summaryrefslogtreecommitdiffstats
path: root/c/src/lib/libcpu/m68k/m68040/fpsp/stan.S
diff options
context:
space:
mode:
Diffstat (limited to 'c/src/lib/libcpu/m68k/m68040/fpsp/stan.S')
-rw-r--r--c/src/lib/libcpu/m68k/m68040/fpsp/stan.S457
1 files changed, 0 insertions, 457 deletions
diff --git a/c/src/lib/libcpu/m68k/m68040/fpsp/stan.S b/c/src/lib/libcpu/m68k/m68040/fpsp/stan.S
deleted file mode 100644
index 33cad35f48..0000000000
--- a/c/src/lib/libcpu/m68k/m68040/fpsp/stan.S
+++ /dev/null
@@ -1,457 +0,0 @@
-#include "fpsp-namespace.h"
-//
-//
-// stan.sa 3.3 7/29/91
-//
-// The entry point stan computes the tangent of
-// an input argument;
-// stand does the same except for denormalized input.
-//
-// Input: Double-extended number X in location pointed to
-// by address register a0.
-//
-// Output: The value tan(X) returned in floating-point register Fp0.
-//
-// Accuracy and Monotonicity: The returned result is within 3 ulp in
-// 64 significant bit, i.e. within 0.5001 ulp to 53 bits if the
-// result is subsequently rounded to double precision. The
-// result is provably monotonic in double precision.
-//
-// Speed: The program sTAN takes approximately 170 cycles for
-// input argument X such that |X| < 15Pi, which is the the usual
-// situation.
-//
-// Algorithm:
-//
-// 1. If |X| >= 15Pi or |X| < 2**(-40), go to 6.
-//
-// 2. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let
-// k = N mod 2, so in particular, k = 0 or 1.
-//
-// 3. If k is odd, go to 5.
-//
-// 4. (k is even) Tan(X) = tan(r) and tan(r) is approximated by a
-// rational function U/V where
-// U = r + r*s*(P1 + s*(P2 + s*P3)), and
-// V = 1 + s*(Q1 + s*(Q2 + s*(Q3 + s*Q4))), s = r*r.
-// Exit.
-//
-// 4. (k is odd) Tan(X) = -cot(r). Since tan(r) is approximated by a
-// rational function U/V where
-// U = r + r*s*(P1 + s*(P2 + s*P3)), and
-// V = 1 + s*(Q1 + s*(Q2 + s*(Q3 + s*Q4))), s = r*r,
-// -Cot(r) = -V/U. Exit.
-//
-// 6. If |X| > 1, go to 8.
-//
-// 7. (|X|<2**(-40)) Tan(X) = X. Exit.
-//
-// 8. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi, go back to 2.
-//
-
-// Copyright (C) Motorola, Inc. 1990
-// All Rights Reserved
-//
-// THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA
-// The copyright notice above does not evidence any
-// actual or intended publication of such source code.
-
-//STAN idnt 2,1 | Motorola 040 Floating Point Software Package
-
- |section 8
-
-#include "fpsp.defs"
-
-BOUNDS1: .long 0x3FD78000,0x4004BC7E
-TWOBYPI: .long 0x3FE45F30,0x6DC9C883
-
-TANQ4: .long 0x3EA0B759,0xF50F8688
-TANP3: .long 0xBEF2BAA5,0xA8924F04
-
-TANQ3: .long 0xBF346F59,0xB39BA65F,0x00000000,0x00000000
-
-TANP2: .long 0x3FF60000,0xE073D3FC,0x199C4A00,0x00000000
-
-TANQ2: .long 0x3FF90000,0xD23CD684,0x15D95FA1,0x00000000
-
-TANP1: .long 0xBFFC0000,0x8895A6C5,0xFB423BCA,0x00000000
-
-TANQ1: .long 0xBFFD0000,0xEEF57E0D,0xA84BC8CE,0x00000000
-
-INVTWOPI: .long 0x3FFC0000,0xA2F9836E,0x4E44152A,0x00000000
-
-TWOPI1: .long 0x40010000,0xC90FDAA2,0x00000000,0x00000000
-TWOPI2: .long 0x3FDF0000,0x85A308D4,0x00000000,0x00000000
-
-//--N*PI/2, -32 <= N <= 32, IN A LEADING TERM IN EXT. AND TRAILING
-//--TERM IN SGL. NOTE THAT PI IS 64-BIT LONG, THUS N*PI/2 IS AT
-//--MOST 69 BITS LONG.
