structure
  * @param  Format Specifies the format of the entered parameters.
  *          This parameter can be one of the following values:
  *            @arg RTC_FORMAT_BIN: Binary data format
  *            @arg RTC_FORMAT_BCD: BCD data format
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_RTC_SetTime(RTC_HandleTypeDef *hrtc, RTC_TimeTypeDef *sTime, uint32_t Format)
{
  uint32_t tmpreg;
HAL_StatusTypeDef status;

  /* Check the parameters */
  assert_param(IS_RTC_FORMAT(Format));
  assert_param(IS_RTC_DAYLIGHT_SAVING(sTime->DayLightSaving));
  assert_param(IS_RTC_STORE_OPERATION(sTime->StoreOperation));

  /* Process Locked */
  __HAL_LOCK(hrtc);

  hrtc->State = HAL_RTC_STATE_BUSY;

  /* Disable the write protection for RTC registers */
  __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
 /* Enter Initialization mode */
  status = RTC_EnterInitMode(hrtc);
  if (status == HAL_OK)
  {
    if(Format == RTC_FORMAT_BIN)
    {
      if((hrtc->Instance->CR & RTC_CR_FMT) != 0U)
      {
        assert_param(IS_RTC_HOUR12(sTime->Hours));
        assert_param(IS_RTC_HOURFORMAT12(sTime->TimeFormat));
      }
      else
      {
        sTime->TimeFormat = 0x00U;
        assert_param(IS_RTC_HOUR24(sTime->Hours));
      }
      assert_param(IS_RTC_MINUTES(sTime->Minutes));
      assert_param(IS_RTC_SECONDS(sTime->Seconds));

      tmpreg = (uint32_t)(((uint32_t)RTC_ByteToBcd2(sTime->Hours)   << RTC_TR_HU_Pos)  | \
                          ((uint32_t)RTC_ByteToBcd2(sTime->Minutes) << RTC_TR_MNU_Pos) | \
                          ((uint32_t)RTC_ByteToBcd2(sTime->Seconds) << RTC_TR_SU_Pos)  | \
                          (((uint32_t)sTime->TimeFormat) << RTC_TR_PM_Pos));
    }
    else
    {
      if((hrtc->Instance->CR & RTC_CR_FMT) != 0U)
      {
        assert_param(IS_RTC_HOUR12(RTC_Bcd2ToByte(sTime->Hours)));
        assert_param(IS_RTC_HOURFORMAT12(sTime->TimeFormat));
      }
      else
      {
        sTime->TimeFormat = 0x00U;
        assert_param(IS_RTC_HOUR24(RTC_Bcd2ToByte(sTime->Hours)));
      }
      assert_param(IS_RTC_MINUTES(RTC_Bcd2ToByte(sTime->Minutes)));
      assert_param(IS_RTC_SECONDS(RTC_Bcd2ToByte(sTime->Seconds)));
      tmpreg = (((uint32_t)(sTime->Hours)   << RTC_TR_HU_Pos)  | \
                ((uint32_t)(sTime->Minutes) << RTC_TR_MNU_Pos) | \
                ((uint32_t)(sTime->Seconds) << RTC_TR_SU_Pos)  | \
                ((uint32_t)(sTime->TimeFormat) << RTC_TR_PM_Pos));
    }

    /* Set the RTC_TR register */
    hrtc->Instance->TR = (uint32_t)(tmpreg & RTC_TR_RESERVED_MASK);

    /* Clear the bits to be configured */
    hrtc->Instance->CR &= ((uint32_t)~RTC_CR_BKP);

    /* Configure the RTC_CR register */
    hrtc->Instance->CR |= (uint32_t)(sTime->DayLightSaving | sTime->StoreOperation);

    /* Exit Initialization mode */
    status = RTC_ExitInitMode(hrtc);
  }

  /* Enable the write protection for RTC registers */
  __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);

  if (status == HAL_OK)
  {
    hrtc->State = HAL_RTC_STATE_READY;
  }

  /* Process Unlocked */
  __HAL_UNLOCK(hrtc);

  return status;
}

/**
  * @brief  Get RTC current time.
  * @param  hrtc RTC handle
  * @param  sTime Pointer to Time structure with Hours, Minutes and Seconds fields returned
  *                with input format (BIN or BCD), also SubSeconds field returning the
  *                RTC_SSR register content and SecondFraction field the Synchronous pre-scaler
  *                factor to be used for second fraction ratio computation.
  * @param  Format Specifies the format of the entered parameters.
  *          This parameter can be one of the following values:
  *            @arg RTC_FORMAT_BIN: Binary data format
  *            @arg RTC_FORMAT_BCD: BCD data format
  * @note  You can use SubSeconds and SecondFraction (sTime structure fields returned) to convert SubSeconds
  *        value in second fraction ratio with time unit following generic formula:
  *        Second fraction ratio * time_unit= [(SecondFraction-SubSeconds)/(SecondFraction+1)] * time_unit
  *        This conversion can be performed only if no shift operation is pending (ie. SHFP=0) when PREDIV_S >= SS
  * @note  You must call HAL_RTC_GetDate() after HAL_RTC_GetTime() to unlock the values
  *        in the higher-order calendar shadow registers to ensure consistency between the time and date values.
  *        Reading RTC current time locks the values in calendar shadow registers until Current date is read
  *        to ensure consistency between the time and date values.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_RTC_GetTime(RTC_HandleTypeDef *hrtc, RTC_TimeTypeDef *sTime, uint32_t Format)
{
  uint32_t tmpreg;

  /* Check the parameters */
  assert_param(IS_RTC_FORMAT(Format));

  /* Get subseconds structure field from the corresponding register*/
  sTime->SubSeconds = (uint32_t)(hrtc->Instance->SSR);

  /* Get SecondFraction structure field from the corresponding register field*/
  sTime->SecondFraction = (uint32_t)(hrtc->Instance->PRER & RTC_PRER_PREDIV_S);

  /* Get the TR register */
  tmpreg = (uint32_t)(hrtc->Instance->TR & RTC_TR_RESERVED_MASK);

