summaryrefslogtreecommitdiffstats
path: root/bsps/arm/imxrt/nxp/devices/MIMXRT1052/drivers/fsl_usdhc.c
blob: 8dd37e6345f23edf6f86b7114243072e3db51406 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
/*
 * Copyright (c) 2016, Freescale Semiconductor, Inc.
 * Copyright 2016-2020 NXP
 * All rights reserved.
 *
 * SPDX-License-Identifier: BSD-3-Clause
 */

#include "fsl_usdhc.h"
#if defined(FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL) && FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL
#include "fsl_cache.h"
#endif /* FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL */

/*******************************************************************************
 * Definitions
 ******************************************************************************/

/* Component ID definition, used by tools. */
#ifndef FSL_COMPONENT_ID
#define FSL_COMPONENT_ID "platform.drivers.usdhc"
#endif

/*! @brief Clock setting */
/* Max SD clock divisor from base clock */
#define USDHC_MAX_DVS          ((USDHC_SYS_CTRL_DVS_MASK >> USDHC_SYS_CTRL_DVS_SHIFT) + 1U)
#define USDHC_MAX_CLKFS        ((USDHC_SYS_CTRL_SDCLKFS_MASK >> USDHC_SYS_CTRL_SDCLKFS_SHIFT) + 1U)
#define USDHC_PREV_DVS(x)      ((x) -= 1U)
#define USDHC_PREV_CLKFS(x, y) ((x) >>= (y))
/*! @brief USDHC ADMA table address align size */
#define USDHC_ADMA_TABLE_ADDRESS_ALIGN (4U)

/* Typedef for interrupt handler. */
typedef void (*usdhc_isr_t)(USDHC_Type *base, usdhc_handle_t *handle);
/*! @brief check flag avalibility */
#define IS_USDHC_FLAG_SET(reg, flag) (((reg) & ((uint32_t)flag)) != 0UL)

/*******************************************************************************
 * Prototypes
 ******************************************************************************/
/*!
 * @brief Get the instance.
 *
 * @param base USDHC peripheral base address.
 * @return Instance number.
 */
static uint32_t USDHC_GetInstance(USDHC_Type *base);

/*!
 * @brief Start transfer according to current transfer state
 *
 * @param base USDHC peripheral base address.
 * @param data Data to be transferred.
 * @param flag data present flag
 * @param enDMA DMA enable flag
 */
static status_t USDHC_SetDataTransferConfig(USDHC_Type *base,
                                            usdhc_data_t *data,
                                            uint32_t *dataPresentFlag,
                                            bool enDMA);

/*!
 * @brief Receive command response
 *
 * @param base USDHC peripheral base address.
 * @param command Command to be sent.
 */
static status_t USDHC_ReceiveCommandResponse(USDHC_Type *base, usdhc_command_t *command);

/*!
 * @brief Read DATAPORT when buffer enable bit is set.
 *
 * @param base USDHC peripheral base address.
 * @param data Data to be read.
 * @param transferredWords The number of data words have been transferred last time transaction.
 * @return The number of total data words have been transferred after this time transaction.
 */
static uint32_t USDHC_ReadDataPort(USDHC_Type *base, usdhc_data_t *data, uint32_t transferredWords);

/*!
 * @brief Read data by using DATAPORT polling way.
 *
 * @param base USDHC peripheral base address.
 * @param data Data to be read.
 * @retval kStatus_Fail Read DATAPORT failed.
 * @retval kStatus_Success Operate successfully.
 */
static status_t USDHC_ReadByDataPortBlocking(USDHC_Type *base, usdhc_data_t *data);

/*!
 * @brief Write DATAPORT when buffer enable bit is set.
 *
 * @param base USDHC peripheral base address.
 * @param data Data to be read.
 * @param transferredWords The number of data words have been transferred last time.
 * @return The number of total data words have been transferred after this time transaction.
 */
static uint32_t USDHC_WriteDataPort(USDHC_Type *base, usdhc_data_t *data, uint32_t transferredWords);

/*!
 * @brief Write data by using DATAPORT polling way.
 *
 * @param base USDHC peripheral base address.
 * @param data Data to be transferred.
 * @retval kStatus_Fail Write DATAPORT failed.
 * @retval kStatus_Success Operate successfully.
 */
static status_t USDHC_WriteByDataPortBlocking(USDHC_Type *base, usdhc_data_t *data);

/*!
 * @brief Transfer data by polling way.
 *
 * @param base USDHC peripheral base address.
 * @param data Data to be transferred.
 * @param use DMA flag.
 * @retval kStatus_Fail Transfer data failed.
 * @retval kStatus_InvalidArgument Argument is invalid.
 * @retval kStatus_Success Operate successfully.
 */
static status_t USDHC_TransferDataBlocking(USDHC_Type *base, usdhc_data_t *data, bool enDMA);

/*!
 * @brief Handle card detect interrupt.
 *
 * @param base USDHC peripheral base address.
 * @param handle USDHC handle.
 * @param interruptFlags Card detect related interrupt flags.
 */
static void USDHC_TransferHandleCardDetect(USDHC_Type *base, usdhc_handle_t *handle, uint32_t interruptFlags);

/*!
 * @brief Handle command interrupt.
 *
 * @param base USDHC peripheral base address.
 * @param handle USDHC handle.
 * @param interruptFlags Command related interrupt flags.
 */
static void USDHC_TransferHandleCommand(USDHC_Type *base, usdhc_handle_t *handle, uint32_t interruptFlags);

/*!
 * @brief Handle data interrupt.
 *
 * @param base USDHC peripheral base address.
 * @param handle USDHC handle.
 * @param interruptFlags Data related interrupt flags.
 */
static void USDHC_TransferHandleData(USDHC_Type *base, usdhc_handle_t *handle, uint32_t interruptFlags);

/*!
 * @brief Handle SDIO card interrupt signal.
 *
 * @param base USDHC peripheral base address.
 * @param handle USDHC handle.
 */
static void USDHC_TransferHandleSdioInterrupt(USDHC_Type *base, usdhc_handle_t *handle);

/*!
 * @brief Handle SDIO block gap event.
 *
 * @param base USDHC peripheral base address.
 * @param handle USDHC handle.
 */
static void USDHC_TransferHandleBlockGap(USDHC_Type *base, usdhc_handle_t *handle);

#if defined(FSL_FEATURE_USDHC_HAS_SDR50_MODE) && (FSL_FEATURE_USDHC_HAS_SDR50_MODE)
/*!
 * @brief Handle retuning
 *
 * @param base USDHC peripheral base address.
 * @param handle USDHC handle.
 * @param interrupt flags
 */
static void USDHC_TransferHandleReTuning(USDHC_Type *base, usdhc_handle_t *handle, uint32_t interruptFlags);
#endif

/*!
 * @brief wait command done
 *
 * @param base USDHC peripheral base address.
 * @param command configuration
 * @param pollingCmdDone polling command done flag
 */
static status_t USDHC_WaitCommandDone(USDHC_Type *base, usdhc_command_t *command, bool pollingCmdDone);

/*******************************************************************************
 * Variables
 ******************************************************************************/
/*! @brief USDHC base pointer array */
static USDHC_Type *const s_usdhcBase[] = USDHC_BASE_PTRS;

/*! @brief USDHC internal handle pointer array */
static usdhc_handle_t *s_usdhcHandle[ARRAY_SIZE(s_usdhcBase)] = {NULL};

/*! @brief USDHC IRQ name array */
static const IRQn_Type s_usdhcIRQ[] = USDHC_IRQS;

#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
/*! @brief USDHC clock array name */
static const clock_ip_name_t s_usdhcClock[] = USDHC_CLOCKS;
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */

#if (defined(FSL_FEATURE_USDHC_HAS_RESET) && FSL_FEATURE_USDHC_HAS_RESET)
/*! @brief Pointers to USDHC resets for each instance. */
static const reset_ip_name_t s_usdhcResets[] = USDHC_RSTS;
#endif

/* USDHC ISR for transactional APIs. */
#if defined(__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050)
static usdhc_isr_t s_usdhcIsr = (usdhc_isr_t)DefaultISR;
#else
static usdhc_isr_t s_usdhcIsr;
#endif
/*! @brief Dummy data buffer for mmc boot mode  */
AT_NONCACHEABLE_SECTION_ALIGN(uint32_t s_usdhcBootDummy, USDHC_ADMA2_ADDRESS_ALIGN);

/*******************************************************************************
 * Code
 ******************************************************************************/
static uint32_t USDHC_GetInstance(USDHC_Type *base)
{
    uint8_t instance = 0;

    while ((instance < ARRAY_SIZE(s_usdhcBase)) && (s_usdhcBase[instance] != base))
    {
        instance++;
    }

    assert(instance < ARRAY_SIZE(s_usdhcBase));

    return instance;
}

static status_t USDHC_SetDataTransferConfig(USDHC_Type *base, usdhc_data_t *data, uint32_t *dataPresentFlag, bool enDMA)
{
    uint32_t mixCtrl = base->MIX_CTRL;

    if (data != NULL)
    {
        /* if transfer boot continous, only need set the CREQ bit, leave others as it is */
        if (data->dataType == (uint32_t)kUSDHC_TransferDataBootcontinous)
        {
            /* clear stop at block gap request */
            base->PROT_CTRL &= ~USDHC_PROT_CTRL_SABGREQ_MASK;
            /* continous transfer data */
            base->PROT_CTRL |= USDHC_PROT_CTRL_CREQ_MASK;
            return kStatus_Success;
        }

        /* check data inhibit flag */
        if (IS_USDHC_FLAG_SET(base->PRES_STATE, kUSDHC_DataInhibitFlag))
        {
            return kStatus_USDHC_BusyTransferring;
        }
        /* check transfer block count */
        if ((data->blockCount > USDHC_MAX_BLOCK_COUNT) || ((data->txData == NULL) && (data->rxData == NULL)))
        {
            return kStatus_InvalidArgument;
        }

        /* config mix parameter */
        mixCtrl &= ~(USDHC_MIX_CTRL_MSBSEL_MASK | USDHC_MIX_CTRL_BCEN_MASK | USDHC_MIX_CTRL_DTDSEL_MASK |
                     USDHC_MIX_CTRL_AC12EN_MASK);

        if (data->rxData != NULL)
        {
            mixCtrl |= USDHC_MIX_CTRL_DTDSEL_MASK;
        }

        if (data->blockCount > 1U)
        {
            mixCtrl |= USDHC_MIX_CTRL_MSBSEL_MASK | USDHC_MIX_CTRL_BCEN_MASK;
            /* auto command 12 */
            if (data->enableAutoCommand12)
            {
                mixCtrl |= USDHC_MIX_CTRL_AC12EN_MASK;
            }
        }

        /* auto command 23, auto send set block count cmd before multiple read/write */
        if ((data->enableAutoCommand23))
        {
            mixCtrl |= USDHC_MIX_CTRL_AC23EN_MASK;
            base->VEND_SPEC2 |= USDHC_VEND_SPEC2_ACMD23_ARGU2_EN_MASK;
            /* config the block count to DS_ADDR */
            base->DS_ADDR = data->blockCount;
        }
        else
        {
            mixCtrl &= ~USDHC_MIX_CTRL_AC23EN_MASK;
            base->VEND_SPEC2 &= ~USDHC_VEND_SPEC2_ACMD23_ARGU2_EN_MASK;
        }