- .global PITBL
-PITBL:
- .long 0xC0040000,0xC90FDAA2,0x2168C235,0x21800000
- .long 0xC0040000,0xC2C75BCD,0x105D7C23,0xA0D00000
- .long 0xC0040000,0xBC7EDCF7,0xFF523611,0xA1E80000
- .long 0xC0040000,0xB6365E22,0xEE46F000,0x21480000
- .long 0xC0040000,0xAFEDDF4D,0xDD3BA9EE,0xA1200000
- .long 0xC0040000,0xA9A56078,0xCC3063DD,0x21FC0000
- .long 0xC0040000,0xA35CE1A3,0xBB251DCB,0x21100000
- .long 0xC0040000,0x9D1462CE,0xAA19D7B9,0xA1580000
- .long 0xC0040000,0x96CBE3F9,0x990E91A8,0x21E00000
- .long 0xC0040000,0x90836524,0x88034B96,0x20B00000
- .long 0xC0040000,0x8A3AE64F,0x76F80584,0xA1880000
- .long 0xC0040000,0x83F2677A,0x65ECBF73,0x21C40000
- .long 0xC0030000,0xFB53D14A,0xA9C2F2C2,0x20000000
- .long 0xC0030000,0xEEC2D3A0,0x87AC669F,0x21380000
- .long 0xC0030000,0xE231D5F6,0x6595DA7B,0xA1300000
- .long 0xC0030000,0xD5A0D84C,0x437F4E58,0x9FC00000
- .long 0xC0030000,0xC90FDAA2,0x2168C235,0x21000000
- .long 0xC0030000,0xBC7EDCF7,0xFF523611,0xA1680000
- .long 0xC0030000,0xAFEDDF4D,0xDD3BA9EE,0xA0A00000
- .long 0xC0030000,0xA35CE1A3,0xBB251DCB,0x20900000
- .long 0xC0030000,0x96CBE3F9,0x990E91A8,0x21600000
- .long 0xC0030000,0x8A3AE64F,0x76F80584,0xA1080000
- .long 0xC0020000,0xFB53D14A,0xA9C2F2C2,0x1F800000
- .long 0xC0020000,0xE231D5F6,0x6595DA7B,0xA0B00000
- .long 0xC0020000,0xC90FDAA2,0x2168C235,0x20800000
- .long 0xC0020000,0xAFEDDF4D,0xDD3BA9EE,0xA0200000
- .long 0xC0020000,0x96CBE3F9,0x990E91A8,0x20E00000
- .long 0xC0010000,0xFB53D14A,0xA9C2F2C2,0x1F000000
- .long 0xC0010000,0xC90FDAA2,0x2168C235,0x20000000
- .long 0xC0010000,0x96CBE3F9,0x990E91A8,0x20600000
- .long 0xC0000000,0xC90FDAA2,0x2168C235,0x1F800000
- .long 0xBFFF0000,0xC90FDAA2,0x2168C235,0x1F000000
- .long 0x00000000,0x00000000,0x00000000,0x00000000
- .long 0x3FFF0000,0xC90FDAA2,0x2168C235,0x9F000000
- .long 0x40000000,0xC90FDAA2,0x2168C235,0x9F800000
- .long 0x40010000,0x96CBE3F9,0x990E91A8,0xA0600000
- .long 0x40010000,0xC90FDAA2,0x2168C235,0xA0000000
- .long 0x40010000,0xFB53D14A,0xA9C2F2C2,0x9F000000