  /* Fill the structure fields with the read parameters */
  sTime->Hours      = (uint8_t)((tmpreg & (RTC_TR_HT  | RTC_TR_HU))  >> RTC_TR_HU_Pos);
  sTime->Minutes    = (uint8_t)((tmpreg & (RTC_TR_MNT | RTC_TR_MNU)) >> RTC_TR_MNU_Pos);
  sTime->Seconds    = (uint8_t)((tmpreg & (RTC_TR_ST  | RTC_TR_SU))  >> RTC_TR_SU_Pos);
  sTime->TimeFormat = (uint8_t)((tmpreg & (RTC_TR_PM))               >> RTC_TR_PM_Pos);

  /* Check the input parameters format */
  if(Format == RTC_FORMAT_BIN)
  {
    /* Convert the time structure parameters to Binary format */
    sTime->Hours   = (uint8_t)RTC_Bcd2ToByte(sTime->Hours);
    sTime->Minutes = (uint8_t)RTC_Bcd2ToByte(sTime->Minutes);
    sTime->Seconds = (uint8_t)RTC_Bcd2ToByte(sTime->Seconds);
  }

  return HAL_OK;
}

/**
  * @brief  Set RTC current date.
  * @param  hrtc RTC handle
  * @param  sDate Pointer to date structure
  * @param  Format specifies the format of the entered parameters.
  *          This parameter can be one of the following values:
  *            @arg RTC_FORMAT_BIN: Binary data format
  *            @arg RTC_FORMAT_BCD: BCD data format
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_RTC_SetDate(RTC_HandleTypeDef *hrtc, RTC_DateTypeDef *sDate, uint32_t Format)
{
  uint32_t datetmpreg;
  HAL_StatusTypeDef status;

  /* Check the parameters */
  assert_param(IS_RTC_FORMAT(Format));

  /* Process Locked */
  __HAL_LOCK(hrtc);

  hrtc->State = HAL_RTC_STATE_BUSY;

  if((Format == RTC_FORMAT_BIN) && ((sDate->Month & 0x10U) == 0x10U))
  {
    sDate->Month = (uint8_t)((sDate->Month & (uint8_t)~(0x10U)) + (uint8_t)0x0AU);
  }

  assert_param(IS_RTC_WEEKDAY(sDate->WeekDay));

  if(Format == RTC_FORMAT_BIN)
  {
    assert_param(IS_RTC_YEAR(sDate->Year));
    assert_param(IS_RTC_MONTH(sDate->Month));
    assert_param(IS_RTC_DATE(sDate->Date));

    datetmpreg = (((uint32_t)RTC_ByteToBcd2(sDate->Year)  << RTC_DR_YU_Pos) | \
                  ((uint32_t)RTC_ByteToBcd2(sDate->Month) << RTC_DR_MU_Pos) | \
                  ((uint32_t)RTC_ByteToBcd2(sDate->Date)  << RTC_DR_DU_Pos) | \
                  ((uint32_t)sDate->WeekDay               << RTC_DR_WDU_Pos));
  }
  else
  {
    assert_param(IS_RTC_YEAR(RTC_Bcd2ToByte(sDate->Year)));
    assert_param(IS_RTC_MONTH(RTC_Bcd2ToByte(sDate->Month)));
    assert_param(IS_RTC_DATE(RTC_Bcd2ToByte(sDate->Date)));

    datetmpreg = ((((uint32_t)sDate->Year)    << RTC_DR_YU_Pos) | \
                  (((uint32_t)sDate->Month)   << RTC_DR_MU_Pos) | \
                  (((uint32_t)sDate->Date)    << RTC_DR_DU_Pos) | \
                  (((uint32_t)sDate->WeekDay) << RTC_DR_WDU_Pos));
  }

  /* Disable the write protection for RTC registers */
  __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);


  /* Enter Initialization mode */
  status = RTC_EnterInitMode(hrtc);
  if (status == HAL_OK)
  {
    /* Set the RTC_DR register */
    hrtc->Instance->DR = (uint32_t)(datetmpreg & RTC_DR_RESERVED_MASK);


    /* Exit Initialization mode */
    status = RTC_ExitInitMode(hrtc);
  }

  /* Enable the write protection for RTC registers */
  __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);

  if (status == HAL_OK)
  {
    hrtc->State = HAL_RTC_STATE_READY;
  }

  /* Process Unlocked */
  __HAL_UNLOCK(hrtc);

  return status;


}

/**
  * @brief  Get RTC current date.
  * @param  hrtc RTC handle
  * @param  sDate Pointer to Date structure
  * @param  Format Specifies the format of the entered parameters.
  *          This parameter can be one of the following values:
  *            @arg RTC_FORMAT_BIN:  Binary data format
  *            @arg RTC_FORMAT_BCD:  BCD data format
  * @note  You must call HAL_RTC_GetDate() after HAL_RTC_GetTime() to unlock the values
  *        in the higher-order calendar shadow registers to ensure consistency between the time and date values.
  *        Reading RTC current time locks the values in calendar shadow registers until Current date is read.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_RTC_GetDate(RTC_HandleTypeDef *hrtc, RTC_DateTypeDef *sDate, uint32_t Format)
{
  uint32_t datetmpreg;

  /* Check the parameters */
  assert_param(IS_RTC_FORMAT(Format));

  /* Get the DR register */
  datetmpreg = (uint32_t)(hrtc->Instance->DR & RTC_DR_RESERVED_MASK);

  /* Fill the structure fields with the read parameters */
  sDate->Year    = (uint8_t)((datetmpreg & (RTC_DR_YT | RTC_DR_YU)) >> RTC_DR_YU_Pos);
  sDate->Month   = (uint8_t)((datetmpreg & (RTC_DR_MT | RTC_DR_MU)) >> RTC_DR_MU_Pos);
  sDate->Date    = (uint8_t)((datetmpreg & (RTC_DR_DT | RTC_DR_DU)) >> RTC_DR_DU_Pos);
  sDate->WeekDay = (uint8_t)((datetmpreg & (RTC_DR_WDU))            >> RTC_DR_WDU_Pos);

