summaryrefslogtreecommitdiffstats
path: root/bsps/arm/imxrt/mcux-sdk/devices/MIMXRT1166/drivers/fsl_clock.c
diff options
context:
space:
mode:
Diffstat (limited to 'bsps/arm/imxrt/mcux-sdk/devices/MIMXRT1166/drivers/fsl_clock.c')
-rw-r--r--bsps/arm/imxrt/mcux-sdk/devices/MIMXRT1166/drivers/fsl_clock.c1937
1 files changed, 1937 insertions, 0 deletions
diff --git a/bsps/arm/imxrt/mcux-sdk/devices/MIMXRT1166/drivers/fsl_clock.c b/bsps/arm/imxrt/mcux-sdk/devices/MIMXRT1166/drivers/fsl_clock.c
new file mode 100644
index 0000000000..4928b1aad7
--- /dev/null
+++ b/bsps/arm/imxrt/mcux-sdk/devices/MIMXRT1166/drivers/fsl_clock.c
@@ -0,0 +1,1937 @@
+/*
+ * Copyright 2019-2022 NXP
+ * All rights reserved.
+ *
+ * SPDX-License-Identifier: BSD-3-Clause
+ */
+
+#include "fsl_clock.h"
+#include "fsl_pmu.h"
+#include "fsl_anatop_ai.h"
+/* Component ID definition, used by tools. */
+#ifndef FSL_COMPONENT_ID
+#define FSL_COMPONENT_ID "platform.drivers.clock"
+#endif
+
+/*******************************************************************************
+ * Definitions
+ ******************************************************************************/
+/* To make full use of CM7 hardware FPU, use double instead of uint64_t in clock driver to
+achieve better performance, it is depend on the IDE Floating point settings, if double precision is selected
+in IDE, clock_64b_t will switch to double type automatically. only support IAR and MDK here */
+#if __FPU_USED
+
+#if (defined(__ICCARM__))
+
+#if (__ARMVFP__ >= __ARMFPV5__) && \
+ (__ARM_FP == 0xE) /*0xe implies support for half, single and double precision operations*/
+typedef double clock_64b_t;
+#else
+typedef uint64_t clock_64b_t;
+#endif
+
+#elif (defined(__GNUC__))
+
+#if (__ARM_FP == 0xE) /*0xe implies support for half, single and double precision operations*/
+typedef double clock_64b_t;
+#else
+typedef uint64_t clock_64b_t;
+#endif
+
+#elif defined(__CC_ARM) || defined(__ARMCC_VERSION)
+
+#if defined __TARGET_FPU_FPV5_D16
+typedef double clock_64b_t;
+#else
+typedef uint64_t clock_64b_t;
+#endif
+
+#else
+typedef uint64_t clock_64b_t;
+#endif
+
+#else
+typedef uint64_t clock_64b_t;
+#endif
+
+#define PLL_AI_CTRL0_REG kAI_PLL1G_CTRL0
+#define PLL_AI_CTRL0_SET_REG kAI_PLL1G_CTRL0_SET
+#define PLL_AI_CTRL0_CLR_REG kAI_PLL1G_CTRL0_CLR
+#define PLL_AI_CTRL1_REG kAI_PLL1G_CTRL1
+#define PLL_AI_CTRL1_SET_REG kAI_PLL1G_CTRL1_SET
+#define PLL_AI_CTRL1_CLR_REG kAI_PLL1G_CTRL1_CLR
+#define PLL_AI_CTRL2_REG kAI_PLL1G_CTRL2
+#define PLL_AI_CTRL2_SET_REG kAI_PLL1G_CTRL2_SET
+#define PLL_AI_CTRL2_CLR_REG kAI_PLL1G_CTRL2_CLR
+#define PLL_AI_CTRL3_REG kAI_PLL1G_CTRL3
+#define PLL_AI_CTRL3_SET_REG kAI_PLL1G_CTRL3_SET
+#define PLL_AI_CTRL3_CLR_REG kAI_PLL1G_CTRL3_CLR
+
+#define PLL_AI_CTRL0_HOLD_RING_OFF_MASK AI_PLL1G_CTRL0_HOLD_RING_OFF_MASK
+
+#define PLL_AI_CTRL0_POWER_UP_MASK AI_PLL1G_CTRL0_POWER_UP_MASK
+
+#define PLL_AI_CTRL0_ENABLE_MASK AI_PLL1G_CTRL0_ENABLE_MASK
+
+#define PLL_AI_CTRL0_BYPASS_MASK AI_PLL1G_CTRL0_BYPASS_MASK
+
+#define PLL_AI_CTRL0_PLL_REG_EN_MASK AI_PLL1G_CTRL0_PLL_REG_EN_MASK
+/*******************************************************************************
+ * Variables
+ ******************************************************************************/
+
+/*******************************************************************************
+ * Prototypes
+ ******************************************************************************/
+static void ANATOP_PllSetPower(anatop_ai_itf_t itf, bool enable);
+static void ANATOP_PllBypass(anatop_ai_itf_t itf, bool bypass);
+static void ANATOP_PllEnablePllReg(anatop_ai_itf_t itf, bool enable);
+static void ANATOP_PllHoldRingOff(anatop_ai_itf_t itf, bool off);
+static void ANATOP_PllToggleHoldRingOff(anatop_ai_itf_t itf, uint32_t delay_us);
+static void ANATOP_PllEnableClk(anatop_ai_itf_t itf, bool enable);
+static void ANATOP_PllConfigure(anatop_ai_itf_t itf,
+ uint8_t div,
+ uint32_t numer,
+ uint8_t post_div,
+ uint32_t denom,
+ const clock_pll_ss_config_t *ss);
+static void ANATOP_AudioPllGate(bool enable);
+static void ANATOP_AudioPllSwEnClk(bool enable);
+static void ANATOP_VideoPllGate(bool enable);
+static void ANATOP_VideoPllSwEnClk(bool enable);
+static void ANATOP_SysPll1Gate(bool enable);
+static void ANATOP_SysPll1Div2En(bool enable);
+static void ANATOP_SysPll1Div5En(bool enable);
+static void ANATOP_SysPll1SwEnClk(bool enable);
+static void ANATOP_SysPll1WaitStable(void);
+static void ANATOP_PllEnableSs(anatop_ai_itf_t itf, bool enable);
+#ifndef GET_FREQ_FROM_OBS
+static uint32_t CLOCK_GetAvPllFreq(clock_pll_t pll);
+#endif
+/*******************************************************************************
+ * Code
+ ******************************************************************************/
+
+#define ARM_PLL_DIV_SEL_MIN 104
+#define ARM_PLL_DIV_SEL_MAX 208
+
+void CLOCK_InitArmPll(const clock_arm_pll_config_t *config)
+{
+ assert((config->loopDivider <= (uint32_t)ARM_PLL_DIV_SEL_MAX) &&
+ (config->loopDivider >= (uint32_t)ARM_PLL_DIV_SEL_MIN));
+
+ uint32_t reg;
+
+ if (((ANADIG_PLL->ARM_PLL_CTRL & ANADIG_PLL_ARM_PLL_CTRL_POWERUP_MASK) != 0UL) &&
+ ((ANADIG_PLL->ARM_PLL_CTRL & ANADIG_PLL_ARM_PLL_CTRL_DIV_SELECT_MASK) ==
+ ANADIG_PLL_ARM_PLL_CTRL_DIV_SELECT(config->loopDivider)) &&
+ ((ANADIG_PLL->ARM_PLL_CTRL & ANADIG_PLL_ARM_PLL_CTRL_POST_DIV_SEL_MASK) ==
+ ANADIG_PLL_ARM_PLL_CTRL_POST_DIV_SEL(config->postDivider)))
+ {
+ /* no need to reconfigure the PLL if all the configuration is the same */
+ if ((ANADIG_PLL->ARM_PLL_CTRL & ANADIG_PLL_ARM_PLL_CTRL_ENABLE_CLK_MASK) == 0UL)
+ {
+ ANADIG_PLL->ARM_PLL_CTRL |= ANADIG_PLL_ARM_PLL_CTRL_ENABLE_CLK_MASK;
+ }
+ if ((ANADIG_PLL->ARM_PLL_CTRL & ANADIG_PLL_ARM_PLL_CTRL_ARM_PLL_GATE_MASK) != 0UL)
+ {
+ ANADIG_PLL->ARM_PLL_CTRL &= ~ANADIG_PLL_ARM_PLL_CTRL_ARM_PLL_GATE_MASK;
+ }
+ return;
+ }
+
+ PMU_StaticEnablePllLdo(ANADIG_PMU);
+
+ reg = ANADIG_PLL->ARM_PLL_CTRL & (~ANADIG_PLL_ARM_PLL_CTRL_ARM_PLL_STABLE_MASK);
+ if ((reg & (ANADIG_PLL_ARM_PLL_CTRL_POWERUP_MASK | ANADIG_PLL_ARM_PLL_CTRL_ENABLE_CLK_MASK)) != 0UL)
+ {
+ /* Power down the PLL. */
+ reg &= ~(ANADIG_PLL_ARM_PLL_CTRL_POWERUP_MASK | ANADIG_PLL_ARM_PLL_CTRL_ENABLE_CLK_MASK);
+ reg |= ANADIG_PLL_ARM_PLL_CTRL_ARM_PLL_GATE_MASK;
+ ANADIG_PLL->ARM_PLL_CTRL = reg;
+ }
+
+ /* Set the configuration. */
+ reg &= ~(ANADIG_PLL_ARM_PLL_CTRL_DIV_SELECT_MASK | ANADIG_PLL_ARM_PLL_CTRL_POST_DIV_SEL_MASK);
+ reg |= (ANADIG_PLL_ARM_PLL_CTRL_DIV_SELECT(config->loopDivider) |
+ ANADIG_PLL_ARM_PLL_CTRL_POST_DIV_SEL(config->postDivider)) |
+ ANADIG_PLL_ARM_PLL_CTRL_ARM_PLL_GATE_MASK | ANADIG_PLL_ARM_PLL_CTRL_POWERUP_MASK;
+ ANADIG_PLL->ARM_PLL_CTRL = reg;
+ __DSB();
+ __ISB();
+ SDK_DelayAtLeastUs(30, SDK_DEVICE_MAXIMUM_CPU_CLOCK_FREQUENCY);
+
+ /* Wait for the PLL stable, */
+ while (0U == (ANADIG_PLL->ARM_PLL_CTRL & ANADIG_PLL_ARM_PLL_CTRL_ARM_PLL_STABLE_MASK))
+ {
+ }
+
+ /* Enable and ungate the clock. */
+ reg |= ANADIG_PLL_ARM_PLL_CTRL_ENABLE_CLK_MASK;