        /* if transfer boot data, leave the block count to USDHC_SetMmcBootConfig function */
        if (data->dataType != (uint32_t)kUSDHC_TransferDataBoot)
        {
            /* config data block size/block count */
            base->BLK_ATT = ((base->BLK_ATT & ~(USDHC_BLK_ATT_BLKSIZE_MASK | USDHC_BLK_ATT_BLKCNT_MASK)) |
                             (USDHC_BLK_ATT_BLKSIZE(data->blockSize) | USDHC_BLK_ATT_BLKCNT(data->blockCount)));
        }
        else
        {
            mixCtrl |= USDHC_MIX_CTRL_MSBSEL_MASK | USDHC_MIX_CTRL_BCEN_MASK;
            base->PROT_CTRL |= USDHC_PROT_CTRL_RD_DONE_NO_8CLK_MASK;
        }

        /* data present flag */
        *dataPresentFlag |= (uint32_t)kUSDHC_DataPresentFlag;
    }
    else
    {
        /* clear data flags */
        mixCtrl &= ~(USDHC_MIX_CTRL_MSBSEL_MASK | USDHC_MIX_CTRL_BCEN_MASK | USDHC_MIX_CTRL_DTDSEL_MASK |
                     USDHC_MIX_CTRL_AC12EN_MASK | USDHC_MIX_CTRL_AC23EN_MASK);

        if (IS_USDHC_FLAG_SET(base->PRES_STATE, kUSDHC_CommandInhibitFlag))
        {
            return kStatus_USDHC_BusyTransferring;
        }
    }

    /* config the mix parameter */
    base->MIX_CTRL = mixCtrl;

    return kStatus_Success;
}

void USDHC_SetDataConfig(USDHC_Type *base,
                         usdhc_transfer_direction_t dataDirection,
                         uint32_t blockCount,
                         uint32_t blockSize)
{
    assert(blockCount <= USDHC_MAX_BLOCK_COUNT);

    uint32_t mixCtrl = base->MIX_CTRL;

    /* block attribute configuration */
    base->BLK_ATT = ((base->BLK_ATT & ~(USDHC_BLK_ATT_BLKSIZE_MASK | USDHC_BLK_ATT_BLKCNT_MASK)) |
                     (USDHC_BLK_ATT_BLKSIZE(blockSize) | USDHC_BLK_ATT_BLKCNT(blockCount)));

    /* config mix parameter */
    mixCtrl &= ~(USDHC_MIX_CTRL_MSBSEL_MASK | USDHC_MIX_CTRL_BCEN_MASK | USDHC_MIX_CTRL_DTDSEL_MASK);

    mixCtrl |= USDHC_MIX_CTRL_DTDSEL(dataDirection) | (blockCount > 1U ? USDHC_MIX_CTRL_MSBSEL_MASK : 0U);

    base->MIX_CTRL = mixCtrl;
}

static status_t USDHC_ReceiveCommandResponse(USDHC_Type *base, usdhc_command_t *command)
{
    assert(command != NULL);

    uint32_t response0 = base->CMD_RSP0;
    uint32_t response1 = base->CMD_RSP1;
    uint32_t response2 = base->CMD_RSP2;

    if (command->responseType != kCARD_ResponseTypeNone)
    {
        command->response[0U] = response0;
        if (command->responseType == kCARD_ResponseTypeR2)
        {
            /* R3-R2-R1-R0(lowest 8 bit is invalid bit) has the same format as R2 format in SD specification document
            after removed internal CRC7 and end bit. */
            command->response[0U] <<= 8U;
            command->response[1U] = (response1 << 8U) | ((response0 & 0xFF000000U) >> 24U);
            command->response[2U] = (response2 << 8U) | ((response1 & 0xFF000000U) >> 24U);
            command->response[3U] = (base->CMD_RSP3 << 8U) | ((response2 & 0xFF000000U) >> 24U);
        }
    }

    /* check response error flag */
    if ((command->responseErrorFlags != 0U) &&
        ((command->responseType == kCARD_ResponseTypeR1) || (command->responseType == kCARD_ResponseTypeR1b) ||
         (command->responseType == kCARD_ResponseTypeR6) || (command->responseType == kCARD_ResponseTypeR5)))
    {
        if (((command->responseErrorFlags) & (command->response[0U])) != 0U)
        {
            return kStatus_USDHC_SendCommandFailed;
        }
    }

    return kStatus_Success;
}

static uint32_t USDHC_ReadDataPort(USDHC_Type *base, usdhc_data_t *data, uint32_t transferredWords)
{
    uint32_t i;
    uint32_t totalWords;
    uint32_t wordsCanBeRead; /* The words can be read at this time. */
    uint32_t readWatermark = ((base->WTMK_LVL & USDHC_WTMK_LVL_RD_WML_MASK) >> USDHC_WTMK_LVL_RD_WML_SHIFT);

    /* If DMA is enable, do not need to polling data port */
    if ((base->MIX_CTRL & USDHC_MIX_CTRL_DMAEN_MASK) == 0U)
    {
        /*
         * Add non aligned access support ,user need make sure your buffer size is big
         * enough to hold the data,in other words,user need make sure the buffer size
         * is 4 byte aligned
         */
        if (data->blockSize % sizeof(uint32_t) != 0U)
        {
            data->blockSize +=
                sizeof(uint32_t) - (data->blockSize % sizeof(uint32_t)); /* make the block size as word-aligned */
        }

        totalWords = ((data->blockCount * data->blockSize) / sizeof(uint32_t));

        /* If watermark level is equal or bigger than totalWords, transfers totalWords data. */
        if (readWatermark >= totalWords)
        {
            wordsCanBeRead = totalWords;
        }
        /* If watermark level is less than totalWords and left words to be sent is equal or bigger than readWatermark,
        transfers watermark level words. */
        else if ((readWatermark < totalWords) && ((totalWords - transferredWords) >= readWatermark))
        {
            wordsCanBeRead = readWatermark;
        }
        /* If watermark level is less than totalWords and left words to be sent is less than readWatermark, transfers
        left
        words. */
        else
        {
            wordsCanBeRead = (totalWords - transferredWords);
        }

        i = 0U;
        while (i < wordsCanBeRead)
        {
            data->rxData[transferredWords++] = USDHC_ReadData(base);
            i++;
        }
    }

    return transferredWords;
}

static status_t USDHC_ReadByDataPortBlocking(USDHC_Type *base, usdhc_data_t *data)
{
    uint32_t totalWords;
    uint32_t transferredWords = 0U, interruptStatus = 0U;
    status_t error = kStatus_Success;

    /*
     * Add non aligned access support ,user need make sure your buffer size is big
     * enough to hold the data,in other words,user need make sure the buffer size
     * is 4 byte aligned
     */
    if (data->blockSize % sizeof(uint32_t) != 0U)
    {
        data->blockSize +=
            sizeof(uint32_t) - (data->blockSize % sizeof(uint32_t)); /* make the block size as word-aligned */
    }

    totalWords = ((data->blockCount * data->blockSize) / sizeof(uint32_t));

    while ((error == kStatus_Success) && (transferredWords < totalWords))
    {
        while (
            !(IS_USDHC_FLAG_SET(interruptStatus, ((uint32_t)kUSDHC_BufferReadReadyFlag |
                                                  (uint32_t)kUSDHC_DataErrorFlag | (uint32_t)kUSDHC_TuningErrorFlag))))
        {
            interruptStatus = USDHC_GetInterruptStatusFlags(base);
        }

        /* during std tuning process, software do not need to read data, but wait BRR is enough */
        if ((data->dataType == (uint32_t)kUSDHC_TransferDataTuning) &&
            (IS_USDHC_FLAG_SET(interruptStatus, kUSDHC_BufferReadReadyFlag)))
        {
            USDHC_ClearInterruptStatusFlags(base,
                                            (uint32_t)kUSDHC_BufferReadReadyFlag | (uint32_t)kUSDHC_TuningPassFlag);

            return kStatus_Success;
        }
#if defined(FSL_FEATURE_USDHC_HAS_SDR50_MODE) && (FSL_FEATURE_USDHC_HAS_SDR50_MODE)
        else if (IS_USDHC_FLAG_SET(interruptStatus, kUSDHC_TuningErrorFlag))
        {
            USDHC_ClearInterruptStatusFlags(base, kUSDHC_TuningErrorFlag);
            /* if tuning error occur ,return directly */
            error = kStatus_USDHC_TuningError;
        }
#endif
        else if (IS_USDHC_FLAG_SET(interruptStatus, kUSDHC_DataErrorFlag))
        {
            if (!(data->enableIgnoreError))
            {
                error = kStatus_Fail;
            }
            /* clear data error flag */
            USDHC_ClearInterruptStatusFlags(base, kUSDHC_DataErrorFlag);
        }
        else
        {
            /* Intentional empty */
        }

        if (error == kStatus_Success)
        {
            transferredWords = USDHC_ReadDataPort(base, data, transferredWords);
            /* clear buffer read ready */
            USDHC_ClearInterruptStatusFlags(base, kUSDHC_BufferReadReadyFlag);
            interruptStatus = 0U;
        }
    }

    /* Clear data complete flag after the last read operation. */
    USDHC_ClearInterruptStatusFlags(base, kUSDHC_DataCompleteFlag);

    return error;
}

static uint32_t USDHC_WriteDataPort(USDHC_Type *base, usdhc_data_t *data, uint32_t transferredWords)
{
    uint32_t i;
    uint32_t totalWords;
    uint32_t wordsCanBeWrote; /* Words can be wrote at this time. */
    uint32_t writeWatermark = ((base->WTMK_LVL & USDHC_WTMK_LVL_WR_WML_MASK) >> USDHC_WTMK_LVL_WR_WML_SHIFT);

    /* If DMA is enable, do not need to polling data port */
    if ((base->MIX_CTRL & USDHC_MIX_CTRL_DMAEN_MASK) == 0U)
    {
        /*
         * Add non aligned access support ,user need make sure your buffer size is big
         * enough to hold the data,in other words,user need make sure the buffer size
         * is 4 byte aligned
         */
        if (data->blockSize % sizeof(uint32_t) != 0U)
        {
            data->blockSize +=
                sizeof(uint32_t) - (data->blockSize % sizeof(uint32_t)); /* make the block size as word-aligned */
        }

        totalWords = ((data->blockCount * data->blockSize) / sizeof(uint32_t));

        /* If watermark level is equal or bigger than totalWords, transfers totalWords data.*/
        if (writeWatermark >= totalWords)
        {
            wordsCanBeWrote = totalWords;
        }
        /* If watermark level is less than totalWords and left words to be sent is equal or bigger than watermark,
        transfers watermark level words. */
        else if ((writeWatermark < totalWords) && ((totalWords - transferredWords) >= writeWatermark))
        {
            wordsCanBeWrote = writeWatermark;
        }
        /* If watermark level is less than totalWords and left words to be sent is less than watermark, transfers left
        words. */
        else
        {
            wordsCanBeWrote = (totalWords - transferredWords);
        }

        i = 0U;
        while (i < wordsCanBeWrote)
        {
            USDHC_WriteData(base, data->txData[transferredWords++]);
            i++;
        }
    }

    return transferredWords;
}

static status_t USDHC_WriteByDataPortBlocking(USDHC_Type *base, usdhc_data_t *data)
{
    uint32_t totalWords;

    uint32_t transferredWords = 0U, interruptStatus = 0U;
    status_t error = kStatus_Success;

