summaryrefslogtreecommitdiffstats
path: root/c/src/lib/libcpu/sparc64/shared/score/cpu.c
diff options
context:
space:
mode:
Diffstat (limited to 'c/src/lib/libcpu/sparc64/shared/score/cpu.c')
-rw-r--r--c/src/lib/libcpu/sparc64/shared/score/cpu.c249
1 files changed, 0 insertions, 249 deletions
diff --git a/c/src/lib/libcpu/sparc64/shared/score/cpu.c b/c/src/lib/libcpu/sparc64/shared/score/cpu.c
deleted file mode 100644
index ca5ea9f09f..0000000000
--- a/c/src/lib/libcpu/sparc64/shared/score/cpu.c
+++ /dev/null
@@ -1,249 +0,0 @@
-/*
- * SPARC-v9 Dependent Source
- */
-
-/*
- * COPYRIGHT (c) 1989-2007. On-Line Applications Research Corporation (OAR).
- *
- * This file is based on the SPARC cpu.c file. Modifications are made to
- * provide support for the SPARC-v9.
- * COPYRIGHT (c) 2010. Gedare Bloom.
- *
- * The license and distribution terms for this file may be
- * found in the file LICENSE in this distribution or at
- * http://www.rtems.org/license/LICENSE.
- */
-
-#include <rtems/system.h>
-#include <rtems/asm.h>
-#include <rtems/score/isr.h>
-#include <rtems/rtems/cache.h>
-
-/*
- * This initializes the set of opcodes placed in each trap
- * table entry. The routine which installs a handler is responsible
- * for filling in the fields for the _handler address and the _vector
- * trap type.
- *
- * The constants following this structure are masks for the fields which
- * must be filled in when the handler is installed.
- */
-
-/* 64-bit registers complicate this. Also, in sparc v9,
- * each trap level gets its own set of global registers, but
- * does not get its own dedicated register window. so we avoid
- * using the local registers in the trap handler.
- */
-const CPU_Trap_table_entry _CPU_Trap_slot_template = {
- 0x89508000, /* rdpr %tstate, %g4 */
- 0x05000000, /* sethi %hh(_handler), %g2 */
- 0x8410a000, /* or %g2, %hm(_handler), %g2 */
- 0x8528b020, /* sllx %g2, 32, %g2 */
- 0x07000000, /* sethi %hi(_handler), %g3 */
- 0x8610c002, /* or %g3, %g2, %g3 */
- 0x81c0e000, /* jmp %g3 + %lo(_handler) */
- 0x84102000 /* mov _vector, %g2 */
-};
-
-
-/*
- * _CPU_ISR_Get_level
- *
- * Input Parameters: NONE
- *
- * Output Parameters:
- * returns the current interrupt level (PIL field of the PSR)
- */
-uint32_t _CPU_ISR_Get_level( void )
-{
- uint32_t level;
-
- sparc64_get_interrupt_level( level );
-
- return level;
-}
-
-/*
- * _CPU_ISR_install_raw_handler
- *
- * This routine installs the specified handler as a "raw" non-executive
- * supported trap handler (a.k.a. interrupt service routine).
- *
- * Input Parameters:
- * vector - trap table entry number plus synchronous
- * vs. asynchronous information
- * new_handler - address of the handler to be installed
- * old_handler - pointer to an address of the handler previously installed
- *
- * Output Parameters: NONE
- * *new_handler - address of the handler previously installed
- *
- * NOTE:
- *
- * On the SPARC v9, there are really only 512 vectors. However, the executive
- * has no easy, fast, reliable way to determine which traps are synchronous
- * and which are asynchronous. By default, traps return to the
- * instruction which caused the interrupt. So if you install a software
- * trap handler as an executive interrupt handler (which is desirable since
- * RTEMS takes care of window and register issues), then the executive needs
- * to know that the return address is to the trap rather than the instruction
- * following the trap.
- *
- * So vectors 0 through 511 are treated as regular asynchronous traps which
- * provide the "correct" return address. Vectors 512 through 1023 are assumed
- * by the executive to be synchronous and to require that the return be to the
- * trapping instruction.
- *
- * If you use this mechanism to install a trap handler which must reexecute
- * the instruction which caused the trap, then it should be installed as
- * a synchronous trap. This will avoid the executive changing the return
- * address.
- */
-void _CPU_ISR_install_raw_handler(
- uint32_t vector,
- proc_ptr new_handler,
- proc_ptr *old_handler
-)
-{
- uint32_t real_vector;
- CPU_Trap_table_entry *tba;
- CPU_Trap_table_entry *slot;
- uint64_t u64_tba;
- uint64_t u64_handler;
-
- /*
- * Get the "real" trap number for this vector ignoring the synchronous
- * versus asynchronous indicator included with our vector numbers.