+ reg &= ~ANADIG_PLL_ARM_PLL_CTRL_ARM_PLL_GATE_MASK;
+ ANADIG_PLL->ARM_PLL_CTRL = reg;
+}
+
+void CLOCK_DeinitArmPll(void)
+{
+ uint32_t reg = ANADIG_PLL->ARM_PLL_CTRL & (~ANADIG_PLL_ARM_PLL_CTRL_ARM_PLL_STABLE_MASK);
+
+ reg &= ~(ANADIG_PLL_ARM_PLL_CTRL_POWERUP_MASK | ANADIG_PLL_ARM_PLL_CTRL_ENABLE_CLK_MASK);
+ reg |= ANADIG_PLL_ARM_PLL_CTRL_ARM_PLL_GATE_MASK;
+ ANADIG_PLL->ARM_PLL_CTRL = reg;
+}
+
+void CLOCK_CalcPllSpreadSpectrum(uint32_t factor, uint32_t range, uint32_t mod, clock_pll_ss_config_t *ss)
+{
+ assert(ss != NULL);
+
+ ss->stop = (uint16_t)(factor * range / XTAL_FREQ);
+ ss->step = (uint16_t)((mod << 1UL) * (uint32_t)(ss->stop) / XTAL_FREQ);
+}
+
+/* 528PLL */
+void CLOCK_InitSysPll2(const clock_sys_pll2_config_t *config)
+{
+ uint32_t reg;
+
+ if ((ANADIG_PLL->SYS_PLL2_CTRL & ANADIG_PLL_SYS_PLL2_CTRL_POWERUP_MASK) != 0UL)
+ {
+ if ((config == NULL) ||
+ ((0UL == (ANADIG_PLL->SYS_PLL2_SS & ANADIG_PLL_SYS_PLL2_SS_ENABLE_MASK)) && (!config->ssEnable)) ||
+ ((ANADIG_PLL_SYS_PLL2_SS_ENABLE(config->ssEnable) | ANADIG_PLL_SYS_PLL2_SS_STOP(config->ss->stop) |
+ ANADIG_PLL_SYS_PLL2_SS_STEP(config->ss->step)) == ANADIG_PLL->SYS_PLL2_SS))
+ {
+ /* no need to reconfigure the PLL if all the configuration is the same */
+ if (0UL == (ANADIG_PLL->SYS_PLL2_CTRL & ANADIG_PLL_SYS_PLL2_CTRL_ENABLE_CLK_MASK))
+ {
+ ANADIG_PLL->SYS_PLL2_CTRL |= ANADIG_PLL_SYS_PLL2_CTRL_ENABLE_CLK_MASK;
+ }
+
+ if ((ANADIG_PLL->SYS_PLL2_CTRL & ANADIG_PLL_SYS_PLL2_CTRL_SYS_PLL2_GATE_MASK) != 0UL)
+ {
+ ANADIG_PLL->SYS_PLL2_CTRL &= ~ANADIG_PLL_SYS_PLL2_CTRL_SYS_PLL2_GATE_MASK;
+ }
+ return;
+ }
+ }
+
+ PMU_StaticEnablePllLdo(ANADIG_PMU);
+ /* Gate all PFDs */
+ ANADIG_PLL->SYS_PLL2_PFD |=
+ ANADIG_PLL_SYS_PLL2_PFD_PFD0_DIV1_CLKGATE(1) | ANADIG_PLL_SYS_PLL2_PFD_PFD1_DIV1_CLKGATE(1) |
+ ANADIG_PLL_SYS_PLL2_PFD_PFD2_DIV1_CLKGATE(1) | ANADIG_PLL_SYS_PLL2_PFD_PFD3_DIV1_CLKGATE(1);
+
+ reg = ANADIG_PLL->SYS_PLL2_CTRL;
+ if ((reg & (ANADIG_PLL_SYS_PLL2_CTRL_POWERUP_MASK | ANADIG_PLL_SYS_PLL2_CTRL_ENABLE_CLK_MASK)) != 0UL)
+ {
+ /* Power down the PLL. */
+ reg &= ~(ANADIG_PLL_SYS_PLL2_CTRL_POWERUP_MASK | ANADIG_PLL_SYS_PLL2_CTRL_ENABLE_CLK_MASK);
+ reg |= ANADIG_PLL_SYS_PLL2_CTRL_SYS_PLL2_GATE_MASK;
+ ANADIG_PLL->SYS_PLL2_CTRL = reg;
+ }
+
+ /* Config PLL */
+ if ((config != NULL) && (config->ssEnable) && (config->ss != NULL))
+ {
+ ANADIG_PLL->SYS_PLL2_MFD = ANADIG_PLL_SYS_PLL2_MFD_MFD(config->mfd);
+ ANADIG_PLL->SYS_PLL2_SS = (ANADIG_PLL_SYS_PLL2_SS_ENABLE_MASK | ANADIG_PLL_SYS_PLL2_SS_STOP(config->ss->stop) |
+ ANADIG_PLL_SYS_PLL2_SS_STEP(config->ss->step));
+ }
+
+ /* REG_EN = 1, GATE = 1, DIV_SEL = 0, POWERUP = 0 */
+ reg = ANADIG_PLL_SYS_PLL2_CTRL_PLL_REG_EN(1) | ANADIG_PLL_SYS_PLL2_CTRL_SYS_PLL2_GATE(1);
+ ANADIG_PLL->SYS_PLL2_CTRL = reg;
+ /* Wait until LDO is stable */
+ SDK_DelayAtLeastUs(30, SDK_DEVICE_MAXIMUM_CPU_CLOCK_FREQUENCY);
+
+ /* REG_EN = 1, GATE = 1, DIV_SEL = 0, POWERUP = 1, HOLDRING_OFF = 1 */
+ reg |= ANADIG_PLL_SYS_PLL2_CTRL_POWERUP(1) | ANADIG_PLL_SYS_PLL2_CTRL_HOLD_RING_OFF_MASK;
+ ANADIG_PLL->SYS_PLL2_CTRL = reg;
+ SDK_DelayAtLeastUs(250, SDK_DEVICE_MAXIMUM_CPU_CLOCK_FREQUENCY);
+
+ /* REG_EN = 1, GATE = 1, DIV_SEL = 0, POWERUP = 1, HOLDRING_OFF = 0 */
+ reg &= ~ANADIG_PLL_SYS_PLL2_CTRL_HOLD_RING_OFF_MASK;
+ ANADIG_PLL->SYS_PLL2_CTRL = reg;
+ /* Wait for PLL stable */
+ while (ANADIG_PLL_SYS_PLL2_CTRL_SYS_PLL2_STABLE_MASK !=
+ (ANADIG_PLL->SYS_PLL2_CTRL & ANADIG_PLL_SYS_PLL2_CTRL_SYS_PLL2_STABLE_MASK))
+ {
+ }
+
+ /* REG_EN = 1, GATE = 1, DIV_SEL = 0, POWERUP = 1, HOLDRING_OFF = 0, CLK = 1*/
+ reg |= ANADIG_PLL_SYS_PLL2_CTRL_ENABLE_CLK_MASK;
+ ANADIG_PLL->SYS_PLL2_CTRL = reg;
+
+ /* REG_EN = 1, GATE = 0, DIV_SEL = 0, POWERUP = 1, HOLDRING_OFF = 0, CLK = 1*/
+ reg &= ~ANADIG_PLL_SYS_PLL2_CTRL_SYS_PLL2_GATE_MASK;
+ ANADIG_PLL->SYS_PLL2_CTRL = reg;
+ ANADIG_PLL->SYS_PLL2_PFD &=
+ ~(ANADIG_PLL_SYS_PLL2_PFD_PFD0_DIV1_CLKGATE(1) | ANADIG_PLL_SYS_PLL2_PFD_PFD1_DIV1_CLKGATE(1) |
+ ANADIG_PLL_SYS_PLL2_PFD_PFD2_DIV1_CLKGATE(1) | ANADIG_PLL_SYS_PLL2_PFD_PFD3_DIV1_CLKGATE(1));
+}
+
+void CLOCK_DeinitSysPll2(void)
+{
+ ANADIG_PLL->SYS_PLL2_PFD |=
+ ANADIG_PLL_SYS_PLL2_PFD_PFD0_DIV1_CLKGATE(1) | ANADIG_PLL_SYS_PLL2_PFD_PFD1_DIV1_CLKGATE(1) |
+ ANADIG_PLL_SYS_PLL2_PFD_PFD2_DIV1_CLKGATE(1) | ANADIG_PLL_SYS_PLL2_PFD_PFD3_DIV1_CLKGATE(1);
+
+ ANADIG_PLL->SYS_PLL2_CTRL |= ANADIG_PLL_SYS_PLL2_CTRL_SYS_PLL2_GATE_MASK;
+ ANADIG_PLL->SYS_PLL2_CTRL &= ~(ANADIG_PLL_SYS_PLL2_CTRL_ENABLE_CLK_MASK | ANADIG_PLL_SYS_PLL2_CTRL_POWERUP_MASK |
+ ANADIG_PLL_SYS_PLL2_CTRL_PLL_REG_EN_MASK);
+
+ ANADIG_PLL->SYS_PLL2_SS &= ~ANADIG_PLL_SYS_PLL2_SS_ENABLE_MASK;
+}
+
+/*!
+ * brief Check if Sys PLL2 PFD is enabled
+ *
+ * param pfd PFD control name
+ * return PFD bypass status.
+ * - true: power on.
+ * - false: power off.
+ * note Only useful in software control mode.
+ */
+bool CLOCK_IsSysPll2PfdEnabled(clock_pfd_t pfd)
+{
+ return ((ANADIG_PLL->SYS_PLL2_PFD & (uint32_t)ANADIG_PLL_SYS_PLL2_PFD_PFD0_DIV1_CLKGATE_MASK
+ << (8UL * (uint8_t)pfd)) == 0U);
+}
+
+#define PFD_FRAC_MIN 12U
+#define PFD_FRAC_MAX 35U
+void CLOCK_InitPfd(clock_pll_t pll, clock_pfd_t pfd, uint8_t frac)
+{
+ volatile uint32_t *pfdCtrl = NULL, *pfdUpdate = NULL, stable;
+ uint32_t regFracVal;
+ bool pfdGated;
+
+ assert(frac <= (uint8_t)PFD_FRAC_MAX);
+ assert(frac >= (uint8_t)PFD_FRAC_MIN);
+
+ switch (pll)
+ {
+ case kCLOCK_PllSys2:
+ pfdCtrl = &ANADIG_PLL->SYS_PLL2_PFD;
+ pfdUpdate = &ANADIG_PLL->SYS_PLL2_UPDATE;
+ break;
+ case kCLOCK_PllSys3:
+ pfdCtrl = &ANADIG_PLL->SYS_PLL3_PFD;
+ pfdUpdate = &ANADIG_PLL->SYS_PLL3_UPDATE;
+ break;
+ default:
+ /* Wrong input parameter pll. */
+ assert(false);
+ break;
+ }
+
+ regFracVal = ((*pfdCtrl) & ((uint32_t)ANADIG_PLL_SYS_PLL2_PFD_PFD0_FRAC_MASK << (8UL * (uint32_t)pfd))) >>
+ (8UL * (uint32_t)pfd);
+ pfdGated =
+ (bool)(((*pfdCtrl) & ((uint32_t)ANADIG_PLL_SYS_PLL2_PFD_PFD0_DIV1_CLKGATE_MASK << (8UL * (uint32_t)pfd))) >>
+ (8UL >> (uint32_t)pfd));
+ if ((regFracVal == (uint32_t)frac) && (!pfdGated))
+ {
+ return;
+ }
+
+ stable = *pfdCtrl & ((uint32_t)ANADIG_PLL_SYS_PLL2_PFD_PFD0_STABLE_MASK << (8UL * (uint32_t)pfd));
+ *pfdCtrl |= ((uint32_t)ANADIG_PLL_SYS_PLL2_PFD_PFD0_DIV1_CLKGATE_MASK << (8UL * (uint32_t)pfd));
+
+ /* all pfds support to be updated on-the-fly after corresponding PLL is stable */
+ *pfdCtrl &= ~((uint32_t)ANADIG_PLL_SYS_PLL2_PFD_PFD0_FRAC_MASK << (8UL * (uint32_t)pfd));
+ *pfdCtrl |= (ANADIG_PLL_SYS_PLL2_PFD_PFD0_FRAC(frac) << (8UL * (uint32_t)pfd));
+
+ *pfdUpdate ^= ((uint32_t)ANADIG_PLL_SYS_PLL2_UPDATE_PFD0_UPDATE_MASK << (uint32_t)pfd);
+ *pfdCtrl &= ~((uint32_t)ANADIG_PLL_SYS_PLL2_PFD_PFD0_DIV1_CLKGATE_MASK << (8UL * (uint32_t)pfd));
+ /* Wait for stablizing */
+ while (stable == (*pfdCtrl & ((uint32_t)ANADIG_PLL_SYS_PLL2_PFD_PFD0_STABLE_MASK << (8UL * (uint32_t)pfd))))
+ {
+ }
+}
+
+/*!
+ * brief De-initialize selected PLL PFD.
+ *
+ * param pll Which PLL of targeting PFD to be operated.
+ * param pfd Which PFD clock to enable.
