summaryrefslogtreecommitdiffstats
path: root/c/src/lib/libcpu/m68k/m68040/fpsp/ssin.S
diff options
context:
space:
mode:
Diffstat (limited to 'c/src/lib/libcpu/m68k/m68040/fpsp/ssin.S')
-rw-r--r--c/src/lib/libcpu/m68k/m68040/fpsp/ssin.S748
1 files changed, 0 insertions, 748 deletions
diff --git a/c/src/lib/libcpu/m68k/m68040/fpsp/ssin.S b/c/src/lib/libcpu/m68k/m68040/fpsp/ssin.S
deleted file mode 100644
index 2fa14cfaac..0000000000
--- a/c/src/lib/libcpu/m68k/m68040/fpsp/ssin.S
+++ /dev/null
@@ -1,748 +0,0 @@
-#include "fpsp-namespace.h"
-//
-//
-// ssin.sa 3.3 7/29/91
-//
-// The entry point sSIN computes the sine of an input argument
-// sCOS computes the cosine, and sSINCOS computes both. The
-// corresponding entry points with a "d" computes the same
-// corresponding function values for denormalized inputs.
-//
-// Input: Double-extended number X in location pointed to
-// by address register a0.
-//
-// Output: The function value sin(X) or cos(X) returned in Fp0 if SIN or
-// COS is requested. Otherwise, for SINCOS, sin(X) is returned
-// in Fp0, and cos(X) is returned in Fp1.
-//
-// Modifies: Fp0 for SIN or COS; both Fp0 and Fp1 for SINCOS.
-//
-// Accuracy and Monotonicity: The returned result is within 1 ulp in
-// 64 significant bit, i.e. within 0.5001 ulp to 53 bits if the
-// result is subsequently rounded to double precision. The
-// result is provably monotonic in double precision.
-//
-// Speed: The programs sSIN and sCOS take approximately 150 cycles for
-// input argument X such that |X| < 15Pi, which is the the usual
-// situation. The speed for sSINCOS is approximately 190 cycles.
-//
-// Algorithm:
-//
-// SIN and COS:
-// 1. If SIN is invoked, set AdjN := 0; otherwise, set AdjN := 1.
-//
-// 2. If |X| >= 15Pi or |X| < 2**(-40), go to 7.
-//
-// 3. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let
-// k = N mod 4, so in particular, k = 0,1,2,or 3. Overwrite
-// k by k := k + AdjN.
-//
-// 4. If k is even, go to 6.
-//
-// 5. (k is odd) Set j := (k-1)/2, sgn := (-1)**j. Return sgn*cos(r)
-// where cos(r) is approximated by an even polynomial in r,
-// 1 + r*r*(B1+s*(B2+ ... + s*B8)), s = r*r.
-// Exit.
-//
-// 6. (k is even) Set j := k/2, sgn := (-1)**j. Return sgn*sin(r)
-// where sin(r) is approximated by an odd polynomial in r
-// r + r*s*(A1+s*(A2+ ... + s*A7)), s = r*r.
-// Exit.
-//
-// 7. If |X| > 1, go to 9.
-//
-// 8. (|X|<2**(-40)) If SIN is invoked, return X; otherwise return 1.
-//
-// 9. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi, go back to 3.
-//
-// SINCOS:
-// 1. If |X| >= 15Pi or |X| < 2**(-40), go to 6.
-//
-// 2. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let
-// k = N mod 4, so in particular, k = 0,1,2,or 3.
-//
-// 3. If k is even, go to 5.
-//
-// 4. (k is odd) Set j1 := (k-1)/2, j2 := j1 (EOR) (k mod 2), i.e.
-// j1 exclusive or with the l.s.b. of k.
-// sgn1 := (-1)**j1, sgn2 := (-1)**j2.
-// SIN(X) = sgn1 * cos(r) and COS(X) = sgn2*sin(r) where
-// sin(r) and cos(r) are computed as odd and even polynomials
-// in r, respectively. Exit
-//
-// 5. (k is even) Set j1 := k/2, sgn1 := (-1)**j1.
-// SIN(X) = sgn1 * sin(r) and COS(X) = sgn1*cos(r) where
-// sin(r) and cos(r) are computed as odd and even polynomials
-// in r, respectively. Exit
-//
-// 6. If |X| > 1, go to 8.