    /*
     * Add non aligned access support ,user need make sure your buffer size is big
     * enough to hold the data,in other words,user need make sure the buffer size
     * is 4 byte aligned
     */
    if (data->blockSize % sizeof(uint32_t) != 0U)
    {
        data->blockSize +=
            sizeof(uint32_t) - (data->blockSize % sizeof(uint32_t)); /* make the block size as word-aligned */
    }

    totalWords = (data->blockCount * data->blockSize) / sizeof(uint32_t);

    while ((error == kStatus_Success) && (transferredWords < totalWords))
    {
        while (!(IS_USDHC_FLAG_SET(interruptStatus, (uint32_t)kUSDHC_BufferWriteReadyFlag |
                                                        (uint32_t)kUSDHC_DataErrorFlag |
                                                        (uint32_t)kUSDHC_TuningErrorFlag)))
        {
            interruptStatus = USDHC_GetInterruptStatusFlags(base);
        }
#if defined(FSL_FEATURE_USDHC_HAS_SDR50_MODE) && (FSL_FEATURE_USDHC_HAS_SDR50_MODE)
        if (IS_USDHC_FLAG_SET(interruptStatus, kUSDHC_TuningErrorFlag))
        {
            USDHC_ClearInterruptStatusFlags(base, kUSDHC_TuningErrorFlag);
            /* if tuning error occur ,return directly */
            return kStatus_USDHC_TuningError;
        }
        else
#endif
            if (IS_USDHC_FLAG_SET(interruptStatus, kUSDHC_DataErrorFlag))
        {
            if (!(data->enableIgnoreError))
            {
                error = kStatus_Fail;
            }
            /* clear data error flag */
            USDHC_ClearInterruptStatusFlags(base, kUSDHC_DataErrorFlag);
        }
        else
        {
            /* Intentional empty */
        }

        if (error == kStatus_Success)
        {
            transferredWords = USDHC_WriteDataPort(base, data, transferredWords);
            /* clear buffer write ready */
            USDHC_ClearInterruptStatusFlags(base, kUSDHC_BufferWriteReadyFlag);
            interruptStatus = 0U;
        }
    }

    /* Wait write data complete or data transfer error after the last writing operation. */
    while (!(IS_USDHC_FLAG_SET(interruptStatus, (uint32_t)kUSDHC_DataCompleteFlag | (uint32_t)kUSDHC_DataErrorFlag)))
    {
        interruptStatus = USDHC_GetInterruptStatusFlags(base);
    }

    if ((interruptStatus & (uint32_t)kUSDHC_DataErrorFlag) != 0UL)
    {
        if (!(data->enableIgnoreError))
        {
            error = kStatus_Fail;
        }
    }
    USDHC_ClearInterruptStatusFlags(base, ((uint32_t)kUSDHC_DataCompleteFlag | (uint32_t)kUSDHC_DataErrorFlag));

    return error;
}

/*!
 * brief send command function
 *
 * param base USDHC peripheral base address.
 * param command configuration
 */
void USDHC_SendCommand(USDHC_Type *base, usdhc_command_t *command)
{
    assert(NULL != command);

    uint32_t xferType = base->CMD_XFR_TYP, flags = command->flags;

    if (((base->PRES_STATE & (uint32_t)kUSDHC_CommandInhibitFlag) == 0U) && (command->type != kCARD_CommandTypeEmpty))
    {
        if ((command->responseType == kCARD_ResponseTypeR1) || (command->responseType == kCARD_ResponseTypeR5) ||
            (command->responseType == kCARD_ResponseTypeR6) || (command->responseType == kCARD_ResponseTypeR7))
        {
            flags |= ((uint32_t)kUSDHC_ResponseLength48Flag | (uint32_t)kUSDHC_EnableCrcCheckFlag |
                      (uint32_t)kUSDHC_EnableIndexCheckFlag);
        }
        else if ((command->responseType == kCARD_ResponseTypeR1b) || (command->responseType == kCARD_ResponseTypeR5b))
        {
            flags |= ((uint32_t)kUSDHC_ResponseLength48BusyFlag | (uint32_t)kUSDHC_EnableCrcCheckFlag |
                      (uint32_t)kUSDHC_EnableIndexCheckFlag);
        }
        else if (command->responseType == kCARD_ResponseTypeR2)
        {
            flags |= ((uint32_t)kUSDHC_ResponseLength136Flag | (uint32_t)kUSDHC_EnableCrcCheckFlag);
        }
        else if ((command->responseType == kCARD_ResponseTypeR3) || (command->responseType == kCARD_ResponseTypeR4))
        {
            flags |= ((uint32_t)kUSDHC_ResponseLength48Flag);
        }
        else
        {
            /* Intentional empty */
        }

        if (command->type == kCARD_CommandTypeAbort)
        {
            flags |= (uint32_t)kUSDHC_CommandTypeAbortFlag;
        }

        /* config cmd index */
        xferType &= ~(USDHC_CMD_XFR_TYP_CMDINX_MASK | USDHC_CMD_XFR_TYP_CMDTYP_MASK | USDHC_CMD_XFR_TYP_CICEN_MASK |
                      USDHC_CMD_XFR_TYP_CCCEN_MASK | USDHC_CMD_XFR_TYP_RSPTYP_MASK | USDHC_CMD_XFR_TYP_DPSEL_MASK);

        xferType |=
            (((command->index << USDHC_CMD_XFR_TYP_CMDINX_SHIFT) & USDHC_CMD_XFR_TYP_CMDINX_MASK) |
             ((flags) & (USDHC_CMD_XFR_TYP_CMDTYP_MASK | USDHC_CMD_XFR_TYP_CICEN_MASK | USDHC_CMD_XFR_TYP_CCCEN_MASK |
                         USDHC_CMD_XFR_TYP_RSPTYP_MASK | USDHC_CMD_XFR_TYP_DPSEL_MASK)));

        /* config the command xfertype and argument */
        base->CMD_ARG     = command->argument;
        base->CMD_XFR_TYP = xferType;
    }

    if (command->type == kCARD_CommandTypeEmpty)
    {
        /* disable CMD done interrupt for empty command */
        base->INT_SIGNAL_EN &= ~USDHC_INT_SIGNAL_EN_CCIEN_MASK;
    }
}

static status_t USDHC_WaitCommandDone(USDHC_Type *base, usdhc_command_t *command, bool pollingCmdDone)
{
    assert(NULL != command);

    status_t error           = kStatus_Success;
    uint32_t interruptStatus = 0U;
    /* check if need polling command done or not */
    if (pollingCmdDone)
    {
        /* Wait command complete or USDHC encounters error. */
        while (!(IS_USDHC_FLAG_SET(interruptStatus, kUSDHC_CommandFlag)))
        {
            interruptStatus = USDHC_GetInterruptStatusFlags(base);
        }

        if ((interruptStatus & (uint32_t)kUSDHC_CommandErrorFlag) != 0UL)
        {
            error = kStatus_Fail;
        }

        /* Receive response when command completes successfully. */
        if (error == kStatus_Success)
        {
            error = USDHC_ReceiveCommandResponse(base, command);
        }

        USDHC_ClearInterruptStatusFlags(base, kUSDHC_CommandFlag);
    }

    return error;
}

static status_t USDHC_TransferDataBlocking(USDHC_Type *base, usdhc_data_t *data, bool enDMA)
{
    status_t error           = kStatus_Success;
    uint32_t interruptStatus = 0U;

    if (enDMA)
    {
        /* Wait data complete or USDHC encounters error. */
        while (!(IS_USDHC_FLAG_SET(interruptStatus, ((uint32_t)kUSDHC_DataDMAFlag | (uint32_t)kUSDHC_TuningErrorFlag))))
        {
            interruptStatus = USDHC_GetInterruptStatusFlags(base);
        }

#if defined(FSL_FEATURE_USDHC_HAS_SDR50_MODE) && (FSL_FEATURE_USDHC_HAS_SDR50_MODE)
        if (IS_USDHC_FLAG_SET(interruptStatus, kUSDHC_TuningErrorFlag))
        {
            error = kStatus_USDHC_TuningError;
        }
        else
#endif
            if (IS_USDHC_FLAG_SET(interruptStatus, ((uint32_t)kUSDHC_DataErrorFlag | (uint32_t)kUSDHC_DmaErrorFlag)))
        {
            if ((!(data->enableIgnoreError)) || (IS_USDHC_FLAG_SET(interruptStatus, kUSDHC_DataTimeoutFlag)))
            {
                error = kStatus_USDHC_TransferDataFailed;
            }
        }
        else
        {
            /* Intentional empty */
        }
        /* load dummy data */
        if ((data->dataType == (uint32_t)kUSDHC_TransferDataBootcontinous) && (error == kStatus_Success))
        {
            *(data->rxData) = s_usdhcBootDummy;
        }

        USDHC_ClearInterruptStatusFlags(
            base, ((uint32_t)kUSDHC_DataDMAFlag | (uint32_t)kUSDHC_TuningPassFlag | (uint32_t)kUSDHC_TuningErrorFlag));
    }
    else
    {
        if (data->rxData != NULL)
        {
            error = USDHC_ReadByDataPortBlocking(base, data);
            if (error != kStatus_Success)
            {
                return error;
            }
        }
        else
        {
            error = USDHC_WriteByDataPortBlocking(base, data);
            if (error != kStatus_Success)
            {
                return error;
            }
        }
    }

    return error;
}

/*!
 * brief USDHC module initialization function.
 *
 * Configures the USDHC according to the user configuration.
 *
 * Example:
   code
   usdhc_config_t config;
   config.cardDetectDat3 = false;
   config.endianMode = kUSDHC_EndianModeLittle;
   config.dmaMode = kUSDHC_DmaModeAdma2;
   config.readWatermarkLevel = 128U;
   config.writeWatermarkLevel = 128U;
   USDHC_Init(USDHC, &config);
   endcode
 *
 * param base USDHC peripheral base address.
 * param config USDHC configuration information.
 * retval kStatus_Success Operate successfully.
 */
void USDHC_Init(USDHC_Type *base, const usdhc_config_t *config)
{
    assert(config != NULL);
    assert((config->writeWatermarkLevel >= 1U) && (config->writeWatermarkLevel <= 128U));
    assert((config->readWatermarkLevel >= 1U) && (config->readWatermarkLevel <= 128U));
#if !(defined(FSL_FEATURE_USDHC_HAS_NO_RW_BURST_LEN) && FSL_FEATURE_USDHC_HAS_NO_RW_BURST_LEN)
    assert(config->writeBurstLen <= 16U);
#endif
    uint32_t proctl, sysctl, wml;

#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
    /* Enable USDHC clock. */
    CLOCK_EnableClock(s_usdhcClock[USDHC_GetInstance(base)]);
#endif