+ */
+void CLOCK_DeinitPfd(clock_pll_t pll, clock_pfd_t pfd)
+{
+ volatile uint32_t *pfdCtrl = NULL;
+
+ switch (pll)
+ {
+ case kCLOCK_PllSys2:
+ {
+ pfdCtrl = &ANADIG_PLL->SYS_PLL2_PFD;
+ break;
+ }
+ case kCLOCK_PllSys3:
+ {
+ pfdCtrl = &ANADIG_PLL->SYS_PLL3_PFD;
+ break;
+ }
+ default:
+ {
+ /* Wrong input parameter pll. */
+ assert(false);
+ break;
+ }
+ }
+
+ /* Clock gate the selected pfd. */
+ *pfdCtrl |= ((uint32_t)ANADIG_PLL_SYS_PLL2_PFD_PFD0_DIV1_CLKGATE_MASK << (8UL * (uint32_t)pfd));
+}
+
+#ifndef GET_FREQ_FROM_OBS
+uint32_t CLOCK_GetPfdFreq(clock_pll_t pll, clock_pfd_t pfd)
+{
+ uint32_t pllFreq = 0UL, frac = 0UL;
+ assert((pll == kCLOCK_PllSys2) || (pll == kCLOCK_PllSys3));
+
+ switch (pll)
+ {
+ case kCLOCK_PllSys2:
+ frac = (ANADIG_PLL->SYS_PLL2_PFD &
+ ((uint32_t)ANADIG_PLL_SYS_PLL2_PFD_PFD0_FRAC_MASK << (8UL * (uint32_t)pfd)));
+ pllFreq = (uint32_t)SYS_PLL2_FREQ;
+ break;
+ case kCLOCK_PllSys3:
+ frac = (ANADIG_PLL->SYS_PLL3_PFD &
+ ((uint32_t)ANADIG_PLL_SYS_PLL3_PFD_PFD0_FRAC_MASK << (8UL * (uint32_t)pfd)));
+ pllFreq = (uint32_t)SYS_PLL3_FREQ;
+ break;
+ default:
+ /* Wrong input parameter pll. */
+ assert(false);
+ break;
+ }
+
+ frac = frac >> (8UL * (uint32_t)pfd);
+ assert(frac >= (uint32_t)PFD_FRAC_MIN);
+ assert(frac <= (uint32_t)PFD_FRAC_MAX);
+ return ((frac != 0UL) ? (pllFreq / frac * 18UL) : 0UL);
+}
+#else
+uint32_t CLOCK_GetPfdFreq(clock_pll_t pll, clock_pfd_t pfd)
+{
+ uint32_t freq = 0;
+ assert((pll == kCLOCK_PllSys2) || (pll == kCLOCK_PllSys3));
+
+ switch (pll)
+ {
+ case kCLOCK_PllSys2:
+ /* SYS_PLL2_PFD0 OBS index starts from 234 */
+ freq = CLOCK_GetFreqFromObs(pfd + 234, 2);
+ break;
+ case kCLOCK_PllSys3:
+ /* SYS_PLL3_PFD0 OBS index starts from 241 */
+ freq = CLOCK_GetFreqFromObs(pfd + 241, 2);
+ break;
+ default:
+ assert(false);
+ }
+ return freq;
+}
+#endif
+
+/* 480PLL */
+void CLOCK_InitSysPll3(void)
+{
+ uint32_t reg;
+
+ if (0UL != (ANADIG_PLL->SYS_PLL3_CTRL & ANADIG_PLL_SYS_PLL3_CTRL_POWERUP_MASK))
+ {
+ /* no need to reconfigure the PLL if all the configuration is the same */
+ if (0UL == (ANADIG_PLL->SYS_PLL3_CTRL & ANADIG_PLL_SYS_PLL3_CTRL_ENABLE_CLK_MASK))
+ {
+ ANADIG_PLL->SYS_PLL3_CTRL |= ANADIG_PLL_SYS_PLL3_CTRL_ENABLE_CLK_MASK;
+ }
+
+ if (0UL != (ANADIG_PLL->SYS_PLL3_CTRL & ANADIG_PLL_SYS_PLL3_CTRL_SYS_PLL3_GATE_MASK))
+ {
+ ANADIG_PLL->SYS_PLL3_CTRL &= ~ANADIG_PLL_SYS_PLL3_CTRL_SYS_PLL3_GATE_MASK;
+ }
+ return;
+ }
+
+ PMU_StaticEnablePllLdo(ANADIG_PMU);
+
+ /* Gate all PFDs */
+ ANADIG_PLL->SYS_PLL3_PFD |=
+ ANADIG_PLL_SYS_PLL3_PFD_PFD0_DIV1_CLKGATE(1) | ANADIG_PLL_SYS_PLL3_PFD_PFD1_DIV1_CLKGATE(1) |
+ ANADIG_PLL_SYS_PLL3_PFD_PFD2_DIV1_CLKGATE(1) | ANADIG_PLL_SYS_PLL3_PFD_PFD3_DIV1_CLKGATE(1);
+ /*
+ * 1. configure PLL registres
+ * 2. Enable internal LDO
+ * 3. Wati LDO stable
+ * 4. Power up PLL, assert hold_ring_off (only needed for avpll)
+ * 5. At half lock time, de-asserted hold_ring_off (only needed for avpll)
+ * 6. Wait PLL lock
+ * 7. Enable clock output, release pfd_gate
+ */
+ reg = ANADIG_PLL_SYS_PLL3_CTRL_PLL_REG_EN(1) | ANADIG_PLL_SYS_PLL3_CTRL_SYS_PLL3_GATE(1);
+ ANADIG_PLL->SYS_PLL3_CTRL = reg;
+ SDK_DelayAtLeastUs(30, SDK_DEVICE_MAXIMUM_CPU_CLOCK_FREQUENCY);
+
+ reg |= ANADIG_PLL_SYS_PLL3_CTRL_POWERUP(1) | ANADIG_PLL_SYS_PLL3_CTRL_HOLD_RING_OFF_MASK;
+ ANADIG_PLL->SYS_PLL3_CTRL = reg;
+ SDK_DelayAtLeastUs(30, SDK_DEVICE_MAXIMUM_CPU_CLOCK_FREQUENCY);
+
+ reg &= ~ANADIG_PLL_SYS_PLL3_CTRL_HOLD_RING_OFF_MASK;
+ ANADIG_PLL->SYS_PLL3_CTRL = reg;
+
+ /* Wait for PLL stable */
+ while (ANADIG_PLL_SYS_PLL3_CTRL_SYS_PLL3_STABLE_MASK !=
+ (ANADIG_PLL->SYS_PLL3_CTRL & ANADIG_PLL_SYS_PLL3_CTRL_SYS_PLL3_STABLE_MASK))
+ {
+ }
+
+ reg |= ANADIG_PLL_SYS_PLL3_CTRL_ENABLE_CLK(1) | ANADIG_PLL_SYS_PLL3_CTRL_SYS_PLL3_DIV2(1);
+ ANADIG_PLL->SYS_PLL3_CTRL = reg;
+
+ reg &= ~ANADIG_PLL_SYS_PLL3_CTRL_SYS_PLL3_GATE_MASK;
+ ANADIG_PLL->SYS_PLL3_CTRL = reg;
+}
+
+void CLOCK_DeinitSysPll3(void)
+{
+ ANADIG_PLL->SYS_PLL3_PFD |=
+ ANADIG_PLL_SYS_PLL3_PFD_PFD0_DIV1_CLKGATE(1) | ANADIG_PLL_SYS_PLL3_PFD_PFD1_DIV1_CLKGATE(1) |
+ ANADIG_PLL_SYS_PLL3_PFD_PFD2_DIV1_CLKGATE(1) | ANADIG_PLL_SYS_PLL3_PFD_PFD3_DIV1_CLKGATE(1);
+
+ ANADIG_PLL->SYS_PLL3_CTRL |= ANADIG_PLL_SYS_PLL3_CTRL_SYS_PLL3_GATE_MASK;
+ ANADIG_PLL->SYS_PLL3_CTRL &= ~(ANADIG_PLL_SYS_PLL3_CTRL_ENABLE_CLK_MASK | ANADIG_PLL_SYS_PLL3_CTRL_POWERUP_MASK |
+ ANADIG_PLL_SYS_PLL3_CTRL_PLL_REG_EN_MASK);
+}
+
+/*!
+ * brief Check if Sys PLL3 PFD is enabled
+ *
+ * param pfd PFD control name
+ * return PFD bypass status.
+ * - true: power on.
+ * - false: power off.
+ * note Only useful in software control mode.
+ */
+bool CLOCK_IsSysPll3PfdEnabled(clock_pfd_t pfd)
+{
+ return ((ANADIG_PLL->SYS_PLL3_PFD & (uint32_t)ANADIG_PLL_SYS_PLL3_PFD_PFD0_DIV1_CLKGATE_MASK
+ << (8UL * (uint8_t)pfd)) == 0U);
+}
+
+void CLOCK_SetPllBypass(clock_pll_t pll, bool bypass)
+{
+ switch (pll)
+ {
+ case kCLOCK_PllArm:
+ ANADIG_PLL->ARM_PLL_CTRL = bypass ? (ANADIG_PLL->ARM_PLL_CTRL | ANADIG_PLL_ARM_PLL_CTRL_BYPASS_MASK) :
+ (ANADIG_PLL->ARM_PLL_CTRL & ~ANADIG_PLL_ARM_PLL_CTRL_BYPASS_MASK);
+ break;
+ case kCLOCK_PllSys1:
+ ANATOP_PllBypass(kAI_Itf_1g, bypass);
+ break;
+ case kCLOCK_PllSys2:
+ ANADIG_PLL->SYS_PLL2_CTRL = bypass ? (ANADIG_PLL->SYS_PLL2_CTRL | ANADIG_PLL_SYS_PLL2_CTRL_BYPASS_MASK) :
+ (ANADIG_PLL->SYS_PLL2_CTRL & ~ANADIG_PLL_SYS_PLL2_CTRL_BYPASS_MASK);
+ break;
+ case kCLOCK_PllSys3:
+ ANADIG_PLL->SYS_PLL3_CTRL = bypass ? (ANADIG_PLL->SYS_PLL3_CTRL | ANADIG_PLL_SYS_PLL3_CTRL_BYPASS_MASK) :
+ (ANADIG_PLL->SYS_PLL3_CTRL & ~ANADIG_PLL_SYS_PLL3_CTRL_BYPASS_MASK);
+ break;
+ case kCLOCK_PllAudio:
+ ANATOP_PllBypass(kAI_Itf_Audio, bypass);
+ break;
+ case kCLOCK_PllVideo:
+ ANATOP_PllBypass(kAI_Itf_Video, bypass);
+ break;
+ default:
+ assert(false);
+ break;
+ }
+}
+
+static void ANATOP_PllSetPower(anatop_ai_itf_t itf, bool enable)
+{
+ ANATOP_AI_Write(itf, enable ? PLL_AI_CTRL0_SET_REG : PLL_AI_CTRL0_CLR_REG,
+ PLL_AI_CTRL0_POWER_UP_MASK | (enable ? PLL_AI_CTRL0_HOLD_RING_OFF_MASK : 0UL));
+}
+
+static void ANATOP_PllBypass(anatop_ai_itf_t itf, bool bypass)
+{
+ ANATOP_AI_Write(itf, bypass ? PLL_AI_CTRL0_SET_REG : PLL_AI_CTRL0_CLR_REG, PLL_AI_CTRL0_BYPASS_MASK);
+}
+
+static void ANATOP_PllEnablePllReg(anatop_ai_itf_t itf, bool enable)
+{
+ ANATOP_AI_Write(itf, enable ? PLL_AI_CTRL0_SET_REG : PLL_AI_CTRL0_CLR_REG, PLL_AI_CTRL0_PLL_REG_EN_MASK);
+}
+
+static void ANATOP_PllHoldRingOff(anatop_ai_itf_t itf, bool off)
+{
+ ANATOP_AI_Write(itf, off ? PLL_AI_CTRL0_SET_REG : PLL_AI_CTRL0_CLR_REG, PLL_AI_CTRL0_HOLD_RING_OFF_MASK);
+}
+
+static void ANATOP_PllToggleHoldRingOff(anatop_ai_itf_t itf, uint32_t delay_us)
+{
+ ANATOP_PllHoldRingOff(itf, true);
+ SDK_DelayAtLeastUs(delay_us, SDK_DEVICE_MAXIMUM_CPU_CLOCK_FREQUENCY);
+ ANATOP_PllHoldRingOff(itf, false);
+}
+
+static void ANATOP_PllEnableSs(anatop_ai_itf_t itf, bool enable)
+{
+ ANATOP_AI_Write(itf, enable ? PLL_AI_CTRL0_SET_REG : PLL_AI_CTRL0_CLR_REG, PLL_AI_CTRL0_ENABLE_MASK);
+}
+
+static void ANATOP_PllEnableClk(anatop_ai_itf_t itf, bool enable)
+{
+ ANATOP_AI_Write(itf, enable ? PLL_AI_CTRL0_SET_REG : PLL_AI_CTRL0_CLR_REG, PLL_AI_CTRL0_ENABLE_MASK);
+}
+
+static void ANATOP_PllConfigure(
+ anatop_ai_itf_t itf, uint8_t div, uint32_t numer, uint8_t post_div, uint32_t denom, const clock_pll_ss_config_t *ss)
+{
+ if (itf != kAI_Itf_1g)
+ {
+ ANATOP_PllSetPower(itf, false);
+ }
+ if (ss != NULL)
+ {
+ ANATOP_AI_Write(itf, PLL_AI_CTRL1_REG,
+ AUDIO_PLL_SPREAD_SPECTRUM_STEP(ss->step) | AUDIO_PLL_SPREAD_SPECTRUM_STOP(ss->stop) |
+ AUDIO_PLL_SPREAD_SPECTRUM_ENABLE_MASK);
+ }
+ ANATOP_AI_Write(itf, PLL_AI_CTRL3_REG, denom);
+ ANATOP_AI_Write(itf, PLL_AI_CTRL2_REG, numer);
+ ANATOP_AI_WriteWithMaskShift(itf, PLL_AI_CTRL0_REG, div, 0x7f, 0);
+ if (itf != kAI_Itf_1g)
+ {
