summaryrefslogtreecommitdiffstats
path: root/cpukit/score/cpu/powerpc/include/rtems/score/cpu.h
diff options
context:
space:
mode:
Diffstat (limited to 'cpukit/score/cpu/powerpc/include/rtems/score/cpu.h')
-rw-r--r--cpukit/score/cpu/powerpc/include/rtems/score/cpu.h1257
1 files changed, 1257 insertions, 0 deletions
diff --git a/cpukit/score/cpu/powerpc/include/rtems/score/cpu.h b/cpukit/score/cpu/powerpc/include/rtems/score/cpu.h
new file mode 100644
index 0000000000..8c0f200641
--- /dev/null
+++ b/cpukit/score/cpu/powerpc/include/rtems/score/cpu.h
@@ -0,0 +1,1257 @@
+/**
+ * @file
+ *
+ * @brief PowerPC CPU Department Source
+ */
+
+/*
+ * COPYRIGHT (c) 1989-2012.
+ * On-Line Applications Research Corporation (OAR).
+ *
+ * COPYRIGHT (c) 1995 i-cubed ltd.
+ *
+ * To anyone who acknowledges that this file is provided "AS IS"
+ * without any express or implied warranty:
+ * permission to use, copy, modify, and distribute this file
+ * for any purpose is hereby granted without fee, provided that
+ * the above copyright notice and this notice appears in all
+ * copies, and that the name of i-cubed limited not be used in
+ * advertising or publicity pertaining to distribution of the
+ * software without specific, written prior permission.
+ * i-cubed limited makes no representations about the suitability
+ * of this software for any purpose.
+ *
+ * Copyright (c) 2001 Andy Dachs <a.dachs@sstl.co.uk>.
+ *
+ * Copyright (c) 2001 Surrey Satellite Technology Limited (SSTL).
+ *
+ * Copyright (c) 2010, 2017 embedded brains GmbH.
+ *
+ * The license and distribution terms for this file may be
+ * found in the file LICENSE in this distribution or at
+ * http://www.rtems.org/license/LICENSE.
+ */
+
+#ifndef _RTEMS_SCORE_CPU_H
+#define _RTEMS_SCORE_CPU_H
+
+#include <rtems/score/types.h>
+#include <rtems/score/powerpc.h>
+#include <rtems/powerpc/registers.h>
+
+#ifndef ASM
+ #include <string.h> /* for memset() */
+#endif
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/* conditional compilation parameters */
+
+/*
+ * Does this port provide a CPU dependent IDLE task implementation?
+ *
+ * If TRUE, then the routine _CPU_Thread_Idle_body
+ * must be provided and is the default IDLE thread body instead of
+ * _CPU_Thread_Idle_body.
+ *
+ * If FALSE, then use the generic IDLE thread body if the BSP does
+ * not provide one.
+ *
+ * This is intended to allow for supporting processors which have
+ * a low power or idle mode. When the IDLE thread is executed, then
+ * the CPU can be powered down.
+ *
+ * The order of precedence for selecting the IDLE thread body is:
+ *
+ * 1. BSP provided
+ * 2. CPU dependent (if provided)
+ * 3. generic (if no BSP and no CPU dependent)
+ */
+
+#define CPU_PROVIDES_IDLE_THREAD_BODY FALSE
+
+/*
+ * Does the stack grow up (toward higher addresses) or down
+ * (toward lower addresses)?
+ *
+ * If TRUE, then the grows upward.
+ * If FALSE, then the grows toward smaller addresses.
+ */
+
+#define CPU_STACK_GROWS_UP FALSE
+
+#define CPU_CACHE_LINE_BYTES PPC_STRUCTURE_ALIGNMENT
+
+#define CPU_STRUCTURE_ALIGNMENT RTEMS_ALIGNED( CPU_CACHE_LINE_BYTES )
+
+/*
+ * Does the CPU have hardware floating point?
+ *
+ * If TRUE, then the RTEMS_FLOATING_POINT task attribute is supported.
+ * If FALSE, then the RTEMS_FLOATING_POINT task attribute is ignored.
+ *
+ * If there is a FP coprocessor such as the i387 or mc68881, then
+ * the answer is TRUE.
+ *
+ * The macro name "PPC_HAS_FPU" should be made CPU specific.
+ * It indicates whether or not this CPU model has FP support. For
+ * example, it would be possible to have an i386_nofp CPU model
+ * which set this to false to indicate that you have an i386 without
+ * an i387 and wish to leave floating point support out of RTEMS.
+ */
+
+#if ( PPC_HAS_FPU == 1 )
+#define CPU_HARDWARE_FP TRUE
+#define CPU_SOFTWARE_FP FALSE
+#else
+#define CPU_HARDWARE_FP FALSE
+#define CPU_SOFTWARE_FP FALSE
+#endif
+
+/*
+ * Are all tasks RTEMS_FLOATING_POINT tasks implicitly?
+ *
+ * If TRUE, then the RTEMS_FLOATING_POINT task attribute is assumed.
+ * If FALSE, then the RTEMS_FLOATING_POINT task attribute is followed.
+ *
+ * If CPU_HARDWARE_FP is FALSE, then this should be FALSE as well.
+ *
+ * PowerPC Note: It appears the GCC can implicitly generate FPU
+ * and Altivec instructions when you least expect them. So make
+ * all tasks floating point.
+ */
+
+#define CPU_ALL_TASKS_ARE_FP CPU_HARDWARE_FP
+
+/*
+ * Should the IDLE task have a floating point context?
+ *
+ * If TRUE, then the IDLE task is created as a RTEMS_FLOATING_POINT task
+ * and it has a floating point context which is switched in and out.
+ * If FALSE, then the IDLE task does not have a floating point context.
+ *
+ * Setting this to TRUE negatively impacts the time required to preempt
+ * the IDLE task from an interrupt because the floating point context
+ * must be saved as part of the preemption.
+ */
+
+#define CPU_IDLE_TASK_IS_FP FALSE
+
+#define CPU_MAXIMUM_PROCESSORS 32
+
+/*
+ * Processor defined structures required for cpukit/score.
+ */
+
+/*
+ * Contexts
+ *
+ * Generally there are 2 types of context to save.