#if (defined(FSL_FEATURE_USDHC_HAS_RESET) && FSL_FEATURE_USDHC_HAS_RESET)
    /* Reset the USDHC module */
    RESET_PeripheralReset(s_usdhcResets[USDHC_GetInstance(base)]);
#endif

    /* Reset ALL USDHC. */
    base->SYS_CTRL |= USDHC_SYS_CTRL_RSTA_MASK | USDHC_SYS_CTRL_RSTC_MASK | USDHC_SYS_CTRL_RSTD_MASK;

    proctl = base->PROT_CTRL;
    wml    = base->WTMK_LVL;
    sysctl = base->SYS_CTRL;

    proctl &= ~(USDHC_PROT_CTRL_EMODE_MASK | USDHC_PROT_CTRL_DMASEL_MASK);
    /* Endian mode*/
    proctl |= USDHC_PROT_CTRL_EMODE(config->endianMode);

#if (defined(FSL_FEATURE_USDHC_HAS_NO_RW_BURST_LEN) && FSL_FEATURE_USDHC_HAS_NO_RW_BURST_LEN)
    /* Watermark level */
    wml &= ~(USDHC_WTMK_LVL_RD_WML_MASK | USDHC_WTMK_LVL_WR_WML_MASK);
    wml |= (USDHC_WTMK_LVL_RD_WML(config->readWatermarkLevel) | USDHC_WTMK_LVL_WR_WML(config->writeWatermarkLevel));
#else
    /* Watermark level */
    wml &= ~(USDHC_WTMK_LVL_RD_WML_MASK | USDHC_WTMK_LVL_WR_WML_MASK | USDHC_WTMK_LVL_RD_BRST_LEN_MASK |
             USDHC_WTMK_LVL_WR_BRST_LEN_MASK);
    wml |= (USDHC_WTMK_LVL_RD_WML(config->readWatermarkLevel) | USDHC_WTMK_LVL_WR_WML(config->writeWatermarkLevel) |
            USDHC_WTMK_LVL_RD_BRST_LEN(config->readBurstLen) | USDHC_WTMK_LVL_WR_BRST_LEN(config->writeBurstLen));
#endif

    /* config the data timeout value */
    sysctl &= ~USDHC_SYS_CTRL_DTOCV_MASK;
    sysctl |= USDHC_SYS_CTRL_DTOCV(config->dataTimeout);

    base->SYS_CTRL  = sysctl;
    base->WTMK_LVL  = wml;
    base->PROT_CTRL = proctl;

#if FSL_FEATURE_USDHC_HAS_EXT_DMA
    /* disable external DMA */
    base->VEND_SPEC &= ~USDHC_VEND_SPEC_EXT_DMA_EN_MASK;
#endif
    /* disable internal DMA and DDR mode */
    base->MIX_CTRL &= ~(USDHC_MIX_CTRL_DMAEN_MASK | USDHC_MIX_CTRL_DDR_EN_MASK);
    /* disable interrupt, enable all the interrupt status, clear status. */
    base->INT_STATUS_EN = kUSDHC_AllInterruptFlags;
    base->INT_SIGNAL_EN = 0UL;
    base->INT_STATUS    = kUSDHC_AllInterruptFlags;
}

/*!
 * brief Deinitializes the USDHC.
 *
 * param base USDHC peripheral base address.
 */
void USDHC_Deinit(USDHC_Type *base)
{
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
    /* Disable clock. */
    CLOCK_DisableClock(s_usdhcClock[USDHC_GetInstance(base)]);
#endif
}

/*!
 * brief Resets the USDHC.
 *
 * param base USDHC peripheral base address.
 * param mask The reset type mask(_usdhc_reset).
 * param timeout Timeout for reset.
 * retval true Reset successfully.
 * retval false Reset failed.
 */
bool USDHC_Reset(USDHC_Type *base, uint32_t mask, uint32_t timeout)
{
    base->SYS_CTRL |= (mask & (USDHC_SYS_CTRL_RSTA_MASK | USDHC_SYS_CTRL_RSTC_MASK | USDHC_SYS_CTRL_RSTD_MASK
#if defined(FSL_FEATURE_USDHC_HAS_SDR50_MODE) && (FSL_FEATURE_USDHC_HAS_SDR50_MODE)
                               | USDHC_SYS_CTRL_RSTT_MASK
#endif
                               ));
    /* Delay some time to wait reset success. */
    while (IS_USDHC_FLAG_SET(base->SYS_CTRL, mask))
    {
        if (timeout == 0UL)
        {
            break;
        }
        timeout--;
    }

    return ((0UL == timeout) ? false : true);
}

/*!
 * brief Gets the capability information.
 *
 * param base USDHC peripheral base address.
 * param capability Structure to save capability information.
 */
void USDHC_GetCapability(USDHC_Type *base, usdhc_capability_t *capability)
{
    assert(capability != NULL);

    uint32_t htCapability;
    uint32_t maxBlockLength;

    htCapability = base->HOST_CTRL_CAP;

    /* Get the capability of USDHC. */
    maxBlockLength             = ((htCapability & USDHC_HOST_CTRL_CAP_MBL_MASK) >> USDHC_HOST_CTRL_CAP_MBL_SHIFT);
    capability->maxBlockLength = (512UL << maxBlockLength);
    /* Other attributes not in HTCAPBLT register. */
    capability->maxBlockCount = USDHC_MAX_BLOCK_COUNT;
    capability->flags =
        (htCapability & (USDHC_HOST_CTRL_CAP_ADMAS_MASK | USDHC_HOST_CTRL_CAP_HSS_MASK | USDHC_HOST_CTRL_CAP_DMAS_MASK |
                         USDHC_HOST_CTRL_CAP_SRS_MASK | USDHC_HOST_CTRL_CAP_VS33_MASK));
    capability->flags |= htCapability & USDHC_HOST_CTRL_CAP_VS30_MASK;
    capability->flags |= htCapability & USDHC_HOST_CTRL_CAP_VS18_MASK;
    capability->flags |= htCapability & USDHC_HOST_CTRL_CAP_DDR50_SUPPORT_MASK;
#if defined(FSL_FEATURE_USDHC_HAS_SDR104_MODE) && FSL_FEATURE_USDHC_HAS_SDR104_MODE
    capability->flags |= USDHC_HOST_CTRL_CAP_SDR104_SUPPORT_MASK;
#endif

#if defined(FSL_FEATURE_USDHC_HAS_SDR104_MODE) && FSL_FEATURE_USDHC_HAS_SDR50_MODE
    capability->flags |= USDHC_HOST_CTRL_CAP_SDR50_SUPPORT_MASK;
#endif
    /* USDHC support 4/8 bit data bus width. */
    capability->flags |= (USDHC_HOST_CTRL_CAP_MBL_SHIFT << 0UL) | (USDHC_HOST_CTRL_CAP_MBL_SHIFT << 1UL);
}

/*!
 * brief Sets the SD bus clock frequency.
 *
 * param base USDHC peripheral base address.
 * param srcClock_Hz USDHC source clock frequency united in Hz.
 * param busClock_Hz SD bus clock frequency united in Hz.
 *
 * return The nearest frequency of busClock_Hz configured to SD bus.
 */
uint32_t USDHC_SetSdClock(USDHC_Type *base, uint32_t srcClock_Hz, uint32_t busClock_Hz)
{
    assert(srcClock_Hz != 0U);
    assert(busClock_Hz != 0U);

    uint32_t totalDiv         = 0UL;
    uint32_t divisor          = 0UL;
    uint32_t prescaler        = 0UL;
    uint32_t sysctl           = 0UL;
    uint32_t nearestFrequency = 0UL;

    if (busClock_Hz > srcClock_Hz)
    {
        busClock_Hz = srcClock_Hz;
    }

    /* calucate total divisor first */
    if ((totalDiv = srcClock_Hz / busClock_Hz) > (USDHC_MAX_CLKFS * USDHC_MAX_DVS))
    {
        return 0UL;
    }

    if (totalDiv != 0UL)
    {
        /* calucate the divisor (srcClock_Hz / divisor) <= busClock_Hz */
        if ((srcClock_Hz / totalDiv) > busClock_Hz)
        {
            totalDiv++;
        }

        /* divide the total divisor to div and prescaler */
        if (totalDiv > USDHC_MAX_DVS)
        {
            prescaler = totalDiv / USDHC_MAX_DVS;
            /* prescaler must be a value which equal 2^n and smaller than SDHC_MAX_CLKFS */
            while (((USDHC_MAX_CLKFS % prescaler) != 0UL) || (prescaler == 1UL))
            {
                prescaler++;
            }
            /* calucate the divisor */
            divisor = totalDiv / prescaler;
            /* fine tuning the divisor until divisor * prescaler >= totalDiv */
            while ((divisor * prescaler) < totalDiv)
            {
                divisor++;
                if (divisor > USDHC_MAX_DVS)
                {
                    if ((prescaler <<= 1UL) > USDHC_MAX_CLKFS)
                    {
                        return 0UL;
                    }
                    divisor = totalDiv / prescaler;
                }
            }
        }
        else
        {
            /* in this situation , divsior and SDCLKFS can generate same clock
            use SDCLKFS*/
            if (((totalDiv % 2UL) != 0UL) && (totalDiv != 1UL))
            {
                divisor   = totalDiv;
                prescaler = 1UL;
            }
            else
            {
                divisor   = 1UL;
                prescaler = totalDiv;
            }
        }
        nearestFrequency = srcClock_Hz / (divisor == 0UL ? 1UL : divisor) / prescaler;
    }
    /* in this condition , srcClock_Hz = busClock_Hz, */
    else
    {
        /* in DDR mode , set SDCLKFS to 0, divisor = 0, actually the
        totoal divider = 2U */
        divisor          = 0UL;
        prescaler        = 0UL;
        nearestFrequency = srcClock_Hz;
    }

    /* calucate the value write to register */
    if (divisor != 0UL)
    {
        USDHC_PREV_DVS(divisor);
    }
    /* calucate the value write to register */
    if (prescaler != 0UL)
    {
        USDHC_PREV_CLKFS(prescaler, 1UL);
    }

    /* Set the SD clock frequency divisor, SD clock frequency select, data timeout counter value. */
    sysctl = base->SYS_CTRL;
    sysctl &= ~(USDHC_SYS_CTRL_DVS_MASK | USDHC_SYS_CTRL_SDCLKFS_MASK);
    sysctl |= (USDHC_SYS_CTRL_DVS(divisor) | USDHC_SYS_CTRL_SDCLKFS(prescaler));
    base->SYS_CTRL = sysctl;