+ ANATOP_AI_WriteWithMaskShift(itf, PLL_AI_CTRL0_REG, post_div, 0xE000000UL, 25UL);
+ }
+ ANATOP_PllEnablePllReg(itf, true);
+ SDK_DelayAtLeastUs(100, SDK_DEVICE_MAXIMUM_CPU_CLOCK_FREQUENCY);
+ ANATOP_PllSetPower(itf, true);
+}
+
+static void ANATOP_AudioPllGate(bool enable)
+{
+ if (!enable)
+ {
+ ANADIG_PLL->PLL_AUDIO_CTRL &= ~ANADIG_PLL_PLL_AUDIO_CTRL_PLL_AUDIO_GATE_MASK;
+ }
+ else
+ {
+ ANADIG_PLL->PLL_AUDIO_CTRL |= ANADIG_PLL_PLL_AUDIO_CTRL_PLL_AUDIO_GATE_MASK;
+ }
+}
+
+static void ANATOP_AudioPllSwEnClk(bool enable)
+{
+ if (!enable)
+ {
+ ANADIG_PLL->PLL_AUDIO_CTRL &= ~ANADIG_PLL_PLL_AUDIO_CTRL_ENABLE_CLK_MASK;
+ }
+ else
+ {
+ ANADIG_PLL->PLL_AUDIO_CTRL |= ANADIG_PLL_PLL_AUDIO_CTRL_ENABLE_CLK_MASK;
+ }
+}
+
+status_t CLOCK_InitAudioPllWithFreq(uint32_t freqInMhz, bool ssEnable, uint32_t ssRange, uint32_t ssMod)
+{
+ clock_audio_pll_config_t config = {0};
+ config.ssEnable = ssEnable;
+
+ if (kStatus_Success == CLOCK_CalcAvPllFreq(&config, freqInMhz))
+ {
+ if (config.ssEnable)
+ {
+ clock_pll_ss_config_t ss = {0};
+ CLOCK_CalcPllSpreadSpectrum(config.denominator, ssRange, ssMod, &ss);
+ config.ss = &ss;
+ }
+ CLOCK_InitAudioPll(&config);
+ return kStatus_Success;
+ }
+ return kStatus_Fail;
+}
+
+void CLOCK_InitAudioPll(const clock_audio_pll_config_t *config)
+{
+ uint32_t reg;
+ bool pllStable = false;
+
+ PMU_StaticEnablePllLdo(ANADIG_PMU);
+
+ reg = ANADIG_PLL->PLL_AUDIO_CTRL;
+ if ((reg & (ANADIG_PLL_PLL_AUDIO_CTRL_PLL_AUDIO_STABLE_MASK | ANADIG_PLL_PLL_AUDIO_CTRL_ENABLE_CLK_MASK)) ==
+ (ANADIG_PLL_PLL_AUDIO_CTRL_PLL_AUDIO_STABLE_MASK | ANADIG_PLL_PLL_AUDIO_CTRL_ENABLE_CLK_MASK))
+ {
+ pllStable = true;
+ }
+ /* bypass pll */
+ ANATOP_PllBypass(kAI_Itf_Audio, true);
+
+ if (pllStable)
+ {
+ /* sw enable clock */
+ ANATOP_AudioPllSwEnClk(false);
+ /* gate clock */
+ ANATOP_AudioPllGate(true);
+ ANATOP_PllEnableClk(kAI_Itf_Audio, false);
+ ANATOP_PllSetPower(kAI_Itf_Audio, false);
+ ANATOP_PllEnablePllReg(kAI_Itf_Audio, false);
+ }
+
+ ANATOP_AudioPllSwEnClk(true);
+ /* configure pll */
+ ANATOP_PllConfigure(kAI_Itf_Audio, config->loopDivider, config->numerator, config->postDivider, config->denominator,
+ (config->ssEnable && (config->ss != NULL)) ? config->ss : NULL);
+
+ /* toggle hold ring off */
+ ANATOP_PllToggleHoldRingOff(kAI_Itf_Audio, 225);
+
+ /* wait pll stable */
+ do
+ {
+ reg = ANADIG_PLL->PLL_AUDIO_CTRL;
+ } while ((reg & ANADIG_PLL_PLL_AUDIO_CTRL_PLL_AUDIO_STABLE_MASK) !=
+ ANADIG_PLL_PLL_AUDIO_CTRL_PLL_AUDIO_STABLE_MASK); /* wait for PLL locked */
+
+ /* enabled clock */
+ ANATOP_PllEnableClk(kAI_Itf_Audio, true);
+
+ /* ungate clock */
+ ANATOP_AudioPllGate(false);
+
+ ANATOP_PllBypass(kAI_Itf_Audio, false);
+}
+
+void CLOCK_DeinitAudioPll(void)
+{
+ ANATOP_AudioPllSwEnClk(false);
+ ANATOP_AudioPllGate(true);
+ ANATOP_PllEnableClk(kAI_Itf_Audio, false);
+ ANATOP_PllSetPower(kAI_Itf_Audio, false);
+ ANATOP_PllEnableSs(kAI_Itf_Audio, false);
+ ANATOP_PllEnablePllReg(kAI_Itf_Audio, false);
+}
+
+void CLOCK_GPC_SetAudioPllOutputFreq(const clock_audio_pll_gpc_config_t *config)
+{
+ assert(config != NULL);
+
+ ANADIG_PLL->PLL_AUDIO_DIV_SELECT = config->loopDivider;
+ ANADIG_PLL->PLL_AUDIO_NUMERATOR = config->numerator;
+ ANADIG_PLL->PLL_AUDIO_DENOMINATOR = config->denominator;
+ if ((config->ss != NULL) && config->ssEnable)
+ {
+ ANADIG_PLL->PLL_AUDIO_SS = ANADIG_PLL_PLL_AUDIO_SS_STEP(config->ss->step) |
+ ANADIG_PLL_PLL_AUDIO_SS_STOP(config->ss->stop) | ANADIG_PLL_PLL_AUDIO_SS_ENABLE_MASK;
+ }
+
+ ANADIG_PLL->PLL_AUDIO_CTRL |= ANADIG_PLL_PLL_AUDIO_CTRL_PLL_AUDIO_CONTROL_MODE_MASK;
+}
+
+static void ANATOP_VideoPllGate(bool enable)
+{
+ if (!enable)
+ {
+ ANADIG_PLL->PLL_VIDEO_CTRL &= ~ANADIG_PLL_PLL_VIDEO_CTRL_PLL_VIDEO_GATE_MASK;
+ }
+ else
+ {
+ ANADIG_PLL->PLL_VIDEO_CTRL |= ANADIG_PLL_PLL_VIDEO_CTRL_PLL_VIDEO_GATE_MASK;
+ }
+}
+
+static void ANATOP_VideoPllSwEnClk(bool enable)
+{
+ if (!enable)
+ {
+ ANADIG_PLL->PLL_VIDEO_CTRL &= ~ANADIG_PLL_PLL_VIDEO_CTRL_ENABLE_CLK_MASK;
+ }
+ else
+ {
+ ANADIG_PLL->PLL_VIDEO_CTRL |= ANADIG_PLL_PLL_VIDEO_CTRL_ENABLE_CLK_MASK;
+ }
+}
+
+status_t CLOCK_CalcArmPllFreq(clock_arm_pll_config_t *config, uint32_t freqInMhz)
+{
+ assert(config != NULL);
+ uint32_t refFreq = ((XTAL_FREQ / 1000000UL) * 104UL / 4UL); /* MHz */
+ assert((freqInMhz <= refFreq) && (freqInMhz >= 156UL));
+
+ /*
+ * ARM_PLL (156Mhz - 624MHz configureable )
+ * freqInMhz = osc_freq * loopDivider / (2 * postDivider)
+ * - loopDivider: 104 - 208
+ * postDivider:
+ * 0 - divide by 8; 1 - divide by 4
+ */
+
+ if (freqInMhz >= refFreq)
+ {
+ config->loopDivider = 208;
+ config->postDivider = kCLOCK_PllPostDiv4;
+ }
+ else if (freqInMhz >= (refFreq >> 1UL))
+ {
+ config->postDivider = kCLOCK_PllPostDiv4;
+ config->loopDivider = freqInMhz / 3UL;
+ }
+ else
+ {
+ config->postDivider = kCLOCK_PllPostDiv8;
+ config->loopDivider = freqInMhz * 2UL / 3UL;
+ }
+
+ return kStatus_Success;
+}
+
+status_t CLOCK_InitArmPllWithFreq(uint32_t freqInMhz)
+{
+ clock_arm_pll_config_t config;
+ if (kStatus_Success == CLOCK_CalcArmPllFreq(&config, freqInMhz))
+ {
+ CLOCK_InitArmPll(&config);
+ return kStatus_Success;
+ }
+ return kStatus_Fail;
+}
+
+status_t CLOCK_CalcAvPllFreq(clock_av_pll_config_t *config, uint32_t freqInMhz)
+{
+ assert(config != NULL);
+
+ uint32_t refFreq = (XTAL_FREQ / 1000000UL) * 54UL; /* MHz */
+
+ assert((freqInMhz <= refFreq) && (freqInMhz > 20UL));
+
+ /*
+ * AUDIO_PLL/VIDEO_PLL (20.3125MHZ--- 1300MHZ configureable )
+ * freqInMhz = osc_freq * (loopDivider + numerator / (2^28 - 1) ) / 2^postDivider
+ * - loopDivider: 27---54
+ * - postDivider: 0---5
+ * - numerator is a signed number, 30 bit, numer[29] is the sign bit, such as +1--->0x00000001; -1---> 0x20000001
+ * such as: div_sel = 27, numer = 0x026EEEEF, post_div =0, fref = 24.0MHZ, output_fre =24.0*(27 + 40824559/(2^28 -
+ * 1))/2^0 = 651.65M such as: div_sel = 33, numer = 0x0F0AAAAA, post_div =0, fref = 19.2MHZ, output_fre =19.2*(33 +
+ * 252357290/(2^28 - 1))/2^0= 651.65M
+ */
+
+ config->denominator = 0x0FFFFFFF;
+
+ if (freqInMhz >= refFreq)
+ {
+ config->postDivider = 0;
+ config->loopDivider = 54;
+ config->numerator = 0;
+ }
+ else if (freqInMhz >= (refFreq >> 1))
+ {
+ config->postDivider = 0;
+ config->loopDivider = (uint8_t)(freqInMhz / 24UL);
+ config->numerator = (config->denominator / 24UL) * (freqInMhz % 24UL);
+ }
+ else if (freqInMhz >= (refFreq >> 2))
+ {
+ config->postDivider = 1;
+ config->loopDivider = (uint8_t)(freqInMhz / 12UL);
+ config->numerator = (config->denominator / 12UL) * (freqInMhz % 12UL);
+ }
+ else if (freqInMhz >= (refFreq >> 3))
+ {
+ config->postDivider = 2;
+ config->loopDivider = (uint8_t)(freqInMhz / 6UL);
+ config->numerator = (config->denominator / 6UL) * (freqInMhz % 6UL);
+ }
+ else if (freqInMhz >= (refFreq >> 4))
+ {
+ config->postDivider = 3;
+ config->loopDivider = (uint8_t)(freqInMhz / 3UL);
+ config->numerator = (config->denominator / 3UL) * (freqInMhz % 3UL);
+ }
+ else if (freqInMhz >= (refFreq >> 5))
+ {
+ config->postDivider = 4;
+ config->loopDivider = (uint8_t)(freqInMhz * 2UL / 3UL);
+ config->numerator = (config->denominator * 2UL / 3UL) * (freqInMhz * 2UL % 3UL);
+ }
+ else if (freqInMhz > (refFreq >> 6))
+ {
+ config->postDivider = 5;
+ config->loopDivider = (uint8_t)(freqInMhz * 4UL / 3UL);
+ config->numerator = (config->denominator * 4UL / 3UL) * (freqInMhz * 4UL % 3UL);
+ }
+ else
+ {
+ return kStatus_Fail;
+ }
+ return kStatus_Success;
+}
+
+status_t CLOCK_InitVideoPllWithFreq(uint32_t freqInMhz, bool ssEnable, uint32_t ssRange, uint32_t ssMod)
+{
+ clock_video_pll_config_t config = {0};
+ config.ssEnable = ssEnable;
+
+ if (kStatus_Success == CLOCK_CalcAvPllFreq(&config, freqInMhz))
+ {
+ if (config.ssEnable)
+ {
+ clock_pll_ss_config_t ss = {0};
