summaryrefslogtreecommitdiffstats
path: root/c/src/lib/libcpu/m68k/m68040/fpsp/bindec.S
diff options
context:
space:
mode:
Diffstat (limited to 'c/src/lib/libcpu/m68k/m68040/fpsp/bindec.S')
-rw-r--r--c/src/lib/libcpu/m68k/m68040/fpsp/bindec.S922
1 files changed, 0 insertions, 922 deletions
diff --git a/c/src/lib/libcpu/m68k/m68040/fpsp/bindec.S b/c/src/lib/libcpu/m68k/m68040/fpsp/bindec.S
deleted file mode 100644
index 4c3407394c..0000000000
--- a/c/src/lib/libcpu/m68k/m68040/fpsp/bindec.S
+++ /dev/null
@@ -1,922 +0,0 @@
-#include "fpsp-namespace.h"
-//
-//
-// bindec.sa 3.4 1/3/91
-//
-// bindec
-//
-// Description:
-// Converts an input in extended precision format
-// to bcd format.
-//
-// Input:
-// a0 points to the input extended precision value
-// value in memory; d0 contains the k-factor sign-extended
-// to 32-bits. The input may be either normalized,
-// unnormalized, or denormalized.
-//
-// Output: result in the FP_SCR1 space on the stack.
-//
-// Saves and Modifies: D2-D7,A2,FP2
-//
-// Algorithm:
-//
-// A1. Set RM and size ext; Set SIGMA = sign of input.
-// The k-factor is saved for use in d7. Clear the
-// BINDEC_FLG for separating normalized/denormalized
-// input. If input is unnormalized or denormalized,
-// normalize it.
-//
-// A2. Set X = abs(input).
-//
-// A3. Compute ILOG.
-// ILOG is the log base 10 of the input value. It is
-// approximated by adding e + 0.f when the original
-// value is viewed as 2^^e * 1.f in extended precision.
-// This value is stored in d6.
-//
-// A4. Clr INEX bit.
-// The operation in A3 above may have set INEX2.
-//
-// A5. Set ICTR = 0;
-// ICTR is a flag used in A13. It must be set before the
-// loop entry A6.
-//
-// A6. Calculate LEN.
-// LEN is the number of digits to be displayed. The
-// k-factor can dictate either the total number of digits,
-// if it is a positive number, or the number of digits
-// after the decimal point which are to be included as
-// significant. See the 68882 manual for examples.
-// If LEN is computed to be greater than 17, set OPERR in
-// USER_FPSR. LEN is stored in d4.
-//
-// A7. Calculate SCALE.
-// SCALE is equal to 10^ISCALE, where ISCALE is the number
-// of decimal places needed to insure LEN integer digits
-// in the output before conversion to bcd. LAMBDA is the
-// sign of ISCALE, used in A9. Fp1 contains
-// 10^^(abs(ISCALE)) using a rounding mode which is a
-// function of the original rounding mode and the signs
-// of ISCALE and X. A table is given in the code.
-//
-// A8. Clr INEX; Force RZ.
-// The operation in A3 above may have set INEX2.
-// RZ mode is forced for the scaling operation to insure
-// only one rounding error. The grs bits are collected in
-// the INEX flag for use in A10.
-//
-// A9. Scale X -> Y.
-// The mantissa is scaled to the desired number of
-// significant digits. The excess digits are collected
-// in INEX2.
-//
-// A10. Or in INEX.
-// If INEX is set, round error occurred. This is
-// compensated for by 'or-ing' in the INEX2 flag to
-// the lsb of Y.
-//
-// A11. Restore original FPCR; set size ext.
-// Perform FINT operation in the user's rounding mode.
-// Keep the size to extended.
-//
-// A12. Calculate YINT = FINT(Y) according to user's rounding
-// mode. The FPSP routine sintd0 is used. The output
-// is in fp0.
-//
-// A13. Check for LEN digits.
-// If the int operation results in more than LEN digits,
-// or less than LEN -1 digits, adjust ILOG and repeat from
-// A6. This test occurs only on the first pass. If the
-// result is exactly 10^LEN, decrement ILOG and divide
-// the mantissa by 10.
-//
-// A14. Convert the mantissa to bcd.
-// The binstr routine is used to convert the LEN digit
-// mantissa to bcd in memory. The input to binstr is
-// to be a fraction; i.e. (mantissa)/10^LEN and adjusted
-// such that the decimal point is to the left of bit 63.
-// The bcd digits are stored in the correct position in
-// the final string area in memory.
-//
-// A15. Convert the exponent to bcd.
-// As in A14 above, the exp is converted to bcd and the
-// digits are stored in the final string.
-// Test the length of the final exponent string. If the
-// length is 4, set operr.
-//
-// A16. Write sign bits to final string.