- .long 0x40020000,0x96CBE3F9,0x990E91A8,0xA0E00000
- .long 0x40020000,0xAFEDDF4D,0xDD3BA9EE,0x20200000
- .long 0x40020000,0xC90FDAA2,0x2168C235,0xA0800000
- .long 0x40020000,0xE231D5F6,0x6595DA7B,0x20B00000
- .long 0x40020000,0xFB53D14A,0xA9C2F2C2,0x9F800000
- .long 0x40030000,0x8A3AE64F,0x76F80584,0x21080000
- .long 0x40030000,0x96CBE3F9,0x990E91A8,0xA1600000
- .long 0x40030000,0xA35CE1A3,0xBB251DCB,0xA0900000
- .long 0x40030000,0xAFEDDF4D,0xDD3BA9EE,0x20A00000
- .long 0x40030000,0xBC7EDCF7,0xFF523611,0x21680000
- .long 0x40030000,0xC90FDAA2,0x2168C235,0xA1000000
- .long 0x40030000,0xD5A0D84C,0x437F4E58,0x1FC00000
- .long 0x40030000,0xE231D5F6,0x6595DA7B,0x21300000
- .long 0x40030000,0xEEC2D3A0,0x87AC669F,0xA1380000
- .long 0x40030000,0xFB53D14A,0xA9C2F2C2,0xA0000000
- .long 0x40040000,0x83F2677A,0x65ECBF73,0xA1C40000
- .long 0x40040000,0x8A3AE64F,0x76F80584,0x21880000
- .long 0x40040000,0x90836524,0x88034B96,0xA0B00000
- .long 0x40040000,0x96CBE3F9,0x990E91A8,0xA1E00000
- .long 0x40040000,0x9D1462CE,0xAA19D7B9,0x21580000
- .long 0x40040000,0xA35CE1A3,0xBB251DCB,0xA1100000
- .long 0x40040000,0xA9A56078,0xCC3063DD,0xA1FC0000
- .long 0x40040000,0xAFEDDF4D,0xDD3BA9EE,0x21200000
- .long 0x40040000,0xB6365E22,0xEE46F000,0xA1480000
- .long 0x40040000,0xBC7EDCF7,0xFF523611,0x21E80000
- .long 0x40040000,0xC2C75BCD,0x105D7C23,0x20D00000
- .long 0x40040000,0xC90FDAA2,0x2168C235,0xA1800000
-
- .set INARG,FP_SCR4
-
- .set TWOTO63,L_SCR1
- .set ENDFLAG,L_SCR2
- .set N,L_SCR3
-
- | xref t_frcinx
- |xref t_extdnrm
-
- .global stand
-stand:
-//--TAN(X) = X FOR DENORMALIZED X
-
- bra t_extdnrm
-
- .global stan
-stan:
- fmovex (%a0),%fp0 // ...LOAD INPUT
-
- movel (%a0),%d0
- movew 4(%a0),%d0
- andil #0x7FFFFFFF,%d0
-
- cmpil #0x3FD78000,%d0 // ...|X| >= 2**(-40)?
- bges TANOK1
- bra TANSM
-TANOK1:
- cmpil #0x4004BC7E,%d0 // ...|X| < 15 PI?
- blts TANMAIN
- bra REDUCEX
-
-
-TANMAIN:
-//--THIS IS THE USUAL CASE, |X| <= 15 PI.
-//--THE ARGUMENT REDUCTION IS DONE BY TABLE LOOK UP.