+ CLOCK_CalcPllSpreadSpectrum(config.denominator, ssRange, ssMod, &ss);
+ config.ss = &ss;
+ }
+ CLOCK_InitVideoPll(&config);
+ return kStatus_Success;
+ }
+ return kStatus_Fail;
+}
+
+void CLOCK_InitVideoPll(const clock_video_pll_config_t *config)
+{
+ uint32_t reg;
+ bool pllStable = false;
+
+ PMU_StaticEnablePllLdo(ANADIG_PMU);
+
+ reg = ANADIG_PLL->PLL_VIDEO_CTRL;
+ if ((reg & (ANADIG_PLL_PLL_VIDEO_CTRL_PLL_VIDEO_STABLE_MASK | ANADIG_PLL_PLL_VIDEO_CTRL_ENABLE_CLK_MASK)) ==
+ (ANADIG_PLL_PLL_VIDEO_CTRL_PLL_VIDEO_STABLE_MASK | ANADIG_PLL_PLL_VIDEO_CTRL_ENABLE_CLK_MASK))
+ {
+ pllStable = true;
+ }
+ /* bypass pll */
+ ANATOP_PllBypass(kAI_Itf_Video, true);
+
+ if (pllStable)
+ {
+ /* sw enable clock */
+ ANATOP_VideoPllSwEnClk(false);
+ /* gate clock */
+ ANATOP_VideoPllGate(true);
+ ANATOP_PllEnableClk(kAI_Itf_Video, false);
+ ANATOP_PllSetPower(kAI_Itf_Video, false);
+ ANATOP_PllEnablePllReg(kAI_Itf_Video, false);
+ }
+
+ ANATOP_VideoPllSwEnClk(true);
+ /* configure pll */
+ ANATOP_PllConfigure(kAI_Itf_Video, config->loopDivider, config->numerator, config->postDivider, config->denominator,
+ (config->ssEnable && (config->ss != NULL)) ? config->ss : NULL);
+
+ /* toggle hold ring off */
+ ANATOP_PllToggleHoldRingOff(kAI_Itf_Video, 225);
+
+ /* wait pll stable */
+ do
+ {
+ reg = ANADIG_PLL->PLL_VIDEO_CTRL;
+ } while ((reg & ANADIG_PLL_PLL_VIDEO_CTRL_PLL_VIDEO_STABLE_MASK) !=
+ ANADIG_PLL_PLL_VIDEO_CTRL_PLL_VIDEO_STABLE_MASK); /* wait for PLL locked */
+
+ /* enabled clock */
+ ANATOP_PllEnableClk(kAI_Itf_Video, true);
+
+ /* ungate clock */
+ ANATOP_VideoPllGate(false);
+
+ ANATOP_PllBypass(kAI_Itf_Video, false);
+}
+
+void CLOCK_DeinitVideoPll(void)
+{
+ ANATOP_VideoPllSwEnClk(false);
+ ANATOP_VideoPllGate(true);
+ ANATOP_PllEnableClk(kAI_Itf_Video, false);
+ ANATOP_PllSetPower(kAI_Itf_Video, false);
+ ANATOP_PllEnableSs(kAI_Itf_Video, false);
+ ANATOP_PllEnablePllReg(kAI_Itf_Video, false);
+}
+
+void CLOCK_GPC_SetVideoPllOutputFreq(const clock_video_pll_gpc_config_t *config)
+{
+ assert(config != NULL);
+
+ ANADIG_PLL->PLL_VIDEO_DIV_SELECT = config->loopDivider;
+ ANADIG_PLL->PLL_VIDEO_NUMERATOR = config->numerator;
+ ANADIG_PLL->PLL_VIDEO_DENOMINATOR = config->denominator;
+
+ if ((config->ss != NULL) && config->ssEnable)
+ {
+ ANADIG_PLL->PLL_VIDEO_SS = ANADIG_PLL_PLL_VIDEO_SS_STEP(config->ss->step) |
+ ANADIG_PLL_PLL_VIDEO_SS_STOP(config->ss->stop) | ANADIG_PLL_PLL_VIDEO_SS_ENABLE_MASK;
+ }
+
+ ANADIG_PLL->PLL_VIDEO_CTRL |= ANADIG_PLL_PLL_VIDEO_CTRL_PLL_VIDEO_CONTROL_MODE_MASK;
+}
+
+static void ANATOP_SysPll1Gate(bool enable)
+{
+ if (!enable)
+ {
+ ANADIG_PLL->SYS_PLL1_CTRL &= ~ANADIG_PLL_SYS_PLL1_CTRL_SYS_PLL1_GATE_MASK;
+ }
+ else
+ {
+ ANADIG_PLL->SYS_PLL1_CTRL |= ANADIG_PLL_SYS_PLL1_CTRL_SYS_PLL1_GATE_MASK;
+ }
+}
+
+static void ANATOP_SysPll1Div2En(bool enable)
+{
+ if (!enable)
+ {
+ ANADIG_PLL->SYS_PLL1_CTRL &= ~ANADIG_PLL_SYS_PLL1_CTRL_SYS_PLL1_DIV2_MASK;
+ }
+ else
+ {
+ ANADIG_PLL->SYS_PLL1_CTRL |= ANADIG_PLL_SYS_PLL1_CTRL_SYS_PLL1_DIV2_MASK;
+ }
+}
+
+static void ANATOP_SysPll1Div5En(bool enable)
+{
+ if (!enable)
+ {
+ ANADIG_PLL->SYS_PLL1_CTRL &= ~ANADIG_PLL_SYS_PLL1_CTRL_SYS_PLL1_DIV5_MASK;
+ }
+ else
+ {
+ ANADIG_PLL->SYS_PLL1_CTRL |= ANADIG_PLL_SYS_PLL1_CTRL_SYS_PLL1_DIV5_MASK;
+ }
+}
+
+static void ANATOP_SysPll1SwEnClk(bool enable)
+{
+ if (!enable)
+ {
+ ANADIG_PLL->SYS_PLL1_CTRL &= ~ANADIG_PLL_SYS_PLL1_CTRL_ENABLE_CLK_MASK;
+ }
+ else
+ {
+ ANADIG_PLL->SYS_PLL1_CTRL |= ANADIG_PLL_SYS_PLL1_CTRL_ENABLE_CLK_MASK;
+ }
+}
+
+static void ANATOP_SysPll1WaitStable(void)
+{
+ uint32_t reg;
+ do
+ {
+ reg = ANADIG_PLL->SYS_PLL1_CTRL;
+ } while ((reg & ANADIG_PLL_SYS_PLL1_CTRL_SYS_PLL1_STABLE_MASK) !=
+ ANADIG_PLL_SYS_PLL1_CTRL_SYS_PLL1_STABLE_MASK); /* wait for PLL locked */
+}
+
+/* 1GPLL */
+void CLOCK_InitSysPll1(const clock_sys_pll1_config_t *config)
+{
+ uint8_t div;
+ uint32_t numerator, denominator;
+
+ PMU_StaticEnablePllLdo(ANADIG_PMU);
+ /* bypass pll */
+ ANATOP_PllBypass(kAI_Itf_1g, true);
+
+ /* sw enable clock */
+ ANATOP_SysPll1SwEnClk(true);
+
+ denominator = 0x0FFFFFFF;
+ div = 41U;
+ numerator = 178956970UL;
+
+ if (config->ssEnable && (config->ss != NULL))
+ {
+ return;
+ }
+
+ /* configure pll */
+ ANATOP_PllConfigure(kAI_Itf_1g, div, numerator, 0U, denominator,
+ (config->ssEnable && (config->ss != NULL)) ? config->ss : NULL);
+
+ /* toggle hold ring off */
+ ANATOP_PllToggleHoldRingOff(kAI_Itf_1g, 225);
+
+ /* wait pll stable */
+ ANATOP_SysPll1WaitStable();
+
+ /* enabled clock */
+ ANATOP_PllEnableClk(kAI_Itf_1g, true);
+
+ /* ungate clock */
+ ANATOP_SysPll1Gate(false);
+
+ ANATOP_SysPll1Div2En(config->pllDiv2En);
+ ANATOP_SysPll1Div5En(config->pllDiv5En);
+
+ /* bypass pll */
+ ANATOP_PllBypass(kAI_Itf_1g, false);
+}
+
+void CLOCK_DeinitSysPll1(void)
+{
+ ANATOP_SysPll1SwEnClk(false);
+ ANATOP_SysPll1Div2En(false);
+ ANATOP_SysPll1Div5En(false);
+ ANATOP_SysPll1Gate(true);
+ ANATOP_PllEnableClk(kAI_Itf_1g, false);
+ ANATOP_PllSetPower(kAI_Itf_1g, false);
+ ANATOP_PllEnableSs(kAI_Itf_1g, false);
+ ANATOP_PllEnablePllReg(kAI_Itf_1g, false);
+}
+
+void CLOCK_GPC_SetSysPll1OutputFreq(const clock_sys_pll1_gpc_config_t *config)
+{
+ assert(config != NULL);
+
+ ANADIG_PLL->SYS_PLL1_DIV_SELECT = config->loopDivider;
+ ANADIG_PLL->SYS_PLL1_NUMERATOR = config->numerator;
+ ANADIG_PLL->SYS_PLL1_DENOMINATOR = config->denominator;
+
+ if ((config->ss != NULL) && config->ssEnable)
+ {
+ ANADIG_PLL->SYS_PLL1_SS = ANADIG_PLL_SYS_PLL1_SS_STEP(config->ss->step) |
+ ANADIG_PLL_SYS_PLL1_SS_STOP(config->ss->stop) | ANADIG_PLL_SYS_PLL1_SS_ENABLE_MASK;
+ }
+
+ ANADIG_PLL->SYS_PLL1_CTRL |= ANADIG_PLL_SYS_PLL1_CTRL_SYS_PLL1_CONTROL_MODE_MASK;
+}
+
+void CLOCK_OSC_EnableOsc24M(void)
+{
+ if (0UL == (ANADIG_OSC->OSC_24M_CTRL & ANADIG_OSC_OSC_24M_CTRL_OSC_EN_MASK))
+ {
+ ANADIG_OSC->OSC_24M_CTRL |= ANADIG_OSC_OSC_24M_CTRL_OSC_EN_MASK;
+ while (ANADIG_OSC_OSC_24M_CTRL_OSC_24M_STABLE_MASK !=
+ (ANADIG_OSC->OSC_24M_CTRL & ANADIG_OSC_OSC_24M_CTRL_OSC_24M_STABLE_MASK))
+ {
+ }
+ }
+}
+
+/*!
+ * brief Set the work mode of 24MHz crystal oscillator, the available modes are high gian mode, low power mode, and
+ * bypass mode.
+ *
+ * param workMode The work mode of 24MHz crystal oscillator, please refer to @ref clock_24MOsc_mode_t for details.
+ */
+void CLOCK_OSC_SetOsc24MWorkMode(clock_24MOsc_mode_t workMode)
+{
+ uint32_t tmp32;
+
+ tmp32 = ANADIG_OSC->OSC_24M_CTRL;
+ tmp32 &= ~(ANADIG_OSC_OSC_24M_CTRL_LP_EN_MASK | ANADIG_OSC_OSC_24M_CTRL_BYPASS_EN_MASK);
+ tmp32 |= (((uint32_t)workMode << ANADIG_OSC_OSC_24M_CTRL_BYPASS_EN_SHIFT) &
+ (ANADIG_OSC_OSC_24M_CTRL_LP_EN_MASK | ANADIG_OSC_OSC_24M_CTRL_BYPASS_EN_MASK));
+ ANADIG_OSC->OSC_24M_CTRL = tmp32;
+}
+
+/*!
+ * brief Configure the 16MHz oscillator.
+ *
+ * param source Used to select the source for 16MHz RC oscillator, please refer to clock_16MOsc_source_t.
+ * param enablePowerSave Enable/disable power save mode function at 16MHz OSC.
+ * - \b true Enable power save mode function at 16MHz osc.
+ * - \b false Disable power save mode function at 16MHz osc.
+ * param enableClockOut Enable/Disable clock output for 16MHz RCOSC.
+ * - \b true Enable clock output for 16MHz RCOSC.
+ * - \b false Disable clock output for 16MHz RCOSC.
+ */
+void CLOCK_OSC_SetOsc16MConfig(clock_16MOsc_source_t source, bool enablePowerSave, bool enableClockOut)
+{
+ uint32_t tmp32;
+
+ tmp32 = ANADIG_OSC->OSC_16M_CTRL;
+ tmp32 &= ~(ANADIG_OSC_OSC_16M_CTRL_EN_IRC4M16M_MASK | ANADIG_OSC_OSC_16M_CTRL_EN_POWER_SAVE_MASK |
+ ANADIG_OSC_OSC_16M_CTRL_SOURCE_SEL_16M_MASK);
+ tmp32 |= ANADIG_OSC_OSC_16M_CTRL_EN_IRC4M16M(enableClockOut) |
+ ANADIG_OSC_OSC_16M_CTRL_EN_POWER_SAVE(enablePowerSave) | ANADIG_OSC_OSC_16M_CTRL_SOURCE_SEL_16M(source);
+ ANADIG_OSC->OSC_16M_CTRL = tmp32;
+}
+
+/*!
