summaryrefslogtreecommitdiffstats
path: root/cpukit/zlib/crc32.c
diff options
context:
space:
mode:
authorJoel Sherrill <joel@rtems.org>2023-05-26 10:40:13 -0500
committerJoel Sherrill <joel@rtems.org>2023-06-06 09:09:44 -0500
commitbb5dbff74a135957f3774e0ee1175bf7cf06edce (patch)
treecdaa375617f3577d0736aeae1dd84daf35c21f5a /cpukit/zlib/crc32.c
parenttermios: Install <rtems/termiosdevice.h> (diff)
downloadrtems-bb5dbff74a135957f3774e0ee1175bf7cf06edce.tar.bz2
Move various compression libraries into single subdirectory
This improves the organization of the cpukit. Closes #4912.
Diffstat (limited to 'cpukit/zlib/crc32.c')
-rw-r--r--cpukit/zlib/crc32.c1125
1 files changed, 0 insertions, 1125 deletions
diff --git a/cpukit/zlib/crc32.c b/cpukit/zlib/crc32.c
deleted file mode 100644
index f8357b083f..0000000000
--- a/cpukit/zlib/crc32.c
+++ /dev/null
@@ -1,1125 +0,0 @@
-/* crc32.c -- compute the CRC-32 of a data stream
- * Copyright (C) 1995-2022 Mark Adler
- * For conditions of distribution and use, see copyright notice in zlib.h
- *
- * This interleaved implementation of a CRC makes use of pipelined multiple
- * arithmetic-logic units, commonly found in modern CPU cores. It is due to
- * Kadatch and Jenkins (2010). See doc/crc-doc.1.0.pdf in this distribution.
- */
-
-/* @(#) $Id$ */
-
-/*
- Note on the use of DYNAMIC_CRC_TABLE: there is no mutex or semaphore
- protection on the static variables used to control the first-use generation
- of the crc tables. Therefore, if you #define DYNAMIC_CRC_TABLE, you should
- first call get_crc_table() to initialize the tables before allowing more than
- one thread to use crc32().
-
- MAKECRCH can be #defined to write out crc32.h. A main() routine is also
- produced, so that this one source file can be compiled to an executable.
- */
-
-#ifdef MAKECRCH
-# include <stdio.h>
-# ifndef DYNAMIC_CRC_TABLE
-# define DYNAMIC_CRC_TABLE
-# endif /* !DYNAMIC_CRC_TABLE */
-#endif /* MAKECRCH */
-
-#include "zutil.h" /* for Z_U4, Z_U8, z_crc_t, and FAR definitions */
-
- /*
- A CRC of a message is computed on N braids of words in the message, where
- each word consists of W bytes (4 or 8). If N is 3, for example, then three
- running sparse CRCs are calculated respectively on each braid, at these
- indices in the array of words: 0, 3, 6, ..., 1, 4, 7, ..., and 2, 5, 8, ...
- This is done starting at a word boundary, and continues until as many blocks
- of N * W bytes as are available have been processed. The results are combined
- into a single CRC at the end. For this code, N must be in the range 1..6 and
- W must be 4 or 8. The upper limit on N can be increased if desired by adding
- more #if blocks, extending the patterns apparent in the code. In addition,
- crc32.h would need to be regenerated, if the maximum N value is increased.
-
- N and W are chosen empirically by benchmarking the execution time on a given
- processor. The choices for N and W below were based on testing on Intel Kaby
- Lake i7, AMD Ryzen 7, ARM Cortex-A57, Sparc64-VII, PowerPC POWER9, and MIPS64
- Octeon II processors. The Intel, AMD, and ARM processors were all fastest
- with N=5, W=8. The Sparc, PowerPC, and MIPS64 were all fastest at N=5, W=4.
- They were all tested with either gcc or clang, all using the -O3 optimization
- level. Your mileage may vary.
- */
-
-/* Define N */
-#ifdef Z_TESTN
-# define N Z_TESTN
-#else
-# define N 5
-#endif
-#if N < 1 || N > 6
-# error N must be in 1..6
-#endif
-
-/*
- z_crc_t must be at least 32 bits. z_word_t must be at least as long as
- z_crc_t. It is assumed here that z_word_t is either 32 bits or 64 bits, and
- that bytes are eight bits.
- */
-
-/*
- Define W and the associated z_word_t type. If W is not defined, then a
- braided calculation is not used, and the associated tables and code are not
- compiled.
