summaryrefslogtreecommitdiffstats
path: root/bsps/arm/imxrt/mcux-sdk/drivers/common/fsl_common_arm.h
blob: 49d50de92ab0183a910d72afd612d69950b66830 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
/*
 * Copyright (c) 2015-2016, Freescale Semiconductor, Inc.
 * Copyright 2016-2022 NXP
 * All rights reserved.
 *
 * SPDX-License-Identifier: BSD-3-Clause
 */

#ifndef _FSL_COMMON_ARM_H_
#define _FSL_COMMON_ARM_H_

/*
 * For CMSIS pack RTE.
 * CMSIS pack RTE generates "RTC_Components.h" which contains the statements
 * of the related <RTE_Components_h> element for all selected software components.
 */
#ifdef _RTE_
#include "RTE_Components.h"
#endif

/*!
 * @addtogroup ksdk_common
 * @{
 */

/*! @name Atomic modification
 *
 * These macros are used for atomic access, such as read-modify-write
 * to the peripheral registers.
 *
 * - SDK_ATOMIC_LOCAL_ADD
 * - SDK_ATOMIC_LOCAL_SET
 * - SDK_ATOMIC_LOCAL_CLEAR
 * - SDK_ATOMIC_LOCAL_TOGGLE
 * - SDK_ATOMIC_LOCAL_CLEAR_AND_SET
 *
 * Take SDK_ATOMIC_LOCAL_CLEAR_AND_SET as an example: the parameter @c addr
 * means the address of the peripheral register or variable you want to modify
 * atomically, the parameter @c clearBits is the bits to clear, the parameter
 * @c setBits it the bits to set.
 * For example, to set a 32-bit register bit1:bit0 to 0b10, use like this:
 *
 * @code
   volatile uint32_t * reg = (volatile uint32_t *)REG_ADDR;

   SDK_ATOMIC_LOCAL_CLEAR_AND_SET(reg, 0x03, 0x02);
   @endcode
 *
 * In this example, the register bit1:bit0 are cleared and bit1 is set, as a result,
 * register bit1:bit0 = 0b10.
 *
 * @note For the platforms don't support exclusive load and store, these macros
 * disable the global interrupt to pretect the modification.
 *
 * @note These macros only guarantee the local processor atomic operations. For
 * the multi-processor devices, use hardware semaphore such as SEMA42 to
 * guarantee exclusive access if necessary.
 *
 * @{
 */

/* clang-format off */
#if ((defined(__ARM_ARCH_7M__     ) && (__ARM_ARCH_7M__      == 1)) || \
     (defined(__ARM_ARCH_7EM__    ) && (__ARM_ARCH_7EM__     == 1)) || \
     (defined(__ARM_ARCH_8M_MAIN__) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
     (defined(__ARM_ARCH_8M_BASE__) && (__ARM_ARCH_8M_BASE__ == 1)))
/* clang-format on */

/* If the LDREX and STREX are supported, use them. */
#define _SDK_ATOMIC_LOCAL_OPS_1BYTE(addr, val, ops) \
    do                                              \
    {                                               \
        (val) = __LDREXB(addr);                     \
        (ops);                                      \
    } while (0UL != __STREXB((val), (addr)))

#define _SDK_ATOMIC_LOCAL_OPS_2BYTE(addr, val, ops) \
    do                                              \
    {                                               \
        (val) = __LDREXH(addr);                     \
        (ops);                                      \
    } while (0UL != __STREXH((val), (addr)))

#define _SDK_ATOMIC_LOCAL_OPS_4BYTE(addr, val, ops) \
    do                                              \
    {                                               \
        (val) = __LDREXW(addr);                     \
        (ops);                                      \
    } while (0UL != __STREXW((val), (addr)))

static inline void _SDK_AtomicLocalAdd1Byte(volatile uint8_t *addr, uint8_t val)
{
    uint8_t s_val;

    _SDK_ATOMIC_LOCAL_OPS_1BYTE(addr, s_val, s_val += val);
}

static inline void _SDK_AtomicLocalAdd2Byte(volatile uint16_t *addr, uint16_t val)
{
    uint16_t s_val;

    _SDK_ATOMIC_LOCAL_OPS_2BYTE(addr, s_val, s_val += val);
}

static inline void _SDK_AtomicLocalAdd4Byte(volatile uint32_t *addr, uint32_t val)
{
    uint32_t s_val;

    _SDK_ATOMIC_LOCAL_OPS_4BYTE(addr, s_val, s_val += val);
}

static inline void _SDK_AtomicLocalSub1Byte(volatile uint8_t *addr, uint8_t val)
{
    uint8_t s_val;