- fmovex %fp0,%fp1
- fmuld TWOBYPI,%fp1 // ...X*2/PI
-
-//--HIDE THE NEXT TWO INSTRUCTIONS
- leal PITBL+0x200,%a1 // ...TABLE OF N*PI/2, N = -32,...,32
-
-//--FP1 IS NOW READY
- fmovel %fp1,%d0 // ...CONVERT TO INTEGER
-
- asll #4,%d0
- addal %d0,%a1 // ...ADDRESS N*PIBY2 IN Y1, Y2
-
- fsubx (%a1)+,%fp0 // ...X-Y1
-//--HIDE THE NEXT ONE
-
- fsubs (%a1),%fp0 // ...FP0 IS R = (X-Y1)-Y2
-
- rorl #5,%d0
- andil #0x80000000,%d0 // ...D0 WAS ODD IFF D0 < 0
-
-TANCONT:
-
- cmpil #0,%d0
- blt NODD
-
- fmovex %fp0,%fp1
- fmulx %fp1,%fp1 // ...S = R*R
-
- fmoved TANQ4,%fp3
- fmoved TANP3,%fp2
-
- fmulx %fp1,%fp3 // ...SQ4
- fmulx %fp1,%fp2 // ...SP3
-
- faddd TANQ3,%fp3 // ...Q3+SQ4
- faddx TANP2,%fp2 // ...P2+SP3
-
- fmulx %fp1,%fp3 // ...S(Q3+SQ4)
- fmulx %fp1,%fp2 // ...S(P2+SP3)
-
- faddx TANQ2,%fp3 // ...Q2+S(Q3+SQ4)
- faddx TANP1,%fp2 // ...P1+S(P2+SP3)
-
- fmulx %fp1,%fp3 // ...S(Q2+S(Q3+SQ4))
- fmulx %fp1,%fp2 // ...S(P1+S(P2+SP3))
-
- faddx TANQ1,%fp3 // ...Q1+S(Q2+S(Q3+SQ4))
- fmulx %fp0,%fp2 // ...RS(P1+S(P2+SP3))
-
- fmulx %fp3,%fp1 // ...S(Q1+S(Q2+S(Q3+SQ4)))
-
-
- faddx %fp2,%fp0 // ...R+RS(P1+S(P2+SP3))
-
-
- fadds #0x3F800000,%fp1 // ...1+S(Q1+...)
-
- fmovel %d1,%fpcr //restore users exceptions
- fdivx %fp1,%fp0 //last inst - possible exception set
-
- bra t_frcinx
-
-NODD:
- fmovex %fp0,%fp1
- fmulx %fp0,%fp0 // ...S = R*R
-
- fmoved TANQ4,%fp3
- fmoved TANP3,%fp2
-
- fmulx %fp0,%fp3 // ...SQ4
- fmulx %fp0,%fp2 // ...SP3
-
- faddd TANQ3,%fp3 // ...Q3+SQ4
- faddx TANP2,%fp2 // ...P2+SP3
-
- fmulx %fp0,%fp3 // ...S(Q3+SQ4)
- fmulx %fp0,%fp2 // ...S(P2+SP3)
-
- faddx TANQ2,%fp3 // ...Q2+S(Q3+SQ4)
- faddx TANP1,%fp2 // ...P1+S(P2+SP3)
-
- fmulx %fp0,%fp3 // ...S(Q2+S(Q3+SQ4))
- fmulx %fp0,%fp2 // ...S(P1+S(P2+SP3))
-
- faddx TANQ1,%fp3 // ...Q1+S(Q2+S(Q3+SQ4))
- fmulx %fp1,%fp2 // ...RS(P1+S(P2+SP3))
-
- fmulx %fp3,%fp0 // ...S(Q1+S(Q2+S(Q3+SQ4)))
-
-
- faddx %fp2,%fp1 // ...R+RS(P1+S(P2+SP3))
- fadds #0x3F800000,%fp0 // ...1+S(Q1+...)
-
-
- fmovex %fp1,-(%sp)
- eoril #0x80000000,(%sp)
-
- fmovel %d1,%fpcr //restore users exceptions
- fdivx (%sp)+,%fp0 //last inst - possible exception set
-
- bra t_frcinx
-
-TANBORS:
-//--IF |X| > 15PI, WE USE THE GENERAL ARGUMENT REDUCTION.