- */
-#ifdef Z_TESTW
-# if Z_TESTW-1 != -1
-# define W Z_TESTW
-# endif
-#else
-# ifdef MAKECRCH
-# define W 8 /* required for MAKECRCH */
-# else
-# if defined(__x86_64__) || defined(__aarch64__)
-# define W 8
-# else
-# define W 4
-# endif
-# endif
-#endif
-#ifdef W
-# if W == 8 && defined(Z_U8)
- typedef Z_U8 z_word_t;
-# elif defined(Z_U4)
-# undef W
-# define W 4
- typedef Z_U4 z_word_t;
-# else
-# undef W
-# endif
-#endif
-
-/* If available, use the ARM processor CRC32 instruction. */
-#if defined(__aarch64__) && defined(__ARM_FEATURE_CRC32) && W == 8
-# define ARMCRC32
-#endif
-
-/* Local functions. */
-local z_crc_t multmodp OF((z_crc_t a, z_crc_t b));
-local z_crc_t x2nmodp OF((z_off64_t n, unsigned k));
-
-#if defined(W) && (!defined(ARMCRC32) || defined(DYNAMIC_CRC_TABLE))
- local z_word_t byte_swap OF((z_word_t word));
-#endif
-
-#if defined(W) && !defined(ARMCRC32)
- local z_crc_t crc_word OF((z_word_t data));
- local z_word_t crc_word_big OF((z_word_t data));
-#endif
-
-#if defined(W) && (!defined(ARMCRC32) || defined(DYNAMIC_CRC_TABLE))
-/*
- Swap the bytes in a z_word_t to convert between little and big endian. Any
- self-respecting compiler will optimize this to a single machine byte-swap
- instruction, if one is available. This assumes that word_t is either 32 bits
- or 64 bits.
- */
-local z_word_t byte_swap(word)
- z_word_t word;
-{
-# if W == 8
- return
- (word & 0xff00000000000000) >> 56 |
- (word & 0xff000000000000) >> 40 |
- (word & 0xff0000000000) >> 24 |
- (word & 0xff00000000) >> 8 |
- (word & 0xff000000) << 8 |
- (word & 0xff0000) << 24 |
- (word & 0xff00) << 40 |
- (word & 0xff) << 56;
-# else /* W == 4 */
- return
- (word & 0xff000000) >> 24 |
- (word & 0xff0000) >> 8 |
- (word & 0xff00) << 8 |
- (word & 0xff) << 24;
-# endif
-}
-#endif
-
-/* CRC polynomial. */
-#define POLY 0xedb88320 /* p(x) reflected, with x^32 implied */
-
-#ifdef DYNAMIC_CRC_TABLE
-
-local z_crc_t FAR crc_table[256];
-local z_crc_t FAR x2n_table[32];
-local void make_crc_table OF((void));
-#ifdef W
- local z_word_t FAR crc_big_table[256];
- local z_crc_t FAR crc_braid_table[W][256];
- local z_word_t FAR crc_braid_big_table[W][256];
- local void braid OF((z_crc_t [][256], z_word_t [][256], int, int));
-#endif
-#ifdef MAKECRCH
- local void write_table OF((FILE *, const z_crc_t FAR *, int));
- local void write_table32hi OF((FILE *, const z_word_t FAR *, int));
- local void write_table64 OF((FILE *, const z_word_t FAR *, int));
-#endif /* MAKECRCH */
-
-/*
- Define a once() function depending on the availability of atomics. If this is
- compiled with DYNAMIC_CRC_TABLE defined, and if CRCs will be computed in
- multiple threads, and if atomics are not available, then get_crc_table() must
- be called to initialize the tables and must return before any threads are
- allowed to compute or combine CRCs.
- */
-
-/* Definition of once functionality. */
-typedef struct once_s once_t;
-local void once OF((once_t *, void (*)(void)));
-
-/* Check for the availability of atomics. */
-#if defined(__STDC__) && __STDC_VERSION__ >= 201112L && \
- !defined(__STDC_NO_ATOMICS__)
-
-#include <stdatomic.h>
-
-/* Structure for once(), which must be initialized with ONCE_INIT. */
-struct once_s {
- atomic_flag begun;
- atomic_int done;
-};
-#define ONCE_INIT {ATOMIC_FLAG_INIT, 0}
-
-/*
- Run the provided init() function exactly once, even if multiple threads
- invoke once() at the same time. The state must be a once_t initialized with
- ONCE_INIT.