    _SDK_ATOMIC_LOCAL_OPS_1BYTE(addr, s_val, s_val -= val);
}

static inline void _SDK_AtomicLocalSub2Byte(volatile uint16_t *addr, uint16_t val)
{
    uint16_t s_val;

    _SDK_ATOMIC_LOCAL_OPS_2BYTE(addr, s_val, s_val -= val);
}

static inline void _SDK_AtomicLocalSub4Byte(volatile uint32_t *addr, uint32_t val)
{
    uint32_t s_val;

    _SDK_ATOMIC_LOCAL_OPS_4BYTE(addr, s_val, s_val -= val);
}

static inline void _SDK_AtomicLocalSet1Byte(volatile uint8_t *addr, uint8_t bits)
{
    uint8_t s_val;

    _SDK_ATOMIC_LOCAL_OPS_1BYTE(addr, s_val, s_val |= bits);
}

static inline void _SDK_AtomicLocalSet2Byte(volatile uint16_t *addr, uint16_t bits)
{
    uint16_t s_val;

    _SDK_ATOMIC_LOCAL_OPS_2BYTE(addr, s_val, s_val |= bits);
}

static inline void _SDK_AtomicLocalSet4Byte(volatile uint32_t *addr, uint32_t bits)
{
    uint32_t s_val;

    _SDK_ATOMIC_LOCAL_OPS_4BYTE(addr, s_val, s_val |= bits);
}

static inline void _SDK_AtomicLocalClear1Byte(volatile uint8_t *addr, uint8_t bits)
{
    uint8_t s_val;

    _SDK_ATOMIC_LOCAL_OPS_1BYTE(addr, s_val, s_val &= ~bits);
}

static inline void _SDK_AtomicLocalClear2Byte(volatile uint16_t *addr, uint16_t bits)
{
    uint16_t s_val;

    _SDK_ATOMIC_LOCAL_OPS_2BYTE(addr, s_val, s_val &= ~bits);
}

static inline void _SDK_AtomicLocalClear4Byte(volatile uint32_t *addr, uint32_t bits)
{
    uint32_t s_val;

    _SDK_ATOMIC_LOCAL_OPS_4BYTE(addr, s_val, s_val &= ~bits);
}

static inline void _SDK_AtomicLocalToggle1Byte(volatile uint8_t *addr, uint8_t bits)
{
    uint8_t s_val;

    _SDK_ATOMIC_LOCAL_OPS_1BYTE(addr, s_val, s_val ^= bits);
}

static inline void _SDK_AtomicLocalToggle2Byte(volatile uint16_t *addr, uint16_t bits)
{
    uint16_t s_val;

    _SDK_ATOMIC_LOCAL_OPS_2BYTE(addr, s_val, s_val ^= bits);
}

static inline void _SDK_AtomicLocalToggle4Byte(volatile uint32_t *addr, uint32_t bits)
{
    uint32_t s_val;

    _SDK_ATOMIC_LOCAL_OPS_4BYTE(addr, s_val, s_val ^= bits);
}

static inline void _SDK_AtomicLocalClearAndSet1Byte(volatile uint8_t *addr, uint8_t clearBits, uint8_t setBits)
{
    uint8_t s_val;

    _SDK_ATOMIC_LOCAL_OPS_1BYTE(addr, s_val, s_val = (s_val & ~clearBits) | setBits);
}

static inline void _SDK_AtomicLocalClearAndSet2Byte(volatile uint16_t *addr, uint16_t clearBits, uint16_t setBits)
{
    uint16_t s_val;

    _SDK_ATOMIC_LOCAL_OPS_2BYTE(addr, s_val, s_val = (s_val & ~clearBits) | setBits);
}

static inline void _SDK_AtomicLocalClearAndSet4Byte(volatile uint32_t *addr, uint32_t clearBits, uint32_t setBits)
{
    uint32_t s_val;

    _SDK_ATOMIC_LOCAL_OPS_4BYTE(addr, s_val, s_val = (s_val & ~clearBits) | setBits);
}

#define SDK_ATOMIC_LOCAL_ADD(addr, val)                                                                                        \
    ((1UL == sizeof(*(addr))) ?                                                                                                \
         _SDK_AtomicLocalAdd1Byte((volatile uint8_t *)(volatile void *)(addr), (uint8_t)(val)) :                               \
         ((2UL == sizeof(*(addr))) ? _SDK_AtomicLocalAdd2Byte((volatile uint16_t *)(volatile void *)(addr), (uint16_t)(val)) : \
                                     _SDK_AtomicLocalAdd4Byte((volatile uint32_t *)(volatile void *)(addr), (uint32_t)(val))))