-//
-// Implementation Notes:
-//
-// The registers are used as follows:
-//
-// d0: scratch; LEN input to binstr
-// d1: scratch
-// d2: upper 32-bits of mantissa for binstr
-// d3: scratch;lower 32-bits of mantissa for binstr
-// d4: LEN
-// d5: LAMBDA/ICTR
-// d6: ILOG
-// d7: k-factor
-// a0: ptr for original operand/final result
-// a1: scratch pointer
-// a2: pointer to FP_X; abs(original value) in ext
-// fp0: scratch
-// fp1: scratch
-// fp2: scratch
-// F_SCR1:
-// F_SCR2:
-// L_SCR1:
-// L_SCR2:
-
-// Copyright (C) Motorola, Inc. 1990
-// All Rights Reserved
-//
-// THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA
-// The copyright notice above does not evidence any
-// actual or intended publication of such source code.
-
-//BINDEC idnt 2,1 | Motorola 040 Floating Point Software Package
-
-#include "fpsp.defs"
-
- |section 8
-
-// Constants in extended precision
-LOG2: .long 0x3FFD0000,0x9A209A84,0xFBCFF798,0x00000000
-LOG2UP1: .long 0x3FFD0000,0x9A209A84,0xFBCFF799,0x00000000
-
-// Constants in single precision
-FONE: .long 0x3F800000,0x00000000,0x00000000,0x00000000
-FTWO: .long 0x40000000,0x00000000,0x00000000,0x00000000
-FTEN: .long 0x41200000,0x00000000,0x00000000,0x00000000
-F4933: .long 0x459A2800,0x00000000,0x00000000,0x00000000
-
-RBDTBL: .byte 0,0,0,0
- .byte 3,3,2,2
- .byte 3,2,2,3
- .byte 2,3,3,2
-
- |xref binstr
- |xref sintdo
- |xref ptenrn,ptenrm,ptenrp
-
- .global bindec
- .global sc_mul
-bindec:
- moveml %d2-%d7/%a2,-(%a7)
- fmovemx %fp0-%fp2,-(%a7)
-
-// A1. Set RM and size ext. Set SIGMA = sign input;
-// The k-factor is saved for use in d7. Clear BINDEC_FLG for
-// separating normalized/denormalized input. If the input
-// is a denormalized number, set the BINDEC_FLG memory word
-// to signal denorm. If the input is unnormalized, normalize
-// the input and test for denormalized result.
-//
- fmovel #rm_mode,%FPCR //set RM and ext
- movel (%a0),L_SCR2(%a6) //save exponent for sign check
- movel %d0,%d7 //move k-factor to d7
- clrb BINDEC_FLG(%a6) //clr norm/denorm flag
- movew STAG(%a6),%d0 //get stag
- andiw #0xe000,%d0 //isolate stag bits
- beq A2_str //if zero, input is norm
-//
-// Normalize the denorm
-//
-un_de_norm:
- movew (%a0),%d0
- andiw #0x7fff,%d0 //strip sign of normalized exp
- movel 4(%a0),%d1
- movel 8(%a0),%d2
-norm_loop:
- subw #1,%d0
- lsll #1,%d2
- roxll #1,%d1
- tstl %d1
- bges norm_loop
-//
-// Test if the normalized input is denormalized
-//
- tstw %d0
- bgts pos_exp //if greater than zero, it is a norm
- st BINDEC_FLG(%a6) //set flag for denorm
-pos_exp:
- andiw #0x7fff,%d0 //strip sign of normalized exp
- movew %d0,(%a0)
- movel %d1,4(%a0)
- movel %d2,8(%a0)
-
-// A2. Set X = abs(input).
-//
-A2_str:
- movel (%a0),FP_SCR2(%a6) // move input to work space
- movel 4(%a0),FP_SCR2+4(%a6) // move input to work space
- movel 8(%a0),FP_SCR2+8(%a6) // move input to work space
- andil #0x7fffffff,FP_SCR2(%a6) //create abs(X)
-
-// A3. Compute ILOG.
-// ILOG is the log base 10 of the input value. It is approx-
-// imated by adding e + 0.f when the original value is viewed
-// as 2^^e * 1.f in extended precision. This value is stored
-// in d6.
-//
-// Register usage:
-// Input/Output
-// d0: k-factor/exponent
-// d2: x/x
-// d3: x/x
-// d4: x/x
-// d5: x/x
-// d6: x/ILOG
-// d7: k-factor/Unchanged
-// a0: ptr for original operand/final result
-// a1: x/x
-// a2: x/x
-// fp0: x/float(ILOG)
-// fp1: x/x
-// fp2: x/x
-// F_SCR1:x/x
-// F_SCR2:Abs(X)/Abs(X) with $3fff exponent
-// L_SCR1:x/x
-// L_SCR2:first word of X packed/Unchanged
-
- tstb BINDEC_FLG(%a6) //check for denorm
- beqs A3_cont //if clr, continue with norm
- movel #-4933,%d6 //force ILOG = -4933
- bras A4_str
-A3_cont:
- movew FP_SCR2(%a6),%d0 //move exp to d0
- movew #0x3fff,FP_SCR2(%a6) //replace exponent with 0x3fff
- fmovex FP_SCR2(%a6),%fp0 //now fp0 has 1.f
- subw #0x3fff,%d0 //strip off bias
- faddw %d0,%fp0 //add in exp
- fsubs FONE,%fp0 //subtract off 1.0
- fbge pos_res //if pos, branch
- fmulx LOG2UP1,%fp0 //if neg, mul by LOG2UP1
- fmovel %fp0,%d6 //put ILOG in d6 as a lword
- bras A4_str //go move out ILOG
-pos_res:
- fmulx LOG2,%fp0 //if pos, mul by LOG2
- fmovel %fp0,%d6 //put ILOG in d6 as a lword
-
-
-// A4. Clr INEX bit.