-//
-// 7. (|X|<2**(-40)) SIN(X) = X and COS(X) = 1. Exit.
-//
-// 8. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi, go back to 2.
-//
-
-// Copyright (C) Motorola, Inc. 1990
-// All Rights Reserved
-//
-// THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA
-// The copyright notice above does not evidence any
-// actual or intended publication of such source code.
-
-//SSIN idnt 2,1 | Motorola 040 Floating Point Software Package
-
- |section 8
-
-#include "fpsp.defs"
-
-BOUNDS1: .long 0x3FD78000,0x4004BC7E
-TWOBYPI: .long 0x3FE45F30,0x6DC9C883
-
-SINA7: .long 0xBD6AAA77,0xCCC994F5
-SINA6: .long 0x3DE61209,0x7AAE8DA1
-
-SINA5: .long 0xBE5AE645,0x2A118AE4
-SINA4: .long 0x3EC71DE3,0xA5341531
-
-SINA3: .long 0xBF2A01A0,0x1A018B59,0x00000000,0x00000000
-
-SINA2: .long 0x3FF80000,0x88888888,0x888859AF,0x00000000
-
-SINA1: .long 0xBFFC0000,0xAAAAAAAA,0xAAAAAA99,0x00000000
-
-COSB8: .long 0x3D2AC4D0,0xD6011EE3
-COSB7: .long 0xBDA9396F,0x9F45AC19
-
-COSB6: .long 0x3E21EED9,0x0612C972
-COSB5: .long 0xBE927E4F,0xB79D9FCF
-
-COSB4: .long 0x3EFA01A0,0x1A01D423,0x00000000,0x00000000
-
-COSB3: .long 0xBFF50000,0xB60B60B6,0x0B61D438,0x00000000
-
-COSB2: .long 0x3FFA0000,0xAAAAAAAA,0xAAAAAB5E
-COSB1: .long 0xBF000000
-
-INVTWOPI: .long 0x3FFC0000,0xA2F9836E,0x4E44152A
-
-TWOPI1: .long 0x40010000,0xC90FDAA2,0x00000000,0x00000000
-TWOPI2: .long 0x3FDF0000,0x85A308D4,0x00000000,0x00000000
-
- |xref PITBL
-
- .set INARG,FP_SCR4
-
- .set X,FP_SCR5
- .set XDCARE,X+2
- .set XFRAC,X+4
-
- .set RPRIME,FP_SCR1
- .set SPRIME,FP_SCR2
-
- .set POSNEG1,L_SCR1
- .set TWOTO63,L_SCR1
-
- .set ENDFLAG,L_SCR2
- .set N,L_SCR2
-
- .set ADJN,L_SCR3
-
- | xref t_frcinx
- |xref t_extdnrm
- |xref sto_cos
-
- .global ssind
-ssind:
-//--SIN(X) = X FOR DENORMALIZED X
- bra t_extdnrm
-
- .global scosd
-scosd:
-//--COS(X) = 1 FOR DENORMALIZED X
-
- fmoves #0x3F800000,%fp0
-//
-// 9D25B Fix: Sometimes the previous fmove.s sets fpsr bits
-//
- fmovel #0,%fpsr
-//
- bra t_frcinx
-
- .global ssin
-ssin:
-//--SET ADJN TO 0
- movel #0,ADJN(%a6)
- bras SINBGN
-
- .global scos
-scos:
-//--SET ADJN TO 1
- movel #1,ADJN(%a6)
-
-SINBGN:
-//--SAVE FPCR, FP1. CHECK IF |X| IS TOO SMALL OR LARGE
-
- fmovex (%a0),%fp0 // ...LOAD INPUT
-
- movel (%a0),%d0
- movew 4(%a0),%d0
- fmovex %fp0,X(%a6)
- andil #0x7FFFFFFF,%d0 // ...COMPACTIFY X
-
- cmpil #0x3FD78000,%d0 // ...|X| >= 2**(-40)?
- bges SOK1
- bra SINSM
-
-SOK1:
- cmpil #0x4004BC7E,%d0 // ...|X| < 15 PI?
- blts SINMAIN
- bra REDUCEX
-
-SINMAIN:
-//--THIS IS THE USUAL CASE, |X| <= 15 PI.