+ * 1. Interrupt registers to save
+ * 2. Task level registers to save
+ *
+ * This means we have the following 3 context items:
+ * 1. task level context stuff:: Context_Control
+ * 2. floating point task stuff:: Context_Control_fp
+ * 3. special interrupt level context :: Context_Control_interrupt
+ *
+ * On some processors, it is cost-effective to save only the callee
+ * preserved registers during a task context switch. This means
+ * that the ISR code needs to save those registers which do not
+ * persist across function calls. It is not mandatory to make this
+ * distinctions between the caller/callee saves registers for the
+ * purpose of minimizing context saved during task switch and on interrupts.
+ * If the cost of saving extra registers is minimal, simplicity is the
+ * choice. Save the same context on interrupt entry as for tasks in
+ * this case.
+ *
+ * Additionally, if gdb is to be made aware of RTEMS tasks for this CPU, then
+ * care should be used in designing the context area.
+ *
+ * On some CPUs with hardware floating point support, the Context_Control_fp
+ * structure will not be used or it simply consist of an array of a
+ * fixed number of bytes. This is done when the floating point context
+ * is dumped by a "FP save context" type instruction and the format
+ * is not really defined by the CPU. In this case, there is no need
+ * to figure out the exact format -- only the size. Of course, although
+ * this is enough information for RTEMS, it is probably not enough for
+ * a debugger such as gdb. But that is another problem.
+ */
+
+#ifndef __SPE__
+ #define PPC_GPR_TYPE uintptr_t
+ #if defined(__powerpc64__)
+ #define PPC_GPR_SIZE 8
+ #define PPC_GPR_LOAD ld
+ #define PPC_GPR_STORE std
+ #else
+ #define PPC_GPR_SIZE 4
+ #define PPC_GPR_LOAD lwz
+ #define PPC_GPR_STORE stw
+ #endif
+#else
+ #define PPC_GPR_TYPE uint64_t
+ #define PPC_GPR_SIZE 8
+ #define PPC_GPR_LOAD evldd
+ #define PPC_GPR_STORE evstdd
+#endif
+
+#if defined(__powerpc64__)
+ #define PPC_REG_SIZE 8
+ #define PPC_REG_LOAD ld
+ #define PPC_REG_STORE std
+ #define PPC_REG_STORE_UPDATE stdu
+ #define PPC_REG_CMP cmpd
+#else
+ #define PPC_REG_SIZE 4
+ #define PPC_REG_LOAD lwz
+ #define PPC_REG_STORE stw
+ #define PPC_REG_STORE_UPDATE stwu
+ #define PPC_REG_CMP cmpw
+#endif
+
+#ifndef ASM
+
+/*
+ * Non-volatile context according to E500ABIUG, EABI and 32-bit TLS (according
+ * to "Power Architecture 32-bit Application Binary Interface Supplement 1.0 -
+ * Linux and Embedded")
+ */
+typedef struct {
+ uint32_t msr;
+ uint32_t cr;
+ uintptr_t gpr1;
+ uintptr_t lr;
+ PPC_GPR_TYPE gpr14;
+ PPC_GPR_TYPE gpr15;
+ PPC_GPR_TYPE gpr16;
+ PPC_GPR_TYPE gpr17;
+ PPC_GPR_TYPE gpr18;
+ PPC_GPR_TYPE gpr19;
+ PPC_GPR_TYPE gpr20;
+ PPC_GPR_TYPE gpr21;
+ PPC_GPR_TYPE gpr22;
+ PPC_GPR_TYPE gpr23;
+ PPC_GPR_TYPE gpr24;
+ PPC_GPR_TYPE gpr25;
+ PPC_GPR_TYPE gpr26;
+ PPC_GPR_TYPE gpr27;
+ PPC_GPR_TYPE gpr28;
+ PPC_GPR_TYPE gpr29;
+ PPC_GPR_TYPE gpr30;
+ PPC_GPR_TYPE gpr31;
+ uint32_t isr_dispatch_disable;
+ uint32_t reserved_for_alignment;
+ #if defined(PPC_MULTILIB_ALTIVEC)
+ uint8_t v20[16];
+ uint8_t v21[16];
+ uint8_t v22[16];
+ uint8_t v23[16];
+ uint8_t v24[16];
+ uint8_t v25[16];
+ uint8_t v26[16];
+ uint8_t v27[16];
+ uint8_t v28[16];
+ uint8_t v29[16];
+ uint8_t v30[16];
+ uint8_t v31[16];
+ uint32_t vrsave;
+ #elif defined(__ALTIVEC__)
+ /*
+ * 12 non-volatile vector registers, cache-aligned area for vscr/vrsave
+ * and padding to ensure cache-alignment. Unfortunately, we can't verify
+ * the cache line size here in the cpukit but altivec support code will
+ * produce an error if this is ever different from 32 bytes.
+ *
+ * Note: it is the BSP/CPU-support's responsibility to save/restore
+ * volatile vregs across interrupts and exceptions.
+ */
+ uint8_t altivec[16*12 + 32 + PPC_DEFAULT_CACHE_LINE_SIZE];
+ #endif
+ #if defined(PPC_MULTILIB_FPU)
+ double f14;
+ double f15;
+ double f16;
+ double f17;
+ double f18;
+ double f19;
+ double f20;
+ double f21;
+ double f22;
+ double f23;
+ double f24;
+ double f25;
+ double f26;
+ double f27;
+ double f28;
+ double f29;
+ double f30;
+ double f31;
+ #endif
+ /*
+ * The following items are at the structure end, so that we can use dcbz for
+ * the previous items to optimize the context switch. We must not set the
+ * following items to zero via the dcbz.
