summaryrefslogtreecommitdiffstats
path: root/c/src/exec/score/cpu/unix
diff options
context:
space:
mode:
Diffstat (limited to 'c/src/exec/score/cpu/unix')
-rw-r--r--c/src/exec/score/cpu/unix/cpu.c529
-rw-r--r--c/src/exec/score/cpu/unix/cpu.h929
-rw-r--r--c/src/exec/score/cpu/unix/unix.h90
3 files changed, 0 insertions, 1548 deletions
diff --git a/c/src/exec/score/cpu/unix/cpu.c b/c/src/exec/score/cpu/unix/cpu.c
deleted file mode 100644
index ed94953d58..0000000000
--- a/c/src/exec/score/cpu/unix/cpu.c
+++ /dev/null
@@ -1,529 +0,0 @@
-/*
- * HP PA-RISC CPU Dependent Source
- *
- *
- * To anyone who acknowledges that this file is provided "AS IS"
- * without any express or implied warranty:
- * permission to use, copy, modify, and distribute this file
- * for any purpose is hereby granted without fee, provided that
- * the above copyright notice and this notice appears in all
- * copies, and that the name of Division Incorporated not be
- * used in advertising or publicity pertaining to distribution
- * of the software without specific, written prior permission.
- * Division Incorporated makes no representations about the
- * suitability of this software for any purpose.
- *
- * $Id$
- */
-
-#include <rtems/system.h>
-#include <rtems/fatal.h>
-#include <rtems/isr.h>
-#include <rtems/wkspace.h>
-/*
- * In order to get the types and prototypes used in this file under
- * Solaris 2.3, it is necessary to pull the following magic.
- */
-
-#if defined(solaris)
-#warning "Ignore the undefining __STDC__ warning"
-#undef __STDC__
-#define __STDC__ 0
-#undef _POSIX_C_SOURCE
-#endif
-
-#include <stdio.h>
-#include <stdlib.h>
-#include <unistd.h>
-#include <string.h>
-#include <signal.h>
-#include <time.h>
-
-extern void set_vector(proc_ptr, int, int);
-extern void _Thread_Dispatch(void);
-
-extern unsigned32 _Thread_Dispatch_disable_level;
-extern unsigned32 _SYSTEM_ID;
-extern boolean _Context_Switch_necessary;
-
-
-rtems_status_code signal_initialize(void);
-void Stray_signal(int);
-void signal_enable(unsigned32);
-void signal_disable(unsigned32);
-void interrupt_handler();
-
-sigset_t UNIX_SIGNAL_MASK;
-jmp_buf default_context;
-
-/*
- * Which cpu are we? Used by libcpu and libbsp.
- */
-
-int cpu_number;
-
-/* _CPU_Initialize
- *
- * This routine performs processor dependent initialization.
- *
- * INPUT PARAMETERS:
- * cpu_table - CPU table to initialize
- * thread_dispatch - address of disptaching routine
- */
-
-
-void _CPU_Initialize(
- rtems_cpu_table *cpu_table,
- void (*thread_dispatch) /* ignored on this CPU */
-)
-{
- unsigned32 i;
-
- if ( cpu_table == NULL )
- rtems_fatal_error_occurred( RTEMS_NOT_CONFIGURED );
-
- /*
- * The thread_dispatch argument is the address of the entry point
- * for the routine called at the end of an ISR once it has been
- * decided a context switch is necessary. On some compilation
- * systems it is difficult to call a high-level language routine
- * from assembly. This allows us to trick these systems.
- *
- * If you encounter this problem save the entry point in a CPU
- * dependent variable.
- */
-
- _CPU_Thread_dispatch_pointer = thread_dispatch;
-
- /*
- * XXX; If there is not an easy way to initialize the FP context
- * during Context_Initialize, then it is usually easier to
- * save an "uninitialized" FP context here and copy it to
- * the task's during Context_Initialize.
- */
-
- /* XXX: FP context initialization support */
-
- _CPU_Table = *cpu_table;
-
-#if defined(hppa1_1) && defined(RTEMS_UNIXLIB)
- /*
- * HACK - set the _SYSTEM_ID to 0x20c so that setjmp/longjmp
- * will handle the full 32 floating point registers.
- *
- * NOTE: Is this a bug in HPUX9?
- */
-
- _SYSTEM_ID = 0x20c;
-#endif
-
- /*
- * get default values to use in _CPU_Context_Initialize()
- */
-
- setjmp(default_context);
-
- /*
- * Block all the signals except SIGTRAP for the debugger
- * and SIGABRT for fatal errors.
- */
-
- _CPU_ISR_Set_signal_level(1);
-
- sigfillset(&UNIX_SIGNAL_MASK);
- sigdelset(&UNIX_SIGNAL_MASK, SIGTRAP);
- sigdelset(&UNIX_SIGNAL_MASK, SIGABRT);
- sigdelset(&UNIX_SIGNAL_MASK, SIGIOT);
- sigdelset(&UNIX_SIGNAL_MASK, SIGCONT);
-
- sigprocmask(SIG_BLOCK, &UNIX_SIGNAL_MASK, 0);
-
- /*
- * Set the handler for all signals to be signal_handler
- * which will then vector out to the correct handler
- * for whichever signal actually happened. Initially
- * set the vectors to the stray signal handler.
- */
-
- for (i = 0; i < 32; i++)
- (void)set_vector(Stray_signal, i, 1);
-
- signal_initialize();
-}
-
-/* _CPU_ISR_install_vector
- *
- * This kernel routine installs the RTEMS handler for the
- * specified vector.
- *
- * Input parameters:
- * vector - interrupt vector number
- * old_handler - former ISR for this vector number
- * new_handler - replacement ISR for this vector number
- *
- * Output parameters: NONE
- *
- */
-
-
-void _CPU_ISR_install_vector(
- unsigned32 vector,
- proc_ptr new_handler,
- proc_ptr *old_handler
-)
-{
- *old_handler = _ISR_Vector_table[ vector ];
-
- /*
- * If the interrupt vector table is a table of pointer to isr entry
- * points, then we need to install the appropriate RTEMS interrupt
- * handler for this vector number.
- */
-
- /*
- * We put the actual user ISR address in '_ISR_vector_table'. This will
- * be used by the _ISR_Handler so the user gets control.
