summaryrefslogtreecommitdiffstats
path: root/cpukit/score/src/kern_tc.c
diff options
context:
space:
mode:
authorAlexander Krutwig <alexander.krutwig@embedded-brains.de>2015-03-19 11:38:14 +0100
committerSebastian Huber <sebastian.huber@embedded-brains.de>2015-05-19 15:14:34 +0200
commit4117cd163977737a5e6633c7117d10aa194304cb (patch)
tree4fa7043428b9c082203951eba88ac6c2137e851c /cpukit/score/src/kern_tc.c
parentsmptests/smpscheduler03: Restructure (diff)
downloadrtems-4117cd163977737a5e6633c7117d10aa194304cb.tar.bz2
timecounter: Import from FreeBSD
Update #2271.
Diffstat (limited to 'cpukit/score/src/kern_tc.c')
-rw-r--r--cpukit/score/src/kern_tc.c2039
1 files changed, 2039 insertions, 0 deletions
diff --git a/cpukit/score/src/kern_tc.c b/cpukit/score/src/kern_tc.c
new file mode 100644
index 0000000000..82e5e1e50c
--- /dev/null
+++ b/cpukit/score/src/kern_tc.c
@@ -0,0 +1,2039 @@
+/*-
+ * ----------------------------------------------------------------------------
+ * "THE BEER-WARE LICENSE" (Revision 42):
+ * <phk@FreeBSD.ORG> wrote this file. As long as you retain this notice you
+ * can do whatever you want with this stuff. If we meet some day, and you think
+ * this stuff is worth it, you can buy me a beer in return. Poul-Henning Kamp
+ * ----------------------------------------------------------------------------
+ *
+ * Copyright (c) 2011 The FreeBSD Foundation
+ * All rights reserved.
+ *
+ * Portions of this software were developed by Julien Ridoux at the University
+ * of Melbourne under sponsorship from the FreeBSD Foundation.
+ */
+
+#include <sys/cdefs.h>
+__FBSDID("$FreeBSD r277406 2015-01-20T03:54:30Z$");
+
+#include "opt_compat.h"
+#include "opt_ntp.h"
+#include "opt_ffclock.h"
+
+#include <sys/param.h>
+#include <sys/kernel.h>
+#include <sys/limits.h>
+#ifdef FFCLOCK
+#include <sys/lock.h>
+#include <sys/mutex.h>
+#endif
+#include <sys/sysctl.h>
+#include <sys/syslog.h>
+#include <sys/systm.h>
+#include <sys/timeffc.h>
+#include <sys/timepps.h>
+#include <sys/timetc.h>
+#include <sys/timex.h>
+#include <sys/vdso.h>
+
+/*
+ * A large step happens on boot. This constant detects such steps.
+ * It is relatively small so that ntp_update_second gets called enough
+ * in the typical 'missed a couple of seconds' case, but doesn't loop
+ * forever when the time step is large.
+ */
+#define LARGE_STEP 200
+
+/*
+ * Implement a dummy timecounter which we can use until we get a real one
+ * in the air. This allows the console and other early stuff to use
+ * time services.