-// The operation in A3 above may have set INEX2.
-
-A4_str:
- fmovel #0,%FPSR //zero all of fpsr - nothing needed
-
-
-// A5. Set ICTR = 0;
-// ICTR is a flag used in A13. It must be set before the
-// loop entry A6. The lower word of d5 is used for ICTR.
-
- clrw %d5 //clear ICTR
-
-
-// A6. Calculate LEN.
-// LEN is the number of digits to be displayed. The k-factor
-// can dictate either the total number of digits, if it is
-// a positive number, or the number of digits after the
-// original decimal point which are to be included as
-// significant. See the 68882 manual for examples.
-// If LEN is computed to be greater than 17, set OPERR in
-// USER_FPSR. LEN is stored in d4.
-//
-// Register usage:
-// Input/Output
-// d0: exponent/Unchanged
-// d2: x/x/scratch
-// d3: x/x
-// d4: exc picture/LEN
-// d5: ICTR/Unchanged
-// d6: ILOG/Unchanged
-// d7: k-factor/Unchanged
-// a0: ptr for original operand/final result
-// a1: x/x
-// a2: x/x
-// fp0: float(ILOG)/Unchanged
-// fp1: x/x
-// fp2: x/x
-// F_SCR1:x/x
-// F_SCR2:Abs(X) with $3fff exponent/Unchanged
-// L_SCR1:x/x
-// L_SCR2:first word of X packed/Unchanged
-
-A6_str:
- tstl %d7 //branch on sign of k
- bles k_neg //if k <= 0, LEN = ILOG + 1 - k
- movel %d7,%d4 //if k > 0, LEN = k
- bras len_ck //skip to LEN check
-k_neg:
- movel %d6,%d4 //first load ILOG to d4
- subl %d7,%d4 //subtract off k
- addql #1,%d4 //add in the 1
-len_ck:
- tstl %d4 //LEN check: branch on sign of LEN
- bles LEN_ng //if neg, set LEN = 1
- cmpl #17,%d4 //test if LEN > 17
- bles A7_str //if not, forget it
- movel #17,%d4 //set max LEN = 17
- tstl %d7 //if negative, never set OPERR
- bles A7_str //if positive, continue
- orl #opaop_mask,USER_FPSR(%a6) //set OPERR & AIOP in USER_FPSR
- bras A7_str //finished here
-LEN_ng:
- moveql #1,%d4 //min LEN is 1
-
-
-// A7. Calculate SCALE.
-// SCALE is equal to 10^ISCALE, where ISCALE is the number
-// of decimal places needed to insure LEN integer digits
-// in the output before conversion to bcd. LAMBDA is the sign
-// of ISCALE, used in A9. Fp1 contains 10^^(abs(ISCALE)) using
-// the rounding mode as given in the following table (see
-// Coonen, p. 7.23 as ref.; however, the SCALE variable is
-// of opposite sign in bindec.sa from Coonen).
-//
-// Initial USE
-// FPCR[6:5] LAMBDA SIGN(X) FPCR[6:5]
-// ----------------------------------------------
-// RN 00 0 0 00/0 RN
-// RN 00 0 1 00/0 RN
-// RN 00 1 0 00/0 RN
-// RN 00 1 1 00/0 RN
-// RZ 01 0 0 11/3 RP
-// RZ 01 0 1 11/3 RP
-// RZ 01 1 0 10/2 RM
-// RZ 01 1 1 10/2 RM
-// RM 10 0 0 11/3 RP
-// RM 10 0 1 10/2 RM
-// RM 10 1 0 10/2 RM
-// RM 10 1 1 11/3 RP
-// RP 11 0 0 10/2 RM
-// RP 11 0 1 11/3 RP
-// RP 11 1 0 11/3 RP
-// RP 11 1 1 10/2 RM
-//
-// Register usage:
-// Input/Output
-// d0: exponent/scratch - final is 0
-// d2: x/0 or 24 for A9
-// d3: x/scratch - offset ptr into PTENRM array
-// d4: LEN/Unchanged
-// d5: 0/ICTR:LAMBDA
-// d6: ILOG/ILOG or k if ((k<=0)&(ILOG<k))
-// d7: k-factor/Unchanged
-// a0: ptr for original operand/final result
-// a1: x/ptr to PTENRM array
-// a2: x/x
-// fp0: float(ILOG)/Unchanged