+ */
+ uintptr_t tp;
+ #if defined(RTEMS_SMP)
+ volatile uint32_t is_executing;
+ #endif
+} ppc_context;
+
+typedef struct {
+ uint8_t context [
+ PPC_DEFAULT_CACHE_LINE_SIZE
+ + sizeof(ppc_context)
+ + (sizeof(ppc_context) % PPC_DEFAULT_CACHE_LINE_SIZE == 0
+ ? 0
+ : PPC_DEFAULT_CACHE_LINE_SIZE
+ - sizeof(ppc_context) % PPC_DEFAULT_CACHE_LINE_SIZE)
+ ];
+} Context_Control;
+
+static inline ppc_context *ppc_get_context( const Context_Control *context )
+{
+ uintptr_t clsz = PPC_DEFAULT_CACHE_LINE_SIZE;
+ uintptr_t mask = clsz - 1;
+ uintptr_t addr = (uintptr_t) context;
+
+ return (ppc_context *) ((addr & ~mask) + clsz);
+}
+
+#define _CPU_Context_Get_SP( _context ) \
+ ppc_get_context(_context)->gpr1
+
+#ifdef RTEMS_SMP
+ static inline bool _CPU_Context_Get_is_executing(
+ const Context_Control *context
+ )
+ {
+ return ppc_get_context(context)->is_executing;
+ }
+
+ static inline void _CPU_Context_Set_is_executing(
+ Context_Control *context,
+ bool is_executing
+ )
+ {
+ ppc_get_context(context)->is_executing = is_executing;
+ }
+#endif
+#endif /* ASM */
+
+#define PPC_CONTEXT_OFFSET_MSR (PPC_DEFAULT_CACHE_LINE_SIZE)
+#define PPC_CONTEXT_OFFSET_CR (PPC_DEFAULT_CACHE_LINE_SIZE + 4)
+#define PPC_CONTEXT_OFFSET_GPR1 (PPC_DEFAULT_CACHE_LINE_SIZE + 8)
+#define PPC_CONTEXT_OFFSET_LR (PPC_DEFAULT_CACHE_LINE_SIZE + PPC_REG_SIZE + 8)
+
+#define PPC_CONTEXT_GPR_OFFSET( gpr ) \
+ (((gpr) - 14) * PPC_GPR_SIZE + \
+ PPC_DEFAULT_CACHE_LINE_SIZE + 8 + 2 * PPC_REG_SIZE)
+
+#define PPC_CONTEXT_OFFSET_GPR14 PPC_CONTEXT_GPR_OFFSET( 14 )
+#define PPC_CONTEXT_OFFSET_GPR15 PPC_CONTEXT_GPR_OFFSET( 15 )
+#define PPC_CONTEXT_OFFSET_GPR16 PPC_CONTEXT_GPR_OFFSET( 16 )
+#define PPC_CONTEXT_OFFSET_GPR17 PPC_CONTEXT_GPR_OFFSET( 17 )
+#define PPC_CONTEXT_OFFSET_GPR18 PPC_CONTEXT_GPR_OFFSET( 18 )
+#define PPC_CONTEXT_OFFSET_GPR19 PPC_CONTEXT_GPR_OFFSET( 19 )
+#define PPC_CONTEXT_OFFSET_GPR20 PPC_CONTEXT_GPR_OFFSET( 20 )
+#define PPC_CONTEXT_OFFSET_GPR21 PPC_CONTEXT_GPR_OFFSET( 21 )
+#define PPC_CONTEXT_OFFSET_GPR22 PPC_CONTEXT_GPR_OFFSET( 22 )
+#define PPC_CONTEXT_OFFSET_GPR23 PPC_CONTEXT_GPR_OFFSET( 23 )
+#define PPC_CONTEXT_OFFSET_GPR24 PPC_CONTEXT_GPR_OFFSET( 24 )
+#define PPC_CONTEXT_OFFSET_GPR25 PPC_CONTEXT_GPR_OFFSET( 25 )
+#define PPC_CONTEXT_OFFSET_GPR26 PPC_CONTEXT_GPR_OFFSET( 26 )
+#define PPC_CONTEXT_OFFSET_GPR27 PPC_CONTEXT_GPR_OFFSET( 27 )
+#define PPC_CONTEXT_OFFSET_GPR28 PPC_CONTEXT_GPR_OFFSET( 28 )
+#define PPC_CONTEXT_OFFSET_GPR29 PPC_CONTEXT_GPR_OFFSET( 29 )
+#define PPC_CONTEXT_OFFSET_GPR30 PPC_CONTEXT_GPR_OFFSET( 30 )
+#define PPC_CONTEXT_OFFSET_GPR31 PPC_CONTEXT_GPR_OFFSET( 31 )
+#define PPC_CONTEXT_OFFSET_ISR_DISPATCH_DISABLE PPC_CONTEXT_GPR_OFFSET( 32 )
+
+#ifdef PPC_MULTILIB_ALTIVEC
+ #define PPC_CONTEXT_OFFSET_V( v ) \
+ ( ( ( v ) - 20 ) * 16 + PPC_CONTEXT_OFFSET_ISR_DISPATCH_DISABLE + 8)
+ #define PPC_CONTEXT_OFFSET_V20 PPC_CONTEXT_OFFSET_V( 20 )
+ #define PPC_CONTEXT_OFFSET_V21 PPC_CONTEXT_OFFSET_V( 21 )
+ #define PPC_CONTEXT_OFFSET_V22 PPC_CONTEXT_OFFSET_V( 22 )
+ #define PPC_CONTEXT_OFFSET_V23 PPC_CONTEXT_OFFSET_V( 23 )
+ #define PPC_CONTEXT_OFFSET_V24 PPC_CONTEXT_OFFSET_V( 24 )
+ #define PPC_CONTEXT_OFFSET_V25 PPC_CONTEXT_OFFSET_V( 25 )
+ #define PPC_CONTEXT_OFFSET_V26 PPC_CONTEXT_OFFSET_V( 26 )
+ #define PPC_CONTEXT_OFFSET_V27 PPC_CONTEXT_OFFSET_V( 27 )
+ #define PPC_CONTEXT_OFFSET_V28 PPC_CONTEXT_OFFSET_V( 28 )
+ #define PPC_CONTEXT_OFFSET_V29 PPC_CONTEXT_OFFSET_V( 29 )
+ #define PPC_CONTEXT_OFFSET_V30 PPC_CONTEXT_OFFSET_V( 30 )
+ #define PPC_CONTEXT_OFFSET_V31 PPC_CONTEXT_OFFSET_V( 31 )
+ #define PPC_CONTEXT_OFFSET_VRSAVE PPC_CONTEXT_OFFSET_V( 32 )
+ #define PPC_CONTEXT_OFFSET_F( f ) \
+ ( ( ( f ) - 14 ) * 8 + PPC_CONTEXT_OFFSET_VRSAVE + 8 )
+#else
+ #define PPC_CONTEXT_OFFSET_F( f ) \
+ ( ( ( f ) - 14 ) * 8 + PPC_CONTEXT_OFFSET_ISR_DISPATCH_DISABLE + 8 )
+#endif
+
+#ifdef PPC_MULTILIB_FPU
+ #define PPC_CONTEXT_OFFSET_F14 PPC_CONTEXT_OFFSET_F( 14 )
+ #define PPC_CONTEXT_OFFSET_F15 PPC_CONTEXT_OFFSET_F( 15 )
+ #define PPC_CONTEXT_OFFSET_F16 PPC_CONTEXT_OFFSET_F( 16 )