  /* Check the input parameters format */
  if(Format == RTC_FORMAT_BIN)
  {
    /* Convert the date structure parameters to Binary format */
    sDate->Year = (uint8_t)RTC_Bcd2ToByte(sDate->Year);
    sDate->Month = (uint8_t)RTC_Bcd2ToByte(sDate->Month);
    sDate->Date = (uint8_t)RTC_Bcd2ToByte(sDate->Date);
  }
  return HAL_OK;
}

/**
  * @}
  */

/** @addtogroup RTC_Exported_Functions_Group3
 *  @brief   RTC Alarm functions
 *
@verbatim
 ===============================================================================
                 ##### RTC Alarm functions #####
 ===============================================================================

 [..] This section provides functions allowing to configure Alarm feature

@endverbatim
  * @{
  */
/**
  * @brief  Set the specified RTC Alarm.
  * @param  hrtc RTC handle
  * @param  sAlarm Pointer to Alarm structure
  * @param  Format Specifies the format of the entered parameters.
  *          This parameter can be one of the following values:
  *             @arg RTC_FORMAT_BIN: Binary data format
  *             @arg RTC_FORMAT_BCD: BCD data format
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_RTC_SetAlarm(RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef *sAlarm, uint32_t Format)
{
  uint32_t tickstart;
  uint32_t tmpreg;
  uint32_t subsecondtmpreg;

  /* Check the parameters */
  assert_param(IS_RTC_FORMAT(Format));
  assert_param(IS_RTC_ALARM(sAlarm->Alarm));
  assert_param(IS_RTC_ALARM_MASK(sAlarm->AlarmMask));
  assert_param(IS_RTC_ALARM_DATE_WEEKDAY_SEL(sAlarm->AlarmDateWeekDaySel));
  assert_param(IS_RTC_ALARM_SUB_SECOND_VALUE(sAlarm->AlarmTime.SubSeconds));
  assert_param(IS_RTC_ALARM_SUB_SECOND_MASK(sAlarm->AlarmSubSecondMask));

  /* Process Locked */
  __HAL_LOCK(hrtc);

  hrtc->State = HAL_RTC_STATE_BUSY;

  if(Format == RTC_FORMAT_BIN)
  {
    if((hrtc->Instance->CR & RTC_CR_FMT) != 0U)
    {
      assert_param(IS_RTC_HOUR12(sAlarm->AlarmTime.Hours));
      assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat));
    }
    else
    {
      sAlarm->AlarmTime.TimeFormat = 0x00U;
      assert_param(IS_RTC_HOUR24(sAlarm->AlarmTime.Hours));
    }
    assert_param(IS_RTC_MINUTES(sAlarm->AlarmTime.Minutes));
    assert_param(IS_RTC_SECONDS(sAlarm->AlarmTime.Seconds));

    if(sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE)
    {
      assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(sAlarm->AlarmDateWeekDay));
    }
    else
    {
      assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(sAlarm->AlarmDateWeekDay));
    }

    tmpreg = (((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Hours)   << RTC_ALRMAR_HU_Pos)  | \
              ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Minutes) << RTC_ALRMAR_MNU_Pos) | \
              ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Seconds) << RTC_ALRMAR_SU_Pos)  | \
              ((uint32_t)sAlarm->AlarmTime.TimeFormat              << RTC_ALRMAR_PM_Pos)  | \
              ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmDateWeekDay)  << RTC_ALRMAR_DU_Pos)  | \
              ((uint32_t)sAlarm->AlarmDateWeekDaySel)                                     | \
              ((uint32_t)sAlarm->AlarmMask));
  }
  else
  {
    if((hrtc->Instance->CR & RTC_CR_FMT) != 0U)
    {
      assert_param(IS_RTC_HOUR12(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours)));
      assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat));
    }
    else
    {
      sAlarm->AlarmTime.TimeFormat = 0x00U;
      assert_param(IS_RTC_HOUR24(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours)));
    }

    assert_param(IS_RTC_MINUTES(RTC_Bcd2ToByte(sAlarm->AlarmTime.Minutes)));
    assert_param(IS_RTC_SECONDS(RTC_Bcd2ToByte(sAlarm->AlarmTime.Seconds)));

    if(sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE)
    {
      assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay)));
    }
    else
    {
      assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay)));
    }

    tmpreg = (((uint32_t)sAlarm->AlarmTime.Hours       << RTC_ALRMAR_HU_Pos)  | \
              ((uint32_t)sAlarm->AlarmTime.Minutes     << RTC_ALRMAR_MNU_Pos) | \
              ((uint32_t)sAlarm->AlarmTime.Seconds     << RTC_ALRMAR_SU_Pos)  | \
              ((uint32_t)sAlarm->AlarmTime.TimeFormat  << RTC_ALRMAR_PM_Pos)  | \
              ((uint32_t)sAlarm->AlarmDateWeekDay      << RTC_ALRMAR_DU_Pos)  | \
              ((uint32_t)sAlarm->AlarmDateWeekDaySel)                         | \
              ((uint32_t)sAlarm->AlarmMask));
  }

  /* Configure the Alarm A or Alarm B Sub Second registers */
  subsecondtmpreg = (uint32_t)((uint32_t)(sAlarm->AlarmTime.SubSeconds) | (uint32_t)(sAlarm->AlarmSubSecondMask));

  /* Disable the write protection for RTC registers */
  __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);

  /* Configure the Alarm register */
  if(sAlarm->Alarm == RTC_ALARM_A)
  {
    /* Disable the Alarm A interrupt */
    __HAL_RTC_ALARMA_DISABLE(hrtc);
    /* Clear flag alarm A */
    __HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRAF);
    /* In case of interrupt mode is used, the interrupt source must disabled */
    __HAL_RTC_ALARM_DISABLE_IT(hrtc, RTC_IT_ALRA);

    tickstart = HAL_GetTick();
    /* Wait till RTC ALRAWF flag is set and if timeout is reached exit */
#if defined(TAMP)
    while (READ_BIT(hrtc->Instance->ICSR, RTC_FLAG_ALRAWF) == 0U)
#else
    while (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRAWF) == 0U)
#endif /* TAMP */
    {
      if((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE)
      {
        /* Enable the write protection for RTC registers */
        __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);

        hrtc->State = HAL_RTC_STATE_TIMEOUT;