#define SDK_ATOMIC_LOCAL_SET(addr, bits)                                                                                        \
    ((1UL == sizeof(*(addr))) ?                                                                                                 \
         _SDK_AtomicLocalSet1Byte((volatile uint8_t *)(volatile void *)(addr), (uint8_t)(bits)) :                               \
         ((2UL == sizeof(*(addr))) ? _SDK_AtomicLocalSet2Byte((volatile uint16_t *)(volatile void *)(addr), (uint16_t)(bits)) : \
                                     _SDK_AtomicLocalSet4Byte((volatile uint32_t *)(volatile void *)(addr), (uint32_t)(bits))))

#define SDK_ATOMIC_LOCAL_CLEAR(addr, bits)                                                                 \
    ((1UL == sizeof(*(addr))) ?                                                                            \
         _SDK_AtomicLocalClear1Byte((volatile uint8_t *)(volatile void *)(addr), (uint8_t)(bits)) :        \
         ((2UL == sizeof(*(addr))) ?                                                                       \
              _SDK_AtomicLocalClear2Byte((volatile uint16_t *)(volatile void *)(addr), (uint16_t)(bits)) : \
              _SDK_AtomicLocalClear4Byte((volatile uint32_t *)(volatile void *)(addr), (uint32_t)(bits))))

#define SDK_ATOMIC_LOCAL_TOGGLE(addr, bits)                                                                 \
    ((1UL == sizeof(*(addr))) ?                                                                             \
         _SDK_AtomicLocalToggle1Byte((volatile uint8_t *)(volatile void *)(addr), (uint8_t)(bits)) :        \
         ((2UL == sizeof(*(addr))) ?                                                                        \
              _SDK_AtomicLocalToggle2Byte((volatile uint16_t *)(volatile void *)(addr), (uint16_t)(bits)) : \
              _SDK_AtomicLocalToggle4Byte((volatile uint32_t *)(volatile void *)(addr), (uint32_t)(bits))))

#define SDK_ATOMIC_LOCAL_CLEAR_AND_SET(addr, clearBits, setBits)                                                                           \
    ((1UL == sizeof(*(addr))) ?                                                                                                            \
         _SDK_AtomicLocalClearAndSet1Byte((volatile uint8_t *)(volatile void *)(addr), (uint8_t)(clearBits), (uint8_t)(setBits)) :         \
         ((2UL == sizeof(*(addr))) ?                                                                                                       \
              _SDK_AtomicLocalClearAndSet2Byte((volatile uint16_t *)(volatile void *)(addr), (uint16_t)(clearBits), (uint16_t)(setBits)) : \
              _SDK_AtomicLocalClearAndSet4Byte((volatile uint32_t *)(volatile void *)(addr), (uint32_t)(clearBits), (uint32_t)(setBits))))
#else

#define SDK_ATOMIC_LOCAL_ADD(addr, val)      \
    do                                       \
    {                                        \
        uint32_t s_atomicOldInt;             \
        s_atomicOldInt = DisableGlobalIRQ(); \
        *(addr) += (val);                    \
        EnableGlobalIRQ(s_atomicOldInt);     \
    } while (0)

#define SDK_ATOMIC_LOCAL_SET(addr, bits)     \
    do                                       \
    {                                        \
        uint32_t s_atomicOldInt;             \
        s_atomicOldInt = DisableGlobalIRQ(); \
        *(addr) |= (bits);                   \
        EnableGlobalIRQ(s_atomicOldInt);     \
    } while (0)

#define SDK_ATOMIC_LOCAL_CLEAR(addr, bits)   \
    do                                       \
    {                                        \
        uint32_t s_atomicOldInt;             \
        s_atomicOldInt = DisableGlobalIRQ(); \
        *(addr) &= ~(bits);                  \
        EnableGlobalIRQ(s_atomicOldInt);     \
    } while (0)

#define SDK_ATOMIC_LOCAL_TOGGLE(addr, bits)  \
    do                                       \
    {                                        \
        uint32_t s_atomicOldInt;             \
        s_atomicOldInt = DisableGlobalIRQ(); \
        *(addr) ^= (bits);                   \
        EnableGlobalIRQ(s_atomicOldInt);     \
    } while (0)