-//--THE ARGUMENT REDUCTION IS DONE BY TABLE LOOK UP.
- fmovex %fp0,%fp1
- fmuld TWOBYPI,%fp1 // ...X*2/PI
-
-//--HIDE THE NEXT THREE INSTRUCTIONS
- lea PITBL+0x200,%a1 // ...TABLE OF N*PI/2, N = -32,...,32
-
-
-//--FP1 IS NOW READY
- fmovel %fp1,N(%a6) // ...CONVERT TO INTEGER
-
- movel N(%a6),%d0
- asll #4,%d0
- addal %d0,%a1 // ...A1 IS THE ADDRESS OF N*PIBY2
-// ...WHICH IS IN TWO PIECES Y1 & Y2
-
- fsubx (%a1)+,%fp0 // ...X-Y1
-//--HIDE THE NEXT ONE
- fsubs (%a1),%fp0 // ...FP0 IS R = (X-Y1)-Y2
-
-SINCONT:
-//--continuation from REDUCEX
-
-//--GET N+ADJN AND SEE IF SIN(R) OR COS(R) IS NEEDED
- movel N(%a6),%d0
- addl ADJN(%a6),%d0 // ...SEE IF D0 IS ODD OR EVEN
- rorl #1,%d0 // ...D0 WAS ODD IFF D0 IS NEGATIVE
- cmpil #0,%d0
- blt COSPOLY
-
-SINPOLY:
-//--LET J BE THE LEAST SIG. BIT OF D0, LET SGN := (-1)**J.
-//--THEN WE RETURN SGN*SIN(R). SGN*SIN(R) IS COMPUTED BY
-//--R' + R'*S*(A1 + S(A2 + S(A3 + S(A4 + ... + SA7)))), WHERE
-//--R' = SGN*R, S=R*R. THIS CAN BE REWRITTEN AS
-//--R' + R'*S*( [A1+T(A3+T(A5+TA7))] + [S(A2+T(A4+TA6))])
-//--WHERE T=S*S.
-//--NOTE THAT A3 THROUGH A7 ARE STORED IN DOUBLE PRECISION
-//--WHILE A1 AND A2 ARE IN DOUBLE-EXTENDED FORMAT.
- fmovex %fp0,X(%a6) // ...X IS R
- fmulx %fp0,%fp0 // ...FP0 IS S
-//---HIDE THE NEXT TWO WHILE WAITING FOR FP0
- fmoved SINA7,%fp3
- fmoved SINA6,%fp2
-//--FP0 IS NOW READY
- fmovex %fp0,%fp1
- fmulx %fp1,%fp1 // ...FP1 IS T
-//--HIDE THE NEXT TWO WHILE WAITING FOR FP1
-
- rorl #1,%d0
- andil #0x80000000,%d0
-// ...LEAST SIG. BIT OF D0 IN SIGN POSITION
- eorl %d0,X(%a6) // ...X IS NOW R'= SGN*R
-
- fmulx %fp1,%fp3 // ...TA7
- fmulx %fp1,%fp2 // ...TA6
-
- faddd SINA5,%fp3 // ...A5+TA7
- faddd SINA4,%fp2 // ...A4+TA6
-
- fmulx %fp1,%fp3 // ...T(A5+TA7)
- fmulx %fp1,%fp2 // ...T(A4+TA6)
-
- faddd SINA3,%fp3 // ...A3+T(A5+TA7)
- faddx SINA2,%fp2 // ...A2+T(A4+TA6)
-
- fmulx %fp3,%fp1 // ...T(A3+T(A5+TA7))
-
- fmulx %fp0,%fp2 // ...S(A2+T(A4+TA6))
- faddx SINA1,%fp1 // ...A1+T(A3+T(A5+TA7))
- fmulx X(%a6),%fp0 // ...R'*S
-
- faddx %fp2,%fp1 // ...[A1+T(A3+T(A5+TA7))]+[S(A2+T(A4+TA6))]
-//--FP3 RELEASED, RESTORE NOW AND TAKE SOME ADVANTAGE OF HIDING
-//--FP2 RELEASED, RESTORE NOW AND TAKE FULL ADVANTAGE OF HIDING
-
-
- fmulx %fp1,%fp0 // ...SIN(R')-R'
-//--FP1 RELEASED.