        /* Process Unlocked */
        __HAL_UNLOCK(hrtc);

        return HAL_TIMEOUT;
      }
    }

    hrtc->Instance->ALRMAR = (uint32_t)tmpreg;
    /* Configure the Alarm A Sub Second register */
    hrtc->Instance->ALRMASSR = subsecondtmpreg;
    /* Configure the Alarm state: Enable Alarm */
    __HAL_RTC_ALARMA_ENABLE(hrtc);
  }
  else
  {
    /* Disable the Alarm B interrupt */
    __HAL_RTC_ALARMB_DISABLE(hrtc);
    /* Clear flag alarm B */
    __HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRBF);
    /* In case of interrupt mode is used, the interrupt source must disabled */
    __HAL_RTC_ALARM_DISABLE_IT(hrtc, RTC_IT_ALRB);

    tickstart = HAL_GetTick();
    /* Wait till RTC ALRBWF flag is set and if timeout is reached exit */
#if defined(TAMP)
    while (READ_BIT(hrtc->Instance->ICSR, RTC_FLAG_ALRBWF) == 0U)
#else
    while (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRBWF) == 0U)
#endif /* TAMP */
    {
      if((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE)
      {
        /* Enable the write protection for RTC registers */
        __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);

        hrtc->State = HAL_RTC_STATE_TIMEOUT;

        /* Process Unlocked */
        __HAL_UNLOCK(hrtc);

        return HAL_TIMEOUT;
      }
    }

    hrtc->Instance->ALRMBR = (uint32_t)tmpreg;
    /* Configure the Alarm B Sub Second register */
    hrtc->Instance->ALRMBSSR = subsecondtmpreg;
    /* Configure the Alarm state: Enable Alarm */
    __HAL_RTC_ALARMB_ENABLE(hrtc);
  }

  /* Enable the write protection for RTC registers */
  __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);

  /* Change RTC state */
  hrtc->State = HAL_RTC_STATE_READY;

  /* Process Unlocked */
  __HAL_UNLOCK(hrtc);

  return HAL_OK;
}

/**
  * @brief  Set the specified RTC Alarm with Interrupt.
  * @param  hrtc RTC handle
  * @param  sAlarm Pointer to Alarm structure
  * @param  Format Specifies the format of the entered parameters.
  *          This parameter can be one of the following values:
  *             @arg RTC_FORMAT_BIN: Binary data format
  *             @arg RTC_FORMAT_BCD: BCD data format
  * @note   The Alarm register can only be written when the corresponding Alarm
  *         is disabled (Use the HAL_RTC_DeactivateAlarm()).
  * @note   The HAL_RTC_SetTime() must be called before enabling the Alarm feature.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_RTC_SetAlarm_IT(RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef *sAlarm, uint32_t Format)
{
  uint32_t tickstart;
  uint32_t tmpreg;
  uint32_t subsecondtmpreg;

  /* Check the parameters */
  assert_param(IS_RTC_FORMAT(Format));
  assert_param(IS_RTC_ALARM(sAlarm->Alarm));
  assert_param(IS_RTC_ALARM_MASK(sAlarm->AlarmMask));
  assert_param(IS_RTC_ALARM_DATE_WEEKDAY_SEL(sAlarm->AlarmDateWeekDaySel));
  assert_param(IS_RTC_ALARM_SUB_SECOND_VALUE(sAlarm->AlarmTime.SubSeconds));
  assert_param(IS_RTC_ALARM_SUB_SECOND_MASK(sAlarm->AlarmSubSecondMask));

  /* Process Locked */
  __HAL_LOCK(hrtc);

  hrtc->State = HAL_RTC_STATE_BUSY;

  if(Format == RTC_FORMAT_BIN)
  {
    if((hrtc->Instance->CR & RTC_CR_FMT) != 0U)
    {
      assert_param(IS_RTC_HOUR12(sAlarm->AlarmTime.Hours));
      assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat));
    }
    else
    {
      sAlarm->AlarmTime.TimeFormat = 0x00U;
      assert_param(IS_RTC_HOUR24(sAlarm->AlarmTime.Hours));
    }
    assert_param(IS_RTC_MINUTES(sAlarm->AlarmTime.Minutes));
    assert_param(IS_RTC_SECONDS(sAlarm->AlarmTime.Seconds));

    if(sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE)
    {
      assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(sAlarm->AlarmDateWeekDay));
    }
    else
    {
      assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(sAlarm->AlarmDateWeekDay));
    }

    tmpreg = (((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Hours)   << RTC_ALRMAR_HU_Pos)  | \
              ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Minutes) << RTC_ALRMAR_MNU_Pos) | \
              ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Seconds) << RTC_ALRMAR_SU_Pos)  | \
              ((uint32_t)sAlarm->AlarmTime.TimeFormat              << RTC_ALRMAR_PM_Pos)  | \
              ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmDateWeekDay)  << RTC_ALRMAR_DU_Pos)  | \
              ((uint32_t)sAlarm->AlarmDateWeekDaySel)                                     | \
              ((uint32_t)sAlarm->AlarmMask));
  }
  else
  {
    if((hrtc->Instance->CR & RTC_CR_FMT) != 0U)
    {
      assert_param(IS_RTC_HOUR12(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours)));
      assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat));
    }
    else
    {
      sAlarm->AlarmTime.TimeFormat = 0x00U;
      assert_param(IS_RTC_HOUR24(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours)));
    }

    assert_param(IS_RTC_MINUTES(RTC_Bcd2ToByte(sAlarm->AlarmTime.Minutes)));
    assert_param(IS_RTC_SECONDS(RTC_Bcd2ToByte(sAlarm->AlarmTime.Seconds)));

    if(sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE)
    {
      assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay)));
    }
    else
    {
      assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay)));
    }