- */
-
- _ISR_Vector_table[ vector ] = new_handler;
-}
-
-/*PAGE
- *
- * _CPU_Install_interrupt_stack
- */
-
-void _CPU_Install_interrupt_stack( void )
-{
-}
-
-/*PAGE
- *
- * _CPU_Internal_threads_Idle_thread_body
- *
- * NOTES:
- *
- * 1. This is the same as the regular CPU independent algorithm.
- *
- * 2. If you implement this using a "halt", "idle", or "shutdown"
- * instruction, then don't forget to put it in an infinite loop.
- *
- * 3. Be warned. Some processors with onboard DMA have been known
- * to stop the DMA if the CPU were put in IDLE mode. This might
- * also be a problem with other on-chip peripherals. So use this
- * hook with caution.
- */
-
-void _CPU_Internal_threads_Idle_thread_body( void )
-{
- while (1)
- pause();
-}
-
-void _CPU_Context_Initialize(
- Context_Control *_the_context,
- unsigned32 *_stack_base,
- unsigned32 _size,
- unsigned32 _new_level,
- proc_ptr *_entry_point
-)
-{
- unsigned32 *addr;
- unsigned32 jmp_addr;
- unsigned32 _stack;
- unsigned32 _the_size;
-
- jmp_addr = (unsigned32) _entry_point;
-
- _stack = ((unsigned32)(_stack_base) + CPU_STACK_ALIGNMENT);
- _stack &= ~(CPU_STACK_ALIGNMENT - 1);
-
- _the_size = _size & ~(CPU_STACK_ALIGNMENT - 1);
-
- /*
- * Slam our jmp_buf template into the context we are creating
- */
-
- memcpy(_the_context, default_context, sizeof(jmp_buf));
-
- addr = (unsigned32 *)_the_context;
-
-#if defined(hppa1_1)
- *(addr + RP_OFF) = jmp_addr;
- *(addr + SP_OFF) = (unsigned32)(_stack + CPU_FRAME_SIZE);
-
- /*
- * See if we are using shared libraries by checking
- * bit 30 in 24 off of newp. If bit 30 is set then
- * we are using shared libraries and the jump address
- * is at what 24 off of newp points to so shove that
- * into 24 off of newp instead.
- */
-
- if (jmp_addr & 0x40000000) {
- jmp_addr &= 0xfffffffc;
- *(addr + RP_OFF) = (unsigned32)*(unsigned32 *)jmp_addr;
- }
-#elif defined(sparc)
-
- /*
- * See /usr/include/sys/stack.h in Solaris 2.3 for a nice
- * diagram of the stack.
- */
-
- asm ("ta 0x03"); /* flush registers */
-
- *(addr + RP_OFF) = jmp_addr + ADDR_ADJ_OFFSET;
- *(addr + SP_OFF) = (unsigned32)(_stack +_the_size - CPU_FRAME_SIZE);
- *(addr + FP_OFF) = (unsigned32)(_stack +_the_size);
-#else
-#error "UNKNOWN CPU!!!"
-#endif
-
- if (_new_level)
- _CPU_ISR_Set_signal_level(1);
- else
- _CPU_ISR_Set_signal_level(0);
-
-}
-
-void _CPU_Context_restore(
- Context_Control *next
-)
-{
- longjmp(next->regs, 0);
-}
-
-void _CPU_Context_switch(
- Context_Control *current,
- Context_Control *next
-)
-{
- /*
- * Save the current context
- */
-
- if (setjmp(current->regs) == 0) {
-
- /*
- * Switch to the new context
- */
-
- longjmp(next->regs, 0);
- }
-}
-
-void _CPU_Save_float_context(
- Context_Control_fp *fp_context
-)
-{
-}
-
-void _CPU_Restore_float_context(
- Context_Control_fp *fp_context
-)
-{
-}
-
-void _CPU_ISR_Set_signal_level(unsigned32 level)
-{
- if (level)
- _CPU_Disable_signal();
- else
- _CPU_Enable_signal(0);
-}
-
-
-unsigned32 _CPU_Disable_signal(void)
-{
- sigset_t old_mask;
- sigset_t empty_mask;
-
- sigemptyset(&empty_mask);
- sigemptyset(&old_mask);
- sigprocmask(SIG_BLOCK, &UNIX_SIGNAL_MASK, &old_mask);
-
- if (memcmp((char *)&empty_mask, (char *)&old_mask, sizeof(sigset_t)) != 0)
- return 1;
-
- return 0;
-}
-
-
-void _CPU_Enable_signal(unsigned32 level)
-{
- if (level == 0)
- sigprocmask(SIG_UNBLOCK, &UNIX_SIGNAL_MASK, 0);
-}
-
-
-/*
- * Support for external and spurious interrupts on HPPA
- *
- * TODO:
- * delete interrupt.c etc.
- * Count interrupts
- * make sure interrupts disabled properly
- * should handler check again for more interrupts before exit?
- * How to enable interrupts from an interrupt handler?
- * Make sure there is an entry for everything in ISR_Vector_Table
- */
-
-/*
- * Init the external interrupt scheme
- * called by bsp_start()
- */
-
-rtems_status_code
-signal_initialize(void)
-{
- struct sigaction act;
- sigset_t mask;
-
- /* mark them all active except for TraceTrap and Abort */
-
- sigfillset(&mask);
- sigdelset(&mask, SIGTRAP);
- sigdelset(&mask, SIGABRT);
- sigdelset(&mask, SIGIOT);
- sigdelset(&mask, SIGCONT);
- sigprocmask(SIG_UNBLOCK, &mask, 0);
-
- act.sa_handler = interrupt_handler;
- act.sa_mask = mask;
-#if defined(solaris)
- act.sa_flags = SA_RESTART;
-#else
- act.sa_flags = 0;
-#endif
-
- sigaction(SIGHUP, &act, 0);
- sigaction(SIGINT, &act, 0);
- sigaction(SIGQUIT, &act, 0);
- sigaction(SIGILL, &act, 0);
- sigaction(SIGEMT, &act, 0);
- sigaction(SIGFPE, &act, 0);
- sigaction(SIGKILL, &act, 0);
- sigaction(SIGBUS, &act, 0);
- sigaction(SIGSEGV, &act, 0);
- sigaction(SIGSYS, &act, 0);
- sigaction(SIGPIPE, &act, 0);
- sigaction(SIGALRM, &act, 0);
- sigaction(SIGTERM, &act, 0);
- sigaction(SIGUSR1, &act, 0);
- sigaction(SIGUSR2, &act, 0);
- sigaction(SIGCHLD, &act, 0);
- sigaction(SIGCLD, &act, 0);
- sigaction(SIGPWR, &act, 0);
- sigaction(SIGVTALRM, &act, 0);
- sigaction(SIGPROF, &act, 0);
- sigaction(SIGIO, &act, 0);
- sigaction(SIGWINCH, &act, 0);
- sigaction(SIGSTOP, &act, 0);
- sigaction(SIGTTIN, &act, 0);
- sigaction(SIGTTOU, &act, 0);
- sigaction(SIGURG, &act, 0);
-/*
- * XXX: Really should be on HPUX.