-
- fmovel %d1,%FPCR //restore users exceptions
- faddx X(%a6),%fp0 //last inst - possible exception set
- bra t_frcinx
-
-
-COSPOLY:
-//--LET J BE THE LEAST SIG. BIT OF D0, LET SGN := (-1)**J.
-//--THEN WE RETURN SGN*COS(R). SGN*COS(R) IS COMPUTED BY
-//--SGN + S'*(B1 + S(B2 + S(B3 + S(B4 + ... + SB8)))), WHERE
-//--S=R*R AND S'=SGN*S. THIS CAN BE REWRITTEN AS
-//--SGN + S'*([B1+T(B3+T(B5+TB7))] + [S(B2+T(B4+T(B6+TB8)))])
-//--WHERE T=S*S.
-//--NOTE THAT B4 THROUGH B8 ARE STORED IN DOUBLE PRECISION
-//--WHILE B2 AND B3 ARE IN DOUBLE-EXTENDED FORMAT, B1 IS -1/2
-//--AND IS THEREFORE STORED AS SINGLE PRECISION.
-
- fmulx %fp0,%fp0 // ...FP0 IS S
-//---HIDE THE NEXT TWO WHILE WAITING FOR FP0
- fmoved COSB8,%fp2
- fmoved COSB7,%fp3
-//--FP0 IS NOW READY
- fmovex %fp0,%fp1
- fmulx %fp1,%fp1 // ...FP1 IS T
-//--HIDE THE NEXT TWO WHILE WAITING FOR FP1
- fmovex %fp0,X(%a6) // ...X IS S
- rorl #1,%d0
- andil #0x80000000,%d0
-// ...LEAST SIG. BIT OF D0 IN SIGN POSITION
-
- fmulx %fp1,%fp2 // ...TB8
-//--HIDE THE NEXT TWO WHILE WAITING FOR THE XU
- eorl %d0,X(%a6) // ...X IS NOW S'= SGN*S
- andil #0x80000000,%d0
-
- fmulx %fp1,%fp3 // ...TB7
-//--HIDE THE NEXT TWO WHILE WAITING FOR THE XU
- oril #0x3F800000,%d0 // ...D0 IS SGN IN SINGLE
- movel %d0,POSNEG1(%a6)
-
- faddd COSB6,%fp2 // ...B6+TB8
- faddd COSB5,%fp3 // ...B5+TB7
-
- fmulx %fp1,%fp2 // ...T(B6+TB8)
- fmulx %fp1,%fp3 // ...T(B5+TB7)
-
- faddd COSB4,%fp2 // ...B4+T(B6+TB8)
- faddx COSB3,%fp3 // ...B3+T(B5+TB7)
-
- fmulx %fp1,%fp2 // ...T(B4+T(B6+TB8))
- fmulx %fp3,%fp1 // ...T(B3+T(B5+TB7))
-
- faddx COSB2,%fp2 // ...B2+T(B4+T(B6+TB8))
- fadds COSB1,%fp1 // ...B1+T(B3+T(B5+TB7))
-
- fmulx %fp2,%fp0 // ...S(B2+T(B4+T(B6+TB8)))
-//--FP3 RELEASED, RESTORE NOW AND TAKE SOME ADVANTAGE OF HIDING
-//--FP2 RELEASED.
-
-
- faddx %fp1,%fp0
-//--FP1 RELEASED
-
- fmulx X(%a6),%fp0
-
- fmovel %d1,%FPCR //restore users exceptions
- fadds POSNEG1(%a6),%fp0 //last inst - possible exception set
- bra t_frcinx
-
-
-SINBORS:
-//--IF |X| > 15PI, WE USE THE GENERAL ARGUMENT REDUCTION.
-//--IF |X| < 2**(-40), RETURN X OR 1.
- cmpil #0x3FFF8000,%d0
- bgts REDUCEX
-
-
-SINSM:
- movel ADJN(%a6),%d0
- cmpil #0,%d0
- bgts COSTINY
-
-SINTINY:
- movew #0x0000,XDCARE(%a6) // ...JUST IN CASE
- fmovel %d1,%FPCR //restore users exceptions
- fmovex X(%a6),%fp0 //last inst - possible exception set
- bra t_frcinx
-
-
-COSTINY:
- fmoves #0x3F800000,%fp0
-
- fmovel %d1,%FPCR //restore users exceptions
- fsubs #0x00800000,%fp0 //last inst - possible exception set
- bra t_frcinx
-
-
-REDUCEX:
-//--WHEN REDUCEX IS USED, THE CODE WILL INEVITABLY BE SLOW.