    tmpreg = (((uint32_t)sAlarm->AlarmTime.Hours       << RTC_ALRMAR_HU_Pos)  | \
              ((uint32_t)sAlarm->AlarmTime.Minutes     << RTC_ALRMAR_MNU_Pos) | \
              ((uint32_t)sAlarm->AlarmTime.Seconds     << RTC_ALRMAR_SU_Pos)  | \
              ((uint32_t)sAlarm->AlarmTime.TimeFormat  << RTC_ALRMAR_PM_Pos)  | \
              ((uint32_t)sAlarm->AlarmDateWeekDay      << RTC_ALRMAR_DU_Pos)  | \
              ((uint32_t)sAlarm->AlarmDateWeekDaySel)                         | \
              ((uint32_t)sAlarm->AlarmMask));
  }
  /* Configure the Alarm A or Alarm B Sub Second registers */
  subsecondtmpreg = (uint32_t)((uint32_t)(sAlarm->AlarmTime.SubSeconds) | (uint32_t)(sAlarm->AlarmSubSecondMask));

  /* Disable the write protection for RTC registers */
  __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);

  /* Configure the Alarm register */
  if(sAlarm->Alarm == RTC_ALARM_A)
  {
    /* Disable the Alarm A interrupt */
    __HAL_RTC_ALARMA_DISABLE(hrtc);

    /* Clear flag alarm A */
    __HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRAF);

    tickstart = HAL_GetTick();
    /* Wait till RTC ALRAWF flag is set and if timeout is reached exit */
#if defined(TAMP)
    while (READ_BIT(hrtc->Instance->ICSR, RTC_FLAG_ALRAWF) == 0U)
#else
    while (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRAWF) == 0U)
#endif /* TAMP */
    {
      if((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE)
      {
        /* Enable the write protection for RTC registers */
        __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);

        hrtc->State = HAL_RTC_STATE_TIMEOUT;

        /* Process Unlocked */
        __HAL_UNLOCK(hrtc);

        return HAL_TIMEOUT;
      }
    }

    hrtc->Instance->ALRMAR = (uint32_t)tmpreg;
    /* Configure the Alarm A Sub Second register */
    hrtc->Instance->ALRMASSR = subsecondtmpreg;
    /* Configure the Alarm state: Enable Alarm */
    __HAL_RTC_ALARMA_ENABLE(hrtc);
    /* Configure the Alarm interrupt */
    __HAL_RTC_ALARM_ENABLE_IT(hrtc, RTC_IT_ALRA);
  }
  else
  {
    /* Disable the Alarm B interrupt */
    __HAL_RTC_ALARMB_DISABLE(hrtc);

    /* Clear flag alarm B */
    __HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRBF);

    tickstart = HAL_GetTick();
    /* Wait till RTC ALRBWF flag is set and if timeout is reached exit */
#if defined(TAMP)
    while (READ_BIT(hrtc->Instance->ICSR, RTC_FLAG_ALRBWF) == 0U)
#else
    while (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRBWF) == 0U)
#endif /* TAMP */
    {
      if((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE)
      {
        /* Enable the write protection for RTC registers */
        __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);

        hrtc->State = HAL_RTC_STATE_TIMEOUT;

        /* Process Unlocked */
        __HAL_UNLOCK(hrtc);

        return HAL_TIMEOUT;
      }
    }

    hrtc->Instance->ALRMBR = (uint32_t)tmpreg;
    /* Configure the Alarm B Sub Second register */
    hrtc->Instance->ALRMBSSR = subsecondtmpreg;
    /* Configure the Alarm state: Enable Alarm */
    __HAL_RTC_ALARMB_ENABLE(hrtc);
    /* Configure the Alarm interrupt */
    __HAL_RTC_ALARM_ENABLE_IT(hrtc, RTC_IT_ALRB);
  }

  /* RTC Alarm Interrupt Configuration: EXTI configuration */
#if defined(DUAL_CORE)
  if (HAL_GetCurrentCPUID() == CM7_CPUID)
  {
    __HAL_RTC_ALARM_EXTI_ENABLE_IT();
  }
  else
  {
    __HAL_RTC_ALARM_EXTID2_ENABLE_IT();
  }
#else  /* SINGLE_CORE */
  __HAL_RTC_ALARM_EXTI_ENABLE_IT();
#endif

  __HAL_RTC_ALARM_EXTI_ENABLE_RISING_EDGE();

  /* Enable the write protection for RTC registers */
  __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);

  hrtc->State = HAL_RTC_STATE_READY;

  /* Process Unlocked */
  __HAL_UNLOCK(hrtc);

  return HAL_OK;
}

/**
  * @brief  Deactivate the specified RTC Alarm.
  * @param  hrtc RTC handle
  * @param  Alarm Specifies the Alarm.
  *          This parameter can be one of the following values:
  *            @arg RTC_ALARM_A:  AlarmA
  *            @arg RTC_ALARM_B:  AlarmB
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_RTC_DeactivateAlarm(RTC_HandleTypeDef *hrtc, uint32_t Alarm)
{
  uint32_t tickstart;

  /* Check the parameters */
  assert_param(IS_RTC_ALARM(Alarm));

  /* Process Locked */
  __HAL_LOCK(hrtc);

  hrtc->State = HAL_RTC_STATE_BUSY;

  /* Disable the write protection for RTC registers */
  __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);

  if(Alarm == RTC_ALARM_A)
  {
    /* AlarmA */
    __HAL_RTC_ALARMA_DISABLE(hrtc);

    /* In case of interrupt mode is used, the interrupt source must disabled */
    __HAL_RTC_ALARM_DISABLE_IT(hrtc, RTC_IT_ALRA);

    tickstart = HAL_GetTick();

    /* Wait till RTC ALRxWF flag is set and if timeout is reached exit */
#if defined(TAMP)
    while (READ_BIT(hrtc->Instance->ICSR, RTC_FLAG_ALRAWF) == 0U)
#else
    while (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRAWF) == 0U)
#endif /* TAMP */
    {
      if((HAL_GetTick()  - tickstart) > RTC_TIMEOUT_VALUE)
      {
        /* Enable the write protection for RTC registers */
        __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);

        hrtc->State = HAL_RTC_STATE_TIMEOUT;