- */
-
-#if defined(hppa1_1)
- sigaction(SIGLOST, &act, 0);
-#endif
-
- return RTEMS_SUCCESSFUL;
-}
-
-
-/*
- * External interrupt handler.
- * This is installed as cpu interrupt handler.
- * It vectors out to specific external interrupt handlers.
- */
-
-void
-interrupt_handler(int vector)
-{
- if (_ISR_Nest_level++ == 0) {
- /* switch to interrupt stack */
- }
-
- _Thread_Dispatch_disable_level++;
-
- if (_ISR_Vector_table[vector]) {
- _ISR_Vector_table[vector](vector);
- }
- else {
- Stray_signal(vector);
- }
-
- if (_ISR_Nest_level-- == 0) {
- /* switch back to original stack */
- }
-
- _Thread_Dispatch_disable_level--;
-
- if (_Thread_Dispatch_disable_level == 0 &&
- (_Context_Switch_necessary || _ISR_Signals_to_thread_executing)) {
- _CPU_Enable_signal(0);
- _Thread_Dispatch();
- }
-}
-
-
-void
-Stray_signal(int sig_num)
-{
- char buffer[ 80 ];
-
- /*
- * We avoid using the stdio section of the library.
- * The following is generally safe.
- */
-
- write(
- 2,
- buffer,
- sprintf( buffer, "Stray signal %d\n", sig_num )
- );
-
- /*
- * If it was a "fatal" signal, then exit here
- * If app code has installed a hander for one of these, then
- * we won't call Stray_signal, so this is ok.
- */
-
- switch (sig_num)
- {
- case SIGINT:
- case SIGHUP:
- case SIGQUIT:
- case SIGILL:
- case SIGEMT:
- case SIGKILL:
- case SIGBUS:
- case SIGSEGV:
- case SIGTERM:
- _CPU_Fatal_error(0x100 + sig_num);
- }
-}
-
-
-void
-_CPU_Fatal_error(unsigned32 error)
-{
- setitimer(ITIMER_REAL, 0, 0);
-
- _exit(error);
-}
-
-int
-_CPU_ffs(unsigned32 value)
-{
- int output;
-
- output = ffs(value);
- output = output - 1;
-
- return(output);
-}
diff --git a/c/src/exec/score/cpu/unix/cpu.h b/c/src/exec/score/cpu/unix/cpu.h
deleted file mode 100644
index e6b29bcd74..0000000000
--- a/c/src/exec/score/cpu/unix/cpu.h
+++ /dev/null
@@ -1,929 +0,0 @@
-/* cpu.h
- *
- * This include file contains information pertaining to the HP
- * PA-RISC processor (Level 1.1).
- *
- * COPYRIGHT (c) 1994 by Division Incorporated
- *
- * To anyone who acknowledges that this file is provided "AS IS"
- * without any express or implied warranty:
- * permission to use, copy, modify, and distribute this file
- * for any purpose is hereby granted without fee, provided that
- * the above copyright notice and this notice appears in all
- * copies, and that the name of Division Incorporated not be
- * used in advertising or publicity pertaining to distribution
- * of the software without specific, written prior permission.
- * Division Incorporated makes no representations about the
- * suitability of this software for any purpose.
- *
- * $Id$
- */
-
-#ifndef __CPU_h
-#define __CPU_h
-
-#ifdef __cplusplus
-extern "C" {
-#endif
-
-#include <setjmp.h>
-#include <string.h>
-#include <unix.h>
-
-/* conditional compilation parameters */
-
-/*
- * Should the calls to _Thread_Enable_dispatch be inlined?
- *
- * If TRUE, then they are inlined.
- * If FALSE, then a subroutine call is made.
- *
- * Basically this is an example of the classic trade-off of size
- * versus speed. Inlining the call (TRUE) typically increases the
- * size of RTEMS while speeding up the enabling of dispatching.
- * [NOTE: In general, the _Thread_Dispatch_disable_level will
- * only be 0 or 1 unless you are in an interrupt handler and that
- * interrupt handler invokes the executive.] When not inlined
- * something calls _Thread_Enable_dispatch which in turns calls
- * _Thread_Dispatch. If the enable dispatch is inlined, then
- * one subroutine call is avoided entirely.]
- */
-
-#define CPU_INLINE_ENABLE_DISPATCH FALSE
-
-/*
- * Should the body of the search loops in _Thread_queue_Enqueue_priority
- * be unrolled one time? In unrolled each iteration of the loop examines
- * two "nodes" on the chain being searched. Otherwise, only one node
- * is examined per iteration.
- *
- * If TRUE, then the loops are unrolled.
- * If FALSE, then the loops are not unrolled.
- *
- * The primary factor in making this decision is the cost of disabling
- * and enabling interrupts (_ISR_Flash) versus the cost of rest of the
- * body of the loop. On some CPUs, the flash is more expensive than
- * one iteration of the loop body. In this case, it might be desirable
- * to unroll the loop. It is important to note that on some CPUs, this
- * code is the longest interrupt disable period in RTEMS. So it is
- * necessary to strike a balance when setting this parameter.
- */
-
-#define CPU_UNROLL_ENQUEUE_PRIORITY TRUE
-
-/*
- * Does RTEMS manage a dedicated interrupt stack in software?
- *
- * If TRUE, then a stack is allocated in _Interrupt_Manager_initialization.
- * If FALSE, nothing is done.