-//--THIS REDUCTION METHOD, HOWEVER, IS MUCH FASTER THAN USING
-//--THE REMAINDER INSTRUCTION WHICH IS NOW IN SOFTWARE.
-
- fmovemx %fp2-%fp5,-(%a7) // ...save FP2 through FP5
- movel %d2,-(%a7)
- fmoves #0x00000000,%fp1
-//--If compact form of abs(arg) in d0=$7ffeffff, argument is so large that
-//--there is a danger of unwanted overflow in first LOOP iteration. In this
-//--case, reduce argument by one remainder step to make subsequent reduction
-//--safe.
- cmpil #0x7ffeffff,%d0 //is argument dangerously large?
- bnes LOOP
- movel #0x7ffe0000,FP_SCR2(%a6) //yes
-// ;create 2**16383*PI/2
- movel #0xc90fdaa2,FP_SCR2+4(%a6)
- clrl FP_SCR2+8(%a6)
- ftstx %fp0 //test sign of argument
- movel #0x7fdc0000,FP_SCR3(%a6) //create low half of 2**16383*
-// ;PI/2 at FP_SCR3
- movel #0x85a308d3,FP_SCR3+4(%a6)
- clrl FP_SCR3+8(%a6)
- fblt red_neg
- orw #0x8000,FP_SCR2(%a6) //positive arg
- orw #0x8000,FP_SCR3(%a6)
-red_neg:
- faddx FP_SCR2(%a6),%fp0 //high part of reduction is exact
- fmovex %fp0,%fp1 //save high result in fp1
- faddx FP_SCR3(%a6),%fp0 //low part of reduction
- fsubx %fp0,%fp1 //determine low component of result
- faddx FP_SCR3(%a6),%fp1 //fp0/fp1 are reduced argument.
-
-//--ON ENTRY, FP0 IS X, ON RETURN, FP0 IS X REM PI/2, |X| <= PI/4.
-//--integer quotient will be stored in N
-//--Intermediate remainder is 66-bit long; (R,r) in (FP0,FP1)
-
-LOOP:
- fmovex %fp0,INARG(%a6) // ...+-2**K * F, 1 <= F < 2
- movew INARG(%a6),%d0
- movel %d0,%a1 // ...save a copy of D0
- andil #0x00007FFF,%d0
- subil #0x00003FFF,%d0 // ...D0 IS K
- cmpil #28,%d0
- bles LASTLOOP
-CONTLOOP:
- subil #27,%d0 // ...D0 IS L := K-27
- movel #0,ENDFLAG(%a6)
- bras WORK
-LASTLOOP:
- clrl %d0 // ...D0 IS L := 0
- movel #1,ENDFLAG(%a6)
-
-WORK:
-//--FIND THE REMAINDER OF (R,r) W.R.T. 2**L * (PI/2). L IS SO CHOSEN
-//--THAT INT( X * (2/PI) / 2**(L) ) < 2**29.
-
-//--CREATE 2**(-L) * (2/PI), SIGN(INARG)*2**(63),
-//--2**L * (PIby2_1), 2**L * (PIby2_2)
-
- movel #0x00003FFE,%d2 // ...BIASED EXPO OF 2/PI
- subl %d0,%d2 // ...BIASED EXPO OF 2**(-L)*(2/PI)
-
- movel #0xA2F9836E,FP_SCR1+4(%a6)
- movel #0x4E44152A,FP_SCR1+8(%a6)
- movew %d2,FP_SCR1(%a6) // ...FP_SCR1 is 2**(-L)*(2/PI)
-
- fmovex %fp0,%fp2
- fmulx FP_SCR1(%a6),%fp2
-//--WE MUST NOW FIND INT(FP2). SINCE WE NEED THIS VALUE IN
-//--FLOATING POINT FORMAT, THE TWO FMOVE'S FMOVE.L FP <--> N
-//--WILL BE TOO INEFFICIENT. THE WAY AROUND IT IS THAT
-//--(SIGN(INARG)*2**63 + FP2) - SIGN(INARG)*2**63 WILL GIVE
-//--US THE DESIRED VALUE IN FLOATING POINT.