        /* Process Unlocked */
        __HAL_UNLOCK(hrtc);

        return HAL_TIMEOUT;
      }
    }
  }
  else
  {
    /* AlarmB */
    __HAL_RTC_ALARMB_DISABLE(hrtc);

    /* In case of interrupt mode is used, the interrupt source must disabled */
    __HAL_RTC_ALARM_DISABLE_IT(hrtc, RTC_IT_ALRB);

    tickstart = HAL_GetTick();

    /* Wait till RTC ALRxWF flag is set and if timeout is reached exit */
#if defined(TAMP)
    while (READ_BIT(hrtc->Instance->ICSR, RTC_FLAG_ALRBWF) == 0U)
#else
    while (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRBWF) == 0U)
#endif /* TAMP */
    {
      if((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE)
      {
        /* Enable the write protection for RTC registers */
        __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);

        hrtc->State = HAL_RTC_STATE_TIMEOUT;

        /* Process Unlocked */
        __HAL_UNLOCK(hrtc);

        return HAL_TIMEOUT;
      }
    }
  }
  /* Enable the write protection for RTC registers */
  __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);

  hrtc->State = HAL_RTC_STATE_READY;

  /* Process Unlocked */
  __HAL_UNLOCK(hrtc);

  return HAL_OK;
}

/**
  * @brief  Get the RTC Alarm value and masks.
  * @param  hrtc RTC handle
  * @param  sAlarm Pointer to Date structure
  * @param  Alarm Specifies the Alarm.
  *          This parameter can be one of the following values:
  *             @arg RTC_ALARM_A: AlarmA
  *             @arg RTC_ALARM_B: AlarmB
  * @param  Format Specifies the format of the entered parameters.
  *          This parameter can be one of the following values:
  *             @arg RTC_FORMAT_BIN: Binary data format
  *             @arg RTC_FORMAT_BCD: BCD data format
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_RTC_GetAlarm(RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef *sAlarm, uint32_t Alarm, uint32_t Format)
{
  uint32_t tmpreg;
  uint32_t subsecondtmpreg;

  /* Check the parameters */
  assert_param(IS_RTC_FORMAT(Format));
  assert_param(IS_RTC_ALARM(Alarm));

  if(Alarm == RTC_ALARM_A)
  {
    /* AlarmA */
    sAlarm->Alarm = RTC_ALARM_A;

    tmpreg = (uint32_t)(hrtc->Instance->ALRMAR);
    subsecondtmpreg = (uint32_t)((hrtc->Instance->ALRMASSR) & RTC_ALRMASSR_SS);

    /* Fill the structure with the read parameters */
    sAlarm->AlarmTime.Hours      = (uint8_t)((tmpreg & (RTC_ALRMAR_HT  | RTC_ALRMAR_HU))  >> RTC_ALRMAR_HU_Pos);
    sAlarm->AlarmTime.Minutes    = (uint8_t)((tmpreg & (RTC_ALRMAR_MNT | RTC_ALRMAR_MNU)) >> RTC_ALRMAR_MNU_Pos);
    sAlarm->AlarmTime.Seconds    = (uint8_t)((tmpreg & (RTC_ALRMAR_ST  | RTC_ALRMAR_SU))  >> RTC_ALRMAR_SU_Pos);
    sAlarm->AlarmTime.TimeFormat = (uint8_t)((tmpreg &  RTC_ALRMAR_PM)                    >> RTC_ALRMAR_PM_Pos);
    sAlarm->AlarmTime.SubSeconds = (uint32_t) subsecondtmpreg;
    sAlarm->AlarmDateWeekDay     = (uint8_t)((tmpreg & (RTC_ALRMAR_DT  | RTC_ALRMAR_DU))  >> RTC_ALRMAR_DU_Pos);
    sAlarm->AlarmDateWeekDaySel  = (uint32_t)(tmpreg &  RTC_ALRMAR_WDSEL);
    sAlarm->AlarmMask            = (uint32_t)(tmpreg &  RTC_ALARMMASK_ALL);
  }
  else
  {
    sAlarm->Alarm = RTC_ALARM_B;

    tmpreg = (uint32_t)(hrtc->Instance->ALRMBR);
    subsecondtmpreg = (uint32_t)((hrtc->Instance->ALRMBSSR) & RTC_ALRMBSSR_SS);

    /* Fill the structure with the read parameters */
    sAlarm->AlarmTime.Hours      = (uint8_t)((tmpreg & (RTC_ALRMBR_HT  | RTC_ALRMBR_HU))  >> RTC_ALRMBR_HU_Pos);
    sAlarm->AlarmTime.Minutes    = (uint8_t)((tmpreg & (RTC_ALRMBR_MNT | RTC_ALRMBR_MNU)) >> RTC_ALRMBR_MNU_Pos);
    sAlarm->AlarmTime.Seconds    = (uint8_t)((tmpreg & (RTC_ALRMBR_ST  | RTC_ALRMBR_SU))  >> RTC_ALRMBR_SU_Pos);
    sAlarm->AlarmTime.TimeFormat = (uint8_t)((tmpreg &  RTC_ALRMBR_PM)                    >> RTC_ALRMBR_PM_Pos);
    sAlarm->AlarmTime.SubSeconds = (uint32_t) subsecondtmpreg;
    sAlarm->AlarmDateWeekDay     = (uint8_t)((tmpreg & (RTC_ALRMBR_DT | RTC_ALRMBR_DU))   >> RTC_ALRMBR_DU_Pos);
    sAlarm->AlarmDateWeekDaySel  = (uint32_t)(tmpreg &  RTC_ALRMBR_WDSEL);
    sAlarm->AlarmMask            = (uint32_t)(tmpreg &  RTC_ALARMMASK_ALL);
  }