- *
- * If the CPU supports a dedicated interrupt stack in hardware,
- * then it is generally the responsibility of the BSP to allocate it
- * and set it up.
- *
- * If the CPU does not support a dedicated interrupt stack, then
- * the porter has two options: (1) execute interrupts on the
- * stack of the interrupted task, and (2) have RTEMS manage a dedicated
- * interrupt stack.
- *
- * If this is TRUE, CPU_ALLOCATE_INTERRUPT_STACK should also be TRUE.
- *
- * Only one of CPU_HAS_SOFTWARE_INTERRUPT_STACK and
- * CPU_HAS_HARDWARE_INTERRUPT_STACK should be set to TRUE. It is
- * possible that both are FALSE for a particular CPU. Although it
- * is unclear what that would imply about the interrupt processing
- * procedure on that CPU.
- */
-
-#define CPU_HAS_SOFTWARE_INTERRUPT_STACK FALSE
-
-/*
- * Does this CPU have hardware support for a dedicated interrupt stack?
- *
- * If TRUE, then it must be installed during initialization.
- * If FALSE, then no installation is performed.
- *
- * If this is TRUE, CPU_ALLOCATE_INTERRUPT_STACK should also be TRUE.
- *
- * Only one of CPU_HAS_SOFTWARE_INTERRUPT_STACK and
- * CPU_HAS_HARDWARE_INTERRUPT_STACK should be set to TRUE. It is
- * possible that both are FALSE for a particular CPU. Although it
- * is unclear what that would imply about the interrupt processing
- * procedure on that CPU.
- */
-
-#define CPU_HAS_HARDWARE_INTERRUPT_STACK TRUE
-
-/*
- * Does RTEMS allocate a dedicated interrupt stack in the Interrupt Manager?
- *
- * If TRUE, then the memory is allocated during initialization.
- * If FALSE, then the memory is allocated during initialization.
- *
- * This should be TRUE if CPU_HAS_SOFTWARE_INTERRUPT_STACK is TRUE
- * or CPU_INSTALL_HARDWARE_INTERRUPT_STACK is TRUE.
- */
-
-#define CPU_ALLOCATE_INTERRUPT_STACK FALSE
-
-/*
- * Does the CPU have hardware floating point?
- *
- * If TRUE, then the RTEMS_FLOATING_POINT task attribute is supported.
- * If FALSE, then the RTEMS_FLOATING_POINT task attribute is ignored.
- *
- * If there is a FP coprocessor such as the i387 or mc68881, then
- * the answer is TRUE.
- *
- * The macro name "NO_CPU_HAS_FPU" should be made CPU specific.
- * It indicates whether or not this CPU model has FP support. For
- * example, it would be possible to have an i386_nofp CPU model
- * which set this to false to indicate that you have an i386 without
- * an i387 and wish to leave floating point support out of RTEMS.
- */
-
-#define CPU_HARDWARE_FP TRUE
-
-/*
- * Are all tasks RTEMS_FLOATING_POINT tasks implicitly?
- *
- * If TRUE, then the RTEMS_FLOATING_POINT task attribute is assumed.
- * If FALSE, then the RTEMS_FLOATING_POINT task attribute is followed.
- *
- * So far, the only CPU in which this option has been used is the
- * HP PA-RISC. The HP C compiler and gcc both implicitly use the
- * floating point registers to perform integer multiplies. If
- * a function which you would not think utilize the FP unit DOES,
- * then one can not easily predict which tasks will use the FP hardware.
- * In this case, this option should be TRUE.
- *
- * If CPU_HARDWARE_FP is FALSE, then this should be FALSE as well.
- */
-
-#define CPU_ALL_TASKS_ARE_FP FALSE
-
-/*
- * Should the IDLE task have a floating point context?
- *
- * If TRUE, then the IDLE task is created as a RTEMS_FLOATING_POINT task
- * and it has a floating point context which is switched in and out.
- * If FALSE, then the IDLE task does not have a floating point context.
- *
- * Setting this to TRUE negatively impacts the time required to preempt
- * the IDLE task from an interrupt because the floating point context
- * must be saved as part of the preemption.
- */
-
-#define CPU_IDLE_TASK_IS_FP FALSE
-
-/*
- * Should the saving of the floating point registers be deferred
- * until a context switch is made to another different floating point
- * task?
- *
- * If TRUE, then the floating point context will not be stored until
- * necessary. It will remain in the floating point registers and not
- * disturned until another floating point task is switched to.
- *
- * If FALSE, then the floating point context is saved when a floating
- * point task is switched out and restored when the next floating point
- * task is restored. The state of the floating point registers between
- * those two operations is not specified.
- *
- * If the floating point context does NOT have to be saved as part of
- * interrupt dispatching, then it should be safe to set this to TRUE.
- *
- * Setting this flag to TRUE results in using a different algorithm
- * for deciding when to save and restore the floating point context.
- * The deferred FP switch algorithm minimizes the number of times
- * the FP context is saved and restored. The FP context is not saved
- * until a context switch is made to another, different FP task.
- * Thus in a system with only one FP task, the FP context will never
- * be saved or restored.
- */
-
-#define CPU_USE_DEFERRED_FP_SWITCH TRUE
-
-/*
- * Does this port provide a CPU dependent IDLE task implementation?
- *
- * If TRUE, then the routine _CPU_Internal_threads_Idle_thread_body
- * must be provided and is the default IDLE thread body instead of
- * _Internal_threads_Idle_thread_body.
- *
- * If FALSE, then use the generic IDLE thread body if the BSP does
- * not provide one.
- *
- * This is intended to allow for supporting processors which have
- * a low power or idle mode. When the IDLE thread is executed, then
- * the CPU can be powered down.
- *
- * The order of precedence for selecting the IDLE thread body is:
- *
- * 1. BSP provided
- * 2. CPU dependent (if provided)
- * 3. generic (if no BSP and no CPU dependent)
- */
-
-#define CPU_PROVIDES_IDLE_THREAD_BODY TRUE
-
-/*
- * Does the stack grow up (toward higher addresses) or down
- * (toward lower addresses)?
- *
- * If TRUE, then the grows upward.
- * If FALSE, then the grows toward smaller addresses.
- */
-
-#if defined(hppa1_1)
-#define CPU_STACK_GROWS_UP TRUE
-#elif defined(sparc)
-#define CPU_STACK_GROWS_UP FALSE
-#else
-#error "unknown CPU!!"