#define SDK_ATOMIC_LOCAL_CLEAR_AND_SET(addr, clearBits, setBits) \
    do                                                           \
    {                                                            \
        uint32_t s_atomicOldInt;                                 \
        s_atomicOldInt = DisableGlobalIRQ();                     \
        *(addr)        = (*(addr) & ~(clearBits)) | (setBits);   \
        EnableGlobalIRQ(s_atomicOldInt);                         \
    } while (0)

#endif
/* @} */

/*! @name Timer utilities */
/* @{ */
/*! Macro to convert a microsecond period to raw count value */
#define USEC_TO_COUNT(us, clockFreqInHz) (uint64_t)(((uint64_t)(us) * (clockFreqInHz)) / 1000000U)
/*! Macro to convert a raw count value to microsecond */
#define COUNT_TO_USEC(count, clockFreqInHz) (uint64_t)((uint64_t)(count)*1000000U / (clockFreqInHz))

/*! Macro to convert a millisecond period to raw count value */
#define MSEC_TO_COUNT(ms, clockFreqInHz) (uint64_t)((uint64_t)(ms) * (clockFreqInHz) / 1000U)
/*! Macro to convert a raw count value to millisecond */
#define COUNT_TO_MSEC(count, clockFreqInHz) (uint64_t)((uint64_t)(count)*1000U / (clockFreqInHz))
/* @} */

/*! @name ISR exit barrier
 * @{
 *
 * ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping
 * exception return operation might vector to incorrect interrupt.
 * For Cortex-M7, if core speed much faster than peripheral register write speed,
 * the peripheral interrupt flags may be still set after exiting ISR, this results to
 * the same error similar with errata 83869.
 */
#if (defined __CORTEX_M) && ((__CORTEX_M == 4U) || (__CORTEX_M == 7U))
#define SDK_ISR_EXIT_BARRIER __DSB()
#else
#define SDK_ISR_EXIT_BARRIER
#endif

/* @} */

/*! @name Alignment variable definition macros */
/* @{ */
#if (defined(__ICCARM__))
/*
 * Workaround to disable MISRA C message suppress warnings for IAR compiler.
 * http:/ /supp.iar.com/Support/?note=24725
 */
_Pragma("diag_suppress=Pm120")
#define SDK_PRAGMA(x) _Pragma(#x)
    _Pragma("diag_error=Pm120")
/*! Macro to define a variable with alignbytes alignment */
#define SDK_ALIGN(var, alignbytes) SDK_PRAGMA(data_alignment = alignbytes) var
#elif defined(__CC_ARM) || defined(__ARMCC_VERSION)
/*! Macro to define a variable with alignbytes alignment */
#define SDK_ALIGN(var, alignbytes) __attribute__((aligned(alignbytes))) var
#elif defined(__GNUC__)
/*! Macro to define a variable with alignbytes alignment */
#define SDK_ALIGN(var, alignbytes) var __attribute__((aligned(alignbytes)))
#else
#error Toolchain not supported
#endif

/*! Macro to define a variable with L1 d-cache line size alignment */
#if defined(FSL_FEATURE_L1DCACHE_LINESIZE_BYTE)
#define SDK_L1DCACHE_ALIGN(var) SDK_ALIGN(var, FSL_FEATURE_L1DCACHE_LINESIZE_BYTE)
#endif
/*! Macro to define a variable with L2 cache line size alignment */
#if defined(FSL_FEATURE_L2CACHE_LINESIZE_BYTE)
#define SDK_L2CACHE_ALIGN(var) SDK_ALIGN(var, FSL_FEATURE_L2CACHE_LINESIZE_BYTE)
#endif

/*! Macro to change a value to a given size aligned value */
#define SDK_SIZEALIGN(var, alignbytes) \
    ((unsigned int)((var) + ((alignbytes)-1U)) & (unsigned int)(~(unsigned int)((alignbytes)-1U)))
/* @} */

/*! @name Non-cacheable region definition macros */
/* For initialized non-zero non-cacheable variables, please using "AT_NONCACHEABLE_SECTION_INIT(var) ={xx};" or
 * "AT_NONCACHEABLE_SECTION_ALIGN_INIT(var) ={xx};" in your projects to define them, for zero-inited non-cacheable
 * variables, please using "AT_NONCACHEABLE_SECTION(var);" or "AT_NONCACHEABLE_SECTION_ALIGN(var);" to define them,
 * these zero-inited variables will be initialized to zero in system startup.
 */
/* @{ */