+ * brief Set the divide value for ref_clk to generate slow clock.
+ *
+ * note slow_clk = ref_clk / (divValue + 1), and the recommand divide value is 24.
+ *
+ * param divValue The divide value to be set, the available range is 0~63.
+ */
+void CLOCK_OSC_SetOscRc400MRefClkDiv(uint8_t divValue)
+{
+ uint32_t tmp32;
+
+ tmp32 = ANATOP_AI_Read(kAI_Itf_400m, kAI_RCOSC400M_CTRL0);
+ tmp32 = ((tmp32 & ~AI_RCOSC400M_CTRL0_REF_CLK_DIV_MASK) | AI_RCOSC400M_CTRL0_REF_CLK_DIV(divValue));
+ ANATOP_AI_Write(kAI_Itf_400m, kAI_RCOSC400M_CTRL0, tmp32);
+}
+
+/*!
+ * brief Set the target count for the fast clock.
+ *
+ * param targetCount The desired target for the fast clock, should be the number of clock cycles of the fast_clk per
+ * divided ref_clk.
+ */
+void CLOCK_OSC_SetOscRc400MFastClkCount(uint16_t targetCount)
+{
+ uint32_t tmp32;
+
+ tmp32 = ANATOP_AI_Read(kAI_Itf_400m, kAI_RCOSC400M_CTRL1);
+ tmp32 = ((tmp32 & ~AI_RCOSC400M_CTRL1_TARGET_COUNT_MASK) | AI_RCOSC400M_CTRL1_TARGET_COUNT(targetCount));
+ ANATOP_AI_Write(kAI_Itf_400m, kAI_RCOSC400M_CTRL1, tmp32);
+}
+
+/*!
+ * brief Set the negative and positive hysteresis value for the tuned clock.
+ *
+ * note The hysteresis value should be set after the clock is tuned.
+ *
+ * param negHysteresis The negative hysteresis value for the turned clock, this value in number of clock cycles of the
+ * fast clock
+ * param posHysteresis The positive hysteresis value for the turned clock, this value in number of clock cycles of the
+ * fast clock
+ */
+void CLOCK_OSC_SetOscRc400MHysteresisValue(uint8_t negHysteresis, uint8_t posHysteresis)
+{
+ uint32_t tmp32;
+
+ tmp32 = ANATOP_AI_Read(kAI_Itf_400m, kAI_RCOSC400M_CTRL1);
+ tmp32 = ((tmp32 & ~(AI_RCOSC400M_CTRL1_HYST_PLUS_MASK | AI_RCOSC400M_CTRL1_HYST_MINUS_MASK)) |
+ (AI_RCOSC400M_CTRL1_HYST_PLUS(posHysteresis) | AI_RCOSC400M_CTRL1_HYST_MINUS(negHysteresis)));
+ ANATOP_AI_Write(kAI_Itf_400m, kAI_RCOSC400M_CTRL1, tmp32);
+}
+
+/*!
+ * brief Bypass/un-bypass the tune logic
+ *
+ * param enableBypass Used to control whether to bypass the turn logic.
+ * - \b true Bypass the tune logic and use the programmed oscillator frequency to run the oscillator.
+ * Function CLOCK_OSC_SetOscRc400MTuneValue() can be used to set oscillator frequency.
+ * - \b false Use the output of tune logic to run the oscillator.
+ */
+void CLOCK_OSC_BypassOscRc400MTuneLogic(bool enableBypass)
+{
+ if (enableBypass)
+ {
+ ANATOP_AI_Write(kAI_Itf_400m, kAI_RCOSC400M_CTRL2_SET, AI_RCOSC400M_CTRL2_TUNE_BYP_MASK);
+ }
+ else
+ {
+ ANATOP_AI_Write(kAI_Itf_400m, kAI_RCOSC400M_CTRL2_CLR, AI_RCOSC400M_CTRL2_TUNE_BYP_MASK);
+ }
+}
+
+/*!
+ * brief Start/Stop the tune logic.
+ *
+ * param enable Used to start or stop the tune logic.
+ * - \b true Start tuning
+ * - \b false Stop tuning and reset the tuning logic.
+ */
+void CLOCK_OSC_EnableOscRc400MTuneLogic(bool enable)
+{
+ if (enable)
+ {
+ ANATOP_AI_Write(kAI_Itf_400m, kAI_RCOSC400M_CTRL2_SET, AI_RCOSC400M_CTRL2_TUNE_START_MASK);
+ }
+ else
+ {
+ ANATOP_AI_Write(kAI_Itf_400m, kAI_RCOSC400M_CTRL2_CLR, AI_RCOSC400M_CTRL2_TUNE_START_MASK);
+ }
+}
+
+/*!
+ * brief Freeze/Unfreeze the tuning value.
+ *
+ * param enableFreeze Used to control whether to freeze the tune value.
+ * - \b true Freeze the tune at the current tuned value and the oscillator runs at tje frozen tune value.
+ * - \b false Unfreezes and continues the tune operation.
+ */
+void CLOCK_OSC_FreezeOscRc400MTuneValue(bool enableFreeze)
+{
+ if (enableFreeze)
+ {
+ ANATOP_AI_Write(kAI_Itf_400m, kAI_RCOSC400M_CTRL2_SET, AI_RCOSC400M_CTRL2_TUNE_EN_MASK);
+ }
+ else
+ {
+ ANATOP_AI_Write(kAI_Itf_400m, kAI_RCOSC400M_CTRL2_CLR, AI_RCOSC400M_CTRL2_TUNE_EN_MASK);
+ }
+}
+
+/*!
+ * @brief Set the 400MHz RC oscillator tune value when the tune logic is disabled.
+ *
+ * @param tuneValue The tune value to determine the frequency of Oscillator.
+ */
+void CLOCK_OSC_SetOscRc400MTuneValue(uint8_t tuneValue)
+{
+ uint32_t tmp32;
+
+ tmp32 = ANATOP_AI_Read(kAI_Itf_400m, kAI_RCOSC400M_CTRL2);
+ tmp32 &= ~AI_RCOSC400M_CTRL2_OSC_TUNE_VAL_MASK;
+ tmp32 |= AI_RCOSC400M_CTRL2_OSC_TUNE_VAL(tuneValue);
+ ANATOP_AI_Write(kAI_Itf_400m, kAI_RCOSC400M_CTRL2, tmp32);
+}
+
+/*!
+ * brief Set the behavior of the 1MHz output clock, such as disable the 1MHz clock output,
+ * enable the free-running 1MHz clock output, enable the locked 1MHz clock output.
+ *
+ * note The 1MHz clock is divided from 400M RC Oscillator.
+ *
+ * param behavior The behavior of 1MHz output clock, please refer to clock_1MHzOut_behavior_t for details.
+ */
+void CLOCK_OSC_Set1MHzOutputBehavior(clock_1MHzOut_behavior_t behavior)
+{
+ uint32_t tmp32;
+
+ tmp32 = ANATOP_AI_Read(kAI_Itf_400m, kAI_RCOSC400M_CTRL3);
+ tmp32 &= ~(AI_RCOSC400M_CTRL3_EN_1M_CLK_MASK | AI_RCOSC400M_CTRL3_MUX_1M_CLK_MASK);
+
+ if (behavior == kCLOCK_1MHzOutDisable)
+ {
+ tmp32 |= AI_RCOSC400M_CTRL3_EN_1M_CLK_MASK;
+ }
+ else
+ {
+ if (behavior == kCLOCK_1MHzOutEnableLocked1Mhz)
+ {
+ tmp32 |= AI_RCOSC400M_CTRL3_MUX_1M_CLK_MASK;
+ }
+ }
+ ANATOP_AI_Write(kAI_Itf_400m, kAI_RCOSC400M_CTRL3, tmp32);
+}
+
+/*!
+ * brief Set the count for the locked 1MHz clock out.
+ *
+ * param count Used to set the desired target for the locked 1MHz clock out, the value in number of clock cycles of the
+ * osc_out_400M per divided ref_clk.
+ */
+void CLOCK_OSC_SetLocked1MHzCount(uint16_t count)
+{
+ uint32_t tmp32;
+ uint16_t targetCount;
+ uint16_t hystMinus;
+ uint16_t diffCount;
+
+ tmp32 = ANATOP_AI_Read(kAI_Itf_400m, kAI_RCOSC400M_CTRL1);
+ targetCount = (uint16_t)((tmp32 & AI_RCOSC400M_CTRL1_TARGET_COUNT_MASK) >> AI_RCOSC400M_CTRL1_TARGET_COUNT_SHIFT);
+ hystMinus = (uint16_t)((tmp32 & AI_RCOSC400M_CTRL1_HYST_MINUS_MASK) >> AI_RCOSC400M_CTRL1_HYST_MINUS_SHIFT);
+ diffCount = targetCount - hystMinus - count;
+
+ /* The count for the locked 1MHz clock should be 4 to 8 counts less than CTRL[TARGET_COUNT] - CTRL1[HYST_MINUS]. */
+ if ((diffCount >= 4U) && (diffCount <= 8U))
+ {
+ tmp32 = (tmp32 & ~AI_RCOSC400M_CTRL3_COUNT_1M_CLK_MASK) | AI_RCOSC400M_CTRL3_COUNT_1M_CLK(count);
+ ANATOP_AI_Write(kAI_Itf_400m, kAI_RCOSC400M_CTRL3, tmp32);
+ }
+}
+
+/*!
+ * brief Check the error flag for locked 1MHz clock out.
+ *
+ * return The error flag for locked 1MHz clock out.
+ * - \b true The count value has been reached within one diviced ref clock period
+ * - \b false No effect.
+ */
+bool CLOCK_OSC_CheckLocked1MHzErrorFlag(void)
+{
+ uint32_t tmp32;
+
+ tmp32 = ANATOP_AI_Read(kAI_Itf_400m, kAI_RCOSC400M_STAT0);
+
+ return ((tmp32 & AI_RCOSC400M_STAT0_CLK1M_ERR_MASK) == AI_RCOSC400M_STAT0_CLK1M_ERR_MASK);
+}
+
+/*!
+ * brief Clear the error flag for locked 1MHz clock out.
+ */
+void CLOCK_OSC_ClearLocked1MHzErrorFlag(void)
+{
+ ANATOP_AI_Write(kAI_Itf_400m, kAI_RCOSC400M_CTRL3_SET, AI_RCOSC400M_CTRL3_CLR_ERR_MASK);
+}
+
+/*!
+ * brief Get current count for the fast clock during the tune process.
+ *
+ * return The current count for the fast clock.
+ */
+uint16_t CLOCK_OSC_GetCurrentOscRc400MFastClockCount(void)
+{
+ uint32_t tmp32;
+
+ tmp32 = ANATOP_AI_Read(kAI_Itf_400m, kAI_RCOSC400M_STAT1);
+
+ return (uint16_t)((tmp32 & AI_RCOSC400M_STAT1_CURR_COUNT_VAL_MASK) >> AI_RCOSC400M_STAT1_CURR_COUNT_VAL_SHIFT);
+}
+
+/*!
+ * brief Get current tune value used by oscillator during tune process.
+ *
+ * return The current tune value.