- */
-local void once(state, init)
- once_t *state;
- void (*init)(void);
-{
- if (!atomic_load(&state->done)) {
- if (atomic_flag_test_and_set(&state->begun))
- while (!atomic_load(&state->done))
- ;
- else {
- init();
- atomic_store(&state->done, 1);
- }
- }
-}
-
-#else /* no atomics */
-
-/* Structure for once(), which must be initialized with ONCE_INIT. */
-struct once_s {
- volatile int begun;
- volatile int done;
-};
-#define ONCE_INIT {0, 0}
-
-/* Test and set. Alas, not atomic, but tries to minimize the period of
- vulnerability. */
-local int test_and_set OF((int volatile *));
-local int test_and_set(flag)
- int volatile *flag;
-{
- int was;
-
- was = *flag;
- *flag = 1;
- return was;
-}
-
-/* Run the provided init() function once. This is not thread-safe. */
-local void once(state, init)
- once_t *state;
- void (*init)(void);
-{
- if (!state->done) {
- if (test_and_set(&state->begun))
- while (!state->done)
- ;
- else {
- init();
- state->done = 1;
- }
- }
-}
-
-#endif
-
-/* State for once(). */
-local once_t made = ONCE_INIT;
-
-/*
- Generate tables for a byte-wise 32-bit CRC calculation on the polynomial:
- x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1.
-
- Polynomials over GF(2) are represented in binary, one bit per coefficient,
- with the lowest powers in the most significant bit. Then adding polynomials
- is just exclusive-or, and multiplying a polynomial by x is a right shift by
- one. If we call the above polynomial p, and represent a byte as the
- polynomial q, also with the lowest power in the most significant bit (so the
- byte 0xb1 is the polynomial x^7+x^3+x^2+1), then the CRC is (q*x^32) mod p,
- where a mod b means the remainder after dividing a by b.
-
- This calculation is done using the shift-register method of multiplying and
- taking the remainder. The register is initialized to zero, and for each
- incoming bit, x^32 is added mod p to the register if the bit is a one (where
- x^32 mod p is p+x^32 = x^26+...+1), and the register is multiplied mod p by x
- (which is shifting right by one and adding x^32 mod p if the bit shifted out
- is a one). We start with the highest power (least significant bit) of q and
- repeat for all eight bits of q.
-
- The table is simply the CRC of all possible eight bit values. This is all the
- information needed to generate CRCs on data a byte at a time for all
- combinations of CRC register values and incoming bytes.
- */
-
-local void make_crc_table()
-{
- unsigned i, j, n;
- z_crc_t p;
-
- /* initialize the CRC of bytes tables */
- for (i = 0; i < 256; i++) {
- p = i;
- for (j = 0; j < 8; j++)
- p = p & 1 ? (p >> 1) ^ POLY : p >> 1;
- crc_table[i] = p;
-#ifdef W
- crc_big_table[i] = byte_swap(p);
-#endif
- }
-
- /* initialize the x^2^n mod p(x) table */
- p = (z_crc_t)1 << 30; /* x^1 */
- x2n_table[0] = p;
- for (n = 1; n < 32; n++)
- x2n_table[n] = p = multmodp(p, p);
-
-#ifdef W
- /* initialize the braiding tables -- needs x2n_table[] */
- braid(crc_braid_table, crc_braid_big_table, N, W);
-#endif
-
-#ifdef MAKECRCH
- {
- /*
- The crc32.h header file contains tables for both 32-bit and 64-bit
- z_word_t's, and so requires a 64-bit type be available. In that case,
- z_word_t must be defined to be 64-bits. This code then also generates
- and writes out the tables for the case that z_word_t is 32 bits.
- */
-#if !defined(W) || W != 8
-# error Need a 64-bit integer type in order to generate crc32.h.
-#endif
- FILE *out;
- int k, n;
- z_crc_t ltl[8][256];
- z_word_t big[8][256];
-
- out = fopen("crc32.h", "w");
- if (out == NULL) return;
-
- /* write out little-endian CRC table to crc32.h */
- fprintf(out,
- "/* crc32.h -- tables for rapid CRC calculation\n"
- " * Generated automatically by crc32.c\n */\n"
- "\n"
- "local const z_crc_t FAR crc_table[] = {\n"
- " ");
- write_table(out, crc_table, 256);
- fprintf(out,
- "};\n");
-