+ #define PPC_CONTEXT_OFFSET_F17 PPC_CONTEXT_OFFSET_F( 17 )
+ #define PPC_CONTEXT_OFFSET_F18 PPC_CONTEXT_OFFSET_F( 18 )
+ #define PPC_CONTEXT_OFFSET_F19 PPC_CONTEXT_OFFSET_F( 19 )
+ #define PPC_CONTEXT_OFFSET_F20 PPC_CONTEXT_OFFSET_F( 20 )
+ #define PPC_CONTEXT_OFFSET_F21 PPC_CONTEXT_OFFSET_F( 21 )
+ #define PPC_CONTEXT_OFFSET_F22 PPC_CONTEXT_OFFSET_F( 22 )
+ #define PPC_CONTEXT_OFFSET_F23 PPC_CONTEXT_OFFSET_F( 23 )
+ #define PPC_CONTEXT_OFFSET_F24 PPC_CONTEXT_OFFSET_F( 24 )
+ #define PPC_CONTEXT_OFFSET_F25 PPC_CONTEXT_OFFSET_F( 25 )
+ #define PPC_CONTEXT_OFFSET_F26 PPC_CONTEXT_OFFSET_F( 26 )
+ #define PPC_CONTEXT_OFFSET_F27 PPC_CONTEXT_OFFSET_F( 27 )
+ #define PPC_CONTEXT_OFFSET_F28 PPC_CONTEXT_OFFSET_F( 28 )
+ #define PPC_CONTEXT_OFFSET_F29 PPC_CONTEXT_OFFSET_F( 29 )
+ #define PPC_CONTEXT_OFFSET_F30 PPC_CONTEXT_OFFSET_F( 30 )
+ #define PPC_CONTEXT_OFFSET_F31 PPC_CONTEXT_OFFSET_F( 31 )
+#endif
+
+#if defined(PPC_MULTILIB_FPU)
+ #define PPC_CONTEXT_VOLATILE_SIZE PPC_CONTEXT_OFFSET_F( 32 )
+#elif defined(PPC_MULTILIB_ALTIVEC)
+ #define PPC_CONTEXT_VOLATILE_SIZE (PPC_CONTEXT_OFFSET_VRSAVE + 4)
+#elif defined(__ALTIVEC__)
+ #define PPC_CONTEXT_VOLATILE_SIZE \
+ (PPC_CONTEXT_GPR_OFFSET( 32 ) + 8 \
+ + 16 * 12 + 32 + PPC_DEFAULT_CACHE_LINE_SIZE)
+#else
+ #define PPC_CONTEXT_VOLATILE_SIZE (PPC_CONTEXT_GPR_OFFSET( 32 ) + 8)
+#endif
+
+#define PPC_CONTEXT_OFFSET_TP PPC_CONTEXT_VOLATILE_SIZE
+
+#ifdef RTEMS_SMP
+ #define PPC_CONTEXT_OFFSET_IS_EXECUTING \
+ (PPC_CONTEXT_OFFSET_TP + PPC_REG_SIZE)
+#endif
+
+#ifndef ASM
+typedef struct {
+#if (PPC_HAS_FPU == 1)
+ /* The ABIs (PowerOpen/SVR4/EABI) only require saving f14-f31 over
+ * procedure calls. However, this would mean that the interrupt
+ * frame had to hold f0-f13, and the fpscr. And as the majority
+ * of tasks will not have an FP context, we will save the whole
+ * context here.
+ */
+#if (PPC_HAS_DOUBLE == 1)
+ double f[32];
+ uint64_t fpscr;
+#else
+ float f[32];
+ uint32_t fpscr;
+#endif
+#endif /* (PPC_HAS_FPU == 1) */
+} Context_Control_fp;
+
+#endif /* ASM */
+
+/*
+ * Does the CPU follow the simple vectored interrupt model?
+ *
+ * If TRUE, then RTEMS allocates the vector table it internally manages.
+ * If FALSE, then the BSP is assumed to allocate and manage the vector
+ * table
+ *
+ * PowerPC Specific Information:
+ *
+ * The PowerPC and x86 were the first to use the PIC interrupt model.
+ * They do not use the simple vectored interrupt model.
+ */
+#define CPU_SIMPLE_VECTORED_INTERRUPTS FALSE
+
+/*
+ * Does RTEMS manage a dedicated interrupt stack in software?
+ *
+ * If TRUE, then a stack is allocated in _ISR_Handler_initialization.
+ * If FALSE, nothing is done.
+ *
+ * If the CPU supports a dedicated interrupt stack in hardware,
+ * then it is generally the responsibility of the BSP to allocate it
+ * and set it up.
+ *
+ * If the CPU does not support a dedicated interrupt stack, then
+ * the porter has two options: (1) execute interrupts on the
+ * stack of the interrupted task, and (2) have RTEMS manage a dedicated
+ * interrupt stack.
+ *
+ * If this is TRUE, CPU_ALLOCATE_INTERRUPT_STACK should also be TRUE.
+ *
+ * Only one of CPU_HAS_SOFTWARE_INTERRUPT_STACK and
+ * CPU_HAS_HARDWARE_INTERRUPT_STACK should be set to TRUE. It is
+ * possible that both are FALSE for a particular CPU. Although it
+ * is unclear what that would imply about the interrupt processing
+ * procedure on that CPU.
+ */
+
+#define CPU_HAS_SOFTWARE_INTERRUPT_STACK TRUE
+
+/*
+ * Does this CPU have hardware support for a dedicated interrupt stack?
+ *
+ * If TRUE, then it must be installed during initialization.
+ * If FALSE, then no installation is performed.
+ *
+ * If this is TRUE, CPU_ALLOCATE_INTERRUPT_STACK should also be TRUE.
+ *
+ * Only one of CPU_HAS_SOFTWARE_INTERRUPT_STACK and
+ * CPU_HAS_HARDWARE_INTERRUPT_STACK should be set to TRUE. It is
+ * possible that both are FALSE for a particular CPU. Although it
+ * is unclear what that would imply about the interrupt processing
+ * procedure on that CPU.