-#endif
-
-
-/*
- * The following is the variable attribute used to force alignment
- * of critical RTEMS structures. On some processors it may make
- * sense to have these aligned on tighter boundaries than
- * the minimum requirements of the compiler in order to have as
- * much of the critical data area as possible in a cache line.
- *
- * The placement of this macro in the declaration of the variables
- * is based on the syntactically requirements of the GNU C
- * "__attribute__" extension. For example with GNU C, use
- * the following to force a structures to a 32 byte boundary.
- *
- * __attribute__ ((aligned (32)))
- *
- * NOTE: Currently only the Priority Bit Map table uses this feature.
- * To benefit from using this, the data must be heavily
- * used so it will stay in the cache and used frequently enough
- * in the executive to justify turning this on.
- */
-
-#define CPU_STRUCTURE_ALIGNMENT __attribute__ ((aligned (32)))
-
-/*
- * The following defines the number of bits actually used in the
- * interrupt field of the task mode. How those bits map to the
- * CPU interrupt levels is defined by the routine _CPU_ISR_Set_level().
- */
-
-#define CPU_MODES_INTERRUPT_MASK 0x00000001
-
-#define CPU_NAME "UNIX"
-
-/*
- * Processor defined structures
- *
- * Examples structures include the descriptor tables from the i386
- * and the processor control structure on the i960ca.
- */
-
-/* may need to put some structures here. */
-
-#if defined(hppa1_1)
-/*
- * Word indices within a jmp_buf structure
- */
-
-#ifdef RTEMS_NEWLIB
-#define RP_OFF 6
-#define SP_OFF 2
-#define R3_OFF 10
-#define R4_OFF 11
-#define R5_OFF 12
-#define R6_OFF 13
-#define R7_OFF 14
-#define R8_OFF 15
-#define R9_OFF 16
-#define R10_OFF 17
-#define R11_OFF 18
-#define R12_OFF 19
-#define R13_OFF 20
-#define R14_OFF 21
-#define R15_OFF 22
-#define R16_OFF 23
-#define R17_OFF 24
-#define R18_OFF 25
-#define DP_OFF 26
-#endif
-
-#ifdef RTEMS_UNIXLIB
-#define RP_OFF 0
-#define SP_OFF 1
-#define R3_OFF 4
-#define R4_OFF 5
-#define R5_OFF 6
-#define R6_OFF 7
-#define R7_OFF 8
-#define R8_OFF 9
-#define R9_OFF 10
-#define R10_OFF 11
-#define R11_OFF 12
-#define R12_OFF 13
-#define R13_OFF 14
-#define R14_OFF 15
-#define R15_OFF 16
-#define R16_OFF 17
-#define R17_OFF 18
-#define R18_OFF 19
-#define DP_OFF 20
-#endif
-#endif
-
-#if defined(sparc)
-
-/*
- * Word indices within a jmp_buf structure
- */
-
-#ifdef RTEMS_NEWLIB
-#define ADDR_ADJ_OFFSET -8
-#define SP_OFF 0
-#define RP_OFF 1
-#define FP_OFF 2
-#endif
-
-#ifdef RTEMS_UNIXLIB
-#define ADDR_ADJ_OFFSET 0
-#define G0_OFF 0
-#define SP_OFF 1
-#define RP_OFF 2
-#define FP_OFF 3
-#define I7_OFF 4
-#endif
-
-#endif
-
-/*
- * Contexts
- *
- * Generally there are 2 types of context to save.
- * 1. Interrupt registers to save
- * 2. Task level registers to save
- *
- * This means we have the following 3 context items:
- * 1. task level context stuff:: Context_Control
- * 2. floating point task stuff:: Context_Control_fp
- * 3. special interrupt level context :: Context_Control_interrupt
- *
- * On some processors, it is cost-effective to save only the callee
- * preserved registers during a task context switch. This means
- * that the ISR code needs to save those registers which do not
- * persist across function calls. It is not mandatory to make this
- * distinctions between the caller/callee saves registers for the
- * purpose of minimizing context saved during task switch and on interrupts.
- * If the cost of saving extra registers is minimal, simplicity is the
- * choice. Save the same context on interrupt entry as for tasks in
- * this case.
- *
- * Additionally, if gdb is to be made aware of RTEMS tasks for this CPU, then
- * care should be used in designing the context area.
- *
- * On some CPUs with hardware floating point support, the Context_Control_fp
- * structure will not be used or it simply consist of an array of a
- * fixed number of bytes. This is done when the floating point context
- * is dumped by a "FP save context" type instruction and the format
- * is not really defined by the CPU. In this case, there is no need
- * to figure out the exact format -- only the size. Of course, although
- * this is enough information for RTEMS, it is probably not enough for
- * a debugger such as gdb. But that is another problem.
- */
-
-typedef struct {
- jmp_buf regs;
-} Context_Control;
-
-typedef struct {
-} Context_Control_fp;
-
-typedef struct {
-} CPU_Interrupt_frame;
-
-
-/*
- * The following table contains the information required to configure
- * the XXX processor specific parameters.
- *
- * NOTE: The interrupt_stack_size field is required if
- * CPU_ALLOCATE_INTERRUPT_STACK is defined as TRUE.
- *
- * The pretasking_hook, predriver_hook, and postdriver_hook,
- * and the do_zero_of_workspace fields are required on ALL CPUs.
- */
-
-typedef struct {
- void (*pretasking_hook)( void );
- void (*predriver_hook)( void );
- void (*postdriver_hook)( void );
- void (*idle_task)( void );
- boolean do_zero_of_workspace;
- unsigned32 interrupt_stack_size;
- unsigned32 extra_system_initialization_stack;
-} rtems_cpu_table;
-
-/*
- * This variable is optional. It is used on CPUs on which it is difficult
- * to generate an "uninitialized" FP context. It is filled in by
- * _CPU_Initialize and copied into the task's FP context area during
- * _CPU_Context_Initialize.
- */
-
-EXTERN Context_Control_fp _CPU_Null_fp_context;
-
-/*
- * On some CPUs, RTEMS supports a software managed interrupt stack.