#if ((!(defined(FSL_FEATURE_HAS_NO_NONCACHEABLE_SECTION) && FSL_FEATURE_HAS_NO_NONCACHEABLE_SECTION)) && \
     defined(FSL_FEATURE_L1ICACHE_LINESIZE_BYTE))

#if (defined(__ICCARM__))
#define AT_NONCACHEABLE_SECTION(var)                   var @"NonCacheable"
#define AT_NONCACHEABLE_SECTION_ALIGN(var, alignbytes) SDK_PRAGMA(data_alignment = alignbytes) var @"NonCacheable"
#define AT_NONCACHEABLE_SECTION_INIT(var)              var @"NonCacheable.init"
#define AT_NONCACHEABLE_SECTION_ALIGN_INIT(var, alignbytes) \
    SDK_PRAGMA(data_alignment = alignbytes) var @"NonCacheable.init"

#elif (defined(__CC_ARM) || defined(__ARMCC_VERSION))
#define AT_NONCACHEABLE_SECTION_INIT(var) __attribute__((section("NonCacheable.init"))) var
#define AT_NONCACHEABLE_SECTION_ALIGN_INIT(var, alignbytes) \
    __attribute__((section("NonCacheable.init"))) __attribute__((aligned(alignbytes))) var
#if (defined(__CC_ARM))
#define AT_NONCACHEABLE_SECTION(var) __attribute__((section("NonCacheable"), zero_init)) var
#define AT_NONCACHEABLE_SECTION_ALIGN(var, alignbytes) \
    __attribute__((section("NonCacheable"), zero_init)) __attribute__((aligned(alignbytes))) var
#else
#define AT_NONCACHEABLE_SECTION(var) __attribute__((section(".bss.NonCacheable"))) var
#define AT_NONCACHEABLE_SECTION_ALIGN(var, alignbytes) \
    __attribute__((section(".bss.NonCacheable"))) __attribute__((aligned(alignbytes))) var
#endif

#elif (defined(__GNUC__))
#if defined(__ARM_ARCH_8A__) /* This macro is ARMv8-A specific */
#define __CS "//"
#else
#define __CS "@"
#endif

/* For GCC, when the non-cacheable section is required, please define "__STARTUP_INITIALIZE_NONCACHEDATA"
 * in your projects to make sure the non-cacheable section variables will be initialized in system startup.
 */
#define AT_NONCACHEABLE_SECTION_INIT(var) __attribute__((section("NonCacheable.init"))) var
#define AT_NONCACHEABLE_SECTION_ALIGN_INIT(var, alignbytes) \
    __attribute__((section("NonCacheable.init"))) var __attribute__((aligned(alignbytes)))
#define AT_NONCACHEABLE_SECTION(var) __attribute__((section("NonCacheable,\"aw\",%nobits " __CS))) var
#define AT_NONCACHEABLE_SECTION_ALIGN(var, alignbytes) \
    __attribute__((section("NonCacheable,\"aw\",%nobits " __CS))) var __attribute__((aligned(alignbytes)))
#else
#error Toolchain not supported.
#endif

#else

#define AT_NONCACHEABLE_SECTION(var)                        var
#define AT_NONCACHEABLE_SECTION_ALIGN(var, alignbytes)      SDK_ALIGN(var, alignbytes)
#define AT_NONCACHEABLE_SECTION_INIT(var)                   var
#define AT_NONCACHEABLE_SECTION_ALIGN_INIT(var, alignbytes) SDK_ALIGN(var, alignbytes)

#endif

/* @} */

/*!
 * @name Time sensitive region
 * @{
 */
#if (defined(__ICCARM__))
#define AT_QUICKACCESS_SECTION_CODE(func) func @"CodeQuickAccess"
#define AT_QUICKACCESS_SECTION_DATA(var)  var @"DataQuickAccess"
#define AT_QUICKACCESS_SECTION_DATA_ALIGN(var, alignbytes) \
    SDK_PRAGMA(data_alignment = alignbytes) var @"DataQuickAccess"
#elif (defined(__CC_ARM) || defined(__ARMCC_VERSION))
#define AT_QUICKACCESS_SECTION_CODE(func) __attribute__((section("CodeQuickAccess"), __noinline__)) func
#define AT_QUICKACCESS_SECTION_DATA(var)  __attribute__((section("DataQuickAccess"))) var
#define AT_QUICKACCESS_SECTION_DATA_ALIGN(var, alignbytes) \
    __attribute__((section("DataQuickAccess"))) __attribute__((aligned(alignbytes))) var
#elif (defined(__GNUC__))
#define AT_QUICKACCESS_SECTION_CODE(func) __attribute__((section("CodeQuickAccess"), __noinline__)) func
#define AT_QUICKACCESS_SECTION_DATA(var)  __attribute__((section("DataQuickAccess"))) var
#define AT_QUICKACCESS_SECTION_DATA_ALIGN(var, alignbytes) \
    __attribute__((section("DataQuickAccess"))) var __attribute__((aligned(alignbytes)))
#else
#error Toolchain not supported.
#endif /* defined(__ICCARM__) */