-// fp1: x/10^ISCALE
-// fp2: x/x
-// F_SCR1:x/x
-// F_SCR2:Abs(X) with $3fff exponent/Unchanged
-// L_SCR1:x/x
-// L_SCR2:first word of X packed/Unchanged
-
-A7_str:
- tstl %d7 //test sign of k
- bgts k_pos //if pos and > 0, skip this
- cmpl %d6,%d7 //test k - ILOG
- blts k_pos //if ILOG >= k, skip this
- movel %d7,%d6 //if ((k<0) & (ILOG < k)) ILOG = k
-k_pos:
- movel %d6,%d0 //calc ILOG + 1 - LEN in d0
- addql #1,%d0 //add the 1
- subl %d4,%d0 //sub off LEN
- swap %d5 //use upper word of d5 for LAMBDA
- clrw %d5 //set it zero initially
- clrw %d2 //set up d2 for very small case
- tstl %d0 //test sign of ISCALE
- bges iscale //if pos, skip next inst
- addqw #1,%d5 //if neg, set LAMBDA true
- cmpl #0xffffecd4,%d0 //test iscale <= -4908
- bgts no_inf //if false, skip rest
- addil #24,%d0 //add in 24 to iscale
- movel #24,%d2 //put 24 in d2 for A9
-no_inf:
- negl %d0 //and take abs of ISCALE
-iscale:
- fmoves FONE,%fp1 //init fp1 to 1
- bfextu USER_FPCR(%a6){#26:#2},%d1 //get initial rmode bits
- lslw #1,%d1 //put them in bits 2:1
- addw %d5,%d1 //add in LAMBDA
- lslw #1,%d1 //put them in bits 3:1
- tstl L_SCR2(%a6) //test sign of original x
- bges x_pos //if pos, don't set bit 0
- addql #1,%d1 //if neg, set bit 0
-x_pos:
- leal RBDTBL,%a2 //load rbdtbl base
- moveb (%a2,%d1),%d3 //load d3 with new rmode
- lsll #4,%d3 //put bits in proper position
- fmovel %d3,%fpcr //load bits into fpu
- lsrl #4,%d3 //put bits in proper position
- tstb %d3 //decode new rmode for pten table
- bnes not_rn //if zero, it is RN
- leal PTENRN,%a1 //load a1 with RN table base
- bras rmode //exit decode
-not_rn:
- lsrb #1,%d3 //get lsb in carry
- bccs not_rp //if carry clear, it is RM
- leal PTENRP,%a1 //load a1 with RP table base
- bras rmode //exit decode
-not_rp:
- leal PTENRM,%a1 //load a1 with RM table base
-rmode:
- clrl %d3 //clr table index
-e_loop:
- lsrl #1,%d0 //shift next bit into carry
- bccs e_next //if zero, skip the mul
- fmulx (%a1,%d3),%fp1 //mul by 10**(d3_bit_no)
-e_next:
- addl #12,%d3 //inc d3 to next pwrten table entry
- tstl %d0 //test if ISCALE is zero
- bnes e_loop //if not, loop
-
-
-// A8. Clr INEX; Force RZ.
-// The operation in A3 above may have set INEX2.
-// RZ mode is forced for the scaling operation to insure
-// only one rounding error. The grs bits are collected in
-// the INEX flag for use in A10.
-//
-// Register usage:
-// Input/Output
-
- fmovel #0,%FPSR //clr INEX
- fmovel #rz_mode,%FPCR //set RZ rounding mode
-
-
-// A9. Scale X -> Y.
-// The mantissa is scaled to the desired number of significant
-// digits. The excess digits are collected in INEX2. If mul,
-// Check d2 for excess 10 exponential value. If not zero,
-// the iscale value would have caused the pwrten calculation
-// to overflow. Only a negative iscale can cause this, so
-// multiply by 10^(d2), which is now only allowed to be 24,
-// with a multiply by 10^8 and 10^16, which is exact since
-// 10^24 is exact. If the input was denormalized, we must
-// create a busy stack frame with the mul command and the
-// two operands, and allow the fpu to complete the multiply.