+ */
+
+#define CPU_HAS_HARDWARE_INTERRUPT_STACK FALSE
+
+/*
+ * Does RTEMS allocate a dedicated interrupt stack in the Interrupt Manager?
+ *
+ * If TRUE, then the memory is allocated during initialization.
+ * If FALSE, then the memory is allocated during initialization.
+ *
+ * This should be TRUE is CPU_HAS_SOFTWARE_INTERRUPT_STACK is TRUE.
+ */
+
+#define CPU_ALLOCATE_INTERRUPT_STACK TRUE
+
+/*
+ * Does the RTEMS invoke the user's ISR with the vector number and
+ * a pointer to the saved interrupt frame (1) or just the vector
+ * number (0)?
+ */
+
+#define CPU_ISR_PASSES_FRAME_POINTER FALSE
+
+/*
+ * Should the saving of the floating point registers be deferred
+ * until a context switch is made to another different floating point
+ * task?
+ *
+ * If TRUE, then the floating point context will not be stored until
+ * necessary. It will remain in the floating point registers and not
+ * disturned until another floating point task is switched to.
+ *
+ * If FALSE, then the floating point context is saved when a floating
+ * point task is switched out and restored when the next floating point
+ * task is restored. The state of the floating point registers between
+ * those two operations is not specified.
+ *
+ * If the floating point context does NOT have to be saved as part of
+ * interrupt dispatching, then it should be safe to set this to TRUE.
+ *
+ * Setting this flag to TRUE results in using a different algorithm
+ * for deciding when to save and restore the floating point context.
+ * The deferred FP switch algorithm minimizes the number of times
+ * the FP context is saved and restored. The FP context is not saved
+ * until a context switch is made to another, different FP task.
+ * Thus in a system with only one FP task, the FP context will never
+ * be saved or restored.
+ *
+ * Note, however that compilers may use floating point registers/
+ * instructions for optimization or they may save/restore FP registers
+ * on the stack. You must not use deferred switching in these cases
+ * and on the PowerPC attempting to do so will raise a "FP unavailable"
+ * exception.
+ */
+/*
+ * ACB Note: This could make debugging tricky..
+ */
+
+/* conservative setting (FALSE); probably doesn't affect performance too much */
+#define CPU_USE_DEFERRED_FP_SWITCH FALSE
+
+#define CPU_ENABLE_ROBUST_THREAD_DISPATCH FALSE
+
+/*
+ * Processor defined structures required for cpukit/score.
+ */
+
+#ifndef ASM
+
+/*
+ * This variable is optional. It is used on CPUs on which it is difficult
+ * to generate an "uninitialized" FP context. It is filled in by
+ * _CPU_Initialize and copied into the task's FP context area during
+ * _CPU_Context_Initialize.
+ */
+
+/* EXTERN Context_Control_fp _CPU_Null_fp_context; */
+
+#endif /* ndef ASM */
+
+/*
+ * This defines the number of levels and the mask used to pick those
+ * bits out of a thread mode.
+ */
+
+#define CPU_MODES_INTERRUPT_LEVEL 0x00000001 /* interrupt level in mode */
+#define CPU_MODES_INTERRUPT_MASK 0x00000001 /* interrupt level in mode */
+
+/*
+ * The size of the floating point context area. On some CPUs this
+ * will not be a "sizeof" because the format of the floating point
+ * area is not defined -- only the size is. This is usually on
+ * CPUs with a "floating point save context" instruction.
+ */
+
+#define CPU_CONTEXT_FP_SIZE sizeof( Context_Control_fp )
+
+/*
+ * (Optional) # of bytes for libmisc/stackchk to check
+ * If not specifed, then it defaults to something reasonable
+ * for most architectures.
+ */
+
+#define CPU_STACK_CHECK_PATTERN_INITIALIZER \
+ { 0xFEEDF00D, 0x0BAD0D06, 0xDEADF00D, 0x600D0D06, \
+ 0xFEEDF00D, 0x0BAD0D06, 0xDEADF00D, 0x600D0D06, \
+ 0xFEEDF00D, 0x0BAD0D06, 0xDEADF00D, 0x600D0D06, \
+ 0xFEEDF00D, 0x0BAD0D06, 0xDEADF00D, 0x600D0D06, \
+ 0xFEEDF00D, 0x0BAD0D06, 0xDEADF00D, 0x600D0D06, \
+ 0xFEEDF00D, 0x0BAD0D06, 0xDEADF00D, 0x600D0D06, \
+ 0xFEEDF00D, 0x0BAD0D06, 0xDEADF00D, 0x600D0D06, \
+ 0xFEEDF00D, 0x0BAD0D06, 0xDEADF00D, 0x600D0D06 }
+
+/*
+ * Amount of extra stack (above minimum stack size) required by
+ * MPCI receive server thread. Remember that in a multiprocessor
+ * system this thread must exist and be able to process all directives.
+ */
+
+#define CPU_MPCI_RECEIVE_SERVER_EXTRA_STACK 0
+
+/*
+ * This is defined if the port has a special way to report the ISR nesting
+ * level. Most ports maintain the variable _ISR_Nest_level. Note that
+ * this is not an option - RTEMS/score _relies_ on _ISR_Nest_level
+ * being maintained (e.g. watchdog queues).
+ */
+
+#define CPU_PROVIDES_ISR_IS_IN_PROGRESS FALSE
+
+/*
+ * ISR handler macros
+ */
+
+/*
+ * Disable all interrupts for an RTEMS critical section. The previous
+ * level is returned in _isr_cookie.