- * This stack is allocated by the Interrupt Manager and the switch
- * is performed in _ISR_Handler. These variables contain pointers
- * to the lowest and highest addresses in the chunk of memory allocated
- * for the interrupt stack. Since it is unknown whether the stack
- * grows up or down (in general), this give the CPU dependent
- * code the option of picking the version it wants to use.
- *
- * NOTE: These two variables are required if the macro
- * CPU_HAS_SOFTWARE_INTERRUPT_STACK is defined as TRUE.
- */
-
-EXTERN void *_CPU_Interrupt_stack_low;
-EXTERN void *_CPU_Interrupt_stack_high;
-
-/*
- * With some compilation systems, it is difficult if not impossible to
- * call a high-level language routine from assembly language. This
- * is especially true of commercial Ada compilers and name mangling
- * C++ ones. This variable can be optionally defined by the CPU porter
- * and contains the address of the routine _Thread_Dispatch. This
- * can make it easier to invoke that routine at the end of the interrupt
- * sequence (if a dispatch is necessary).
- */
-
-EXTERN void (*_CPU_Thread_dispatch_pointer)();
-
-/*
- * Nothing prevents the porter from declaring more CPU specific variables.
- */
-
-/* XXX: if needed, put more variables here */
-
-/*
- * The size of the floating point context area. On some CPUs this
- * will not be a "sizeof" because the format of the floating point
- * area is not defined -- only the size is. This is usually on
- * CPUs with a "floating point save context" instruction.
- */
-
-#define CPU_CONTEXT_FP_SIZE sizeof( Context_Control_fp )
-
-/*
- * The size of a frame on the stack
- */
-
-#if defined(hppa1_1)
-#define CPU_FRAME_SIZE (32 * 4)
-#elif defined(sparc)
-#define CPU_FRAME_SIZE (112) /* based on disassembled test code */
-#else
-#error "Unknown CPU!!!"
-#endif
-
-/*
- * Amount of extra stack (above minimum stack size) required by
- * system initialization thread. Remember that in a multiprocessor
- * system the system intialization thread becomes the MP server thread.
- */
-
-#define CPU_SYSTEM_INITIALIZATION_THREAD_EXTRA_STACK 0
-
-/*
- * This defines the number of entries in the ISR_Vector_table managed
- * by RTEMS.
- */
-
-#define CPU_INTERRUPT_NUMBER_OF_VECTORS 64
-
-/*
- * Should be large enough to run all RTEMS tests. This insures
- * that a "reasonable" small application should not have any problems.
- */
-
-#define CPU_STACK_MINIMUM_SIZE (16 * 1024)
-
-/*
- * CPU's worst alignment requirement for data types on a byte boundary. This
- * alignment does not take into account the requirements for the stack.
- */
-
-#define CPU_ALIGNMENT 8
-
-/*
- * This number corresponds to the byte alignment requirement for the
- * heap handler. This alignment requirement may be stricter than that
- * for the data types alignment specified by CPU_ALIGNMENT. It is
- * common for the heap to follow the same alignment requirement as
- * CPU_ALIGNMENT. If the CPU_ALIGNMENT is strict enough for the heap,
- * then this should be set to CPU_ALIGNMENT.
- *
- * NOTE: This does not have to be a power of 2. It does have to
- * be greater or equal to than CPU_ALIGNMENT.
- */
-
-#define CPU_HEAP_ALIGNMENT CPU_ALIGNMENT
-
-/*
- * This number corresponds to the byte alignment requirement for memory
- * buffers allocated by the partition manager. This alignment requirement
- * may be stricter than that for the data types alignment specified by
- * CPU_ALIGNMENT. It is common for the partition to follow the same
- * alignment requirement as CPU_ALIGNMENT. If the CPU_ALIGNMENT is strict
- * enough for the partition, then this should be set to CPU_ALIGNMENT.
- *
- * NOTE: This does not have to be a power of 2. It does have to
- * be greater or equal to than CPU_ALIGNMENT.
- */
-
-#define CPU_PARTITION_ALIGNMENT CPU_ALIGNMENT
-
-/*
- * This number corresponds to the byte alignment requirement for the
- * stack. This alignment requirement may be stricter than that for the
- * data types alignment specified by CPU_ALIGNMENT. If the CPU_ALIGNMENT
- * is strict enough for the stack, then this should be set to 0.
- *
- * NOTE: This must be a power of 2 either 0 or greater than CPU_ALIGNMENT.
- */
-
-#define CPU_STACK_ALIGNMENT 64
-
-/* ISR handler macros */
-
-/*
- * Disable all interrupts for an RTEMS critical section. The previous
- * level is returned in _level.
- */
-
-#define _CPU_ISR_Disable( _level ) \
- do { \
- (_level) = _CPU_Disable_signal(); \
- } while ( 0 )
-
-/*
- * Enable interrupts to the previous level (returned by _CPU_ISR_Disable).
- * This indicates the end of an RTEMS critical section. The parameter
- * _level is not modified.
- */
-
-#define _CPU_ISR_Enable( _level ) \
- do { \
- _CPU_Enable_signal( (_level) ); \
- } while ( 0 )
-
-/*
- * This temporarily restores the interrupt to _level before immediately
- * disabling them again. This is used to divide long RTEMS critical
- * sections into two or more parts. The parameter _level is not
- * modified.
- */
-
-#define _CPU_ISR_Flash( _level ) \
- do { \
- register _ignored = 0; \
- _CPU_ISR_Enable( (_level) ); \
- _CPU_ISR_Disable( _ignored ); \
- } while ( 0 )
-
-/*
- * Map interrupt level in task mode onto the hardware that the CPU
- * actually provides. Currently, interrupt levels which do not
- * map onto the CPU in a generic fashion are undefined. Someday,
- * it would be nice if these were "mapped" by the application
- * via a callout. For example, m68k has 8 levels 0 - 7, levels
- * 8 - 255 would be available for bsp/application specific meaning.
- * This could be used to manage a programmable interrupt controller
- * via the rtems_task_mode directive.
- */
-
-#define _CPU_ISR_Set_level( new_level ) \
- { \
- if ( new_level ) \
- (void) _CPU_Disable_signal(); \
- else \
- _CPU_Enable_signal( 0 ); \
- }
-
-/* end of ISR handler macros */
-
-/* Context handler macros */
-
-/*
- * This routine is responsible for somehow restarting the currently
- * executing task. If you are lucky, then all that is necessary
- * is restoring the context. Otherwise, there will need to be
- * a special assembly routine which does something special in this
- * case. Context_Restore should work most of the time. It will
- * not work if restarting self conflicts with the stack frame
- * assumptions of restoring a context.