-//
-// Register usage:
-// Input/Output
-// d0: FPCR with RZ mode/Unchanged
-// d2: 0 or 24/unchanged
-// d3: x/x
-// d4: LEN/Unchanged
-// d5: ICTR:LAMBDA
-// d6: ILOG/Unchanged
-// d7: k-factor/Unchanged
-// a0: ptr for original operand/final result
-// a1: ptr to PTENRM array/Unchanged
-// a2: x/x
-// fp0: float(ILOG)/X adjusted for SCALE (Y)
-// fp1: 10^ISCALE/Unchanged
-// fp2: x/x
-// F_SCR1:x/x
-// F_SCR2:Abs(X) with $3fff exponent/Unchanged
-// L_SCR1:x/x
-// L_SCR2:first word of X packed/Unchanged
-
-A9_str:
- fmovex (%a0),%fp0 //load X from memory
- fabsx %fp0 //use abs(X)
- tstw %d5 //LAMBDA is in lower word of d5
- bne sc_mul //if neg (LAMBDA = 1), scale by mul
- fdivx %fp1,%fp0 //calculate X / SCALE -> Y to fp0
- bras A10_st //branch to A10
-
-sc_mul:
- tstb BINDEC_FLG(%a6) //check for denorm
- beqs A9_norm //if norm, continue with mul
- fmovemx %fp1-%fp1,-(%a7) //load ETEMP with 10^ISCALE
- movel 8(%a0),-(%a7) //load FPTEMP with input arg
- movel 4(%a0),-(%a7)
- movel (%a0),-(%a7)
- movel #18,%d3 //load count for busy stack
-A9_loop:
- clrl -(%a7) //clear lword on stack
- dbf %d3,A9_loop
- moveb VER_TMP(%a6),(%a7) //write current version number
- moveb #BUSY_SIZE-4,1(%a7) //write current busy size
- moveb #0x10,0x44(%a7) //set fcefpte[15] bit
- movew #0x0023,0x40(%a7) //load cmdreg1b with mul command
- moveb #0xfe,0x8(%a7) //load all 1s to cu savepc
- frestore (%a7)+ //restore frame to fpu for completion
- fmulx 36(%a1),%fp0 //multiply fp0 by 10^8
- fmulx 48(%a1),%fp0 //multiply fp0 by 10^16
- bras A10_st
-A9_norm:
- tstw %d2 //test for small exp case
- beqs A9_con //if zero, continue as normal
- fmulx 36(%a1),%fp0 //multiply fp0 by 10^8
- fmulx 48(%a1),%fp0 //multiply fp0 by 10^16
-A9_con:
- fmulx %fp1,%fp0 //calculate X * SCALE -> Y to fp0
-
-
-// A10. Or in INEX.
-// If INEX is set, round error occurred. This is compensated
-// for by 'or-ing' in the INEX2 flag to the lsb of Y.
-//
-// Register usage:
-// Input/Output
-// d0: FPCR with RZ mode/FPSR with INEX2 isolated
-// d2: x/x
-// d3: x/x
-// d4: LEN/Unchanged
-// d5: ICTR:LAMBDA
-// d6: ILOG/Unchanged
-// d7: k-factor/Unchanged
-// a0: ptr for original operand/final result
-// a1: ptr to PTENxx array/Unchanged
-// a2: x/ptr to FP_SCR2(a6)
-// fp0: Y/Y with lsb adjusted
-// fp1: 10^ISCALE/Unchanged
-// fp2: x/x
-
-A10_st:
- fmovel %FPSR,%d0 //get FPSR
- fmovex %fp0,FP_SCR2(%a6) //move Y to memory
- leal FP_SCR2(%a6),%a2 //load a2 with ptr to FP_SCR2
- btstl #9,%d0 //check if INEX2 set
- beqs A11_st //if clear, skip rest
- oril #1,8(%a2) //or in 1 to lsb of mantissa
- fmovex FP_SCR2(%a6),%fp0 //write adjusted Y back to fpu
-
-
-// A11. Restore original FPCR; set size ext.
-// Perform FINT operation in the user's rounding mode. Keep
-// the size to extended. The sintdo entry point in the sint
-// routine expects the FPCR value to be in USER_FPCR for
-// mode and precision. The original FPCR is saved in L_SCR1.
-
-A11_st:
- movel USER_FPCR(%a6),L_SCR1(%a6) //save it for later
- andil #0x00000030,USER_FPCR(%a6) //set size to ext,
-// ;block exceptions
-
-
-// A12. Calculate YINT = FINT(Y) according to user's rounding mode.
-// The FPSP routine sintd0 is used. The output is in fp0.
-//
-// Register usage:
-// Input/Output
-// d0: FPSR with AINEX cleared/FPCR with size set to ext
-// d2: x/x/scratch
-// d3: x/x
-// d4: LEN/Unchanged
-// d5: ICTR:LAMBDA/Unchanged
-// d6: ILOG/Unchanged
-// d7: k-factor/Unchanged
-// a0: ptr for original operand/src ptr for sintdo
-// a1: ptr to PTENxx array/Unchanged
-// a2: ptr to FP_SCR2(a6)/Unchanged
-// a6: temp pointer to FP_SCR2(a6) - orig value saved and restored
-// fp0: Y/YINT
-// fp1: 10^ISCALE/Unchanged
-// fp2: x/x
-// F_SCR1:x/x
-// F_SCR2:Y adjusted for inex/Y with original exponent
-// L_SCR1:x/original USER_FPCR
-// L_SCR2:first word of X packed/Unchanged
-
-A12_st:
- moveml %d0-%d1/%a0-%a1,-(%a7) //save regs used by sintd0
- movel L_SCR1(%a6),-(%a7)
- movel L_SCR2(%a6),-(%a7)
- leal FP_SCR2(%a6),%a0 //a0 is ptr to F_SCR2(a6)
- fmovex %fp0,(%a0) //move Y to memory at FP_SCR2(a6)
- tstl L_SCR2(%a6) //test sign of original operand
- bges do_fint //if pos, use Y
- orl #0x80000000,(%a0) //if neg, use -Y
-do_fint:
- movel USER_FPSR(%a6),-(%a7)
- bsr sintdo //sint routine returns int in fp0
- moveb (%a7),USER_FPSR(%a6)
- addl #4,%a7
- movel (%a7)+,L_SCR2(%a6)
- movel (%a7)+,L_SCR1(%a6)
- moveml (%a7)+,%d0-%d1/%a0-%a1 //restore regs used by sint
- movel L_SCR2(%a6),FP_SCR2(%a6) //restore original exponent
- movel L_SCR1(%a6),USER_FPCR(%a6) //restore user's FPCR
-
-
-// A13. Check for LEN digits.