- */
-
- real_vector = SPARC_REAL_TRAP_NUMBER( vector );
-
- /*
- * Get the current base address of the trap table and calculate a pointer
- * to the slot we are interested in.
- */
-
- sparc64_get_tba( u64_tba );
-
-/* u32_tbr &= 0xfffff000; */
- u64_tba &= 0xffffffffffff8000; /* keep only trap base address */
-
- tba = (CPU_Trap_table_entry *) u64_tba;
-
- /* use array indexing to fill in lower bits -- require
- * CPU_Trap_table_entry to be full-sized. */
- slot = &tba[ real_vector ];
-
- /*
- * Get the address of the old_handler from the trap table.
- *
- * NOTE: The old_handler returned will be bogus if it does not follow
- * the RTEMS model.
- */
-
- /* shift amount to shift of hi bits (31:10) */
-#define HI_BITS_SHIFT 10
-
- /* shift amount of hm bits (41:32) */
-#define HM_BITS_SHIFT 32
-
- /* shift amount of hh bits (63:42) */
-#define HH_BITS_SHIFT 42
-
- /* We're only interested in bits 0-9 of the immediate field*/
-#define IMM_MASK 0x000003FF
-
- if ( slot->rdpr_tstate_g4 == _CPU_Trap_slot_template.rdpr_tstate_g4 ) {
- u64_handler =
- (((uint64_t)((slot->sethi_of_hh_handler_to_g2 << HI_BITS_SHIFT) |
- (slot->or_g2_hm_handler_to_g2 & IMM_MASK))) << HM_BITS_SHIFT) |
- ((slot->sethi_of_handler_to_g3 << HI_BITS_SHIFT) |
- (slot->jmp_to_low_of_handler_plus_g3 & IMM_MASK));
- *old_handler = (proc_ptr) u64_handler;
- } else
- *old_handler = 0;
-
- /*
- * Copy the template to the slot and then fix it.
- */
-
- *slot = _CPU_Trap_slot_template;
-
- u64_handler = (uint64_t) new_handler;
-
- /* mask for extracting %hh */
-#define HH_BITS_MASK 0xFFFFFC0000000000
-
- /* mask for extracting %hm */
-#define HM_BITS_MASK 0x000003FF00000000
-
- /* mask for extracting %hi */
-#define HI_BITS_MASK 0x00000000FFFFFC00
-
- /* mask for extracting %lo */
-#define LO_BITS_MASK 0x00000000000003FF
-
-
- slot->mov_vector_g2 |= vector;
- slot->sethi_of_hh_handler_to_g2 |=
- (u64_handler & HH_BITS_MASK) >> HH_BITS_SHIFT;
- slot->or_g2_hm_handler_to_g2 |=
- (u64_handler & HM_BITS_MASK) >> HM_BITS_SHIFT;
- slot->sethi_of_handler_to_g3 |=
- (u64_handler & HI_BITS_MASK) >> HI_BITS_SHIFT;
- slot->jmp_to_low_of_handler_plus_g3 |= (u64_handler & LO_BITS_MASK);
-
- /* need to flush icache after this !!! */
-
- /* need to flush icache in case old trap handler is in cache */
- rtems_cache_invalidate_entire_instruction();
-
-}
-
-/*
- * _CPU_ISR_install_vector
- *
- * This kernel routine installs the RTEMS handler for the
- * specified vector.
- *
- * Input parameters:
- * vector - interrupt vector number
- * new_handler - replacement ISR for this vector number
- * old_handler - pointer to former ISR for this vector number
- *
- * Output parameters:
- * *old_handler - former ISR for this vector number
- */
-void _CPU_ISR_install_vector(
- uint64_t vector,
- proc_ptr new_handler,
- proc_ptr *old_handler
-)
-{
- uint64_t real_vector;
- proc_ptr ignored;
-
- /*
- * Get the "real" trap number for this vector ignoring the synchronous
- * versus asynchronous indicator included with our vector numbers.
- */
- real_vector = SPARC_REAL_TRAP_NUMBER( vector );
- /*
- * Return the previous ISR handler.
- */
-
- *old_handler = _ISR_Vector_table[ vector ];
-
- /*
- * Install the wrapper so this ISR can be invoked properly.
- */
-
- _CPU_ISR_install_raw_handler( vector, _ISR_Handler, &ignored );
-
- /*
- * We put the actual user ISR address in '_ISR_vector_table'. This will
- * be used by the _ISR_Handler so the user gets control.
- */
-
- _ISR_Vector_table[ real_vector ] = new_handler;
-}