- */
-
-#define _CPU_Context_Restart_self( _the_context ) \
- _CPU_Context_restore( (_the_context) );
-
-/*
- * The purpose of this macro is to allow the initial pointer into
- * a floating point context area (used to save the floating point
- * context) to be at an arbitrary place in the floating point
- * context area.
- *
- * This is necessary because some FP units are designed to have
- * their context saved as a stack which grows into lower addresses.
- * Other FP units can be saved by simply moving registers into offsets
- * from the base of the context area. Finally some FP units provide
- * a "dump context" instruction which could fill in from high to low
- * or low to high based on the whim of the CPU designers.
- */
-
-#define _CPU_Context_Fp_start( _base, _offset ) \
- ( (void *) (_base) + (_offset) )
-
-/*
- * This routine initializes the FP context area passed to it to.
- * There are a few standard ways in which to initialize the
- * floating point context. The code included for this macro assumes
- * that this is a CPU in which a "initial" FP context was saved into
- * _CPU_Null_fp_context and it simply copies it to the destination
- * context passed to it.
- *
- * Other models include (1) not doing anything, and (2) putting
- * a "null FP status word" in the correct place in the FP context.
- */
-
-#define _CPU_Context_Initialize_fp( _destination ) \
- { \
- *((Context_Control_fp *) *((void **) _destination)) = _CPU_Null_fp_context; \
- }
-
-#define _CPU_Context_save_fp( _fp_context ) \
- _CPU_Save_float_context( *(Context_Control_fp **)(_fp_context))
-
-#define _CPU_Context_restore_fp( _fp_context ) \
- _CPU_Restore_float_context( *(Context_Control_fp **)(_fp_context))
-
-extern void _CPU_Context_Initialize(
- Context_Control *_the_context,
- unsigned32 *_stack_base,
- unsigned32 _size,
- unsigned32 _new_level,
- proc_ptr *_entry_point
-);
-
-/* end of Context handler macros */
-
-/* Fatal Error manager macros */
-
-/*
- * This routine copies _error into a known place -- typically a stack
- * location or a register, optionally disables interrupts, and
- * halts/stops the CPU.
- */
-
-#define _CPU_Fatal_halt( _error ) \
- _CPU_Fatal_error( _error )
-
-/* end of Fatal Error manager macros */
-
-/* Bitfield handler macros */
-
-/*
- * This routine sets _output to the bit number of the first bit
- * set in _value. _value is of CPU dependent type Priority_Bit_map_control.
- * This type may be either 16 or 32 bits wide although only the 16
- * least significant bits will be used.
- *
- * There are a number of variables in using a "find first bit" type
- * instruction.
- *
- * (1) What happens when run on a value of zero?
- * (2) Bits may be numbered from MSB to LSB or vice-versa.
- * (3) The numbering may be zero or one based.
- * (4) The "find first bit" instruction may search from MSB or LSB.
- *
- * RTEMS guarantees that (1) will never happen so it is not a concern.
- * (2),(3), (4) are handled by the macros _CPU_Priority_mask() and
- * _CPU_Priority_Bits_index(). These three form a set of routines
- * which must logically operate together. Bits in the _value are
- * set and cleared based on masks built by _CPU_Priority_mask().
- * The basic major and minor values calculated by _Priority_Major()
- * and _Priority_Minor() are "massaged" by _CPU_Priority_Bits_index()
- * to properly range between the values returned by the "find first bit"
- * instruction. This makes it possible for _Priority_Get_highest() to
- * calculate the major and directly index into the minor table.
- * This mapping is necessary to ensure that 0 (a high priority major/minor)
- * is the first bit found.
- *
- * This entire "find first bit" and mapping process depends heavily
- * on the manner in which a priority is broken into a major and minor
- * components with the major being the 4 MSB of a priority and minor
- * the 4 LSB. Thus (0 << 4) + 0 corresponds to priority 0 -- the highest
- * priority. And (15 << 4) + 14 corresponds to priority 254 -- the next
- * to the lowest priority.
- *
- * If your CPU does not have a "find first bit" instruction, then
- * there are ways to make do without it. Here are a handful of ways
- * to implement this in software:
- *
- * - a series of 16 bit test instructions
- * - a "binary search using if's"
- * - _number = 0
- * if _value > 0x00ff
- * _value >>=8
- * _number = 8;
- *
- * if _value > 0x0000f
- * _value >=8
- * _number += 4
- *
- * _number += bit_set_table[ _value ]
- *
- * where bit_set_table[ 16 ] has values which indicate the first
- * bit set
- */
-
-#define _CPU_Bitfield_Find_first_bit( _value, _output ) \
- _output = _CPU_ffs( _value )
-
-/* end of Bitfield handler macros */
-
-/*
- * This routine builds the mask which corresponds to the bit fields
- * as searched by _CPU_Bitfield_Find_first_bit(). See the discussion
- * for that routine.
- */
-
-#define _CPU_Priority_Mask( _bit_number ) \
- ( 1 << (_bit_number) )
-
-/*
- * This routine translates the bit numbers returned by
- * _CPU_Bitfield_Find_first_bit() into something suitable for use as
- * a major or minor component of a priority. See the discussion
- * for that routine.
- */
-
-#define _CPU_Priority_Bits_index( _priority ) \
- (_priority)
-
-/* end of Priority handler macros */
-
-/* functions */
-
-/*
- * _CPU_Initialize
- *
- * This routine performs CPU dependent initialization.
- */
-
-void _CPU_Initialize(
- rtems_cpu_table *cpu_table,
- void (*thread_dispatch)
-);
-
-/*
- * _CPU_ISR_install_vector
- *
- * This routine installs an interrupt vector.
- */
-
-void _CPU_ISR_install_vector(
- unsigned32 vector,
- proc_ptr new_handler,
- proc_ptr *old_handler
-);
-
-/*
- * _CPU_Install_interrupt_stack
- *
- * This routine installs the hardware interrupt stack pointer.