/*! @name Ram Function */
#if (defined(__ICCARM__))
#define RAMFUNCTION_SECTION_CODE(func) func @"RamFunction"
#elif (defined(__CC_ARM) || defined(__ARMCC_VERSION))
#define RAMFUNCTION_SECTION_CODE(func) __attribute__((section("RamFunction"))) func
#elif (defined(__GNUC__))
#define RAMFUNCTION_SECTION_CODE(func) __attribute__((section("RamFunction"))) func
#else
#error Toolchain not supported.
#endif /* defined(__ICCARM__) */
/* @} */

#if defined(__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050)
        void DefaultISR(void);
#endif

/*
 * The fsl_clock.h is included here because it needs MAKE_VERSION/MAKE_STATUS/status_t
 * defined in previous of this file.
 */
#include "fsl_clock.h"

/*
 * Chip level peripheral reset API, for MCUs that implement peripheral reset control external to a peripheral
 */
#if ((defined(FSL_FEATURE_SOC_SYSCON_COUNT) && (FSL_FEATURE_SOC_SYSCON_COUNT > 0)) || \
     (defined(FSL_FEATURE_SOC_ASYNC_SYSCON_COUNT) && (FSL_FEATURE_SOC_ASYNC_SYSCON_COUNT > 0)))
#include "fsl_reset.h"
#endif

/*******************************************************************************
 * API
 ******************************************************************************/

#if defined(__cplusplus)
extern "C" {
#endif /* __cplusplus*/

/*!
 * @brief Enable specific interrupt.
 *
 * Enable LEVEL1 interrupt. For some devices, there might be multiple interrupt
 * levels. For example, there are NVIC and intmux. Here the interrupts connected
 * to NVIC are the LEVEL1 interrupts, because they are routed to the core directly.
 * The interrupts connected to intmux are the LEVEL2 interrupts, they are routed
 * to NVIC first then routed to core.
 *
 * This function only enables the LEVEL1 interrupts. The number of LEVEL1 interrupts
 * is indicated by the feature macro FSL_FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS.
 *
 * @param interrupt The IRQ number.
 * @retval kStatus_Success Interrupt enabled successfully
 * @retval kStatus_Fail Failed to enable the interrupt
 */
static inline status_t EnableIRQ(IRQn_Type interrupt)
{
    status_t status = kStatus_Success;

    if (NotAvail_IRQn == interrupt)
    {
        status = kStatus_Fail;
    }

#if defined(FSL_FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS) && (FSL_FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS > 0)
    else if ((int32_t)interrupt >= (int32_t)FSL_FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS)
    {
        status = kStatus_Fail;
    }
#endif

    else
    {
#if defined(__GIC_PRIO_BITS)
        GIC_EnableIRQ(interrupt);
#else
        NVIC_EnableIRQ(interrupt);
#endif
    }

    return status;
}

/*!
 * @brief Disable specific interrupt.
 *
 * Disable LEVEL1 interrupt. For some devices, there might be multiple interrupt
 * levels. For example, there are NVIC and intmux. Here the interrupts connected
 * to NVIC are the LEVEL1 interrupts, because they are routed to the core directly.
 * The interrupts connected to intmux are the LEVEL2 interrupts, they are routed
 * to NVIC first then routed to core.
 *
 * This function only disables the LEVEL1 interrupts. The number of LEVEL1 interrupts
 * is indicated by the feature macro FSL_FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS.
 *
 * @param interrupt The IRQ number.
 * @retval kStatus_Success Interrupt disabled successfully
 * @retval kStatus_Fail Failed to disable the interrupt
 */
static inline status_t DisableIRQ(IRQn_Type interrupt)
{
    status_t status = kStatus_Success;

    if (NotAvail_IRQn == interrupt)
    {
        status = kStatus_Fail;
    }

#if defined(FSL_FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS) && (FSL_FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS > 0)
    else if ((int32_t)interrupt >= (int32_t)FSL_FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS)
    {
        status = kStatus_Fail;
    }
#endif

    else
    {
#if defined(__GIC_PRIO_BITS)
        GIC_DisableIRQ(interrupt);
#else
        NVIC_DisableIRQ(interrupt);
#endif
    }

    return status;
}

#if defined(__GIC_PRIO_BITS)
#define NVIC_SetPriority(irq, prio) do {} while(0)
#endif