  if(Format == RTC_FORMAT_BIN)
  {
    sAlarm->AlarmTime.Hours = RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours);
    sAlarm->AlarmTime.Minutes = RTC_Bcd2ToByte(sAlarm->AlarmTime.Minutes);
    sAlarm->AlarmTime.Seconds = RTC_Bcd2ToByte(sAlarm->AlarmTime.Seconds);
    sAlarm->AlarmDateWeekDay = RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay);
  }

  return HAL_OK;
}

/**
  * @brief  Handle Alarm interrupt request.
  * @param  hrtc RTC handle
  * @retval None
  */
void HAL_RTC_AlarmIRQHandler(RTC_HandleTypeDef *hrtc)
{
  /* Clear the EXTI's line Flag for RTC Alarm */
#if defined(DUAL_CORE)
  if(HAL_GetCurrentCPUID() == CM7_CPUID)
  {
    __HAL_RTC_ALARM_EXTI_CLEAR_FLAG();
  }
  else
  {
    __HAL_RTC_ALARM_EXTID2_CLEAR_FLAG();
  }
#else  /* SINGLE_CORE */
  __HAL_RTC_ALARM_EXTI_CLEAR_FLAG();
#endif /* DUAL_CORE */

#if defined(TAMP)
  /* Get interrupt status */
  uint32_t tmp = hrtc->Instance->MISR;

  if((tmp & RTC_FLAG_ALRAF) != 0u)
  {
    /* Clear the AlarmA interrupt pending bit */
    __HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRAF);

    /* Call Alarm A Callback */
#if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
    hrtc->AlarmAEventCallback(hrtc);
#else  /* (USE_HAL_RTC_REGISTER_CALLBACKS == 1) */
    HAL_RTC_AlarmAEventCallback(hrtc);
#endif /* (USE_HAL_RTC_REGISTER_CALLBACKS == 1) */
  }

  if((tmp & RTC_MISR_ALRBMF) != 0u)
  {
    /* Clear the AlarmB interrupt pending bit */
    hrtc->Instance->SCR = RTC_SCR_CALRBF;

    /* Call Alarm B Callback */
#if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
    hrtc->AlarmBEventCallback(hrtc);
#else  /* (USE_HAL_RTC_REGISTER_CALLBACKS == 1) */
    HAL_RTCEx_AlarmBEventCallback(hrtc);
#endif /* (USE_HAL_RTC_REGISTER_CALLBACKS == 1) */
  }
#else
  /* Get the AlarmA interrupt source enable status */
  if(__HAL_RTC_ALARM_GET_IT_SOURCE(hrtc, RTC_IT_ALRA) != 0U)
  {
    /* Get the pending status of the AlarmA Interrupt */
    if(__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRAF) != 0U)
    {
      /* Clear the AlarmA interrupt pending bit */
      __HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRAF);

#if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
      hrtc->AlarmAEventCallback(hrtc);
#else  /* (USE_HAL_RTC_REGISTER_CALLBACKS == 1) */
      HAL_RTC_AlarmAEventCallback(hrtc);
#endif /* (USE_HAL_RTC_REGISTER_CALLBACKS == 1) */
    }
  }

  /* Get the AlarmB interrupt source enable status */
  if(__HAL_RTC_ALARM_GET_IT_SOURCE(hrtc, RTC_IT_ALRB) != 0U)
  {
    /* Get the pending status of the AlarmB Interrupt */
    if(__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRBF) != 0U)
    {
      /* Clear the AlarmB interrupt pending bit */
      __HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRBF);

      /* AlarmB callback */
#if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
      hrtc->AlarmBEventCallback(hrtc);
#else  /* (USE_HAL_RTC_REGISTER_CALLBACKS == 1) */
      HAL_RTCEx_AlarmBEventCallback(hrtc);
#endif /* (USE_HAL_RTC_REGISTER_CALLBACKS == 1) */
    }
  }
#endif /* TAMP */

  /* Change RTC state */
  hrtc->State = HAL_RTC_STATE_READY;
}

/**
  * @brief  Alarm A callback.
  * @param  hrtc RTC handle
  * @retval None
  */
__weak void HAL_RTC_AlarmAEventCallback(RTC_HandleTypeDef *hrtc)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(hrtc);

  /* NOTE : This function should not be modified, when the callback is needed,
            the HAL_RTC_AlarmAEventCallback could be implemented in the user file
   */
}

/**
  * @brief  Handle AlarmA Polling request.
  * @param  hrtc RTC handle
  * @param  Timeout Timeout duration
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_RTC_PollForAlarmAEvent(RTC_HandleTypeDef *hrtc, uint32_t Timeout)
{

  uint32_t tickstart = HAL_GetTick();

  while (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRAF) == 0U)
  {
    if(Timeout != HAL_MAX_DELAY)
    {
      if(((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U))
      {
        hrtc->State = HAL_RTC_STATE_TIMEOUT;
        return HAL_TIMEOUT;
      }
    }
  }

  /* Clear the Alarm interrupt pending bit */
  __HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRAF);

  /* Change RTC state */
  hrtc->State = HAL_RTC_STATE_READY;

  return HAL_OK;
}

/**
  * @}
  */

/** @addtogroup RTC_Exported_Functions_Group4
 *  @brief   Peripheral Control functions
 *
@verbatim
 ===============================================================================
                     ##### Peripheral Control functions #####
 ===============================================================================
    [..]
    This subsection provides functions allowing to
      (+) Wait for RTC Time and Date Synchronization

@endverbatim
  * @{
  */

/**
  * @brief  Wait until the RTC Time and Date registers (RTC_TR and RTC_DR) are
  *         synchronized with RTC APB clock.
  * @note   The RTC Resynchronization mode is write protected, use the
  *         __HAL_RTC_WRITEPROTECTION_DISABLE() before calling this function.
  * @note   To read the calendar through the shadow registers after Calendar
  *         initialization, calendar update or after wakeup from low power modes
  *         the software must first clear the RSF flag.
  *         The software must then wait until it is set again before reading
  *         the calendar, which means that the calendar registers have been
  *         correctly copied into the RTC_TR and RTC_DR shadow registers.
  * @param  hrtc RTC handle
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_RTC_WaitForSynchro(RTC_HandleTypeDef *hrtc)
{
  uint32_t tickstart;