- /* write out big-endian CRC table for 64-bit z_word_t to crc32.h */
- fprintf(out,
- "\n"
- "#ifdef W\n"
- "\n"
- "#if W == 8\n"
- "\n"
- "local const z_word_t FAR crc_big_table[] = {\n"
- " ");
- write_table64(out, crc_big_table, 256);
- fprintf(out,
- "};\n");
-
- /* write out big-endian CRC table for 32-bit z_word_t to crc32.h */
- fprintf(out,
- "\n"
- "#else /* W == 4 */\n"
- "\n"
- "local const z_word_t FAR crc_big_table[] = {\n"
- " ");
- write_table32hi(out, crc_big_table, 256);
- fprintf(out,
- "};\n"
- "\n"
- "#endif\n");
-
- /* write out braid tables for each value of N */
- for (n = 1; n <= 6; n++) {
- fprintf(out,
- "\n"
- "#if N == %d\n", n);
-
- /* compute braid tables for this N and 64-bit word_t */
- braid(ltl, big, n, 8);
-
- /* write out braid tables for 64-bit z_word_t to crc32.h */
- fprintf(out,
- "\n"
- "#if W == 8\n"
- "\n"
- "local const z_crc_t FAR crc_braid_table[][256] = {\n");
- for (k = 0; k < 8; k++) {
- fprintf(out, " {");
- write_table(out, ltl[k], 256);
- fprintf(out, "}%s", k < 7 ? ",\n" : "");
- }
- fprintf(out,
- "};\n"
- "\n"
- "local const z_word_t FAR crc_braid_big_table[][256] = {\n");
- for (k = 0; k < 8; k++) {
- fprintf(out, " {");
- write_table64(out, big[k], 256);
- fprintf(out, "}%s", k < 7 ? ",\n" : "");
- }
- fprintf(out,
- "};\n");
-
- /* compute braid tables for this N and 32-bit word_t */
- braid(ltl, big, n, 4);
-
- /* write out braid tables for 32-bit z_word_t to crc32.h */
- fprintf(out,
- "\n"
- "#else /* W == 4 */\n"
- "\n"
- "local const z_crc_t FAR crc_braid_table[][256] = {\n");
- for (k = 0; k < 4; k++) {
- fprintf(out, " {");
- write_table(out, ltl[k], 256);
- fprintf(out, "}%s", k < 3 ? ",\n" : "");
- }
- fprintf(out,
- "};\n"
- "\n"
- "local const z_word_t FAR crc_braid_big_table[][256] = {\n");
- for (k = 0; k < 4; k++) {
- fprintf(out, " {");
- write_table32hi(out, big[k], 256);
- fprintf(out, "}%s", k < 3 ? ",\n" : "");
- }
- fprintf(out,
- "};\n"
- "\n"
- "#endif\n"
- "\n"
- "#endif\n");
- }
- fprintf(out,
- "\n"
- "#endif\n");
-
- /* write out zeros operator table to crc32.h */
- fprintf(out,
- "\n"
- "local const z_crc_t FAR x2n_table[] = {\n"
- " ");
- write_table(out, x2n_table, 32);
- fprintf(out,
- "};\n");
- fclose(out);
- }
-#endif /* MAKECRCH */
-}
-
-#ifdef MAKECRCH
-
-/*
- Write the 32-bit values in table[0..k-1] to out, five per line in
- hexadecimal separated by commas.
- */
-local void write_table(out, table, k)
- FILE *out;
- const z_crc_t FAR *table;
- int k;
-{
- int n;
-
- for (n = 0; n < k; n++)
- fprintf(out, "%s0x%08lx%s", n == 0 || n % 5 ? "" : " ",
- (unsigned long)(table[n]),
- n == k - 1 ? "" : (n % 5 == 4 ? ",\n" : ", "));
-}
-
-/*
- Write the high 32-bits of each value in table[0..k-1] to out, five per line
- in hexadecimal separated by commas.
- */
-local void write_table32hi(out, table, k)
-FILE *out;
-const z_word_t FAR *table;
-int k;
-{
- int n;
-
- for (n = 0; n < k; n++)
- fprintf(out, "%s0x%08lx%s", n == 0 || n % 5 ? "" : " ",
- (unsigned long)(table[n] >> 32),
- n == k - 1 ? "" : (n % 5 == 4 ? ",\n" : ", "));
-}
-
-/*
- Write the 64-bit values in table[0..k-1] to out, three per line in
- hexadecimal separated by commas. This assumes that if there is a 64-bit
- type, then there is also a long long integer type, and it is at least 64
- bits. If not, then the type cast and format string can be adjusted
- accordingly.
- */
-local void write_table64(out, table, k)
- FILE *out;
- const z_word_t FAR *table;
- int k;
-{
- int n;
-
- for (n = 0; n < k; n++)
- fprintf(out, "%s0x%016llx%s", n == 0 || n % 3 ? "" : " ",
- (unsigned long long)(table[n]),
- n == k - 1 ? "" : (n % 3 == 2 ? ",\n" : ", "));
-}
-
-/* Actually do the deed. */
-int main()
-{
- make_crc_table();
- return 0;
-}
-
-#endif /* MAKECRCH */
-
-#ifdef W
-/*
- Generate the little and big-endian braid tables for the given n and z_word_t
- size w. Each array must have room for w blocks of 256 elements.