/*!
 * @brief Enable the IRQ, and also set the interrupt priority.
 *
 * Only handle LEVEL1 interrupt. For some devices, there might be multiple interrupt
 * levels. For example, there are NVIC and intmux. Here the interrupts connected
 * to NVIC are the LEVEL1 interrupts, because they are routed to the core directly.
 * The interrupts connected to intmux are the LEVEL2 interrupts, they are routed
 * to NVIC first then routed to core.
 *
 * This function only handles the LEVEL1 interrupts. The number of LEVEL1 interrupts
 * is indicated by the feature macro FSL_FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS.
 *
 * @param interrupt The IRQ to Enable.
 * @param priNum Priority number set to interrupt controller register.
 * @retval kStatus_Success Interrupt priority set successfully
 * @retval kStatus_Fail Failed to set the interrupt priority.
 */
static inline status_t EnableIRQWithPriority(IRQn_Type interrupt, uint8_t priNum)
{
    status_t status = kStatus_Success;

    if (NotAvail_IRQn == interrupt)
    {
        status = kStatus_Fail;
    }

#if defined(FSL_FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS) && (FSL_FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS > 0)
    else if ((int32_t)interrupt >= (int32_t)FSL_FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS)
    {
        status = kStatus_Fail;
    }
#endif

    else
    {
#if defined(__GIC_PRIO_BITS)
        GIC_SetPriority(interrupt, priNum);
        GIC_EnableIRQ(interrupt);
#else
        NVIC_SetPriority(interrupt, priNum);
        NVIC_EnableIRQ(interrupt);
#endif
    }

    return status;
}

/*!
 * @brief Set the IRQ priority.
 *
 * Only handle LEVEL1 interrupt. For some devices, there might be multiple interrupt
 * levels. For example, there are NVIC and intmux. Here the interrupts connected
 * to NVIC are the LEVEL1 interrupts, because they are routed to the core directly.
 * The interrupts connected to intmux are the LEVEL2 interrupts, they are routed
 * to NVIC first then routed to core.
 *
 * This function only handles the LEVEL1 interrupts. The number of LEVEL1 interrupts
 * is indicated by the feature macro FSL_FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS.
 *
 * @param interrupt The IRQ to set.
 * @param priNum Priority number set to interrupt controller register.
 *
 * @retval kStatus_Success Interrupt priority set successfully
 * @retval kStatus_Fail Failed to set the interrupt priority.
 */
static inline status_t IRQ_SetPriority(IRQn_Type interrupt, uint8_t priNum)
{
    status_t status = kStatus_Success;

    if (NotAvail_IRQn == interrupt)
    {
        status = kStatus_Fail;
    }

#if defined(FSL_FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS) && (FSL_FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS > 0)
    else if ((int32_t)interrupt >= (int32_t)FSL_FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS)
    {
        status = kStatus_Fail;
    }
#endif

    else
    {
#if defined(__GIC_PRIO_BITS)
        GIC_SetPriority(interrupt, priNum);
#else
        NVIC_SetPriority(interrupt, priNum);
#endif
    }

    return status;
}

/*!
 * @brief Clear the pending IRQ flag.
 *
 * Only handle LEVEL1 interrupt. For some devices, there might be multiple interrupt
 * levels. For example, there are NVIC and intmux. Here the interrupts connected
 * to NVIC are the LEVEL1 interrupts, because they are routed to the core directly.
 * The interrupts connected to intmux are the LEVEL2 interrupts, they are routed
 * to NVIC first then routed to core.
 *
 * This function only handles the LEVEL1 interrupts. The number of LEVEL1 interrupts
 * is indicated by the feature macro FSL_FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS.
 *
 * @param interrupt The flag which IRQ to clear.
 *
 * @retval kStatus_Success Interrupt priority set successfully
 * @retval kStatus_Fail Failed to set the interrupt priority.
 */
static inline status_t IRQ_ClearPendingIRQ(IRQn_Type interrupt)
{
    status_t status = kStatus_Success;

    if (NotAvail_IRQn == interrupt)
    {
        status = kStatus_Fail;
    }

#if defined(FSL_FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS) && (FSL_FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS > 0)
    else if ((int32_t)interrupt >= (int32_t)FSL_FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS)
    {
        status = kStatus_Fail;
    }
#endif

    else
    {
#if defined(__GIC_PRIO_BITS)
        GIC_ClearPendingIRQ(interrupt);
#else
        NVIC_ClearPendingIRQ(interrupt);
#endif
    }

    return status;
}

/*!
 * @brief Disable the global IRQ
 *
 * Disable the global interrupt and return the current primask register. User is required to provided the primask
 * register for the EnableGlobalIRQ().
 *
 * @return Current primask value.
 */
static inline uint32_t DisableGlobalIRQ(void)
{
    uint32_t mask;