+ */
+uint8_t CLOCK_OSC_GetCurrentOscRc400MTuneValue(void)
+{
+ uint32_t tmp32;
+
+ tmp32 = ANATOP_AI_Read(kAI_Itf_400m, kAI_RCOSC400M_STAT2);
+
+ return (uint8_t)((tmp32 & AI_RCOSC400M_STAT2_CURR_OSC_TUNE_VAL_MASK) >> AI_RCOSC400M_STAT2_CURR_OSC_TUNE_VAL_SHIFT);
+}
+
+#ifndef GET_FREQ_FROM_OBS
+static uint32_t CLOCK_GetAvPllFreq(clock_pll_t pll)
+{
+ uint32_t freq = 0;
+ uint32_t div;
+ uint32_t post_div;
+ double tmpDouble;
+ double denom;
+ double numer;
+
+ assert((pll == kCLOCK_PllAudio) || (pll == kCLOCK_PllVideo));
+
+ div = ANATOP_AI_Read(pll == kCLOCK_PllAudio ? kAI_Itf_Audio : kAI_Itf_Video, PLL_AI_CTRL0_REG);
+ post_div = (div & (0xE000000UL)) >> 25UL;
+ div &= 0x7fUL;
+ denom = (double)ANATOP_AI_Read(pll == kCLOCK_PllAudio ? kAI_Itf_Audio : kAI_Itf_Video, PLL_AI_CTRL3_REG);
+ numer = (double)ANATOP_AI_Read(pll == kCLOCK_PllAudio ? kAI_Itf_Audio : kAI_Itf_Video, PLL_AI_CTRL2_REG);
+
+ tmpDouble = ((double)XTAL_FREQ * ((double)div + (numer / denom)) / (double)(uint32_t)(1UL << post_div));
+ freq = (uint32_t)tmpDouble;
+
+ return freq;
+}
+#endif
+
+uint32_t CLOCK_GetPllFreq(clock_pll_t pll)
+{
+ uint32_t freq = 0;
+#ifndef GET_FREQ_FROM_OBS
+ uint32_t divSelect, postDiv;
+#endif
+
+ switch (pll)
+ {
+ case kCLOCK_PllArm:
+#ifndef GET_FREQ_FROM_OBS
+ divSelect = (ANADIG_PLL->ARM_PLL_CTRL & ANADIG_PLL_ARM_PLL_CTRL_DIV_SELECT_MASK) >>
+ ANADIG_PLL_ARM_PLL_CTRL_DIV_SELECT_SHIFT;
+ postDiv = (ANADIG_PLL->ARM_PLL_CTRL & ANADIG_PLL_ARM_PLL_CTRL_POST_DIV_SEL_MASK) >>
+ ANADIG_PLL_ARM_PLL_CTRL_POST_DIV_SEL_SHIFT;
+ postDiv = (1UL << (postDiv + 1UL));
+ freq = XTAL_FREQ / (2UL * postDiv);
+ freq *= divSelect;
+#else
+ freq = CLOCK_GetFreqFromObs(CCM_OBS_ARM_PLL_OUT);
+#endif
+ break;
+ case kCLOCK_PllSys1:
+#ifndef GET_FREQ_FROM_OBS
+ freq = SYS_PLL1_FREQ;
+#else
+ freq = CLOCK_GetFreqFromObs(CCM_OBS_SYS_PLL1_OUT);
+#endif
+ break;
+ case kCLOCK_PllSys2:
+#ifndef GET_FREQ_FROM_OBS
+ freq = SYS_PLL2_FREQ;
+#else
+ freq = CLOCK_GetFreqFromObs(CCM_OBS_SYS_PLL2_OUT);
+#endif
+ break;
+ case kCLOCK_PllSys3:
+#ifndef GET_FREQ_FROM_OBS
+ freq = SYS_PLL3_FREQ;
+#else
+ freq = CLOCK_GetFreqFromObs(CCM_OBS_SYS_PLL3_OUT);
+#endif
+ break;
+ case kCLOCK_PllAudio:
+#ifndef GET_FREQ_FROM_OBS
+ freq = CLOCK_GetAvPllFreq(kCLOCK_PllAudio);
+#else
+ freq = CLOCK_GetFreqFromObs(CCM_OBS_PLL_AUDIO_OUT);
+#endif
+ break;
+ case kCLOCK_PllVideo:
+#ifndef GET_FREQ_FROM_OBS
+ freq = CLOCK_GetAvPllFreq(kCLOCK_PllVideo);
+#else
+ freq = CLOCK_GetFreqFromObs(CCM_OBS_PLL_VIDEO_OUT);
+#endif
+ break;
+ default:
+ /* Wrong input parameter pll. */
+ assert(false);
+ break;
+ }
+ assert(freq != 0UL);
+ return freq;
+}
+
+uint32_t CLOCK_GetFreq(clock_name_t name)
+{
+ uint32_t freq = 0;
+
+ assert(name != kCLOCK_Reserved);
+
+ switch (name)
+ {
+ case kCLOCK_OscRc16M:
+#ifndef GET_FREQ_FROM_OBS
+ freq = 16000000U;
+#else
+ freq = CLOCK_GetFreqFromObs(CCM_OBS_OSC_RC_16M);
+#endif
+ break;
+ case kCLOCK_OscRc48M:
+#ifndef GET_FREQ_FROM_OBS
+ freq = 48000000U;
+#else
+ freq = CLOCK_GetFreqFromObs(CCM_OBS_OSC_RC_48M);
+#endif
+ break;
+ case kCLOCK_OscRc48MDiv2:
+#ifndef GET_FREQ_FROM_OBS
+ freq = 24000000U;
+#else
+ freq = CLOCK_GetFreqFromObs(CCM_OBS_OSC_RC_48M_DIV2);
+#endif
+ break;
+ case kCLOCK_OscRc400M:
+#ifndef GET_FREQ_FROM_OBS
+ freq = 400000000U;
+#else
+ freq = CLOCK_GetFreqFromObs(CCM_OBS_OSC_RC_400M);
+#endif
+ break;
+ case kCLOCK_Osc24MOut:
+ case kCLOCK_Osc24M:
+#ifndef GET_FREQ_FROM_OBS
+ freq = 24000000U;
+#else
+ freq = CLOCK_GetFreqFromObs(CCM_OBS_OSC_24M_OUT);
+#endif
+ break;
+ case kCLOCK_ArmPllOut:
+ case kCLOCK_ArmPll:
+ freq = CLOCK_GetPllFreq(kCLOCK_PllArm);
+ break;
+ case kCLOCK_SysPll2:
+ case kCLOCK_SysPll2Out:
+ freq = CLOCK_GetPllFreq(kCLOCK_PllSys2);
+ break;
+ case kCLOCK_SysPll2Pfd0:
+ freq = CLOCK_GetPfdFreq(kCLOCK_PllSys2, kCLOCK_Pfd0);
+ break;
+ case kCLOCK_SysPll2Pfd1:
+ freq = CLOCK_GetPfdFreq(kCLOCK_PllSys2, kCLOCK_Pfd1);
+ break;
+ case kCLOCK_SysPll2Pfd2:
+ freq = CLOCK_GetPfdFreq(kCLOCK_PllSys2, kCLOCK_Pfd2);
+ break;
+ case kCLOCK_SysPll2Pfd3:
+ freq = CLOCK_GetPfdFreq(kCLOCK_PllSys2, kCLOCK_Pfd3);
+ break;
+ case kCLOCK_SysPll3Out:
+ case kCLOCK_SysPll3:
+ freq = CLOCK_GetPllFreq(kCLOCK_PllSys3);
+ break;
+ case kCLOCK_SysPll3Div2:
+ freq = (CLOCK_GetPllFreq(kCLOCK_PllSys3) / 2UL);
+ break;
+ case kCLOCK_SysPll3Pfd0:
+ freq = CLOCK_GetPfdFreq(kCLOCK_PllSys3, kCLOCK_Pfd0);
+ break;
+ case kCLOCK_SysPll3Pfd1:
+ freq = CLOCK_GetPfdFreq(kCLOCK_PllSys3, kCLOCK_Pfd1);
+ break;
+ case kCLOCK_SysPll3Pfd2:
+ freq = CLOCK_GetPfdFreq(kCLOCK_PllSys3, kCLOCK_Pfd2);
+ break;
+ case kCLOCK_SysPll3Pfd3:
+ freq = CLOCK_GetPfdFreq(kCLOCK_PllSys3, kCLOCK_Pfd3);
+ break;
+ case kCLOCK_SysPll1:
+ case kCLOCK_SysPll1Out:
+ freq = CLOCK_GetPllFreq(kCLOCK_PllSys1);
+ break;
+ case kCLOCK_SysPll1Div2:
+ freq = CLOCK_GetPllFreq(kCLOCK_PllSys1) / 2UL;
+ break;
+ case kCLOCK_SysPll1Div5:
+ freq = CLOCK_GetPllFreq(kCLOCK_PllSys1) / 5UL;
+ break;
+ case kCLOCK_AudioPll:
+ case kCLOCK_AudioPllOut:
+ freq = CLOCK_GetPllFreq(kCLOCK_PllAudio);
+ break;
+ case kCLOCK_VideoPll:
+ case kCLOCK_VideoPllOut:
+ freq = CLOCK_GetPllFreq(kCLOCK_PllVideo);
+ break;
+ case kCLOCK_CpuClk:
+ case kCLOCK_CoreSysClk:
+ freq = CLOCK_GetCpuClkFreq();
+ break;
+ default:
+ /* Wrong input parameter name. */
+ assert(false);
+ break;
+ }
+ assert(freq != 0UL);
+ return freq;
+}
+
+void CLOCK_SetGroupConfig(clock_group_t group, const clock_group_config_t *config)
+{
+ assert(group < kCLOCK_Group_Last);
+
+ CCM->CLOCK_GROUP[group].CONTROL = ((config->clockOff ? CCM_CLOCK_GROUP_CONTROL_OFF_MASK : 0UL) |
+ ((uint32_t)config->resetDiv << CCM_CLOCK_GROUP_CONTROL_RSTDIV_SHIFT) |
+ (config->div0 << CCM_CLOCK_GROUP_CONTROL_DIV0_SHIFT));
+}
+
+void CLOCK_OSC_TrimOscRc400M(bool enable, bool bypass, uint16_t trim)
+{
+ if (enable)
+ {
+ ANADIG_MISC->VDDLPSR_AI400M_CTRL = 0x20UL;
+ ANADIG_MISC->VDDLPSR_AI400M_WDATA = ((uint32_t)bypass << 10UL) | ((uint32_t)trim << 24UL);
+ ANADIG_MISC->VDDLPSR_AI400M_CTRL |= 0x100UL;
+ SDK_DelayAtLeastUs(1, SDK_DEVICE_MAXIMUM_CPU_CLOCK_FREQUENCY);
+ ANADIG_MISC->VDDLPSR_AI400M_CTRL &= ~0x100UL;
+ }
+}
+
+void CLOCK_OSC_EnableOscRc400M(void)
+{
+ ANADIG_OSC->OSC_400M_CTRL1 &= ~ANADIG_OSC_OSC_400M_CTRL1_PWD_MASK;
+ ANADIG_OSC->OSC_400M_CTRL2 |= ANADIG_OSC_OSC_400M_CTRL2_ENABLE_CLK_MASK;
+}
+
+uint32_t CLOCK_GetFreqFromObs(uint32_t obsSigIndex, uint32_t obsIndex)
+{
+ CCM_OBS->OBSERVE[obsIndex].CONTROL = CCM_OBS_OBSERVE_CONTROL_OFF_MASK; /* turn off detect */
+ CCM_OBS->OBSERVE[obsIndex].CONTROL_SET = CCM_OBS_OBSERVE_CONTROL_RESET_MASK; /* reset slice */
+ CCM_OBS->OBSERVE[obsIndex].CONTROL_CLR = CCM_OBS_OBSERVE_CONTROL_RAW_MASK; /* select raw obsSigIndex */
+ CCM_OBS->OBSERVE[obsIndex].CONTROL &= ~CCM_OBS_OBSERVE_CONTROL_SELECT_MASK; /* Select observed obsSigIndex */
+ CCM_OBS->OBSERVE[obsIndex].CONTROL |= CCM_OBS_OBSERVE_CONTROL_SELECT(obsSigIndex) |
+ CCM_OBS_OBSERVE_CONTROL_DIVIDE(CCM_OBS_DIV); /* turn on detection */
+ CCM_OBS->OBSERVE[obsIndex].CONTROL_CLR =
+ CCM_OBS_OBSERVE_CONTROL_RESET_MASK | CCM_OBS_OBSERVE_CONTROL_OFF_MASK; /* unreset and turn on detect */
+
+ while (CCM_OBS->OBSERVE[obsIndex].FREQUENCY_CURRENT == 0UL)
+ {
+ }
+
+ return (CCM_OBS->OBSERVE[obsIndex].FREQUENCY_CURRENT * ((uint32_t)CCM_OBS_DIV + 1UL));
+}
+
+/*! brief Enable USB HS clock.
+ *
+ * This function only enables the access to USB HS prepheral, upper layer
+ * should first call the ref CLOCK_EnableUsbhs0PhyPllClock to enable the PHY
+ * clock to use USB HS.
+ *
+ * param src USB HS does not care about the clock source, here must be ref kCLOCK_UsbSrcUnused.
+ * param freq USB HS does not care about the clock source, so this parameter is ignored.
+ * retval true The clock is set successfully.
+ * retval false The clock source is invalid to get proper USB HS clock.
+ */
+bool CLOCK_EnableUsbhs0Clock(clock_usb_src_t src, uint32_t freq)
+{
+ return true;
+}
+/*! brief Enable USB HS PHY PLL clock.
+ *
+ * This function enables the internal 480MHz USB PHY PLL clock.
+ *
+ * param src USB HS PHY PLL clock source.
+ * param freq The frequency specified by src.
+ * retval true The clock is set successfully.
+ * retval false The clock source is invalid to get proper USB HS clock.