- */
-local void braid(ltl, big, n, w)
- z_crc_t ltl[][256];
- z_word_t big[][256];
- int n;
- int w;
-{
- int k;
- z_crc_t i, p, q;
- for (k = 0; k < w; k++) {
- p = x2nmodp((n * w + 3 - k) << 3, 0);
- ltl[k][0] = 0;
- big[w - 1 - k][0] = 0;
- for (i = 1; i < 256; i++) {
- ltl[k][i] = q = multmodp(i << 24, p);
- big[w - 1 - k][i] = byte_swap(q);
- }
- }
-}
-#endif
-
-#else /* !DYNAMIC_CRC_TABLE */
-/* ========================================================================
- * Tables for byte-wise and braided CRC-32 calculations, and a table of powers
- * of x for combining CRC-32s, all made by make_crc_table().
- */
-#include "crc32.h"
-#endif /* DYNAMIC_CRC_TABLE */
-
-/* ========================================================================
- * Routines used for CRC calculation. Some are also required for the table
- * generation above.
- */
-
-/*
- Return a(x) multiplied by b(x) modulo p(x), where p(x) is the CRC polynomial,
- reflected. For speed, this requires that a not be zero.
- */
-local z_crc_t multmodp(a, b)
- z_crc_t a;
- z_crc_t b;
-{
- z_crc_t m, p;
-
- m = (z_crc_t)1 << 31;
- p = 0;
- for (;;) {
- if (a & m) {
- p ^= b;
- if ((a & (m - 1)) == 0)
- break;
- }
- m >>= 1;
- b = b & 1 ? (b >> 1) ^ POLY : b >> 1;
- }
- return p;
-}
-
-/*
- Return x^(n * 2^k) modulo p(x). Requires that x2n_table[] has been
- initialized.
- */
-local z_crc_t x2nmodp(n, k)
- z_off64_t n;
- unsigned k;
-{
- z_crc_t p;
-
- p = (z_crc_t)1 << 31; /* x^0 == 1 */
- while (n) {
- if (n & 1)
- p = multmodp(x2n_table[k & 31], p);
- n >>= 1;
- k++;
- }
- return p;
-}
-
-/* =========================================================================
- * This function can be used by asm versions of crc32(), and to force the
- * generation of the CRC tables in a threaded application.
- */
-const z_crc_t FAR * ZEXPORT get_crc_table()
-{
-#ifdef DYNAMIC_CRC_TABLE
- once(&made, make_crc_table);
-#endif /* DYNAMIC_CRC_TABLE */
- return (const z_crc_t FAR *)crc_table;
-}
-
-/* =========================================================================
- * Use ARM machine instructions if available. This will compute the CRC about
- * ten times faster than the braided calculation. This code does not check for
- * the presence of the CRC instruction at run time. __ARM_FEATURE_CRC32 will
- * only be defined if the compilation specifies an ARM processor architecture
- * that has the instructions. For example, compiling with -march=armv8.1-a or
- * -march=armv8-a+crc, or -march=native if the compile machine has the crc32
- * instructions.
- */
-#ifdef ARMCRC32
-
-/*
- Constants empirically determined to maximize speed. These values are from
- measurements on a Cortex-A57. Your mileage may vary.
- */
-#define Z_BATCH 3990 /* number of words in a batch */
-#define Z_BATCH_ZEROS 0xa10d3d0c /* computed from Z_BATCH = 3990 */
-#define Z_BATCH_MIN 800 /* fewest words in a final batch */
-
-unsigned long ZEXPORT crc32_z(crc, buf, len)
- unsigned long crc;
- const unsigned char FAR *buf;
- z_size_t len;
-{
- z_crc_t val;
- z_word_t crc1, crc2;
- const z_word_t *word;
- z_word_t val0, val1, val2;
- z_size_t last, last2, i;
- z_size_t num;
-
- /* Return initial CRC, if requested. */
- if (buf == Z_NULL) return 0;
-
-#ifdef DYNAMIC_CRC_TABLE
- once(&made, make_crc_table);
-#endif /* DYNAMIC_CRC_TABLE */
-
- /* Pre-condition the CRC */
- crc = (~crc) & 0xffffffff;
-
- /* Compute the CRC up to a word boundary. */
- while (len && ((z_size_t)buf & 7) != 0) {
- len--;
- val = *buf++;
- __asm__ volatile("crc32b %w0, %w0, %w1" : "+r"(crc) : "r"(val));
- }
-
- /* Prepare to compute the CRC on full 64-bit words word[0..num-1]. */
- word = (z_word_t const *)buf;
- num = len >> 3;
- len &= 7;
-
- /* Do three interleaved CRCs to realize the throughput of one crc32x
- instruction per cycle. Each CRC is calculated on Z_BATCH words. The
- three CRCs are combined into a single CRC after each set of batches. */
- while (num >= 3 * Z_BATCH) {
- crc1 = 0;
- crc2 = 0;
- for (i = 0; i < Z_BATCH; i++) {