+ */
+
+#ifndef ASM
+
+RTEMS_INLINE_ROUTINE bool _CPU_ISR_Is_enabled( uint32_t level )
+{
+ return ( level & MSR_EE ) != 0;
+}
+
+static inline uint32_t _CPU_ISR_Get_level( void )
+{
+ register unsigned int msr;
+ _CPU_MSR_GET(msr);
+ if (msr & MSR_EE) return 0;
+ else return 1;
+}
+
+static inline void _CPU_ISR_Set_level( uint32_t level )
+{
+ register unsigned int msr;
+ _CPU_MSR_GET(msr);
+ if (!(level & CPU_MODES_INTERRUPT_MASK)) {
+ msr |= ppc_interrupt_get_disable_mask();
+ }
+ else {
+ msr &= ~ppc_interrupt_get_disable_mask();
+ }
+ _CPU_MSR_SET(msr);
+}
+
+#endif /* ASM */
+
+#define _CPU_Fatal_halt( _source, _error ) \
+ do { \
+ ppc_interrupt_disable(); \
+ __asm__ volatile ( \
+ "mr 3, %0\n" \
+ "mr 4, %1\n" \
+ "1:\n" \
+ "b 1b\n" \
+ : \
+ : "r" (_source), "r" (_error) \
+ : "memory" \
+ ); \
+ } while ( 0 )
+
+/*
+ * Should be large enough to run all RTEMS tests. This ensures
+ * that a "reasonable" small application should not have any problems.
+ */
+
+#define CPU_STACK_MINIMUM_SIZE (1024*8)
+
+#if defined(__powerpc64__)
+#define CPU_SIZEOF_POINTER 8
+#else
+#define CPU_SIZEOF_POINTER 4
+#endif
+
+/*
+ * CPU's worst alignment requirement for data types on a byte boundary. This
+ * alignment does not take into account the requirements for the stack.
+ */
+
+#define CPU_ALIGNMENT (PPC_ALIGNMENT)
+
+/*
+ * This number corresponds to the byte alignment requirement for the
+ * heap handler. This alignment requirement may be stricter than that
+ * for the data types alignment specified by CPU_ALIGNMENT. It is
+ * common for the heap to follow the same alignment requirement as
+ * CPU_ALIGNMENT. If the CPU_ALIGNMENT is strict enough for the heap,
+ * then this should be set to CPU_ALIGNMENT.
+ *
+ * NOTE: This does not have to be a power of 2. It does have to
+ * be greater or equal to than CPU_ALIGNMENT.
+ */
+
+#define CPU_HEAP_ALIGNMENT (PPC_ALIGNMENT)
+
+/*
+ * This number corresponds to the byte alignment requirement for memory
+ * buffers allocated by the partition manager. This alignment requirement
+ * may be stricter than that for the data types alignment specified by
+ * CPU_ALIGNMENT. It is common for the partition to follow the same
+ * alignment requirement as CPU_ALIGNMENT. If the CPU_ALIGNMENT is strict
+ * enough for the partition, then this should be set to CPU_ALIGNMENT.
+ *
+ * NOTE: This does not have to be a power of 2. It does have to
+ * be greater or equal to than CPU_ALIGNMENT.
+ */
+
+#define CPU_PARTITION_ALIGNMENT (PPC_ALIGNMENT)
+
+/*
+ * This number corresponds to the byte alignment requirement for the
+ * stack. This alignment requirement may be stricter than that for the
+ * data types alignment specified by CPU_ALIGNMENT. If the CPU_ALIGNMENT
+ * is strict enough for the stack, then this should be set to 0.
+ *
+ * NOTE: This must be a power of 2 either 0 or greater than CPU_ALIGNMENT.
+ */
+
+#define CPU_STACK_ALIGNMENT (PPC_STACK_ALIGNMENT)
+
+#ifndef ASM
+/* The following routine swaps the endian format of an unsigned int.
+ * It must be static because it is referenced indirectly.
+ *
+ * This version will work on any processor, but if there is a better
+ * way for your CPU PLEASE use it. The most common way to do this is to:
+ *
+ * swap least significant two bytes with 16-bit rotate
+ * swap upper and lower 16-bits
+ * swap most significant two bytes with 16-bit rotate
+ *
+ * Some CPUs have special instructions which swap a 32-bit quantity in
+ * a single instruction (e.g. i486). It is probably best to avoid
+ * an "endian swapping control bit" in the CPU. One good reason is
+ * that interrupts would probably have to be disabled to ensure that
+ * an interrupt does not try to access the same "chunk" with the wrong
+ * endian. Another good reason is that on some CPUs, the endian bit
+ * endianness for ALL fetches -- both code and data -- so the code
+ * will be fetched incorrectly.
+ */
+
+static inline uint32_t CPU_swap_u32(
+ uint32_t value
+)
+{
+ uint32_t swapped;
+
+ __asm__ volatile("rlwimi %0,%1,8,24,31;"
+ "rlwimi %0,%1,24,16,23;"
+ "rlwimi %0,%1,8,8,15;"
+ "rlwimi %0,%1,24,0,7;" :
+ "=&r" ((swapped)) : "r" ((value)));
+
+ return( swapped );
+}
+
+#define CPU_swap_u16( value ) \
+ (((value&0xff) << 8) | ((value >> 8)&0xff))
+
+typedef uint32_t CPU_Counter_ticks;
+
+static inline CPU_Counter_ticks _CPU_Counter_read( void )
+{
+ CPU_Counter_ticks value;
+
+#if defined(__PPC_CPU_E6500__)
+ /* Use Alternate Time Base */
+ __asm__ volatile( "mfspr %0, 526" : "=r" (value) );
+#else
+ __asm__ volatile( "mfspr %0, 268" : "=r" (value) );
+#endif
+
+ return value;
+}
+
+static inline CPU_Counter_ticks _CPU_Counter_difference(
+ CPU_Counter_ticks second,
+ CPU_Counter_ticks first
+)
+{
+ return second - first;
+}
+
+#endif /* ASM */
+
+
+#ifndef ASM
+/* Context handler macros */
+
+/*
+ * Initialize the context to a state suitable for starting a
+ * task after a context restore operation. Generally, this
+ * involves:
+ *
+ * - setting a starting address
+ * - preparing the stack
+ * - preparing the stack and frame pointers
+ * - setting the proper interrupt level in the context
+ * - initializing the floating point context
+ *
+ * This routine generally does not set any unnecessary register
+ * in the context. The state of the "general data" registers is
+ * undefined at task start time.
+ */
+
+void _CPU_Context_Initialize(
+ Context_Control *the_context,
+ void *stack_base,
+ size_t size,
+ uint32_t new_level,
+ void *entry_point,
+ bool is_fp,
+ void *tls_area
+);
+
+/*
+ * This routine is responsible for somehow restarting the currently
+ * executing task. If you are lucky, then all that is necessary
+ * is restoring the context. Otherwise, there will need to be
+ * a special assembly routine which does something special in this
+ * case. Context_Restore should work most of the time. It will
+ * not work if restarting self conflicts with the stack frame
+ * assumptions of restoring a context.