+ */
+
+static u_int
+dummy_get_timecount(struct timecounter *tc)
+{
+ static u_int now;
+
+ return (++now);
+}
+
+static struct timecounter dummy_timecounter = {
+ dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000
+};
+
+struct timehands {
+ /* These fields must be initialized by the driver. */
+ struct timecounter *th_counter;
+ int64_t th_adjustment;
+ uint64_t th_scale;
+ u_int th_offset_count;
+ struct bintime th_offset;
+ struct timeval th_microtime;
+ struct timespec th_nanotime;
+ /* Fields not to be copied in tc_windup start with th_generation. */
+ volatile u_int th_generation;
+ struct timehands *th_next;
+};
+
+static struct timehands th0;
+static struct timehands th9 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th0};
+static struct timehands th8 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th9};
+static struct timehands th7 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th8};
+static struct timehands th6 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th7};
+static struct timehands th5 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th6};
+static struct timehands th4 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th5};
+static struct timehands th3 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th4};
+static struct timehands th2 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th3};
+static struct timehands th1 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th2};
+static struct timehands th0 = {
+ &dummy_timecounter,
+ 0,
+ (uint64_t)-1 / 1000000,
+ 0,
+ {1, 0},
+ {0, 0},
+ {0, 0},
+ 1,
+ &th1
+};
+
+static struct timehands *volatile timehands = &th0;
+struct timecounter *timecounter = &dummy_timecounter;
+static struct timecounter *timecounters = &dummy_timecounter;
+
+int tc_min_ticktock_freq = 1;
+
+volatile time_t time_second = 1;
+volatile time_t time_uptime = 1;
+
+struct bintime boottimebin;
+struct timeval boottime;
+static int sysctl_kern_boottime(SYSCTL_HANDLER_ARGS);
+SYSCTL_PROC(_kern, KERN_BOOTTIME, boottime, CTLTYPE_STRUCT|CTLFLAG_RD,
+ NULL, 0, sysctl_kern_boottime, "S,timeval", "System boottime");
+
+SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW, 0, "");
+static SYSCTL_NODE(_kern_timecounter, OID_AUTO, tc, CTLFLAG_RW, 0, "");
+
+static int timestepwarnings;
+SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
+ &timestepwarnings, 0, "Log time steps");
+
+struct bintime bt_timethreshold;
+struct bintime bt_tickthreshold;
+sbintime_t sbt_timethreshold;
+sbintime_t sbt_tickthreshold;
+struct bintime tc_tick_bt;
+sbintime_t tc_tick_sbt;
+int tc_precexp;
+int tc_timepercentage = TC_DEFAULTPERC;
+static int sysctl_kern_timecounter_adjprecision(SYSCTL_HANDLER_ARGS);
+SYSCTL_PROC(_kern_timecounter, OID_AUTO, alloweddeviation,
+ CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, 0, 0,
+ sysctl_kern_timecounter_adjprecision, "I",
+ "Allowed time interval deviation in percents");
+
+static void tc_windup(void);
+static void cpu_tick_calibrate(int);
+
+void dtrace_getnanotime(struct timespec *tsp);
+
+static int
+sysctl_kern_boottime(SYSCTL_HANDLER_ARGS)
+{
+#ifndef __mips__
+#ifdef SCTL_MASK32
+ int tv[2];
+
+ if (req->flags & SCTL_MASK32) {
+ tv[0] = boottime.tv_sec;
+ tv[1] = boottime.tv_usec;
+ return SYSCTL_OUT(req, tv, sizeof(tv));
+ } else
+#endif
+#endif
+ return SYSCTL_OUT(req, &boottime, sizeof(boottime));
+}
+
+static int
+sysctl_kern_timecounter_get(SYSCTL_HANDLER_ARGS)
+{
+ u_int ncount;
+ struct timecounter *tc = arg1;
+
+ ncount = tc->tc_get_timecount(tc);
+ return sysctl_handle_int(oidp, &ncount, 0, req);
+}
+
+static int
+sysctl_kern_timecounter_freq(SYSCTL_HANDLER_ARGS)
+{
+ uint64_t freq;
+ struct timecounter *tc = arg1;
+
+ freq = tc->tc_frequency;
+ return sysctl_handle_64(oidp, &freq, 0, req);
+}
+
+/*
+ * Return the difference between the timehands' counter value now and what
+ * was when we copied it to the timehands' offset_count.
+ */
+static __inline u_int
+tc_delta(struct timehands *th)
+{
+ struct timecounter *tc;
+
+ tc = th->th_counter;
+ return ((tc->tc_get_timecount(tc) - th->th_offset_count) &
+ tc->tc_counter_mask);
+}
+
+/*
+ * Functions for reading the time. We have to loop until we are sure that
+ * the timehands that we operated on was not updated under our feet. See
+ * the comment in <sys/time.h> for a description of these 12 functions.