    /* Wait until the SD clock is stable. */
    while (!IS_USDHC_FLAG_SET(base->PRES_STATE, USDHC_PRES_STATE_SDSTB_MASK))
    {
    }

    return nearestFrequency;
}

/*!
 * brief Sends 80 clocks to the card to set it to the active state.
 *
 * This function must be called each time the card is inserted to ensure that the card can receive the command
 * correctly.
 *
 * param base USDHC peripheral base address.
 * param timeout Timeout to initialize card.
 * retval true Set card active successfully.
 * retval false Set card active failed.
 */
bool USDHC_SetCardActive(USDHC_Type *base, uint32_t timeout)
{
    base->SYS_CTRL |= USDHC_SYS_CTRL_INITA_MASK;
    /* Delay some time to wait card become active state. */
    while (IS_USDHC_FLAG_SET(base->SYS_CTRL, USDHC_SYS_CTRL_INITA_MASK))
    {
        if (0UL == timeout)
        {
            break;
        }
        timeout--;
    }

    return ((0UL == timeout) ? false : true);
}

/*!
 * brief the enable/disable DDR mode
 *
 * param base USDHC peripheral base address.
 * param enable/disable flag
 * param nibble position
 */
void USDHC_EnableDDRMode(USDHC_Type *base, bool enable, uint32_t nibblePos)
{
    uint32_t prescaler = (base->SYS_CTRL & USDHC_SYS_CTRL_SDCLKFS_MASK) >> USDHC_SYS_CTRL_SDCLKFS_SHIFT;

    if (enable)
    {
        base->MIX_CTRL &= ~USDHC_MIX_CTRL_NIBBLE_POS_MASK;
        base->MIX_CTRL |= (USDHC_MIX_CTRL_DDR_EN_MASK | USDHC_MIX_CTRL_NIBBLE_POS(nibblePos));
        prescaler >>= 1UL;
    }
    else
    {
        base->MIX_CTRL &= ~USDHC_MIX_CTRL_DDR_EN_MASK;

        if (prescaler == 0UL)
        {
            prescaler += 1UL;
        }
        else
        {
            prescaler <<= 1UL;
        }
    }

    base->SYS_CTRL = (base->SYS_CTRL & (~USDHC_SYS_CTRL_SDCLKFS_MASK)) | USDHC_SYS_CTRL_SDCLKFS(prescaler);
}

/*!
 * brief Configures the MMC boot feature.
 *
 * Example:
   code
   usdhc_boot_config_t config;
   config.ackTimeoutCount = 4;
   config.bootMode = kUSDHC_BootModeNormal;
   config.blockCount = 5;
   config.enableBootAck = true;
   config.enableBoot = true;
   config.enableAutoStopAtBlockGap = true;
   USDHC_SetMmcBootConfig(USDHC, &config);
   endcode
 *
 * param base USDHC peripheral base address.
 * param config The MMC boot configuration information.
 */
void USDHC_SetMmcBootConfig(USDHC_Type *base, const usdhc_boot_config_t *config)
{
    assert(config != NULL);
    assert(config->ackTimeoutCount <= (USDHC_MMC_BOOT_DTOCV_ACK_MASK >> USDHC_MMC_BOOT_DTOCV_ACK_SHIFT));
    assert(config->blockCount <= (USDHC_MMC_BOOT_BOOT_BLK_CNT_MASK >> USDHC_MMC_BOOT_BOOT_BLK_CNT_SHIFT));

    uint32_t mmcboot = base->MMC_BOOT;

    mmcboot &= ~(USDHC_MMC_BOOT_DTOCV_ACK_MASK | USDHC_MMC_BOOT_BOOT_MODE_MASK | USDHC_MMC_BOOT_BOOT_BLK_CNT_MASK);
    mmcboot |= USDHC_MMC_BOOT_DTOCV_ACK(config->ackTimeoutCount) | USDHC_MMC_BOOT_BOOT_MODE(config->bootMode);

    if (config->enableBootAck)
    {
        mmcboot |= USDHC_MMC_BOOT_BOOT_ACK_MASK;
    }
    if (config->enableAutoStopAtBlockGap)
    {
        mmcboot |=
            USDHC_MMC_BOOT_AUTO_SABG_EN_MASK | USDHC_MMC_BOOT_BOOT_BLK_CNT(USDHC_MAX_BLOCK_COUNT - config->blockCount);
        /* always set the block count to USDHC_MAX_BLOCK_COUNT to use auto stop at block gap feature */
        base->BLK_ATT = ((base->BLK_ATT & ~(USDHC_BLK_ATT_BLKSIZE_MASK | USDHC_BLK_ATT_BLKCNT_MASK)) |
                         (USDHC_BLK_ATT_BLKSIZE(config->blockSize) | USDHC_BLK_ATT_BLKCNT(USDHC_MAX_BLOCK_COUNT)));
    }
    else
    {
        base->BLK_ATT = ((base->BLK_ATT & ~(USDHC_BLK_ATT_BLKSIZE_MASK | USDHC_BLK_ATT_BLKCNT_MASK)) |
                         (USDHC_BLK_ATT_BLKSIZE(config->blockSize) | USDHC_BLK_ATT_BLKCNT(config->blockCount)));
    }

    base->MMC_BOOT = mmcboot;
}

/*!
 * brief Sets the ADMA1 descriptor table configuration.
 *
 * param admaTable Adma table address.
 * param admaTableWords Adma table length.
 * param dataBufferAddr Data buffer address.
 * param dataBytes Data length.
 * param flags ADAM descriptor flag, used to indicate to create multiple or single descriptor, please
 *  reference _usdhc_adma_flag.
 * retval kStatus_OutOfRange ADMA descriptor table length isn't enough to describe data.
 * retval kStatus_Success Operate successfully.
 */
status_t USDHC_SetADMA1Descriptor(
    uint32_t *admaTable, uint32_t admaTableWords, const uint32_t *dataBufferAddr, uint32_t dataBytes, uint32_t flags)
{
    assert(NULL != admaTable);
    assert(NULL != dataBufferAddr);

    uint32_t miniEntries, startEntries = 0UL,
                          maxEntries = (admaTableWords * sizeof(uint32_t)) / sizeof(usdhc_adma1_descriptor_t);
    usdhc_adma1_descriptor_t *adma1EntryAddress = (usdhc_adma1_descriptor_t *)(uint32_t)(admaTable);
    uint32_t i, dmaBufferLen = 0UL;
    const uint32_t *data = dataBufferAddr;

    if (((uint32_t)data % USDHC_ADMA1_ADDRESS_ALIGN) != 0UL)
    {
        return kStatus_USDHC_DMADataAddrNotAlign;
    }

    if (flags == (uint32_t)kUSDHC_AdmaDescriptorMultipleFlag)
    {
        return kStatus_USDHC_NotSupport;
    }
    /*
     * Add non aligned access support ,user need make sure your buffer size is big
     * enough to hold the data,in other words,user need make sure the buffer size
     * is 4 byte aligned
     */
    if (dataBytes % sizeof(uint32_t) != 0UL)
    {
        /* make the data length as word-aligned */
        dataBytes += sizeof(uint32_t) - (dataBytes % sizeof(uint32_t));
    }

    /* Check if ADMA descriptor's number is enough. */
    if ((dataBytes % USDHC_ADMA1_DESCRIPTOR_MAX_LENGTH_PER_ENTRY) == 0UL)
    {
        miniEntries = dataBytes / USDHC_ADMA1_DESCRIPTOR_MAX_LENGTH_PER_ENTRY;
    }
    else
    {
        miniEntries = ((dataBytes / USDHC_ADMA1_DESCRIPTOR_MAX_LENGTH_PER_ENTRY) + 1UL);
    }

    /* ADMA1 needs two descriptors to finish a transfer */
    miniEntries <<= 1UL;

    if (miniEntries + startEntries > maxEntries)
    {
        return kStatus_OutOfRange;
    }

    for (i = startEntries; i < (miniEntries + startEntries); i += 2UL)
    {
        if (dataBytes > USDHC_ADMA1_DESCRIPTOR_MAX_LENGTH_PER_ENTRY)
        {
            dmaBufferLen = USDHC_ADMA1_DESCRIPTOR_MAX_LENGTH_PER_ENTRY;
        }
        else
        {
            dmaBufferLen = dataBytes;
        }

        adma1EntryAddress[i] = (dmaBufferLen << USDHC_ADMA1_DESCRIPTOR_LENGTH_SHIFT);
        adma1EntryAddress[i] |= (uint32_t)kUSDHC_Adma1DescriptorTypeSetLength;
        adma1EntryAddress[i + 1UL] = (uint32_t)(data);
        adma1EntryAddress[i + 1UL] |= (uint32_t)kUSDHC_Adma1DescriptorTypeTransfer;
        data += dmaBufferLen / sizeof(uint32_t);
        dataBytes -= dmaBufferLen;
    }
    /* the end of the descriptor */
    adma1EntryAddress[i - 1UL] |= (uint32_t)kUSDHC_Adma1DescriptorEndFlag;

    return kStatus_Success;
}

/*!
 * brief Sets the ADMA2 descriptor table configuration.
 *
 * param admaTable Adma table address.
 * param admaTableWords Adma table length.
 * param dataBufferAddr Data buffer address.
 * param dataBytes Data Data length.
 * param flags ADAM descriptor flag, used to indicate to create multiple or single descriptor, please
 *  reference _usdhc_adma_flag.
 * retval kStatus_OutOfRange ADMA descriptor table length isn't enough to describe data.
 * retval kStatus_Success Operate successfully.
 */
status_t USDHC_SetADMA2Descriptor(
    uint32_t *admaTable, uint32_t admaTableWords, const uint32_t *dataBufferAddr, uint32_t dataBytes, uint32_t flags)
{
    assert(NULL != admaTable);
    assert(NULL != dataBufferAddr);

    uint32_t miniEntries, startEntries = 0UL,
                          maxEntries = (admaTableWords * sizeof(uint32_t)) / sizeof(usdhc_adma2_descriptor_t);
    usdhc_adma2_descriptor_t *adma2EntryAddress = (usdhc_adma2_descriptor_t *)(uint32_t)(admaTable);
    uint32_t i, dmaBufferLen = 0UL;
    const uint32_t *data = dataBufferAddr;

    if (((uint32_t)data % USDHC_ADMA2_ADDRESS_ALIGN) != 0UL)
    {
        return kStatus_USDHC_DMADataAddrNotAlign;
    }
    /*
     * Add non aligned access support ,user need make sure your buffer size is big
     * enough to hold the data,in other words,user need make sure the buffer size
     * is 4 byte aligned
     */
    if (dataBytes % sizeof(uint32_t) != 0UL)
    {
        /* make the data length as word-aligned */
        dataBytes += sizeof(uint32_t) - (dataBytes % sizeof(uint32_t));
    }

    /* Check if ADMA descriptor's number is enough. */
    if ((dataBytes % USDHC_ADMA2_DESCRIPTOR_MAX_LENGTH_PER_ENTRY) == 0UL)
    {
        miniEntries = dataBytes / USDHC_ADMA2_DESCRIPTOR_MAX_LENGTH_PER_ENTRY;
    }
    else
    {
        miniEntries = ((dataBytes / USDHC_ADMA2_DESCRIPTOR_MAX_LENGTH_PER_ENTRY) + 1UL);
    }
    /* calucate the start entry for multiple descriptor mode, ADMA engine is not stop, so update the descriptor
    data adress and data size is enough */
    if (flags == (uint32_t)kUSDHC_AdmaDescriptorMultipleFlag)
    {
        for (i = 0UL; i < maxEntries; i++)
        {
            if ((adma2EntryAddress[i].attribute & (uint32_t)kUSDHC_Adma2DescriptorValidFlag) == 0UL)
            {
                break;
            }
        }
        startEntries = i;
        /* add one entry for dummy entry */
        miniEntries += 1UL;
    }

    if ((miniEntries + startEntries) > maxEntries)
    {
        return kStatus_OutOfRange;
    }

    for (i = startEntries; i < (miniEntries + startEntries); i++)
    {
        if (dataBytes > USDHC_ADMA2_DESCRIPTOR_MAX_LENGTH_PER_ENTRY)
        {
            dmaBufferLen = USDHC_ADMA2_DESCRIPTOR_MAX_LENGTH_PER_ENTRY;
        }
        else
        {
            dmaBufferLen = (dataBytes == 0UL ? sizeof(uint32_t) :
                                               dataBytes); /* adma don't support 0 data length transfer descriptor */
        }