-
-//--HIDE SIX CYCLES OF INSTRUCTION
- movel %a1,%d2
- swap %d2
- andil #0x80000000,%d2
- oril #0x5F000000,%d2 // ...D2 IS SIGN(INARG)*2**63 IN SGL
- movel %d2,TWOTO63(%a6)
-
- movel %d0,%d2
- addil #0x00003FFF,%d2 // ...BIASED EXPO OF 2**L * (PI/2)
-
-//--FP2 IS READY
- fadds TWOTO63(%a6),%fp2 // ...THE FRACTIONAL PART OF FP1 IS ROUNDED
-
-//--HIDE 4 CYCLES OF INSTRUCTION; creating 2**(L)*Piby2_1 and 2**(L)*Piby2_2
- movew %d2,FP_SCR2(%a6)
- clrw FP_SCR2+2(%a6)
- movel #0xC90FDAA2,FP_SCR2+4(%a6)
- clrl FP_SCR2+8(%a6) // ...FP_SCR2 is 2**(L) * Piby2_1
-
-//--FP2 IS READY
- fsubs TWOTO63(%a6),%fp2 // ...FP2 is N
-
- addil #0x00003FDD,%d0
- movew %d0,FP_SCR3(%a6)
- clrw FP_SCR3+2(%a6)
- movel #0x85A308D3,FP_SCR3+4(%a6)
- clrl FP_SCR3+8(%a6) // ...FP_SCR3 is 2**(L) * Piby2_2
-
- movel ENDFLAG(%a6),%d0
-
-//--We are now ready to perform (R+r) - N*P1 - N*P2, P1 = 2**(L) * Piby2_1 and
-//--P2 = 2**(L) * Piby2_2
- fmovex %fp2,%fp4
- fmulx FP_SCR2(%a6),%fp4 // ...W = N*P1
- fmovex %fp2,%fp5
- fmulx FP_SCR3(%a6),%fp5 // ...w = N*P2
- fmovex %fp4,%fp3
-//--we want P+p = W+w but |p| <= half ulp of P
-//--Then, we need to compute A := R-P and a := r-p
- faddx %fp5,%fp3 // ...FP3 is P
- fsubx %fp3,%fp4 // ...W-P
-
- fsubx %fp3,%fp0 // ...FP0 is A := R - P
- faddx %fp5,%fp4 // ...FP4 is p = (W-P)+w
-
- fmovex %fp0,%fp3 // ...FP3 A
- fsubx %fp4,%fp1 // ...FP1 is a := r - p
-
-//--Now we need to normalize (A,a) to "new (R,r)" where R+r = A+a but
-//--|r| <= half ulp of R.
- faddx %fp1,%fp0 // ...FP0 is R := A+a
-//--No need to calculate r if this is the last loop
- cmpil #0,%d0
- bgt RESTORE
-
-//--Need to calculate r
- fsubx %fp0,%fp3 // ...A-R
- faddx %fp3,%fp1 // ...FP1 is r := (A-R)+a
- bra LOOP
-
-RESTORE:
- fmovel %fp2,N(%a6)
- movel (%a7)+,%d2
- fmovemx (%a7)+,%fp2-%fp5
-
-
- movel ADJN(%a6),%d0
- cmpil #4,%d0
-
- blt SINCONT
- bras SCCONT
-
- .global ssincosd
-ssincosd:
-//--SIN AND COS OF X FOR DENORMALIZED X
-
- fmoves #0x3F800000,%fp1
- bsr sto_cos //store cosine result
- bra t_extdnrm
-
- .global ssincos
-ssincos:
-//--SET ADJN TO 4
- movel #4,ADJN(%a6)
-
- fmovex (%a0),%fp0 // ...LOAD INPUT
-
- movel (%a0),%d0
- movew 4(%a0),%d0
- fmovex %fp0,X(%a6)
- andil #0x7FFFFFFF,%d0 // ...COMPACTIFY X
-
- cmpil #0x3FD78000,%d0 // ...|X| >= 2**(-40)?
- bges SCOK1
- bra SCSM
-
-SCOK1:
- cmpil #0x4004BC7E,%d0 // ...|X| < 15 PI?