-//--IF |X| < 2**(-40), RETURN X OR 1.
- cmpil #0x3FFF8000,%d0
- bgts REDUCEX
-
-TANSM:
-
- fmovex %fp0,-(%sp)
- fmovel %d1,%fpcr //restore users exceptions
- fmovex (%sp)+,%fp0 //last inst - possible exception set
-
- bra t_frcinx
-
-
-REDUCEX:
-//--WHEN REDUCEX IS USED, THE CODE WILL INEVITABLY BE SLOW.
-//--THIS REDUCTION METHOD, HOWEVER, IS MUCH FASTER THAN USING
-//--THE REMAINDER INSTRUCTION WHICH IS NOW IN SOFTWARE.
-
- fmovemx %fp2-%fp5,-(%a7) // ...save FP2 through FP5
- movel %d2,-(%a7)
- fmoves #0x00000000,%fp1
-
-//--If compact form of abs(arg) in d0=$7ffeffff, argument is so large that
-//--there is a danger of unwanted overflow in first LOOP iteration. In this
-//--case, reduce argument by one remainder step to make subsequent reduction
-//--safe.
- cmpil #0x7ffeffff,%d0 //is argument dangerously large?
- bnes LOOP
- movel #0x7ffe0000,FP_SCR2(%a6) //yes
-// ;create 2**16383*PI/2
- movel #0xc90fdaa2,FP_SCR2+4(%a6)
- clrl FP_SCR2+8(%a6)
- ftstx %fp0 //test sign of argument
- movel #0x7fdc0000,FP_SCR3(%a6) //create low half of 2**16383*
-// ;PI/2 at FP_SCR3
- movel #0x85a308d3,FP_SCR3+4(%a6)
- clrl FP_SCR3+8(%a6)
- fblt red_neg
- orw #0x8000,FP_SCR2(%a6) //positive arg
- orw #0x8000,FP_SCR3(%a6)
-red_neg:
- faddx FP_SCR2(%a6),%fp0 //high part of reduction is exact
- fmovex %fp0,%fp1 //save high result in fp1
- faddx FP_SCR3(%a6),%fp0 //low part of reduction
- fsubx %fp0,%fp1 //determine low component of result
- faddx FP_SCR3(%a6),%fp1 //fp0/fp1 are reduced argument.
-
-//--ON ENTRY, FP0 IS X, ON RETURN, FP0 IS X REM PI/2, |X| <= PI/4.
-//--integer quotient will be stored in N
-//--Intermediate remainder is 66-bit long; (R,r) in (FP0,FP1)
-
-LOOP:
- fmovex %fp0,INARG(%a6) // ...+-2**K * F, 1 <= F < 2
- movew INARG(%a6),%d0
- movel %d0,%a1 // ...save a copy of D0
- andil #0x00007FFF,%d0
- subil #0x00003FFF,%d0 // ...D0 IS K
- cmpil #28,%d0
- bles LASTLOOP
-CONTLOOP:
- subil #27,%d0 // ...D0 IS L := K-27
- movel #0,ENDFLAG(%a6)
- bras WORK
-LASTLOOP:
- clrl %d0 // ...D0 IS L := 0
- movel #1,ENDFLAG(%a6)
-
-WORK:
-//--FIND THE REMAINDER OF (R,r) W.R.T. 2**L * (PI/2). L IS SO CHOSEN
-//--THAT INT( X * (2/PI) / 2**(L) ) < 2**29.