+ */
+bool CLOCK_EnableUsbhs0PhyPllClock(clock_usb_phy_src_t src, uint32_t freq)
+{
+ uint32_t phyPllDiv = 0U;
+ uint16_t multiplier = 0U;
+ bool err = false;
+ CLOCK_EnableClock(kCLOCK_Usb);
+
+ USBPHY1->CTRL_CLR = USBPHY_CTRL_SFTRST_MASK;
+
+ USBPHY1->PLL_SIC_SET = (USBPHY_PLL_SIC_PLL_POWER(1) | USBPHY_PLL_SIC_PLL_REG_ENABLE_MASK);
+ if ((480000000UL % freq) != 0UL)
+ {
+ return false;
+ }
+ multiplier = (uint16_t)(480000000UL / freq);
+
+ switch (multiplier)
+ {
+ case 13:
+ {
+ phyPllDiv = USBPHY_PLL_SIC_PLL_DIV_SEL(0U);
+ break;
+ }
+ case 15:
+ {
+ phyPllDiv = USBPHY_PLL_SIC_PLL_DIV_SEL(1U);
+ break;
+ }
+ case 16:
+ {
+ phyPllDiv = USBPHY_PLL_SIC_PLL_DIV_SEL(2U);
+ break;
+ }
+ case 20:
+ {
+ phyPllDiv = USBPHY_PLL_SIC_PLL_DIV_SEL(3U);
+ break;
+ }
+ case 22:
+ {
+ phyPllDiv = USBPHY_PLL_SIC_PLL_DIV_SEL(4U);
+ break;
+ }
+ case 25:
+ {
+ phyPllDiv = USBPHY_PLL_SIC_PLL_DIV_SEL(5U);
+ break;
+ }
+ case 30:
+ {
+ phyPllDiv = USBPHY_PLL_SIC_PLL_DIV_SEL(6U);
+ break;
+ }
+ case 240:
+ {
+ phyPllDiv = USBPHY_PLL_SIC_PLL_DIV_SEL(7U);
+ break;
+ }
+ default:
+ {
+ err = true;
+ break;
+ }
+ }
+
+ if (err)
+ {
+ return false;
+ }
+
+ USBPHY1->PLL_SIC = (USBPHY1->PLL_SIC & ~(USBPHY_PLL_SIC_PLL_DIV_SEL_MASK)) | phyPllDiv;
+
+ USBPHY1->PLL_SIC_CLR = USBPHY_PLL_SIC_PLL_BYPASS_MASK;
+ USBPHY1->PLL_SIC_SET = (USBPHY_PLL_SIC_PLL_EN_USB_CLKS_MASK);
+
+ USBPHY1->CTRL_CLR = USBPHY_CTRL_CLR_CLKGATE_MASK;
+#ifndef __rtems__
+ USBPHY1->PWD_SET = 0x0;
+#else /* __rtems__ */
+ USBPHY1->PWD = 0x0;
+#endif /* __rtems__ */
+
+ while (0UL == (USBPHY1->PLL_SIC & USBPHY_PLL_SIC_PLL_LOCK_MASK))
+ {
+ }
+ return true;
+}
+/*! brief Enable USB HS clock.
+ *
+ * This function only enables the access to USB HS prepheral, upper layer
+ * should first call the ref CLOCK_EnableUsbhs0PhyPllClock to enable the PHY
+ * clock to use USB HS.
+ *
+ * param src USB HS does not care about the clock source, here must be ref kCLOCK_UsbSrcUnused.
+ * param freq USB HS does not care about the clock source, so this parameter is ignored.
+ * retval true The clock is set successfully.
+ * retval false The clock source is invalid to get proper USB HS clock.
+ */
+/*! brief Disable USB HS PHY PLL clock.
+ *
+ * This function disables USB HS PHY PLL clock.
+ */
+void CLOCK_DisableUsbhs0PhyPllClock(void)
+{
+ USBPHY1->PLL_SIC_CLR = (USBPHY_PLL_SIC_PLL_EN_USB_CLKS_MASK);
+ USBPHY1->CTRL |= USBPHY_CTRL_CLKGATE_MASK; /* Set to 1U to gate clocks */
+}
+bool CLOCK_EnableUsbhs1Clock(clock_usb_src_t src, uint32_t freq)
+{
+ return true;
+}
+bool CLOCK_EnableUsbhs1PhyPllClock(clock_usb_phy_src_t src, uint32_t freq)
+{
+ uint32_t phyPllDiv = 0U;
+ uint16_t multiplier = 0U;
+ bool err = false;
+ CLOCK_EnableClock(kCLOCK_Usb);
+
+ USBPHY2->CTRL_CLR = USBPHY_CTRL_SFTRST_MASK;
+
+ USBPHY2->PLL_SIC_SET = (USBPHY_PLL_SIC_PLL_POWER(1) | USBPHY_PLL_SIC_PLL_REG_ENABLE_MASK);
+ if ((480000000UL % freq) != 0UL)
+ {
+ return false;
+ }
+ multiplier = (uint16_t)(uint32_t)(480000000UL / freq);
+
+ switch (multiplier)
+ {
+ case 13:
+ {
+ phyPllDiv = USBPHY_PLL_SIC_PLL_DIV_SEL(0U);
+ break;
+ }
+ case 15:
+ {
+ phyPllDiv = USBPHY_PLL_SIC_PLL_DIV_SEL(1U);
+ break;
+ }
+ case 16:
+ {
+ phyPllDiv = USBPHY_PLL_SIC_PLL_DIV_SEL(2U);
+ break;
+ }
+ case 20:
+ {
+ phyPllDiv = USBPHY_PLL_SIC_PLL_DIV_SEL(3U);
+ break;
+ }
+ case 22:
+ {
+ phyPllDiv = USBPHY_PLL_SIC_PLL_DIV_SEL(4U);
+ break;
+ }
+ case 25:
+ {
+ phyPllDiv = USBPHY_PLL_SIC_PLL_DIV_SEL(5U);
+ break;
+ }
+ case 30:
+ {
+ phyPllDiv = USBPHY_PLL_SIC_PLL_DIV_SEL(6U);
+ break;
+ }
+ case 240:
+ {
+ phyPllDiv = USBPHY_PLL_SIC_PLL_DIV_SEL(7U);
+ break;
+ }
+ default:
+ {
+ err = true;
+ break;
+ }
+ }
+
+ if (err)
+ {
+ return false;
+ }
+ USBPHY2->PLL_SIC = (USBPHY2->PLL_SIC & ~(USBPHY_PLL_SIC_PLL_DIV_SEL_MASK)) | phyPllDiv;
+
+ USBPHY2->PLL_SIC_CLR = USBPHY_PLL_SIC_PLL_BYPASS_MASK;
+ USBPHY2->PLL_SIC_SET = (USBPHY_PLL_SIC_PLL_EN_USB_CLKS_MASK);
+
+ USBPHY2->CTRL_CLR = USBPHY_CTRL_CLR_CLKGATE_MASK;
+#ifndef __rtems__
+ USBPHY2->PWD_SET = 0x0;
+#else /* __rtems__ */
+ USBPHY2->PWD = 0x0;
+#endif /* __rtems__ */
+
+ while (0UL == (USBPHY2->PLL_SIC & USBPHY_PLL_SIC_PLL_LOCK_MASK))
+ {
+ }
+ return true;
+}
+/*! brief Disable USB HS PHY PLL clock.
+ *
+ * This function disables USB HS PHY PLL clock.
+ */
+void CLOCK_DisableUsbhs1PhyPllClock(void)
+{
+ USBPHY2->PLL_SIC_CLR = (USBPHY_PLL_SIC_PLL_EN_USB_CLKS_MASK);
+ USBPHY2->CTRL |= USBPHY_CTRL_CLKGATE_MASK; /* Set to 1U to gate clocks */
+}
+
+void CLOCK_OSCPLL_ControlBySetPointMode(clock_name_t name, uint16_t spValue, uint16_t stbyValue)
+{
+ /* Set control mode to unassigned mode. */
+ CCM->OSCPLL[name].AUTHEN &=
+ ~(CCM_OSCPLL_AUTHEN_CPULPM_MASK | CCM_OSCPLL_AUTHEN_DOMAIN_MODE_MASK | CCM_OSCPLL_AUTHEN_SETPOINT_MODE_MASK);
+ /* Change SetPoint value in unassigned mode. */
+ CCM->OSCPLL[name].SETPOINT = CCM_OSCPLL_SETPOINT_STANDBY(stbyValue) | CCM_OSCPLL_SETPOINT_SETPOINT(spValue);
+ /* Set control mode to SetPoint mode. */
+ CCM->OSCPLL[name].AUTHEN |= CCM_OSCPLL_AUTHEN_SETPOINT_MODE_MASK;
+}
+
+void CLOCK_OSCPLL_ControlByCpuLowPowerMode(clock_name_t name,
+ uint8_t domainId,
+ clock_level_t level0,
+ clock_level_t level1)
+{
+ /* Set control mode to unassigned mode. */
+ CCM->OSCPLL[name].AUTHEN &=
+ ~(CCM_OSCPLL_AUTHEN_SETPOINT_MODE_MASK | CCM_OSCPLL_AUTHEN_DOMAIN_MODE_MASK | CCM_OSCPLL_AUTHEN_CPULPM_MASK);
+ /* Change clock depend level for each domain in unassigned mode. */
+ CCM->OSCPLL[name].DOMAINr =
+ ((((uint32_t)domainId & (1UL << 1UL)) != 0UL) ? CCM_OSCPLL_DOMAIN_LEVEL1(level1) : 0UL) |
+ (((domainId & (1UL << 0UL)) != 0UL) ? CCM_OSCPLL_DOMAIN_LEVEL0(level0) : 0UL);
+ /* Set control mode to CPU low power mode and update whitelist. */
+ CCM->OSCPLL[name].AUTHEN = (CCM->OSCPLL[name].AUTHEN & ~CCM_OSCPLL_AUTHEN_WHITE_LIST_MASK) |
+ CCM_OSCPLL_AUTHEN_CPULPM_MASK | CCM_OSCPLL_AUTHEN_WHITE_LIST(domainId);
+}
+
+void CLOCK_ROOT_ControlBySetPointMode(clock_root_t name, const clock_root_setpoint_config_t *spTable)
+{
+ uint8_t i;
+
+ /* Set control mode to unassigned mode. */
+ CLOCK_ROOT_ControlByUnassignedMode(name);
+ /* Change SetPoint value in unassigned mode. */
+ for (i = 0U; i < 16U; i++)
+ {
+ CLOCK_ROOT_ConfigSetPoint(name, i, &spTable[i]);
+ }
+ /* Set control mode to SetPoint mode. */
+ CLOCK_ROOT_EnableSetPointControl(name);
+}
+
+void CLOCK_LPCG_ControlBySetPointMode(clock_lpcg_t name, uint16_t spValue, uint16_t stbyValue)
+{
+ /* Set control mode to unassigned mode. */
+ CCM->LPCG[name].AUTHEN &=
+ ~(CCM_LPCG_AUTHEN_CPULPM_MASK | CCM_LPCG_AUTHEN_DOMAIN_MODE_MASK | CCM_LPCG_AUTHEN_SETPOINT_MODE_MASK);
+ /* Change SetPoint value in unassigned mode. */
+ CCM->LPCG[name].SETPOINT = CCM_LPCG_SETPOINT_STANDBY(stbyValue) | CCM_LPCG_SETPOINT_SETPOINT(spValue);
+ /* Set control mode to SetPoint mode. */
+ CCM->LPCG[name].AUTHEN |= CCM_LPCG_AUTHEN_SETPOINT_MODE_MASK;
+}
+
+void CLOCK_LPCG_ControlByCpuLowPowerMode(clock_lpcg_t name,
+ uint8_t domainId,
+ clock_level_t level0,
+ clock_level_t level1)
+{
+ /* Set control mode to unassigned mode. */
+ CCM->LPCG[name].AUTHEN &=
+ ~(CCM_LPCG_AUTHEN_SETPOINT_MODE_MASK | CCM_LPCG_AUTHEN_DOMAIN_MODE_MASK | CCM_LPCG_AUTHEN_CPULPM_MASK);
+ /* Change clock depend level for each domain in unassigned mode. */
+ CCM->LPCG[name].DOMAINr = ((((uint32_t)domainId & (1UL << 1UL)) != 0UL) ? CCM_LPCG_DOMAIN_LEVEL1(level1) : 0UL) |
+ ((((uint32_t)domainId & (1UL << 0UL)) != 0UL) ? CCM_LPCG_DOMAIN_LEVEL0(level0) : 0UL);
+ /* Set control mode to CPU low power mode and update whitelist. */
+ CCM->LPCG[name].AUTHEN = (CCM->LPCG[name].AUTHEN & ~CCM_LPCG_AUTHEN_WHITE_LIST_MASK) | CCM_LPCG_AUTHEN_CPULPM_MASK |
+ CCM_LPCG_AUTHEN_WHITE_LIST(domainId);
+}