-// If the int operation results in more than LEN digits,
-// or less than LEN -1 digits, adjust ILOG and repeat from
-// A6. This test occurs only on the first pass. If the
-// result is exactly 10^LEN, decrement ILOG and divide
-// the mantissa by 10. The calculation of 10^LEN cannot
-// be inexact, since all powers of ten upto 10^27 are exact
-// in extended precision, so the use of a previous power-of-ten
-// table will introduce no error.
-//
-//
-// Register usage:
-// Input/Output
-// d0: FPCR with size set to ext/scratch final = 0
-// d2: x/x
-// d3: x/scratch final = x
-// d4: LEN/LEN adjusted
-// d5: ICTR:LAMBDA/LAMBDA:ICTR
-// d6: ILOG/ILOG adjusted
-// d7: k-factor/Unchanged
-// a0: pointer into memory for packed bcd string formation
-// a1: ptr to PTENxx array/Unchanged
-// a2: ptr to FP_SCR2(a6)/Unchanged
-// fp0: int portion of Y/abs(YINT) adjusted
-// fp1: 10^ISCALE/Unchanged
-// fp2: x/10^LEN
-// F_SCR1:x/x
-// F_SCR2:Y with original exponent/Unchanged
-// L_SCR1:original USER_FPCR/Unchanged
-// L_SCR2:first word of X packed/Unchanged
-
-A13_st:
- swap %d5 //put ICTR in lower word of d5
- tstw %d5 //check if ICTR = 0
- bne not_zr //if non-zero, go to second test
-//
-// Compute 10^(LEN-1)
-//
- fmoves FONE,%fp2 //init fp2 to 1.0
- movel %d4,%d0 //put LEN in d0
- subql #1,%d0 //d0 = LEN -1
- clrl %d3 //clr table index
-l_loop:
- lsrl #1,%d0 //shift next bit into carry
- bccs l_next //if zero, skip the mul
- fmulx (%a1,%d3),%fp2 //mul by 10**(d3_bit_no)
-l_next:
- addl #12,%d3 //inc d3 to next pwrten table entry
- tstl %d0 //test if LEN is zero
- bnes l_loop //if not, loop
-//
-// 10^LEN-1 is computed for this test and A14. If the input was
-// denormalized, check only the case in which YINT > 10^LEN.
-//
- tstb BINDEC_FLG(%a6) //check if input was norm
- beqs A13_con //if norm, continue with checking
- fabsx %fp0 //take abs of YINT
- bra test_2
-//
-// Compare abs(YINT) to 10^(LEN-1) and 10^LEN
-//
-A13_con:
- fabsx %fp0 //take abs of YINT
- fcmpx %fp2,%fp0 //compare abs(YINT) with 10^(LEN-1)
- fbge test_2 //if greater, do next test
- subql #1,%d6 //subtract 1 from ILOG
- movew #1,%d5 //set ICTR
- fmovel #rm_mode,%FPCR //set rmode to RM
- fmuls FTEN,%fp2 //compute 10^LEN
- bra A6_str //return to A6 and recompute YINT
-test_2:
- fmuls FTEN,%fp2 //compute 10^LEN
- fcmpx %fp2,%fp0 //compare abs(YINT) with 10^LEN
- fblt A14_st //if less, all is ok, go to A14
- fbgt fix_ex //if greater, fix and redo
- fdivs FTEN,%fp0 //if equal, divide by 10
- addql #1,%d6 // and inc ILOG
- bras A14_st // and continue elsewhere
-fix_ex:
- addql #1,%d6 //increment ILOG by 1
- movew #1,%d5 //set ICTR
- fmovel #rm_mode,%FPCR //set rmode to RM
- bra A6_str //return to A6 and recompute YINT
-//
-// Since ICTR <> 0, we have already been through one adjustment,
-// and shouldn't have another; this is to check if abs(YINT) = 10^LEN
-// 10^LEN is again computed using whatever table is in a1 since the
-// value calculated cannot be inexact.