+ */
+
+#ifdef FFCLOCK
+void
+fbclock_binuptime(struct bintime *bt)
+{
+ struct timehands *th;
+ unsigned int gen;
+
+ do {
+ th = timehands;
+ gen = th->th_generation;
+ *bt = th->th_offset;
+ bintime_addx(bt, th->th_scale * tc_delta(th));
+ } while (gen == 0 || gen != th->th_generation);
+}
+
+void
+fbclock_nanouptime(struct timespec *tsp)
+{
+ struct bintime bt;
+
+ fbclock_binuptime(&bt);
+ bintime2timespec(&bt, tsp);
+}
+
+void
+fbclock_microuptime(struct timeval *tvp)
+{
+ struct bintime bt;
+
+ fbclock_binuptime(&bt);
+ bintime2timeval(&bt, tvp);
+}
+
+void
+fbclock_bintime(struct bintime *bt)
+{
+
+ fbclock_binuptime(bt);
+ bintime_add(bt, &boottimebin);
+}
+
+void
+fbclock_nanotime(struct timespec *tsp)
+{
+ struct bintime bt;
+
+ fbclock_bintime(&bt);
+ bintime2timespec(&bt, tsp);
+}
+
+void
+fbclock_microtime(struct timeval *tvp)
+{
+ struct bintime bt;
+
+ fbclock_bintime(&bt);
+ bintime2timeval(&bt, tvp);
+}
+
+void
+fbclock_getbinuptime(struct bintime *bt)
+{
+ struct timehands *th;
+ unsigned int gen;
+
+ do {
+ th = timehands;
+ gen = th->th_generation;
+ *bt = th->th_offset;
+ } while (gen == 0 || gen != th->th_generation);
+}
+
+void
+fbclock_getnanouptime(struct timespec *tsp)
+{
+ struct timehands *th;
+ unsigned int gen;
+
+ do {
+ th = timehands;
+ gen = th->th_generation;
+ bintime2timespec(&th->th_offset, tsp);
+ } while (gen == 0 || gen != th->th_generation);
+}
+
+void
+fbclock_getmicrouptime(struct timeval *tvp)
+{
+ struct timehands *th;
+ unsigned int gen;
+
+ do {
+ th = timehands;
+ gen = th->th_generation;
+ bintime2timeval(&th->th_offset, tvp);
+ } while (gen == 0 || gen != th->th_generation);
+}
+
+void
+fbclock_getbintime(struct bintime *bt)
+{
+ struct timehands *th;
+ unsigned int gen;
+
+ do {
+ th = timehands;
+ gen = th->th_generation;
+ *bt = th->th_offset;
+ } while (gen == 0 || gen != th->th_generation);
+ bintime_add(bt, &boottimebin);
+}
+
+void
+fbclock_getnanotime(struct timespec *tsp)
+{
+ struct timehands *th;
+ unsigned int gen;
+
+ do {
+ th = timehands;
+ gen = th->th_generation;
+ *tsp = th->th_nanotime;
+ } while (gen == 0 || gen != th->th_generation);
+}
+
+void
+fbclock_getmicrotime(struct timeval *tvp)
+{
+ struct timehands *th;
+ unsigned int gen;
+
+ do {
+ th = timehands;
+ gen = th->th_generation;
+ *tvp = th->th_microtime;
+ } while (gen == 0 || gen != th->th_generation);
+}
+#else /* !FFCLOCK */
+void
+binuptime(struct bintime *bt)
+{
+ struct timehands *th;
+ u_int gen;
+
+ do {
+ th = timehands;
+ gen = th->th_generation;
+ *bt = th->th_offset;
+ bintime_addx(bt, th->th_scale * tc_delta(th));
+ } while (gen == 0 || gen != th->th_generation);
+}
+
+void
+nanouptime(struct timespec *tsp)
+{
+ struct bintime bt;
+
+ binuptime(&bt);
+ bintime2timespec(&bt, tsp);
+}
+
+void
+microuptime(struct timeval *tvp)
+{
+ struct bintime bt;
+
+ binuptime(&bt);
+ bintime2timeval(&bt, tvp);
+}
+
+void
+bintime(struct bintime *bt)
+{
+
+ binuptime(bt);
+ bintime_add(bt, &boottimebin);
+}
+
+void
+nanotime(struct timespec *tsp)
+{
+ struct bintime bt;
+
+ bintime(&bt);
+ bintime2timespec(&bt, tsp);
+}
+
+void
+microtime(struct timeval *tvp)
+{
+ struct bintime bt;
+
+ bintime(&bt);
+ bintime2timeval(&bt, tvp);
+}
+
+void
+getbinuptime(struct bintime *bt)
+{
+ struct timehands *th;
+ u_int gen;
+
+ do {
+ th = timehands;
+ gen = th->th_generation;
+ *bt = th->th_offset;
+ } while (gen == 0 || gen != th->th_generation);
+}
+
+void
+getnanouptime(struct timespec *tsp)
+{
+ struct timehands *th;
+ u_int gen;
+
+ do {