- blts SCMAIN
- bra REDUCEX
-
-
-SCMAIN:
-//--THIS IS THE USUAL CASE, |X| <= 15 PI.
-//--THE ARGUMENT REDUCTION IS DONE BY TABLE LOOK UP.
- fmovex %fp0,%fp1
- fmuld TWOBYPI,%fp1 // ...X*2/PI
-
-//--HIDE THE NEXT THREE INSTRUCTIONS
- lea PITBL+0x200,%a1 // ...TABLE OF N*PI/2, N = -32,...,32
-
-
-//--FP1 IS NOW READY
- fmovel %fp1,N(%a6) // ...CONVERT TO INTEGER
-
- movel N(%a6),%d0
- asll #4,%d0
- addal %d0,%a1 // ...ADDRESS OF N*PIBY2, IN Y1, Y2
-
- fsubx (%a1)+,%fp0 // ...X-Y1
- fsubs (%a1),%fp0 // ...FP0 IS R = (X-Y1)-Y2
-
-SCCONT:
-//--continuation point from REDUCEX
-
-//--HIDE THE NEXT TWO
- movel N(%a6),%d0
- rorl #1,%d0
-
- cmpil #0,%d0 // ...D0 < 0 IFF N IS ODD
- bge NEVEN
-
-NODD:
-//--REGISTERS SAVED SO FAR: D0, A0, FP2.
-
- fmovex %fp0,RPRIME(%a6)
- fmulx %fp0,%fp0 // ...FP0 IS S = R*R
- fmoved SINA7,%fp1 // ...A7
- fmoved COSB8,%fp2 // ...B8
- fmulx %fp0,%fp1 // ...SA7
- movel %d2,-(%a7)
- movel %d0,%d2
- fmulx %fp0,%fp2 // ...SB8
- rorl #1,%d2
- andil #0x80000000,%d2
-
- faddd SINA6,%fp1 // ...A6+SA7
- eorl %d0,%d2
- andil #0x80000000,%d2
- faddd COSB7,%fp2 // ...B7+SB8
-
- fmulx %fp0,%fp1 // ...S(A6+SA7)
- eorl %d2,RPRIME(%a6)
- movel (%a7)+,%d2
- fmulx %fp0,%fp2 // ...S(B7+SB8)
- rorl #1,%d0
- andil #0x80000000,%d0
-
- faddd SINA5,%fp1 // ...A5+S(A6+SA7)
- movel #0x3F800000,POSNEG1(%a6)
- eorl %d0,POSNEG1(%a6)
- faddd COSB6,%fp2 // ...B6+S(B7+SB8)
-
- fmulx %fp0,%fp1 // ...S(A5+S(A6+SA7))
- fmulx %fp0,%fp2 // ...S(B6+S(B7+SB8))
- fmovex %fp0,SPRIME(%a6)
-
- faddd SINA4,%fp1 // ...A4+S(A5+S(A6+SA7))
- eorl %d0,SPRIME(%a6)
- faddd COSB5,%fp2 // ...B5+S(B6+S(B7+SB8))
-
- fmulx %fp0,%fp1 // ...S(A4+...)
- fmulx %fp0,%fp2 // ...S(B5+...)
-
- faddd SINA3,%fp1 // ...A3+S(A4+...)
- faddd COSB4,%fp2 // ...B4+S(B5+...)
-
- fmulx %fp0,%fp1 // ...S(A3+...)
- fmulx %fp0,%fp2 // ...S(B4+...)
-
- faddx SINA2,%fp1 // ...A2+S(A3+...)
- faddx COSB3,%fp2 // ...B3+S(B4+...)
-
- fmulx %fp0,%fp1 // ...S(A2+...)
- fmulx %fp0,%fp2 // ...S(B3+...)
-
- faddx SINA1,%fp1 // ...A1+S(A2+...)
- faddx COSB2,%fp2 // ...B2+S(B3+...)
-
- fmulx %fp0,%fp1 // ...S(A1+...)
- fmulx %fp2,%fp0 // ...S(B2+...)
-
-
-
- fmulx RPRIME(%a6),%fp1 // ...R'S(A1+...)
- fadds COSB1,%fp0 // ...B1+S(B2...)