#if defined(CPSR_I_Msk)
    mask = __get_CPSR() & CPSR_I_Msk;
#elif defined(DAIF_I_BIT)
    mask = __get_DAIF() & DAIF_I_BIT;
#else
    mask = __get_PRIMASK();
#endif
    __disable_irq();

    return mask;
}

/*!
 * @brief Enable the global IRQ
 *
 * Set the primask register with the provided primask value but not just enable the primask. The idea is for the
 * convenience of integration of RTOS. some RTOS get its own management mechanism of primask. User is required to
 * use the EnableGlobalIRQ() and DisableGlobalIRQ() in pair.
 *
 * @param primask value of primask register to be restored. The primask value is supposed to be provided by the
 * DisableGlobalIRQ().
 */
static inline void EnableGlobalIRQ(uint32_t primask)
{
#if defined(CPSR_I_Msk)
    __set_CPSR((__get_CPSR() & ~CPSR_I_Msk) | primask);
#elif defined(DAIF_I_BIT)
    if (0UL == primask)
    {
        __enable_irq();
    }
#else
    __set_PRIMASK(primask);
#endif
}

#if defined(ENABLE_RAM_VECTOR_TABLE)
/*!
 * @brief install IRQ handler
 *
 * @param irq IRQ number
 * @param irqHandler IRQ handler address
 * @return The old IRQ handler address
 */
uint32_t InstallIRQHandler(IRQn_Type irq, uint32_t irqHandler);
#endif /* ENABLE_RAM_VECTOR_TABLE. */

#if (defined(FSL_FEATURE_SOC_SYSCON_COUNT) && (FSL_FEATURE_SOC_SYSCON_COUNT > 0))

/*
 * When FSL_FEATURE_POWERLIB_EXTEND is defined to non-zero value,
 * powerlib should be used instead of these functions.
 */
#if !(defined(FSL_FEATURE_POWERLIB_EXTEND) && (FSL_FEATURE_POWERLIB_EXTEND != 0))
/*!
 * @brief Enable specific interrupt for wake-up from deep-sleep mode.
 *
 * Enable the interrupt for wake-up from deep sleep mode.
 * Some interrupts are typically used in sleep mode only and will not occur during
 * deep-sleep mode because relevant clocks are stopped. However, it is possible to enable
 * those clocks (significantly increasing power consumption in the reduced power mode),
 * making these wake-ups possible.
 *
 * @note This function also enables the interrupt in the NVIC (EnableIRQ() is called internaly).
 *
 * @param interrupt The IRQ number.
 */
void EnableDeepSleepIRQ(IRQn_Type interrupt);

/*!
 * @brief Disable specific interrupt for wake-up from deep-sleep mode.
 *
 * Disable the interrupt for wake-up from deep sleep mode.
 * Some interrupts are typically used in sleep mode only and will not occur during
 * deep-sleep mode because relevant clocks are stopped. However, it is possible to enable
 * those clocks (significantly increasing power consumption in the reduced power mode),
 * making these wake-ups possible.
 *
 * @note This function also disables the interrupt in the NVIC (DisableIRQ() is called internaly).
 *
 * @param interrupt The IRQ number.
 */
void DisableDeepSleepIRQ(IRQn_Type interrupt);
#endif /* FSL_FEATURE_POWERLIB_EXTEND */
#endif /* FSL_FEATURE_SOC_SYSCON_COUNT */

#if defined(DWT)
/*!
 * @brief Enable the counter to get CPU cycles.
 */
void MSDK_EnableCpuCycleCounter(void);

/*!
 * @brief Get the current CPU cycle count.
 *
 * @return Current CPU cycle count.
 */
uint32_t MSDK_GetCpuCycleCount(void);
#endif

#if defined(__cplusplus)
}
#endif /* __cplusplus*/

/*! @} */

#endif /* _FSL_COMMON_ARM_H_ */