+ */
+
+#define _CPU_Context_Restart_self( _the_context ) \
+ _CPU_Context_restore( (_the_context) );
+
+/*
+ * This routine initializes the FP context area passed to it to.
+ * There are a few standard ways in which to initialize the
+ * floating point context. The code included for this macro assumes
+ * that this is a CPU in which a "initial" FP context was saved into
+ * _CPU_Null_fp_context and it simply copies it to the destination
+ * context passed to it.
+ *
+ * Other models include (1) not doing anything, and (2) putting
+ * a "null FP status word" in the correct place in the FP context.
+ */
+
+#define _CPU_Context_Initialize_fp( _destination ) \
+ memset( *(_destination), 0, sizeof( **(_destination) ) )
+
+/* end of Context handler macros */
+#endif /* ASM */
+
+#ifndef ASM
+/* Bitfield handler macros */
+
+#define CPU_USE_GENERIC_BITFIELD_CODE FALSE
+
+/*
+ * This routine sets _output to the bit number of the first bit
+ * set in _value. _value is of CPU dependent type Priority_bit_map_Word.
+ * This type may be either 16 or 32 bits wide although only the 16
+ * least significant bits will be used.
+ *
+ * There are a number of variables in using a "find first bit" type
+ * instruction.
+ *
+ * (1) What happens when run on a value of zero?
+ * (2) Bits may be numbered from MSB to LSB or vice-versa.
+ * (3) The numbering may be zero or one based.
+ * (4) The "find first bit" instruction may search from MSB or LSB.
+ *
+ * RTEMS guarantees that (1) will never happen so it is not a concern.
+ * (2),(3), (4) are handled by the macros _CPU_Priority_mask() and
+ * _CPU_Priority_Bits_index(). These three form a set of routines
+ * which must logically operate together. Bits in the _value are
+ * set and cleared based on masks built by _CPU_Priority_mask().
+ * The basic major and minor values calculated by _Priority_Major()
+ * and _Priority_Minor() are "massaged" by _CPU_Priority_Bits_index()
+ * to properly range between the values returned by the "find first bit"
+ * instruction. This makes it possible for _Priority_Get_highest() to
+ * calculate the major and directly index into the minor table.
+ * This mapping is necessary to ensure that 0 (a high priority major/minor)
+ * is the first bit found.
+ *
+ * This entire "find first bit" and mapping process depends heavily
+ * on the manner in which a priority is broken into a major and minor
+ * components with the major being the 4 MSB of a priority and minor
+ * the 4 LSB. Thus (0 << 4) + 0 corresponds to priority 0 -- the highest
+ * priority. And (15 << 4) + 14 corresponds to priority 254 -- the next
+ * to the lowest priority.
+ *
+ * If your CPU does not have a "find first bit" instruction, then
+ * there are ways to make do without it. Here are a handful of ways
+ * to implement this in software:
+ *
+ * - a series of 16 bit test instructions
+ * - a "binary search using if's"
+ * - _number = 0
+ * if _value > 0x00ff
+ * _value >>=8
+ * _number = 8;
+ *
+ * if _value > 0x0000f
+ * _value >=8
+ * _number += 4
+ *
+ * _number += bit_set_table[ _value ]
+ *
+ * where bit_set_table[ 16 ] has values which indicate the first
+ * bit set
+ */
+
+#define _CPU_Bitfield_Find_first_bit( _value, _output ) \
+ { \
+ __asm__ volatile ("cntlzw %0, %1" : "=r" ((_output)), "=r" ((_value)) : \
+ "1" ((_value))); \
+ (_output) = (_output) - 16; \
+ }
+
+/* end of Bitfield handler macros */
+
+/*
+ * This routine builds the mask which corresponds to the bit fields
+ * as searched by _CPU_Bitfield_Find_first_bit(). See the discussion
+ * for that routine.
+ */
+
+#define _CPU_Priority_Mask( _bit_number ) \
+ ( 0x8000u >> (_bit_number) )
+
+/*
+ * This routine translates the bit numbers returned by
+ * _CPU_Bitfield_Find_first_bit() into something suitable for use as
+ * a major or minor component of a priority. See the discussion
+ * for that routine.
+ */
+
+#define _CPU_Priority_bits_index( _priority ) \
+ (_priority)
+
+/* end of Priority handler macros */
+#endif /* ASM */
+
+/* functions */
+
+#ifndef ASM
+
+/*
+ * _CPU_Initialize
+ *
+ * This routine performs CPU dependent initialization.
+ */
+
+void _CPU_Initialize(void);
+
+/*
+ * _CPU_ISR_install_vector
+ *
+ * This routine installs an interrupt vector.
+ */
+
+void _CPU_ISR_install_vector(
+ uint32_t vector,
+ proc_ptr new_handler,
+ proc_ptr *old_handler
+);
+
+/*
+ * _CPU_Context_switch
+ *
+ * This routine switches from the run context to the heir context.
+ */
+
+void _CPU_Context_switch(
+ Context_Control *run,
+ Context_Control *heir
+);
+
+/*
+ * _CPU_Context_restore
+ *
+ * This routine is generallu used only to restart self in an
+ * efficient manner. It may simply be a label in _CPU_Context_switch.
+ *
+ * NOTE: May be unnecessary to reload some registers.
+ */
+
+void _CPU_Context_restore(
+ Context_Control *new_context
+) RTEMS_NO_RETURN;
+
+/*
+ * _CPU_Context_save_fp
+ *
+ * This routine saves the floating point context passed to it.
+ */
+
+void _CPU_Context_save_fp(
+ Context_Control_fp **fp_context_ptr
+);
+
+/*
+ * _CPU_Context_restore_fp
+ *
+ * This routine restores the floating point context passed to it.