  /* Clear RSF flag, keep reserved bits at reset values (setting other flags has no effect) */
#if defined(TAMP)
  hrtc->Instance->ICSR = ((uint32_t)(RTC_RSF_MASK & RTC_ICSR_RESERVED_MASK));
#else
  hrtc->Instance->ISR = ((uint32_t)(RTC_RSF_MASK & RTC_ISR_RESERVED_MASK));
#endif /* TAMP */

  tickstart = HAL_GetTick();

  /* Wait the registers to be synchronised */
#if defined(TAMP)
  while ((hrtc->Instance->ICSR & RTC_ICSR_RSF) == 0U)
#else
    while ((hrtc->Instance->ISR & RTC_ISR_RSF) == 0U)
#endif /* TAMP */
    {
      if((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE)
      {
        return HAL_TIMEOUT;
      }
    }

  return HAL_OK;
}

/**
  * @}
  */

/** @addtogroup RTC_Exported_Functions_Group5
 *  @brief   Peripheral State functions
 *
@verbatim
 ===============================================================================
                     ##### Peripheral State functions #####
 ===============================================================================
    [..]
    This subsection provides functions allowing to
      (+) Get RTC state

@endverbatim
  * @{
  */
/**
  * @brief  Return the RTC handle state.
  * @param  hrtc RTC handle
  * @retval HAL state
  */
HAL_RTCStateTypeDef HAL_RTC_GetState(RTC_HandleTypeDef *hrtc)
{
  /* Return RTC handle state */
  return hrtc->State;
}

/**
  * @}
  */

/**
  * @}
  */

/** @addtogroup RTC_Private_Functions
  * @{
  */
/**
  * @brief  Enter the RTC Initialization mode.
  * @note   The RTC Initialization mode is write protected, use the
  *         __HAL_RTC_WRITEPROTECTION_DISABLE() before calling this function.
  * @param  hrtc RTC handle
  * @retval HAL status
  */
HAL_StatusTypeDef RTC_EnterInitMode(RTC_HandleTypeDef *hrtc)
{
  uint32_t tickstart;
  HAL_StatusTypeDef status = HAL_OK;
  /* Check if the Initialization mode is set */
#if defined(TAMP)
  if ((hrtc->Instance->ICSR & RTC_ICSR_INITF) == 0U)
  {
    /* Set the Initialization mode */
    SET_BIT(hrtc->Instance->ICSR, RTC_ICSR_INIT);

    tickstart = HAL_GetTick();

    /* Wait till RTC is in INIT state and if timeout is reached exit */
    while (((hrtc->Instance->ICSR & RTC_ICSR_INITF) == 0U) && (status != HAL_TIMEOUT))
#else
  if ((hrtc->Instance->ISR & RTC_ISR_INITF) == 0U)
  {
    /* Set the Initialization mode */
    hrtc->Instance->ISR = (uint32_t)RTC_INIT_MASK;

    tickstart = HAL_GetTick();

    /* Wait till RTC is in INIT state and if timeout is reached exit */
    while (((hrtc->Instance->ISR & RTC_ISR_INITF) == 0U) && (status != HAL_TIMEOUT))
#endif /* TAMP */
    {
      if((HAL_GetTick()  - tickstart) > RTC_TIMEOUT_VALUE)
      {
        status = HAL_TIMEOUT;
        hrtc->State = HAL_RTC_STATE_TIMEOUT;
      }
    }
  }

  return status;
}

/**
  * @brief  Exit the RTC Initialization mode.
  * @param  hrtc RTC handle
  * @retval HAL status
  */
HAL_StatusTypeDef RTC_ExitInitMode(RTC_HandleTypeDef *hrtc)
{
  HAL_StatusTypeDef status = HAL_OK;

  /* Check if the Initialization mode is set */

  /* Exit Initialization mode */
#if defined(TAMP)
  CLEAR_BIT(RTC->ICSR, RTC_ICSR_INIT);
#else
  CLEAR_BIT(RTC->ISR, RTC_ISR_INIT);
#endif /* TAMP */

  /* If CR_BYPSHAD bit = 0, wait for synchro */
  if (READ_BIT(RTC->CR, RTC_CR_BYPSHAD) == 0U)
  {
    if (HAL_RTC_WaitForSynchro(hrtc) != HAL_OK)
    {
      hrtc->State = HAL_RTC_STATE_TIMEOUT;
      status = HAL_TIMEOUT;
    }
  }
  else
  {
    /* Clear BYPSHAD bit */
    CLEAR_BIT(RTC->CR, RTC_CR_BYPSHAD);
    if (HAL_RTC_WaitForSynchro(hrtc) != HAL_OK)
    {
      hrtc->State = HAL_RTC_STATE_TIMEOUT;
      status = HAL_TIMEOUT;
    }
    /* Restore BYPSHAD bit */
    SET_BIT(RTC->CR, RTC_CR_BYPSHAD);
  }

  return status;
}

/**
  * @brief  Convert a 2 digit decimal to BCD format.
  * @param  Value Byte to be converted
  * @retval Converted byte
  */
uint8_t RTC_ByteToBcd2(uint8_t Value)
{
  uint32_t bcdhigh = 0U;
  uint8_t  bcdlow  = Value;

  while (bcdlow >= 10U)
  {
    bcdhigh++;
    bcdlow -= 10U;
  }

  return ((uint8_t)(bcdhigh << 4U) | bcdlow);
}

/**
  * @brief  Convert from 2 digit BCD to Binary.
  * @param  Value BCD value to be converted
  * @retval Converted word
  */
uint8_t RTC_Bcd2ToByte(uint8_t Value)
{
  uint8_t tmp;
  tmp = ((Value & 0xF0U) >> 4U) * 10U;
  return (tmp + (Value & 0x0FU));
}

/**
  * @}
  */

#endif /* HAL_RTC_MODULE_ENABLED */
/**
  * @}
  */

/**
  * @}
  */