- fmulx SPRIME(%a6),%fp0 // ...S'(B1+S(B2+...))
-
- movel %d1,-(%sp) //restore users mode & precision
- andil #0xff,%d1 //mask off all exceptions
- fmovel %d1,%FPCR
- faddx RPRIME(%a6),%fp1 // ...COS(X)
- bsr sto_cos //store cosine result
- fmovel (%sp)+,%FPCR //restore users exceptions
- fadds POSNEG1(%a6),%fp0 // ...SIN(X)
-
- bra t_frcinx
-
-
-NEVEN:
-//--REGISTERS SAVED SO FAR: FP2.
-
- fmovex %fp0,RPRIME(%a6)
- fmulx %fp0,%fp0 // ...FP0 IS S = R*R
- fmoved COSB8,%fp1 // ...B8
- fmoved SINA7,%fp2 // ...A7
- fmulx %fp0,%fp1 // ...SB8
- fmovex %fp0,SPRIME(%a6)
- fmulx %fp0,%fp2 // ...SA7
- rorl #1,%d0
- andil #0x80000000,%d0
- faddd COSB7,%fp1 // ...B7+SB8
- faddd SINA6,%fp2 // ...A6+SA7
- eorl %d0,RPRIME(%a6)
- eorl %d0,SPRIME(%a6)
- fmulx %fp0,%fp1 // ...S(B7+SB8)
- oril #0x3F800000,%d0
- movel %d0,POSNEG1(%a6)
- fmulx %fp0,%fp2 // ...S(A6+SA7)
-
- faddd COSB6,%fp1 // ...B6+S(B7+SB8)
- faddd SINA5,%fp2 // ...A5+S(A6+SA7)
-
- fmulx %fp0,%fp1 // ...S(B6+S(B7+SB8))
- fmulx %fp0,%fp2 // ...S(A5+S(A6+SA7))
-
- faddd COSB5,%fp1 // ...B5+S(B6+S(B7+SB8))
- faddd SINA4,%fp2 // ...A4+S(A5+S(A6+SA7))
-
- fmulx %fp0,%fp1 // ...S(B5+...)
- fmulx %fp0,%fp2 // ...S(A4+...)
-
- faddd COSB4,%fp1 // ...B4+S(B5+...)
- faddd SINA3,%fp2 // ...A3+S(A4+...)
-
- fmulx %fp0,%fp1 // ...S(B4+...)
- fmulx %fp0,%fp2 // ...S(A3+...)
-
- faddx COSB3,%fp1 // ...B3+S(B4+...)
- faddx SINA2,%fp2 // ...A2+S(A3+...)
-
- fmulx %fp0,%fp1 // ...S(B3+...)
- fmulx %fp0,%fp2 // ...S(A2+...)
-
- faddx COSB2,%fp1 // ...B2+S(B3+...)
- faddx SINA1,%fp2 // ...A1+S(A2+...)
-
- fmulx %fp0,%fp1 // ...S(B2+...)
- fmulx %fp2,%fp0 // ...s(a1+...)
-
-
-
- fadds COSB1,%fp1 // ...B1+S(B2...)
- fmulx RPRIME(%a6),%fp0 // ...R'S(A1+...)
- fmulx SPRIME(%a6),%fp1 // ...S'(B1+S(B2+...))
-
- movel %d1,-(%sp) //save users mode & precision
- andil #0xff,%d1 //mask off all exceptions
- fmovel %d1,%FPCR
- fadds POSNEG1(%a6),%fp1 // ...COS(X)
- bsr sto_cos //store cosine result
- fmovel (%sp)+,%FPCR //restore users exceptions
- faddx RPRIME(%a6),%fp0 // ...SIN(X)
-
- bra t_frcinx
-
-SCBORS:
- cmpil #0x3FFF8000,%d0
- bgt REDUCEX
-
-
-SCSM:
- movew #0x0000,XDCARE(%a6)
- fmoves #0x3F800000,%fp1
-
- movel %d1,-(%sp) //save users mode & precision
- andil #0xff,%d1 //mask off all exceptions
- fmovel %d1,%FPCR
- fsubs #0x00800000,%fp1
- bsr sto_cos //store cosine result
- fmovel (%sp)+,%FPCR //restore users exceptions
- fmovex X(%a6),%fp0
- bra t_frcinx
-
- |end