+ */
+
+void _CPU_Context_restore_fp(
+ Context_Control_fp **fp_context_ptr
+);
+
+void _CPU_Context_volatile_clobber( uintptr_t pattern );
+
+void _CPU_Context_validate( uintptr_t pattern );
+
+#ifdef RTEMS_SMP
+ uint32_t _CPU_SMP_Initialize( void );
+
+ bool _CPU_SMP_Start_processor( uint32_t cpu_index );
+
+ void _CPU_SMP_Finalize_initialization( uint32_t cpu_count );
+
+ void _CPU_SMP_Prepare_start_multitasking( void );
+
+ static inline uint32_t _CPU_SMP_Get_current_processor( void )
+ {
+ uint32_t pir;
+
+ /* Use Book E Processor ID Register (PIR) */
+ __asm__ volatile (
+ "mfspr %[pir], 286"
+ : [pir] "=&r" (pir)
+ );
+
+ return pir;
+ }
+
+ void _CPU_SMP_Send_interrupt( uint32_t target_processor_index );
+
+ static inline void _CPU_SMP_Processor_event_broadcast( void )
+ {
+ __asm__ volatile ( "" : : : "memory" );
+ }
+
+ static inline void _CPU_SMP_Processor_event_receive( void )
+ {
+ __asm__ volatile ( "" : : : "memory" );
+ }
+#endif
+
+typedef struct {
+ uintptr_t EXC_SRR0;
+ uintptr_t EXC_SRR1;
+ uint32_t _EXC_number;
+ uint32_t RESERVED_FOR_ALIGNMENT_0;
+ uint32_t EXC_CR;
+ uint32_t EXC_XER;
+ uintptr_t EXC_CTR;
+ uintptr_t EXC_LR;
+ uintptr_t RESERVED_FOR_ALIGNMENT_1;
+ #ifdef __SPE__
+ uint32_t EXC_SPEFSCR;
+ uint64_t EXC_ACC;
+ #endif
+ PPC_GPR_TYPE GPR0;
+ PPC_GPR_TYPE GPR1;
+ PPC_GPR_TYPE GPR2;
+ PPC_GPR_TYPE GPR3;
+ PPC_GPR_TYPE GPR4;
+ PPC_GPR_TYPE GPR5;
+ PPC_GPR_TYPE GPR6;
+ PPC_GPR_TYPE GPR7;
+ PPC_GPR_TYPE GPR8;
+ PPC_GPR_TYPE GPR9;
+ PPC_GPR_TYPE GPR10;
+ PPC_GPR_TYPE GPR11;
+ PPC_GPR_TYPE GPR12;
+ PPC_GPR_TYPE GPR13;
+ PPC_GPR_TYPE GPR14;
+ PPC_GPR_TYPE GPR15;
+ PPC_GPR_TYPE GPR16;
+ PPC_GPR_TYPE GPR17;
+ PPC_GPR_TYPE GPR18;
+ PPC_GPR_TYPE GPR19;
+ PPC_GPR_TYPE GPR20;
+ PPC_GPR_TYPE GPR21;
+ PPC_GPR_TYPE GPR22;
+ PPC_GPR_TYPE GPR23;
+ PPC_GPR_TYPE GPR24;
+ PPC_GPR_TYPE GPR25;
+ PPC_GPR_TYPE GPR26;
+ PPC_GPR_TYPE GPR27;
+ PPC_GPR_TYPE GPR28;
+ PPC_GPR_TYPE GPR29;
+ PPC_GPR_TYPE GPR30;
+ PPC_GPR_TYPE GPR31;
+ uintptr_t RESERVED_FOR_ALIGNMENT_2;
+ #ifdef PPC_MULTILIB_ALTIVEC
+ uint32_t VRSAVE;
+ uint32_t RESERVED_FOR_ALIGNMENT_3[3];
+
+ /* This field must take stvewx/lvewx requirements into account */
+ uint32_t RESERVED_FOR_ALIGNMENT_4[3];
+ uint32_t VSCR;
+
+ uint8_t V0[16];
+ uint8_t V1[16];
+ uint8_t V2[16];
+ uint8_t V3[16];
+ uint8_t V4[16];
+ uint8_t V5[16];
+ uint8_t V6[16];
+ uint8_t V7[16];
+ uint8_t V8[16];
+ uint8_t V9[16];
+ uint8_t V10[16];
+ uint8_t V11[16];
+ uint8_t V12[16];
+ uint8_t V13[16];
+ uint8_t V14[16];
+ uint8_t V15[16];
+ uint8_t V16[16];
+ uint8_t V17[16];
+ uint8_t V18[16];
+ uint8_t V19[16];
+ uint8_t V20[16];
+ uint8_t V21[16];
+ uint8_t V22[16];
+ uint8_t V23[16];
+ uint8_t V24[16];
+ uint8_t V25[16];
+ uint8_t V26[16];
+ uint8_t V27[16];
+ uint8_t V28[16];
+ uint8_t V29[16];
+ uint8_t V30[16];
+ uint8_t V31[16];
+ #endif
+ #ifdef PPC_MULTILIB_FPU
+ double F0;
+ double F1;
+ double F2;
+ double F3;
+ double F4;
+ double F5;
+ double F6;
+ double F7;
+ double F8;
+ double F9;
+ double F10;
+ double F11;
+ double F12;
+ double F13;
+ double F14;
+ double F15;
+ double F16;
+ double F17;
+ double F18;
+ double F19;
+ double F20;
+ double F21;
+ double F22;
+ double F23;
+ double F24;
+ double F25;
+ double F26;
+ double F27;
+ double F28;
+ double F29;
+ double F30;
+ double F31;
+ uint64_t FPSCR;
+ uint64_t RESERVED_FOR_ALIGNMENT_5;
+ #endif
+} CPU_Exception_frame;
+
+void _CPU_Exception_frame_print( const CPU_Exception_frame *frame );
+
+/*
+ * _CPU_Initialize_altivec()
+ *
+ * Global altivec-related initialization.
+ */
+void
+_CPU_Initialize_altivec(void);
+
+/*
+ * _CPU_Context_switch_altivec
+ *
+ * This routine switches the altivec contexts passed to it.
+ */
+
+void
+_CPU_Context_switch_altivec(
+ ppc_context *from,
+ ppc_context *to
+);
+
+/*
+ * _CPU_Context_restore_altivec
+ *
+ * This routine restores the altivec context passed to it.
+ */
+
+void
+_CPU_Context_restore_altivec(
+ ppc_context *ctxt
+);
+
+/*
+ * _CPU_Context_initialize_altivec
+ *
+ * This routine initializes the altivec context passed to it.
+ */
+
+void
+_CPU_Context_initialize_altivec(
+ ppc_context *ctxt
+);
+
+void _CPU_Fatal_error(
+ uint32_t _error
+);
+
+#endif /* ASM */
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* _RTEMS_SCORE_CPU_H */