-//
-not_zr:
- fmoves FONE,%fp2 //init fp2 to 1.0
- movel %d4,%d0 //put LEN in d0
- clrl %d3 //clr table index
-z_loop:
- lsrl #1,%d0 //shift next bit into carry
- bccs z_next //if zero, skip the mul
- fmulx (%a1,%d3),%fp2 //mul by 10**(d3_bit_no)
-z_next:
- addl #12,%d3 //inc d3 to next pwrten table entry
- tstl %d0 //test if LEN is zero
- bnes z_loop //if not, loop
- fabsx %fp0 //get abs(YINT)
- fcmpx %fp2,%fp0 //check if abs(YINT) = 10^LEN
- fbne A14_st //if not, skip this
- fdivs FTEN,%fp0 //divide abs(YINT) by 10
- addql #1,%d6 //and inc ILOG by 1
- addql #1,%d4 // and inc LEN
- fmuls FTEN,%fp2 // if LEN++, the get 10^^LEN
-
-
-// A14. Convert the mantissa to bcd.
-// The binstr routine is used to convert the LEN digit
-// mantissa to bcd in memory. The input to binstr is
-// to be a fraction; i.e. (mantissa)/10^LEN and adjusted
-// such that the decimal point is to the left of bit 63.
-// The bcd digits are stored in the correct position in
-// the final string area in memory.
-//
-//
-// Register usage:
-// Input/Output
-// d0: x/LEN call to binstr - final is 0
-// d1: x/0
-// d2: x/ms 32-bits of mant of abs(YINT)
-// d3: x/ls 32-bits of mant of abs(YINT)
-// d4: LEN/Unchanged
-// d5: ICTR:LAMBDA/LAMBDA:ICTR
-// d6: ILOG
-// d7: k-factor/Unchanged
-// a0: pointer into memory for packed bcd string formation
-// /ptr to first mantissa byte in result string
-// a1: ptr to PTENxx array/Unchanged
-// a2: ptr to FP_SCR2(a6)/Unchanged
-// fp0: int portion of Y/abs(YINT) adjusted
-// fp1: 10^ISCALE/Unchanged
-// fp2: 10^LEN/Unchanged
-// F_SCR1:x/Work area for final result
-// F_SCR2:Y with original exponent/Unchanged
-// L_SCR1:original USER_FPCR/Unchanged
-// L_SCR2:first word of X packed/Unchanged
-
-A14_st:
- fmovel #rz_mode,%FPCR //force rz for conversion
- fdivx %fp2,%fp0 //divide abs(YINT) by 10^LEN
- leal FP_SCR1(%a6),%a0
- fmovex %fp0,(%a0) //move abs(YINT)/10^LEN to memory
- movel 4(%a0),%d2 //move 2nd word of FP_RES to d2
- movel 8(%a0),%d3 //move 3rd word of FP_RES to d3
- clrl 4(%a0) //zero word 2 of FP_RES
- clrl 8(%a0) //zero word 3 of FP_RES
- movel (%a0),%d0 //move exponent to d0
- swap %d0 //put exponent in lower word
- beqs no_sft //if zero, don't shift
- subil #0x3ffd,%d0 //sub bias less 2 to make fract
- tstl %d0 //check if > 1
- bgts no_sft //if so, don't shift
- negl %d0 //make exp positive
-m_loop:
- lsrl #1,%d2 //shift d2:d3 right, add 0s
- roxrl #1,%d3 //the number of places
- dbf %d0,m_loop //given in d0
-no_sft:
- tstl %d2 //check for mantissa of zero
- bnes no_zr //if not, go on
- tstl %d3 //continue zero check
- beqs zer_m //if zero, go directly to binstr
-no_zr:
- clrl %d1 //put zero in d1 for addx
- addil #0x00000080,%d3 //inc at bit 7
- addxl %d1,%d2 //continue inc
- andil #0xffffff80,%d3 //strip off lsb not used by 882
-zer_m:
- movel %d4,%d0 //put LEN in d0 for binstr call
- addql #3,%a0 //a0 points to M16 byte in result
- bsr binstr //call binstr to convert mant
-
-
-// A15. Convert the exponent to bcd.
-// As in A14 above, the exp is converted to bcd and the
-// digits are stored in the final string.
-//
-// Digits are stored in L_SCR1(a6) on return from BINDEC as:
-//
-// 32 16 15 0
-// -----------------------------------------
-// | 0 | e3 | e2 | e1 | e4 | X | X | X |
-// -----------------------------------------
-//
-// And are moved into their proper places in FP_SCR1. If digit e4
-// is non-zero, OPERR is signaled. In all cases, all 4 digits are
-// written as specified in the 881/882 manual for packed decimal.