- *
- * NOTE: It need only be provided if CPU_HAS_HARDWARE_INTERRUPT_STACK
- * is TRUE.
- */
-
-void _CPU_Install_interrupt_stack( void );
-
-/*
- * _CPU_Internal_threads_Idle_thread_body
- *
- * This routine is the CPU dependent IDLE thread body.
- *
- * NOTE: It need only be provided if CPU_PROVIDES_IDLE_THREAD_BODY
- * is TRUE.
- */
-
-void _CPU_Internal_threads_Idle_thread_body( void );
-
-/*
- * _CPU_Context_switch
- *
- * This routine switches from the run context to the heir context.
- */
-
-void _CPU_Context_switch(
- Context_Control *run,
- Context_Control *heir
-);
-
-/*
- * _CPU_Context_restore
- *
- * This routine is generallu used only to restart self in an
- * efficient manner. It may simply be a label in _CPU_Context_switch.
- *
- * NOTE: May be unnecessary to reload some registers.
- */
-
-void _CPU_Context_restore(
- Context_Control *new_context
-);
-
-/*
- * _CPU_Save_float_context
- *
- * This routine saves the floating point context passed to it.
- */
-
-void _CPU_Save_float_context(
- Context_Control_fp *fp_context_ptr
-);
-
-/*
- * _CPU_Restore_float_context
- *
- * This routine restores the floating point context passed to it.
- */
-
-void _CPU_Restore_float_context(
- Context_Control_fp *fp_context_ptr
-);
-
-
-void _CPU_ISR_Set_signal_level(
- unsigned32 level
-);
-
-unsigned32 _CPU_Disable_signal( void );
-
-void _CPU_Enable_signal(
- unsigned32 level
-);
-
-void _CPU_Fatal_error(
- unsigned32 _error
-);
-
-int _CPU_ffs(
- unsigned32 _value
-);
-
-/* The following routine swaps the endian format of an unsigned int.
- * It must be static because it is referenced indirectly.
- *
- * This version will work on any processor, but if there is a better
- * way for your CPU PLEASE use it. The most common way to do this is to:
- *
- * swap least significant two bytes with 16-bit rotate
- * swap upper and lower 16-bits
- * swap most significant two bytes with 16-bit rotate
- *
- * Some CPUs have special instructions which swap a 32-bit quantity in
- * a single instruction (e.g. i486). It is probably best to avoid
- * an "endian swapping control bit" in the CPU. One good reason is
- * that interrupts would probably have to be disabled to insure that
- * an interrupt does not try to access the same "chunk" with the wrong
- * endian. Another good reason is that on some CPUs, the endian bit
- * endianness for ALL fetches -- both code and data -- so the code
- * will be fetched incorrectly.
- */
-
-static inline unsigned int CPU_swap_u32(
- unsigned int value
-)
-{
- unsigned32 byte1, byte2, byte3, byte4, swapped;
-
- byte4 = (value >> 24) & 0xff;
- byte3 = (value >> 16) & 0xff;
- byte2 = (value >> 8) & 0xff;
- byte1 = value & 0xff;
-
- swapped = (byte1 << 24) | (byte2 << 16) | (byte3 << 8) | byte4;
- return( swapped );
-}
-
-#ifdef __cplusplus
-}
-#endif
-
-#endif
diff --git a/c/src/exec/score/cpu/unix/unix.h b/c/src/exec/score/cpu/unix/unix.h
deleted file mode 100644
index 823bbcfb34..0000000000
--- a/c/src/exec/score/cpu/unix/unix.h
+++ /dev/null
@@ -1,90 +0,0 @@
-/* unix.h
- *
- * This include file contains the basic type definitions required by RTEMS
- * which are typical for a modern UNIX computer using GCC.
- *
- * COPYRIGHT (c) 1989, 1990, 1991, 1992, 1993, 1994.
- * On-Line Applications Research Corporation (OAR).
- * All rights assigned to U.S. Government, 1994.
- *
- * This material may be reproduced by or for the U.S. Government pursuant
- * to the copyright license under the clause at DFARS 252.227-7013. This
- * notice must appear in all copies of this file and its derivatives.
- *
- * $Id$
- */
-
-#ifndef __UNIX_h
-#define __UNIX_h
-
-#ifdef __cplusplus
-extern "C" {
-#endif
-
-/*
- * The following define the CPU Family and Model within the family
- *
- * NOTE: The string "REPLACE_THIS_WITH_THE_CPU_MODEL" is replaced
- * with the name of the appropriate macro for this target CPU.
- */
-
-#define unix
-#define REPLACE_THIS_WITH_THE_CPU_FAMILY
-#define REPLACE_THIS_WITH_THE_BSP
-#define REPLACE_THIS_WITH_THE_CPU_MODEL
-#define REPLACE_THIS_WITH_THE_UNIX_FLAVOR
-
-/*
- * This file contains the information required to build
- * RTEMS for a particular member of the "unix"
- * family when executing in protected mode. It does
- * this by setting variables to indicate which implementation
- * dependent features are present in a particular member
- * of the family.
- */
-
-#if defined(hpux)
-
-#define RTEMS_MODEL_NAME "hpux"
-
-#elif defined(solaris)
-
-#define RTEMS_MODEL_NAME "solaris"
-
-#else
-
-#error "Unsupported CPU Model"
-
-#endif
-
-#ifndef ASM
-
-/* type definitions */
-
-typedef unsigned char unsigned8; /* 8-bit unsigned integer */
-typedef unsigned short unsigned16; /* 16-bit unsigned integer */
-typedef unsigned int unsigned32; /* 32-bit unsigned integer */
-typedef unsigned long long unsigned64; /* 64-bit unsigned integer */
-
-typedef unsigned16 Priority_Bit_map_control;
-
-typedef char signed8; /* 8-bit signed integer */
-typedef short signed16; /* 16-bit signed integer */
-typedef int signed32; /* 32-bit signed integer */
-typedef long long signed64; /* 64-bit signed integer */
-
-typedef unsigned32 boolean; /* Boolean value */
-
-typedef float single_precision; /* single precision float */
-typedef double double_precision; /* double precision float */
-
-typedef void ( *unix_isr_entry )( void );
-
-#ifdef __cplusplus
-}
-#endif
-
-#endif /* !ASM */
-#endif
-/* end of include file */
-