        /* Each descriptor for ADMA2 is 64-bit in length */
        adma2EntryAddress[i].address   = (dataBytes == 0UL) ? &s_usdhcBootDummy : data;
        adma2EntryAddress[i].attribute = (dmaBufferLen << USDHC_ADMA2_DESCRIPTOR_LENGTH_SHIFT);
        adma2EntryAddress[i].attribute |=
            (dataBytes == 0UL) ?
                0UL :
                ((uint32_t)kUSDHC_Adma2DescriptorTypeTransfer | (uint32_t)kUSDHC_Adma2DescriptorInterruptFlag);
        data += (dmaBufferLen / sizeof(uint32_t));

        if (dataBytes != 0UL)
        {
            dataBytes -= dmaBufferLen;
        }
    }

    /* add a dummy valid ADMA descriptor for multiple descriptor mode, this is useful when transfer boot data, the ADMA
    engine
    will not stop at block gap */
    if (flags == (uint32_t)kUSDHC_AdmaDescriptorMultipleFlag)
    {
        adma2EntryAddress[startEntries + 1UL].attribute |= (uint32_t)kUSDHC_Adma2DescriptorTypeTransfer;
    }
    else
    {
        /* set the end bit */
        adma2EntryAddress[i - 1UL].attribute |= (uint32_t)kUSDHC_Adma2DescriptorEndFlag;
    }

    return kStatus_Success;
}

/*!
 * brief Internal DMA configuration.
 * This function is used to config the USDHC DMA related registers.
 * param base USDHC peripheral base address.
 * param adma configuration
 * param dataAddr transfer data address, a simple DMA parameter, if ADMA is used, leave it to NULL.
 * param enAutoCmd23 flag to indicate Auto CMD23 is enable or not, a simple DMA parameter,if ADMA is used, leave it to
 * false.
 * retval kStatus_OutOfRange ADMA descriptor table length isn't enough to describe data.
 * retval kStatus_Success Operate successfully.
 */
status_t USDHC_SetInternalDmaConfig(USDHC_Type *base,
                                    usdhc_adma_config_t *dmaConfig,
                                    const uint32_t *dataAddr,
                                    bool enAutoCmd23)
{
    assert(dmaConfig != NULL);
    assert(dataAddr != NULL);
    assert((NULL != dmaConfig->admaTable) &&
           (((USDHC_ADMA_TABLE_ADDRESS_ALIGN - 1U) & (uint32_t)dmaConfig->admaTable) == 0UL));

#if FSL_FEATURE_USDHC_HAS_EXT_DMA
    /* disable the external DMA if support */
    base->VEND_SPEC &= ~USDHC_VEND_SPEC_EXT_DMA_EN_MASK;
#endif

    if (dmaConfig->dmaMode == kUSDHC_DmaModeSimple)
    {
        /* check DMA data buffer address align or not */
        if (((uint32_t)dataAddr % USDHC_ADMA2_ADDRESS_ALIGN) != 0UL)
        {
            return kStatus_USDHC_DMADataAddrNotAlign;
        }
        /* in simple DMA mode if use auto CMD23, address should load to ADMA addr,
             and block count should load to DS_ADDR*/
        if (enAutoCmd23)
        {
            base->ADMA_SYS_ADDR = (uint32_t)dataAddr;
        }
        else
        {
            base->DS_ADDR = (uint32_t)dataAddr;
        }
    }
    else
    {
        /* When use ADMA, disable simple DMA */
        base->DS_ADDR       = 0UL;
        base->ADMA_SYS_ADDR = (uint32_t)(dmaConfig->admaTable);
    }

#if (defined(FSL_FEATURE_USDHC_HAS_NO_RW_BURST_LEN) && FSL_FEATURE_USDHC_HAS_NO_RW_BURST_LEN)
    /* select DMA mode and config the burst length */
    base->PROT_CTRL &= ~(USDHC_PROT_CTRL_DMASEL_MASK);
    base->PROT_CTRL |= USDHC_PROT_CTRL_DMASEL(dmaConfig->dmaMode);
#else
    /* select DMA mode and config the burst length */
    base->PROT_CTRL &= ~(USDHC_PROT_CTRL_DMASEL_MASK | USDHC_PROT_CTRL_BURST_LEN_EN_MASK);
    base->PROT_CTRL |= USDHC_PROT_CTRL_DMASEL(dmaConfig->dmaMode) | USDHC_PROT_CTRL_BURST_LEN_EN(dmaConfig->burstLen);
#endif
    /* enable DMA */
    base->MIX_CTRL |= USDHC_MIX_CTRL_DMAEN_MASK;

    return kStatus_Success;
}

/*!
 * brief Sets the DMA descriptor table configuration.
 * A high level DMA descriptor configuration function.
 * param base USDHC peripheral base address.
 * param adma configuration
 * param data Data descriptor
 * param flags ADAM descriptor flag, used to indicate to create multiple or single descriptor, please
 *  reference _usdhc_adma_flag
 * retval kStatus_OutOfRange ADMA descriptor table length isn't enough to describe data.
 * retval kStatus_Success Operate successfully.
 */
status_t USDHC_SetAdmaTableConfig(USDHC_Type *base,
                                  usdhc_adma_config_t *dmaConfig,
                                  usdhc_data_t *dataConfig,
                                  uint32_t flags)
{
    assert(NULL != dmaConfig);
    assert((NULL != dmaConfig->admaTable) &&
           (((USDHC_ADMA_TABLE_ADDRESS_ALIGN - 1U) & (uint32_t)dmaConfig->admaTable) == 0UL));
    assert(NULL != dataConfig);

    status_t error = kStatus_Fail;
    uint32_t bootDummyOffset =
        dataConfig->dataType == (uint32_t)kUSDHC_TransferDataBootcontinous ? sizeof(uint32_t) : 0UL;
    const uint32_t *data =
        (const uint32_t *)((uint32_t)((dataConfig->rxData == NULL) ? dataConfig->txData : dataConfig->rxData) +
                           bootDummyOffset);
    uint32_t blockSize = dataConfig->blockSize * dataConfig->blockCount - bootDummyOffset;

#if FSL_FEATURE_USDHC_HAS_EXT_DMA
    if (dmaConfig->dmaMode == kUSDHC_ExternalDMA)
    {
        /* enable the external DMA */
        base->VEND_SPEC |= USDHC_VEND_SPEC_EXT_DMA_EN_MASK;
    }
    else
#endif
        if (dmaConfig->dmaMode == kUSDHC_DmaModeSimple)
    {
        error = kStatus_Success;
    }
    else if (dmaConfig->dmaMode == kUSDHC_DmaModeAdma1)
    {
        error = USDHC_SetADMA1Descriptor(dmaConfig->admaTable, dmaConfig->admaTableWords, data, blockSize, flags);
    }
    /* ADMA2 */
    else
    {
        error = USDHC_SetADMA2Descriptor(dmaConfig->admaTable, dmaConfig->admaTableWords, data, blockSize, flags);
    }

    /* for internal dma, internal DMA configurations should not update the configurations when continous transfer the
     * boot data, only the DMA descriptor need update */
    if ((dmaConfig->dmaMode != kUSDHC_ExternalDMA) && (error == kStatus_Success) &&
        (dataConfig->dataType != (uint32_t)kUSDHC_TransferDataBootcontinous))
    {
        error = USDHC_SetInternalDmaConfig(base, dmaConfig, data, dataConfig->enableAutoCommand23);
    }

    return error;
}

/*!
 * brief Transfers the command/data using a blocking method.
 *
 * This function waits until the command response/data is received or the USDHC encounters an error by polling the
 * status
 * flag.
 * The application must not call this API in multiple threads at the same time. Because of that this API doesn't support
 * the re-entry mechanism.
 *
 * note There is no need to call the API 'USDHC_TransferCreateHandle' when calling this API.
 *
 * param base USDHC peripheral base address.
 * param adma configuration
 * param transfer Transfer content.
 * retval kStatus_InvalidArgument Argument is invalid.
 * retval kStatus_USDHC_PrepareAdmaDescriptorFailed Prepare ADMA descriptor failed.
 * retval kStatus_USDHC_SendCommandFailed Send command failed.
 * retval kStatus_USDHC_TransferDataFailed Transfer data failed.
 * retval kStatus_Success Operate successfully.
 */
status_t USDHC_TransferBlocking(USDHC_Type *base, usdhc_adma_config_t *dmaConfig, usdhc_transfer_t *transfer)
{
    assert(transfer != NULL);

    status_t error           = kStatus_Fail;
    usdhc_command_t *command = transfer->command;
    usdhc_data_t *data       = transfer->data;
    bool enDMA               = true;
    bool executeTuning       = ((data == NULL) ? false : data->dataType == (uint32_t)kUSDHC_TransferDataTuning);

#if defined(FSL_FEATURE_USDHC_HAS_SDR50_MODE) && (FSL_FEATURE_USDHC_HAS_SDR50_MODE)
    /*check re-tuning request*/
    if ((USDHC_GetInterruptStatusFlags(base) & (uint32_t)kUSDHC_ReTuningEventFlag) != 0UL)
    {
        USDHC_ClearInterruptStatusFlags(base, kUSDHC_ReTuningEventFlag);
        return kStatus_USDHC_ReTuningRequest;
    }
#endif

    /* Update ADMA descriptor table according to different DMA mode(no DMA, ADMA1, ADMA2).*/
    if ((data != NULL) && (dmaConfig != NULL) && (!executeTuning))
    {
        error = USDHC_SetAdmaTableConfig(
            base, dmaConfig, data,
            (uint32_t)(IS_USDHC_FLAG_SET(data->dataType, kUSDHC_TransferDataBoot) ? kUSDHC_AdmaDescriptorMultipleFlag :
                                                                                    kUSDHC_AdmaDescriptorSingleFlag));
    }

    /* if the DMA desciptor configure fail or not needed , disable it */
    if (error != kStatus_Success)
    {
        enDMA = false;
        /* disable DMA, using polling mode in this situation */
        USDHC_EnableInternalDMA(base, false);
    }
#if defined(FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL) && FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL
    else
    {
        if (data->txData != NULL)
        {
            /* clear the DCACHE */
            DCACHE_CleanByRange((uint32_t)data->txData, (data->blockSize) * (data->blockCount));
        }
        else
        {
            /* clear the DCACHE */
            DCACHE_CleanInvalidateByRange((uint32_t)data->rxData, (data->blockSize) * (data->blockCount));
        }
    }
#endif