- val0 = word[i];
- val1 = word[i + Z_BATCH];
- val2 = word[i + 2 * Z_BATCH];
- __asm__ volatile("crc32x %w0, %w0, %x1" : "+r"(crc) : "r"(val0));
- __asm__ volatile("crc32x %w0, %w0, %x1" : "+r"(crc1) : "r"(val1));
- __asm__ volatile("crc32x %w0, %w0, %x1" : "+r"(crc2) : "r"(val2));
- }
- word += 3 * Z_BATCH;
- num -= 3 * Z_BATCH;
- crc = multmodp(Z_BATCH_ZEROS, crc) ^ crc1;
- crc = multmodp(Z_BATCH_ZEROS, crc) ^ crc2;
- }
-
- /* Do one last smaller batch with the remaining words, if there are enough
- to pay for the combination of CRCs. */
- last = num / 3;
- if (last >= Z_BATCH_MIN) {
- last2 = last << 1;
- crc1 = 0;
- crc2 = 0;
- for (i = 0; i < last; i++) {
- val0 = word[i];
- val1 = word[i + last];
- val2 = word[i + last2];
- __asm__ volatile("crc32x %w0, %w0, %x1" : "+r"(crc) : "r"(val0));
- __asm__ volatile("crc32x %w0, %w0, %x1" : "+r"(crc1) : "r"(val1));
- __asm__ volatile("crc32x %w0, %w0, %x1" : "+r"(crc2) : "r"(val2));
- }
- word += 3 * last;
- num -= 3 * last;
- val = x2nmodp(last, 6);
- crc = multmodp(val, crc) ^ crc1;
- crc = multmodp(val, crc) ^ crc2;
- }
-
- /* Compute the CRC on any remaining words. */
- for (i = 0; i < num; i++) {
- val0 = word[i];
- __asm__ volatile("crc32x %w0, %w0, %x1" : "+r"(crc) : "r"(val0));
- }
- word += num;
-
- /* Complete the CRC on any remaining bytes. */
- buf = (const unsigned char FAR *)word;
- while (len) {
- len--;
- val = *buf++;
- __asm__ volatile("crc32b %w0, %w0, %w1" : "+r"(crc) : "r"(val));
- }
-
- /* Return the CRC, post-conditioned. */
- return crc ^ 0xffffffff;
-}
-
-#else
-
-#ifdef W
-
-/*
- Return the CRC of the W bytes in the word_t data, taking the
- least-significant byte of the word as the first byte of data, without any pre
- or post conditioning. This is used to combine the CRCs of each braid.
- */
-local z_crc_t crc_word(data)
- z_word_t data;
-{
- int k;
- for (k = 0; k < W; k++)
- data = (data >> 8) ^ crc_table[data & 0xff];
- return (z_crc_t)data;
-}
-
-local z_word_t crc_word_big(data)
- z_word_t data;
-{
- int k;
- for (k = 0; k < W; k++)
- data = (data << 8) ^
- crc_big_table[(data >> ((W - 1) << 3)) & 0xff];
- return data;
-}
-
-#endif
-
-/* ========================================================================= */
-unsigned long ZEXPORT crc32_z(crc, buf, len)
- unsigned long crc;
- const unsigned char FAR *buf;
- z_size_t len;
-{
- /* Return initial CRC, if requested. */
- if (buf == Z_NULL) return 0;
-
-#ifdef DYNAMIC_CRC_TABLE
- once(&made, make_crc_table);
-#endif /* DYNAMIC_CRC_TABLE */
-
- /* Pre-condition the CRC */
- crc = (~crc) & 0xffffffff;
-
-#ifdef W
-
- /* If provided enough bytes, do a braided CRC calculation. */
- if (len >= N * W + W - 1) {
- z_size_t blks;
- z_word_t const *words;
- unsigned endian;
- int k;
-
- /* Compute the CRC up to a z_word_t boundary. */
- while (len && ((z_size_t)buf & (W - 1)) != 0) {
- len--;
- crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff];
- }
-
- /* Compute the CRC on as many N z_word_t blocks as are available. */
- blks = len / (N * W);
- len -= blks * N * W;
- words = (z_word_t const *)buf;
-
- /* Do endian check at execution time instead of compile time, since ARM
- processors can change the endianess at execution time. If the
- compiler knows what the endianess will be, it can optimize out the
- check and the unused branch. */
- endian = 1;
- if (*(unsigned char *)&endian) {
- /* Little endian. */
-
- z_crc_t crc0;
- z_word_t word0;
-#if N > 1
- z_crc_t crc1;
- z_word_t word1;
-#if N > 2
- z_crc_t crc2;
- z_word_t word2;
-#if N > 3
- z_crc_t crc3;
- z_word_t word3;
-#if N > 4
- z_crc_t crc4;
- z_word_t word4;
-#if N > 5
- z_crc_t crc5;
- z_word_t word5;
-#endif
-#endif
-#endif
-#endif
-#endif
-
- /* Initialize the CRC for each braid. */
- crc0 = crc;
-#if N > 1
- crc1 = 0;
-#if N > 2
- crc2 = 0;
-#if N > 3
- crc3 = 0;
-#if N > 4
- crc4 = 0;
-#if N > 5
- crc5 = 0;
-#endif
-#endif
-#endif
-#endif
-#endif
-
- /*
- Process the first blks-1 blocks, computing the CRCs on each braid
- independently.