-
-//--CREATE 2**(-L) * (2/PI), SIGN(INARG)*2**(63),
-//--2**L * (PIby2_1), 2**L * (PIby2_2)
-
- movel #0x00003FFE,%d2 // ...BIASED EXPO OF 2/PI
- subl %d0,%d2 // ...BIASED EXPO OF 2**(-L)*(2/PI)
-
- movel #0xA2F9836E,FP_SCR1+4(%a6)
- movel #0x4E44152A,FP_SCR1+8(%a6)
- movew %d2,FP_SCR1(%a6) // ...FP_SCR1 is 2**(-L)*(2/PI)
-
- fmovex %fp0,%fp2
- fmulx FP_SCR1(%a6),%fp2
-//--WE MUST NOW FIND INT(FP2). SINCE WE NEED THIS VALUE IN
-//--FLOATING POINT FORMAT, THE TWO FMOVE'S FMOVE.L FP <--> N
-//--WILL BE TOO INEFFICIENT. THE WAY AROUND IT IS THAT
-//--(SIGN(INARG)*2**63 + FP2) - SIGN(INARG)*2**63 WILL GIVE
-//--US THE DESIRED VALUE IN FLOATING POINT.
-
-//--HIDE SIX CYCLES OF INSTRUCTION
- movel %a1,%d2
- swap %d2
- andil #0x80000000,%d2
- oril #0x5F000000,%d2 // ...D2 IS SIGN(INARG)*2**63 IN SGL
- movel %d2,TWOTO63(%a6)
-
- movel %d0,%d2
- addil #0x00003FFF,%d2 // ...BIASED EXPO OF 2**L * (PI/2)
-
-//--FP2 IS READY
- fadds TWOTO63(%a6),%fp2 // ...THE FRACTIONAL PART OF FP1 IS ROUNDED
-
-//--HIDE 4 CYCLES OF INSTRUCTION; creating 2**(L)*Piby2_1 and 2**(L)*Piby2_2
- movew %d2,FP_SCR2(%a6)
- clrw FP_SCR2+2(%a6)
- movel #0xC90FDAA2,FP_SCR2+4(%a6)
- clrl FP_SCR2+8(%a6) // ...FP_SCR2 is 2**(L) * Piby2_1
-
-//--FP2 IS READY
- fsubs TWOTO63(%a6),%fp2 // ...FP2 is N
-
- addil #0x00003FDD,%d0
- movew %d0,FP_SCR3(%a6)
- clrw FP_SCR3+2(%a6)
- movel #0x85A308D3,FP_SCR3+4(%a6)
- clrl FP_SCR3+8(%a6) // ...FP_SCR3 is 2**(L) * Piby2_2
-
- movel ENDFLAG(%a6),%d0
-
-//--We are now ready to perform (R+r) - N*P1 - N*P2, P1 = 2**(L) * Piby2_1 and
-//--P2 = 2**(L) * Piby2_2
- fmovex %fp2,%fp4
- fmulx FP_SCR2(%a6),%fp4 // ...W = N*P1
- fmovex %fp2,%fp5
- fmulx FP_SCR3(%a6),%fp5 // ...w = N*P2
- fmovex %fp4,%fp3
-//--we want P+p = W+w but |p| <= half ulp of P
-//--Then, we need to compute A := R-P and a := r-p
- faddx %fp5,%fp3 // ...FP3 is P
- fsubx %fp3,%fp4 // ...W-P
-
- fsubx %fp3,%fp0 // ...FP0 is A := R - P
- faddx %fp5,%fp4 // ...FP4 is p = (W-P)+w
-
- fmovex %fp0,%fp3 // ...FP3 A
- fsubx %fp4,%fp1 // ...FP1 is a := r - p
-
-//--Now we need to normalize (A,a) to "new (R,r)" where R+r = A+a but
-//--|r| <= half ulp of R.
- faddx %fp1,%fp0 // ...FP0 is R := A+a
-//--No need to calculate r if this is the last loop
- cmpil #0,%d0
- bgt RESTORE
-
-//--Need to calculate r
- fsubx %fp0,%fp3 // ...A-R
- faddx %fp3,%fp1 // ...FP1 is r := (A-R)+a
- bra LOOP
-
-RESTORE:
- fmovel %fp2,N(%a6)
- movel (%a7)+,%d2
- fmovemx (%a7)+,%fp2-%fp5
-
-
- movel N(%a6),%d0
- rorl #1,%d0
-
-
- bra TANCONT
-
- |end