    /* config the data transfer parameter */
    error = USDHC_SetDataTransferConfig(base, data, &(command->flags), enDMA);
    if (kStatus_Success != error)
    {
        return error;
    }
    /* send command first */
    USDHC_SendCommand(base, command);
    /* wait command done */
    error =
        USDHC_WaitCommandDone(base, command, (data == NULL) || (data->dataType == (uint32_t)kUSDHC_TransferDataNormal));
    if (kStatus_Success != error)
    {
        return kStatus_USDHC_SendCommandFailed;
    }

    /* wait transfer data finsih */
    if (data != NULL)
    {
        error = USDHC_TransferDataBlocking(base, data, enDMA);
        if (kStatus_Success != error)
        {
            return error;
        }
    }

    return kStatus_Success;
}

/*!
 * brief Transfers the command/data using an interrupt and an asynchronous method.
 *
 * This function sends a command and data and returns immediately. It doesn't wait the transfer complete or encounter an
 * error.
 * The application must not call this API in multiple threads at the same time. Because of that this API doesn't support
 * the re-entry mechanism.
 *
 * note Call the API 'USDHC_TransferCreateHandle' when calling this API.
 *
 * param base USDHC peripheral base address.
 * param handle USDHC handle.
 * param adma configuration.
 * param transfer Transfer content.
 * retval kStatus_InvalidArgument Argument is invalid.
 * retval kStatus_USDHC_BusyTransferring Busy transferring.
 * retval kStatus_USDHC_PrepareAdmaDescriptorFailed Prepare ADMA descriptor failed.
 * retval kStatus_Success Operate successfully.
 */
status_t USDHC_TransferNonBlocking(USDHC_Type *base,
                                   usdhc_handle_t *handle,
                                   usdhc_adma_config_t *dmaConfig,
                                   usdhc_transfer_t *transfer)
{
    assert(handle != NULL);
    assert(transfer != NULL);

    status_t error           = kStatus_Fail;
    usdhc_command_t *command = transfer->command;
    usdhc_data_t *data       = transfer->data;
    bool executeTuning       = ((data == NULL) ? false : data->dataType == (uint32_t)kUSDHC_TransferDataTuning);
    bool enDMA               = true;

#if defined(FSL_FEATURE_USDHC_HAS_SDR50_MODE) && (FSL_FEATURE_USDHC_HAS_SDR50_MODE)
    /*check re-tuning request*/
    if ((USDHC_GetInterruptStatusFlags(base) & ((uint32_t)kUSDHC_ReTuningEventFlag)) != 0UL)
    {
        USDHC_ClearInterruptStatusFlags(base, kUSDHC_ReTuningEventFlag);
        return kStatus_USDHC_ReTuningRequest;
    }
#endif
    /* Save command and data into handle before transferring. */

    handle->command = command;
    handle->data    = data;
    /* transferredWords will only be updated in ISR when transfer way is DATAPORT. */
    handle->transferredWords = 0UL;

    /* Update ADMA descriptor table according to different DMA mode(no DMA, ADMA1, ADMA2).*/
    if ((data != NULL) && (dmaConfig != NULL) && (!executeTuning))
    {
        error =
            USDHC_SetAdmaTableConfig(base, dmaConfig, data,
                                     (uint32_t)(IS_USDHC_FLAG_SET(data->dataType, (uint32_t)kUSDHC_TransferDataBoot) ?
                                                    kUSDHC_AdmaDescriptorMultipleFlag :
                                                    kUSDHC_AdmaDescriptorSingleFlag));
    }

    /* if the DMA desciptor configure fail or not needed , disable it */
    if (error != kStatus_Success)
    {
        /* disable DMA, using polling mode in this situation */
        USDHC_EnableInternalDMA(base, false);
        enDMA = false;
    }
#if defined(FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL) && FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL
    else
    {
        if (data->txData != NULL)
        {
            /* clear the DCACHE */
            DCACHE_CleanByRange((uint32_t)data->txData, (data->blockSize) * (data->blockCount));
        }
        else
        {
            /* clear the DCACHE */
            DCACHE_CleanInvalidateByRange((uint32_t)data->rxData, (data->blockSize) * (data->blockCount));
        }
    }
#endif

    error = USDHC_SetDataTransferConfig(base, data, &(command->flags), enDMA);
    if (kStatus_Success != error)
    {
        return error;
    }

    /* enable interrupt per transfer request */
    if (handle->data != NULL)
    {
        USDHC_ClearInterruptStatusFlags(
            base, (uint32_t)(enDMA == false ? kUSDHC_DataFlag : kUSDHC_DataDMAFlag) | (uint32_t)kUSDHC_CommandFlag);
        USDHC_EnableInterruptSignal(
            base, (uint32_t)(enDMA == false ? kUSDHC_DataFlag : kUSDHC_DataDMAFlag) | (uint32_t)kUSDHC_CommandFlag);
    }
    else
    {
        USDHC_ClearInterruptStatusFlags(base, kUSDHC_CommandFlag);
        USDHC_EnableInterruptSignal(base, kUSDHC_CommandFlag);
    }

    /* send command first */
    USDHC_SendCommand(base, command);

    return kStatus_Success;
}

#if defined(FSL_FEATURE_USDHC_HAS_SDR50_MODE) && (FSL_FEATURE_USDHC_HAS_SDR50_MODE)
/*!
 * brief manual tuning trigger or abort
 * User should handle the tuning cmd and find the boundary of the delay
 * then calucate a average value which will be config to the CLK_TUNE_CTRL_STATUS
 * This function should called before USDHC_AdjustDelayforSDR104 function
 * param base USDHC peripheral base address.
 * param tuning enable flag
 */
void USDHC_EnableManualTuning(USDHC_Type *base, bool enable)
{
    if (enable)
    {
        /* make sure std_tun_en bit is clear */
        base->TUNING_CTRL &= ~USDHC_TUNING_CTRL_STD_TUNING_EN_MASK;
        /* disable auto tuning here */
        base->MIX_CTRL &= ~USDHC_MIX_CTRL_AUTO_TUNE_EN_MASK;
        /* execute tuning for SDR104 mode */
        base->MIX_CTRL |=
            USDHC_MIX_CTRL_EXE_TUNE_MASK | USDHC_MIX_CTRL_SMP_CLK_SEL_MASK | USDHC_MIX_CTRL_FBCLK_SEL_MASK;
    }
    else
    { /* abort the tuning */
        base->MIX_CTRL &= ~USDHC_MIX_CTRL_EXE_TUNE_MASK;
    }
}

/*!
 * brief the SDR104 mode delay setting adjust
 * This function should called after USDHC_ManualTuningForSDR104
 * param base USDHC peripheral base address.
 * param delay setting configuration
 * retval kStatus_Fail config the delay setting fail
 * retval kStatus_Success config the delay setting success
 */
status_t USDHC_AdjustDelayForManualTuning(USDHC_Type *base, uint32_t delay)
{
    uint32_t clkTuneCtrl = 0UL;

    clkTuneCtrl = base->CLK_TUNE_CTRL_STATUS;

    clkTuneCtrl &= ~USDHC_CLK_TUNE_CTRL_STATUS_DLY_CELL_SET_PRE_MASK;

    clkTuneCtrl |= USDHC_CLK_TUNE_CTRL_STATUS_DLY_CELL_SET_PRE(delay);

    /* load the delay setting */
    base->CLK_TUNE_CTRL_STATUS = clkTuneCtrl;
    /* check delat setting error */
    if (IS_USDHC_FLAG_SET(base->CLK_TUNE_CTRL_STATUS,
                          USDHC_CLK_TUNE_CTRL_STATUS_PRE_ERR_MASK | USDHC_CLK_TUNE_CTRL_STATUS_NXT_ERR_MASK))
    {
        return kStatus_Fail;
    }

    return kStatus_Success;
}

/*!
 * brief the enable standard tuning function
 * The standard tuning window and tuning counter use the default config
 * tuning cmd is send by the software, user need to check the tuning result
 * can be used for SDR50,SDR104,HS200 mode tuning
 * param base USDHC peripheral base address.
 * param tuning start tap
 * param tuning step
 * param enable/disable flag
 */
void USDHC_EnableStandardTuning(USDHC_Type *base, uint32_t tuningStartTap, uint32_t step, bool enable)
{
    uint32_t tuningCtrl = 0UL;

    if (enable)
    {
        /* feedback clock */
        base->MIX_CTRL |= USDHC_MIX_CTRL_FBCLK_SEL_MASK;
        /* config tuning start and step */
        tuningCtrl = base->TUNING_CTRL;
        tuningCtrl &= ~(USDHC_TUNING_CTRL_TUNING_START_TAP_MASK | USDHC_TUNING_CTRL_TUNING_STEP_MASK);
        tuningCtrl |= (USDHC_TUNING_CTRL_TUNING_START_TAP(tuningStartTap) | USDHC_TUNING_CTRL_TUNING_STEP(step) |
                       USDHC_TUNING_CTRL_STD_TUNING_EN_MASK);
        base->TUNING_CTRL = tuningCtrl;

        /* excute tuning */
        base->AUTOCMD12_ERR_STATUS |=
            (USDHC_AUTOCMD12_ERR_STATUS_EXECUTE_TUNING_MASK | USDHC_AUTOCMD12_ERR_STATUS_SMP_CLK_SEL_MASK);
    }
    else
    {
        /* disable the standard tuning */
        base->TUNING_CTRL &= ~USDHC_TUNING_CTRL_STD_TUNING_EN_MASK;
        /* clear excute tuning */
        base->AUTOCMD12_ERR_STATUS &=
            ~(USDHC_AUTOCMD12_ERR_STATUS_EXECUTE_TUNING_MASK | USDHC_AUTOCMD12_ERR_STATUS_SMP_CLK_SEL_MASK);
    }
}

#if FSL_FEATURE_USDHC_HAS_HS400_MODE
/*!
 * brief config the strobe DLL delay target and update interval
 *
 * param base USDHC peripheral base address.
 * param delayTarget delay target
 * param updateInterval update interval
 */
void USDHC_ConfigStrobeDLL(USDHC_Type *base, uint32_t delayTarget, uint32_t updateInterval)
{
    assert(delayTarget <= (USDHC_STROBE_DLL_CTRL_STROBE_DLL_CTRL_SLV_DLY_TARGET_MASK >>
                           USDHC_STROBE_DLL_CTRL_STROBE_DLL_CTRL_SLV_DLY_TARGET_SHIFT));

    /* reset strobe dll firstly */
    base->STROBE_DLL_CTRL |= USDHC_STROBE_DLL_CTRL_STROBE_DLL_CTRL_RESET_MASK;
    /* clear reset and other register fields */
    base->STROBE_DLL_CTRL = 0;
    /* configure the DELAY target and update interval */
    base->STROBE_DLL_CTRL |= USDHC_STROBE_DLL_CTRL_STROBE_DLL_CTRL_ENABLE_MASK |
                             USDHC_STROBE_DLL_CTRL_STROBE_DLL_CTRL_SLV_UPDATE_INT(updateInterval) |
                             USDHC_STROBE_DLL_CTRL_STROBE_DLL_CTRL_SLV_DLY_TARGET(delayTarget);

    while (
        (USDHC_GetStrobeDLLStatus(base) & (USDHC_STROBE_DLL_STATUS_STROBE_DLL_STS_SLV_LOCK_MASK |
                                           USDHC_STROBE_DLL_STATUS_STROBE_DLL_STS_REF_LOCK_MASK)) !=
        ((USDHC_STROBE_DLL_STATUS_STROBE_DLL_STS_SLV_LOCK_MASK | USDHC_STROBE_DLL_STATUS_STROBE_DLL_STS_REF_LOCK_MASK)))
    {
    }
}
#endif