- */
- while (--blks) {
- /* Load the word for each braid into registers. */
- word0 = crc0 ^ words[0];
-#if N > 1
- word1 = crc1 ^ words[1];
-#if N > 2
- word2 = crc2 ^ words[2];
-#if N > 3
- word3 = crc3 ^ words[3];
-#if N > 4
- word4 = crc4 ^ words[4];
-#if N > 5
- word5 = crc5 ^ words[5];
-#endif
-#endif
-#endif
-#endif
-#endif
- words += N;
-
- /* Compute and update the CRC for each word. The loop should
- get unrolled. */
- crc0 = crc_braid_table[0][word0 & 0xff];
-#if N > 1
- crc1 = crc_braid_table[0][word1 & 0xff];
-#if N > 2
- crc2 = crc_braid_table[0][word2 & 0xff];
-#if N > 3
- crc3 = crc_braid_table[0][word3 & 0xff];
-#if N > 4
- crc4 = crc_braid_table[0][word4 & 0xff];
-#if N > 5
- crc5 = crc_braid_table[0][word5 & 0xff];
-#endif
-#endif
-#endif
-#endif
-#endif
- for (k = 1; k < W; k++) {
- crc0 ^= crc_braid_table[k][(word0 >> (k << 3)) & 0xff];
-#if N > 1
- crc1 ^= crc_braid_table[k][(word1 >> (k << 3)) & 0xff];
-#if N > 2
- crc2 ^= crc_braid_table[k][(word2 >> (k << 3)) & 0xff];
-#if N > 3
- crc3 ^= crc_braid_table[k][(word3 >> (k << 3)) & 0xff];
-#if N > 4
- crc4 ^= crc_braid_table[k][(word4 >> (k << 3)) & 0xff];
-#if N > 5
- crc5 ^= crc_braid_table[k][(word5 >> (k << 3)) & 0xff];
-#endif
-#endif
-#endif
-#endif
-#endif
- }
- }
-
- /*
- Process the last block, combining the CRCs of the N braids at the
- same time.
- */
- crc = crc_word(crc0 ^ words[0]);
-#if N > 1
- crc = crc_word(crc1 ^ words[1] ^ crc);
-#if N > 2
- crc = crc_word(crc2 ^ words[2] ^ crc);
-#if N > 3
- crc = crc_word(crc3 ^ words[3] ^ crc);
-#if N > 4
- crc = crc_word(crc4 ^ words[4] ^ crc);
-#if N > 5
- crc = crc_word(crc5 ^ words[5] ^ crc);
-#endif
-#endif
-#endif
-#endif
-#endif
- words += N;
- }
- else {
- /* Big endian. */
-
- z_word_t crc0, word0, comb;
-#if N > 1
- z_word_t crc1, word1;
-#if N > 2
- z_word_t crc2, word2;
-#if N > 3
- z_word_t crc3, word3;
-#if N > 4
- z_word_t crc4, word4;
-#if N > 5
- z_word_t crc5, word5;
-#endif
-#endif
-#endif
-#endif
-#endif
-
- /* Initialize the CRC for each braid. */
- crc0 = byte_swap(crc);
-#if N > 1
- crc1 = 0;
-#if N > 2
- crc2 = 0;
-#if N > 3
- crc3 = 0;
-#if N > 4
- crc4 = 0;
-#if N > 5
- crc5 = 0;
-#endif
-#endif
-#endif
-#endif
-#endif
-
- /*
- Process the first blks-1 blocks, computing the CRCs on each braid
- independently.