-//
-// Register usage:
-// Input/Output
-// d0: x/LEN call to binstr - final is 0
-// d1: x/scratch (0);shift count for final exponent packing
-// d2: x/ms 32-bits of exp fraction/scratch
-// d3: x/ls 32-bits of exp fraction
-// d4: LEN/Unchanged
-// d5: ICTR:LAMBDA/LAMBDA:ICTR
-// d6: ILOG
-// d7: k-factor/Unchanged
-// a0: ptr to result string/ptr to L_SCR1(a6)
-// a1: ptr to PTENxx array/Unchanged
-// a2: ptr to FP_SCR2(a6)/Unchanged
-// fp0: abs(YINT) adjusted/float(ILOG)
-// fp1: 10^ISCALE/Unchanged
-// fp2: 10^LEN/Unchanged
-// F_SCR1:Work area for final result/BCD result
-// F_SCR2:Y with original exponent/ILOG/10^4
-// L_SCR1:original USER_FPCR/Exponent digits on return from binstr
-// L_SCR2:first word of X packed/Unchanged
-
-A15_st:
- tstb BINDEC_FLG(%a6) //check for denorm
- beqs not_denorm
- ftstx %fp0 //test for zero
- fbeq den_zero //if zero, use k-factor or 4933
- fmovel %d6,%fp0 //float ILOG
- fabsx %fp0 //get abs of ILOG
- bras convrt
-den_zero:
- tstl %d7 //check sign of the k-factor
- blts use_ilog //if negative, use ILOG
- fmoves F4933,%fp0 //force exponent to 4933
- bras convrt //do it
-use_ilog:
- fmovel %d6,%fp0 //float ILOG
- fabsx %fp0 //get abs of ILOG
- bras convrt
-not_denorm:
- ftstx %fp0 //test for zero
- fbne not_zero //if zero, force exponent
- fmoves FONE,%fp0 //force exponent to 1
- bras convrt //do it
-not_zero:
- fmovel %d6,%fp0 //float ILOG
- fabsx %fp0 //get abs of ILOG
-convrt:
- fdivx 24(%a1),%fp0 //compute ILOG/10^4
- fmovex %fp0,FP_SCR2(%a6) //store fp0 in memory
- movel 4(%a2),%d2 //move word 2 to d2
- movel 8(%a2),%d3 //move word 3 to d3
- movew (%a2),%d0 //move exp to d0
- beqs x_loop_fin //if zero, skip the shift
- subiw #0x3ffd,%d0 //subtract off bias
- negw %d0 //make exp positive
-x_loop:
- lsrl #1,%d2 //shift d2:d3 right
- roxrl #1,%d3 //the number of places
- dbf %d0,x_loop //given in d0
-x_loop_fin:
- clrl %d1 //put zero in d1 for addx
- addil #0x00000080,%d3 //inc at bit 6
- addxl %d1,%d2 //continue inc
- andil #0xffffff80,%d3 //strip off lsb not used by 882
- movel #4,%d0 //put 4 in d0 for binstr call
- leal L_SCR1(%a6),%a0 //a0 is ptr to L_SCR1 for exp digits
- bsr binstr //call binstr to convert exp
- movel L_SCR1(%a6),%d0 //load L_SCR1 lword to d0
- movel #12,%d1 //use d1 for shift count
- lsrl %d1,%d0 //shift d0 right by 12
- bfins %d0,FP_SCR1(%a6){#4:#12} //put e3:e2:e1 in FP_SCR1
- lsrl %d1,%d0 //shift d0 right by 12
- bfins %d0,FP_SCR1(%a6){#16:#4} //put e4 in FP_SCR1
- tstb %d0 //check if e4 is zero
- beqs A16_st //if zero, skip rest
- orl #opaop_mask,USER_FPSR(%a6) //set OPERR & AIOP in USER_FPSR
-
-
-// A16. Write sign bits to final string.
-// Sigma is bit 31 of initial value; RHO is bit 31 of d6 (ILOG).
-//
-// Register usage:
-// Input/Output
-// d0: x/scratch - final is x
-// d2: x/x
-// d3: x/x
-// d4: LEN/Unchanged
-// d5: ICTR:LAMBDA/LAMBDA:ICTR
-// d6: ILOG/ILOG adjusted
-// d7: k-factor/Unchanged
-// a0: ptr to L_SCR1(a6)/Unchanged
-// a1: ptr to PTENxx array/Unchanged
-// a2: ptr to FP_SCR2(a6)/Unchanged
-// fp0: float(ILOG)/Unchanged
-// fp1: 10^ISCALE/Unchanged
-// fp2: 10^LEN/Unchanged
-// F_SCR1:BCD result with correct signs
-// F_SCR2:ILOG/10^4
-// L_SCR1:Exponent digits on return from binstr
-// L_SCR2:first word of X packed/Unchanged
-
-A16_st:
- clrl %d0 //clr d0 for collection of signs
- andib #0x0f,FP_SCR1(%a6) //clear first nibble of FP_SCR1
- tstl L_SCR2(%a6) //check sign of original mantissa
- bges mant_p //if pos, don't set SM
- moveql #2,%d0 //move 2 in to d0 for SM
-mant_p:
- tstl %d6 //check sign of ILOG
- bges wr_sgn //if pos, don't set SE
- addql #1,%d0 //set bit 0 in d0 for SE
-wr_sgn:
- bfins %d0,FP_SCR1(%a6){#0:#2} //insert SM and SE into FP_SCR1
-
-// Clean up and restore all registers used.
-
- fmovel #0,%FPSR //clear possible inex2/ainex bits
- fmovemx (%a7)+,%fp0-%fp2
- moveml (%a7)+,%d2-%d7/%a2
- rts
-
- |end