/*!
 * brief the auto tuning enbale for CMD/DATA line
 *
 * param base USDHC peripheral base address.
 */
void USDHC_EnableAutoTuningForCmdAndData(USDHC_Type *base)
{
    uint32_t busWidth = (base->PROT_CTRL & USDHC_PROT_CTRL_DTW_MASK) >> USDHC_PROT_CTRL_DTW_SHIFT;

    base->VEND_SPEC2 |= USDHC_VEND_SPEC2_TUNING_CMD_EN_MASK;

    /* 1bit data width */
    if (busWidth == 0UL)
    {
        base->VEND_SPEC2 &= ~USDHC_VEND_SPEC2_TUNING_8bit_EN_MASK;
        base->VEND_SPEC2 |= USDHC_VEND_SPEC2_TUNING_1bit_EN_MASK;
    }
    /* 4bit data width */
    else if (busWidth == 1UL)
    {
        base->VEND_SPEC2 &= ~USDHC_VEND_SPEC2_TUNING_8bit_EN_MASK;
        base->VEND_SPEC2 &= ~USDHC_VEND_SPEC2_TUNING_1bit_EN_MASK;
    }
    /* 8bit data width */
    else
    {
        base->VEND_SPEC2 |= USDHC_VEND_SPEC2_TUNING_8bit_EN_MASK;
        base->VEND_SPEC2 &= ~USDHC_VEND_SPEC2_TUNING_1bit_EN_MASK;
    }
}
#endif /* FSL_FEATURE_USDHC_HAS_SDR50_MODE */

static void USDHC_TransferHandleCardDetect(USDHC_Type *base, usdhc_handle_t *handle, uint32_t interruptFlags)
{
    if (IS_USDHC_FLAG_SET(interruptFlags, kUSDHC_CardInsertionFlag))
    {
        if (handle->callback.CardInserted != NULL)
        {
            handle->callback.CardInserted(base, handle->userData);
        }
    }
    else
    {
        if (handle->callback.CardRemoved != NULL)
        {
            handle->callback.CardRemoved(base, handle->userData);
        }
    }
}

static void USDHC_TransferHandleCommand(USDHC_Type *base, usdhc_handle_t *handle, uint32_t interruptFlags)
{
    assert(handle->command != NULL);

    if (IS_USDHC_FLAG_SET(interruptFlags, kUSDHC_CommandErrorFlag))
    {
        if (handle->callback.TransferComplete != NULL)
        {
            handle->callback.TransferComplete(base, handle, kStatus_USDHC_SendCommandFailed, handle->userData);
        }
    }
    else
    {
        /* Receive response */
        if (kStatus_Success != USDHC_ReceiveCommandResponse(base, handle->command))
        {
            if (handle->callback.TransferComplete != NULL)
            {
                handle->callback.TransferComplete(base, handle, kStatus_USDHC_SendCommandFailed, handle->userData);
            }
        }
        else
        {
            if (handle->callback.TransferComplete != NULL)
            {
                handle->callback.TransferComplete(base, handle, kStatus_USDHC_SendCommandSuccess, handle->userData);
            }
        }
    }
    /* disable interrupt signal and reset command pointer */
    USDHC_DisableInterruptSignal(base, kUSDHC_CommandFlag);
    handle->command = NULL;
}

static void USDHC_TransferHandleData(USDHC_Type *base, usdhc_handle_t *handle, uint32_t interruptFlags)
{
    assert(handle->data != NULL);

    status_t transferStatus   = kStatus_USDHC_BusyTransferring;
    uint32_t transferredWords = handle->transferredWords;

    if ((!(handle->data->enableIgnoreError)) &&
        (IS_USDHC_FLAG_SET(interruptFlags, (uint32_t)kUSDHC_DataErrorFlag | (uint32_t)kUSDHC_DmaErrorFlag)))
    {
        transferStatus = kStatus_USDHC_TransferDataFailed;
    }
    else
    {
        if (IS_USDHC_FLAG_SET(interruptFlags, kUSDHC_BufferReadReadyFlag))
        {
            /* std tuning process only need to wait BRR */
            if (handle->data->dataType == (uint32_t)kUSDHC_TransferDataTuning)
            {
                transferStatus = kStatus_USDHC_TransferDataComplete;
            }
            else
            {
                handle->transferredWords = USDHC_ReadDataPort(base, handle->data, transferredWords);
            }
        }
        else if (IS_USDHC_FLAG_SET(interruptFlags, kUSDHC_BufferWriteReadyFlag))
        {
            handle->transferredWords = USDHC_WriteDataPort(base, handle->data, transferredWords);
        }
        else
        {
            if ((IS_USDHC_FLAG_SET(interruptFlags, kUSDHC_DmaCompleteFlag)) &&
                (handle->data->dataType == (uint32_t)kUSDHC_TransferDataBootcontinous))
            {
                *(handle->data->rxData) = s_usdhcBootDummy;
            }

            if (IS_USDHC_FLAG_SET(interruptFlags, kUSDHC_DataCompleteFlag))
            {
                transferStatus = kStatus_USDHC_TransferDataComplete;

#if defined(FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL) && FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL
                if (handle->data->rxData != NULL)
                {
                    DCACHE_InvalidateByRange((uint32_t)(handle->data->rxData),
                                             (handle->data->blockSize) * (handle->data->blockCount));
                }
#endif
            }
        }
    }

    if ((handle->callback.TransferComplete != NULL) && (transferStatus != kStatus_USDHC_BusyTransferring))
    {
        handle->callback.TransferComplete(base, handle, transferStatus, handle->userData);
        USDHC_DisableInterruptSignal(base, (uint32_t)kUSDHC_DataFlag | (uint32_t)kUSDHC_DataDMAFlag);
        handle->data = NULL;
    }
}

static void USDHC_TransferHandleSdioInterrupt(USDHC_Type *base, usdhc_handle_t *handle)
{
    if (handle->callback.SdioInterrupt != NULL)
    {
        handle->callback.SdioInterrupt(base, handle->userData);
    }
}

#if defined(FSL_FEATURE_USDHC_HAS_SDR50_MODE) && (FSL_FEATURE_USDHC_HAS_SDR50_MODE)
static void USDHC_TransferHandleReTuning(USDHC_Type *base, usdhc_handle_t *handle, uint32_t interruptFlags)
{
    assert(handle->callback.ReTuning != NULL);
    /* retuning request */
    if (IS_USDHC_FLAG_SET(interruptFlags, kUSDHC_TuningErrorFlag))
    {
        handle->callback.ReTuning(base, handle->userData); /* retuning fail */
    }
}
#endif

static void USDHC_TransferHandleBlockGap(USDHC_Type *base, usdhc_handle_t *handle)
{
    if (handle->callback.BlockGap != NULL)
    {
        handle->callback.BlockGap(base, handle->userData);
    }
}

/*!
 * brief Creates the USDHC handle.
 *
 * param base USDHC peripheral base address.
 * param handle USDHC handle pointer.
 * param callback Structure pointer to contain all callback functions.
 * param userData Callback function parameter.
 */
void USDHC_TransferCreateHandle(USDHC_Type *base,
                                usdhc_handle_t *handle,
                                const usdhc_transfer_callback_t *callback,
                                void *userData)
{
    assert(handle != NULL);
    assert(callback != NULL);

    /* Zero the handle. */
    (void)memset(handle, 0, sizeof(*handle));

    /* Set the callback. */
    handle->callback.CardInserted     = callback->CardInserted;
    handle->callback.CardRemoved      = callback->CardRemoved;
    handle->callback.SdioInterrupt    = callback->SdioInterrupt;
    handle->callback.BlockGap         = callback->BlockGap;
    handle->callback.TransferComplete = callback->TransferComplete;
    handle->callback.ReTuning         = callback->ReTuning;
    handle->userData                  = userData;

    /* Save the handle in global variables to support the double weak mechanism. */
    s_usdhcHandle[USDHC_GetInstance(base)] = handle;

    /* save IRQ handler */
    s_usdhcIsr = USDHC_TransferHandleIRQ;

    (void)EnableIRQ(s_usdhcIRQ[USDHC_GetInstance(base)]);
}

/*!
 * brief IRQ handler for the USDHC.
 *
 * This function deals with the IRQs on the given host controller.
 *
 * param base USDHC peripheral base address.
 * param handle USDHC handle.
 */
void USDHC_TransferHandleIRQ(USDHC_Type *base, usdhc_handle_t *handle)
{
    assert(handle != NULL);

    uint32_t interruptFlags;

    interruptFlags = USDHC_GetEnabledInterruptStatusFlags(base);

    if (IS_USDHC_FLAG_SET(interruptFlags, kUSDHC_CardDetectFlag))
    {
        USDHC_TransferHandleCardDetect(base, handle, interruptFlags);
    }
    if (IS_USDHC_FLAG_SET(interruptFlags, kUSDHC_CommandFlag))
    {
        USDHC_TransferHandleCommand(base, handle, interruptFlags);
    }
    if (IS_USDHC_FLAG_SET(interruptFlags, kUSDHC_DataFlag))
    {
        USDHC_TransferHandleData(base, handle, interruptFlags);
    }
    if (IS_USDHC_FLAG_SET(interruptFlags, kUSDHC_CardInterruptFlag))
    {
        USDHC_TransferHandleSdioInterrupt(base, handle);
    }
    if (IS_USDHC_FLAG_SET(interruptFlags, kUSDHC_BlockGapEventFlag))
    {
        USDHC_TransferHandleBlockGap(base, handle);
    }
#if defined(FSL_FEATURE_USDHC_HAS_SDR50_MODE) && (FSL_FEATURE_USDHC_HAS_SDR50_MODE)
    if (IS_USDHC_FLAG_SET(interruptFlags, kUSDHC_SDR104TuningFlag))
    {
        USDHC_TransferHandleReTuning(base, handle, interruptFlags);
    }
#endif
    USDHC_ClearInterruptStatusFlags(base, interruptFlags);
}

#ifdef USDHC0
void USDHC0_DriverIRQHandler(void)
{
    s_usdhcIsr(s_usdhcBase[0U], s_usdhcHandle[0U]);
    SDK_ISR_EXIT_BARRIER;
}
#endif

#ifdef USDHC1
void USDHC1_DriverIRQHandler(void)
{
    s_usdhcIsr(s_usdhcBase[1U], s_usdhcHandle[1U]);
    SDK_ISR_EXIT_BARRIER;
}
#endif

#ifdef USDHC2
void USDHC2_DriverIRQHandler(void)
{
    s_usdhcIsr(s_usdhcBase[2U], s_usdhcHandle[2U]);
    SDK_ISR_EXIT_BARRIER;
}

#endif