- */
- while (--blks) {
- /* Load the word for each braid into registers. */
- word0 = crc0 ^ words[0];
-#if N > 1
- word1 = crc1 ^ words[1];
-#if N > 2
- word2 = crc2 ^ words[2];
-#if N > 3
- word3 = crc3 ^ words[3];
-#if N > 4
- word4 = crc4 ^ words[4];
-#if N > 5
- word5 = crc5 ^ words[5];
-#endif
-#endif
-#endif
-#endif
-#endif
- words += N;
-
- /* Compute and update the CRC for each word. The loop should
- get unrolled. */
- crc0 = crc_braid_big_table[0][word0 & 0xff];
-#if N > 1
- crc1 = crc_braid_big_table[0][word1 & 0xff];
-#if N > 2
- crc2 = crc_braid_big_table[0][word2 & 0xff];
-#if N > 3
- crc3 = crc_braid_big_table[0][word3 & 0xff];
-#if N > 4
- crc4 = crc_braid_big_table[0][word4 & 0xff];
-#if N > 5
- crc5 = crc_braid_big_table[0][word5 & 0xff];
-#endif
-#endif
-#endif
-#endif
-#endif
- for (k = 1; k < W; k++) {
- crc0 ^= crc_braid_big_table[k][(word0 >> (k << 3)) & 0xff];
-#if N > 1
- crc1 ^= crc_braid_big_table[k][(word1 >> (k << 3)) & 0xff];
-#if N > 2
- crc2 ^= crc_braid_big_table[k][(word2 >> (k << 3)) & 0xff];
-#if N > 3
- crc3 ^= crc_braid_big_table[k][(word3 >> (k << 3)) & 0xff];
-#if N > 4
- crc4 ^= crc_braid_big_table[k][(word4 >> (k << 3)) & 0xff];
-#if N > 5
- crc5 ^= crc_braid_big_table[k][(word5 >> (k << 3)) & 0xff];
-#endif
-#endif
-#endif
-#endif
-#endif
- }
- }
-
- /*
- Process the last block, combining the CRCs of the N braids at the
- same time.
- */
- comb = crc_word_big(crc0 ^ words[0]);
-#if N > 1
- comb = crc_word_big(crc1 ^ words[1] ^ comb);
-#if N > 2
- comb = crc_word_big(crc2 ^ words[2] ^ comb);
-#if N > 3
- comb = crc_word_big(crc3 ^ words[3] ^ comb);
-#if N > 4
- comb = crc_word_big(crc4 ^ words[4] ^ comb);
-#if N > 5
- comb = crc_word_big(crc5 ^ words[5] ^ comb);
-#endif
-#endif
-#endif
-#endif
-#endif
- words += N;
- crc = byte_swap(comb);
- }
-
- /*
- Update the pointer to the remaining bytes to process.
- */
- buf = (unsigned char const *)words;
- }
-
-#endif /* W */
-
- /* Complete the computation of the CRC on any remaining bytes. */
- while (len >= 8) {
- len -= 8;
- crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff];
- crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff];
- crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff];
- crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff];
- crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff];
- crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff];
- crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff];
- crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff];
- }
- while (len) {
- len--;
- crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff];
- }
-
- /* Return the CRC, post-conditioned. */
- return crc ^ 0xffffffff;
-}
-
-#endif
-
-/* ========================================================================= */
-unsigned long ZEXPORT crc32(crc, buf, len)
- unsigned long crc;
- const unsigned char FAR *buf;
- uInt len;
-{
- return crc32_z(crc, buf, len);
-}
-
-/* ========================================================================= */
-uLong ZEXPORT crc32_combine64(crc1, crc2, len2)
- uLong crc1;
- uLong crc2;
- z_off64_t len2;
-{
-#ifdef DYNAMIC_CRC_TABLE
- once(&made, make_crc_table);
-#endif /* DYNAMIC_CRC_TABLE */
- return multmodp(x2nmodp(len2, 3), crc1) ^ (crc2 & 0xffffffff);
-}
-
-/* ========================================================================= */
-uLong ZEXPORT crc32_combine(crc1, crc2, len2)
- uLong crc1;
- uLong crc2;
- z_off_t len2;
-{
- return crc32_combine64(crc1, crc2, (z_off64_t)len2);
-}
-
-/* ========================================================================= */
-uLong ZEXPORT crc32_combine_gen64(len2)
- z_off64_t len2;
-{
-#ifdef DYNAMIC_CRC_TABLE
- once(&made, make_crc_table);
-#endif /* DYNAMIC_CRC_TABLE */
- return x2nmodp(len2, 3);
-}
-
-/* ========================================================================= */
-uLong ZEXPORT crc32_combine_gen(len2)
- z_off_t len2;
-{
- return crc32_combine_gen64((z_off64_t)len2);
-}
-
-/* ========================================================================= */
-uLong ZEXPORT crc32_combine_op(crc1, crc2, op)
- uLong crc1;
- uLong crc2;
- uLong op;
-{
- return multmodp(op, crc1) ^ (crc2 & 0xffffffff);
-}