+ th = timehands;
+ gen = th->th_generation;
+ bintime2timespec(&th->th_offset, tsp);
+ } while (gen == 0 || gen != th->th_generation);
+}
+
+void
+getmicrouptime(struct timeval *tvp)
+{
+ struct timehands *th;
+ u_int gen;
+
+ do {
+ th = timehands;
+ gen = th->th_generation;
+ bintime2timeval(&th->th_offset, tvp);
+ } while (gen == 0 || gen != th->th_generation);
+}
+
+void
+getbintime(struct bintime *bt)
+{
+ struct timehands *th;
+ u_int gen;
+
+ do {
+ th = timehands;
+ gen = th->th_generation;
+ *bt = th->th_offset;
+ } while (gen == 0 || gen != th->th_generation);
+ bintime_add(bt, &boottimebin);
+}
+
+void
+getnanotime(struct timespec *tsp)
+{
+ struct timehands *th;
+ u_int gen;
+
+ do {
+ th = timehands;
+ gen = th->th_generation;
+ *tsp = th->th_nanotime;
+ } while (gen == 0 || gen != th->th_generation);
+}
+
+void
+getmicrotime(struct timeval *tvp)
+{
+ struct timehands *th;
+ u_int gen;
+
+ do {
+ th = timehands;
+ gen = th->th_generation;
+ *tvp = th->th_microtime;
+ } while (gen == 0 || gen != th->th_generation);
+}
+#endif /* FFCLOCK */
+
+#ifdef FFCLOCK
+/*
+ * Support for feed-forward synchronization algorithms. This is heavily inspired
+ * by the timehands mechanism but kept independent from it. *_windup() functions
+ * have some connection to avoid accessing the timecounter hardware more than
+ * necessary.
+ */
+
+/* Feed-forward clock estimates kept updated by the synchronization daemon. */
+struct ffclock_estimate ffclock_estimate;
+struct bintime ffclock_boottime; /* Feed-forward boot time estimate. */
+uint32_t ffclock_status; /* Feed-forward clock status. */
+int8_t ffclock_updated; /* New estimates are available. */
+struct mtx ffclock_mtx; /* Mutex on ffclock_estimate. */
+
+struct fftimehands {
+ struct ffclock_estimate cest;
+ struct bintime tick_time;
+ struct bintime tick_time_lerp;
+ ffcounter tick_ffcount;
+ uint64_t period_lerp;
+ volatile uint8_t gen;
+ struct fftimehands *next;
+};
+
+#define NUM_ELEMENTS(x) (sizeof(x) / sizeof(*x))
+
+static struct fftimehands ffth[10];
+static struct fftimehands *volatile fftimehands = ffth;
+
+static void
+ffclock_init(void)
+{
+ struct fftimehands *cur;
+ struct fftimehands *last;
+
+ memset(ffth, 0, sizeof(ffth));
+
+ last = ffth + NUM_ELEMENTS(ffth) - 1;
+ for (cur = ffth; cur < last; cur++)
+ cur->next = cur + 1;
+ last->next = ffth;
+
+ ffclock_updated = 0;
+ ffclock_status = FFCLOCK_STA_UNSYNC;
+ mtx_init(&ffclock_mtx, "ffclock lock", NULL, MTX_DEF);
+}
+
+/*
+ * Reset the feed-forward clock estimates. Called from inittodr() to get things
+ * kick started and uses the timecounter nominal frequency as a first period
+ * estimate. Note: this function may be called several time just after boot.
+ * Note: this is the only function that sets the value of boot time for the
+ * monotonic (i.e. uptime) version of the feed-forward clock.
+ */
+void
+ffclock_reset_clock(struct timespec *ts)
+{
+ struct timecounter *tc;
+ struct ffclock_estimate cest;
+
+ tc = timehands->th_counter;
+ memset(&cest, 0, sizeof(struct ffclock_estimate));
+
+ timespec2bintime(ts, &ffclock_boottime);
+ timespec2bintime(ts, &(cest.update_time));
+ ffclock_read_counter(&cest.update_ffcount);
+ cest.leapsec_next = 0;
+ cest.period = ((1ULL << 63) / tc->tc_frequency) << 1;
+ cest.errb_abs = 0;
+ cest.errb_rate = 0;
+ cest.status = FFCLOCK_STA_UNSYNC;
+ cest.leapsec_total = 0;
+ cest.leapsec = 0;
+
+ mtx_lock(&ffclock_mtx);
+ bcopy(&cest, &ffclock_estimate, sizeof(struct ffclock_estimate));
+ ffclock_updated = INT8_MAX;
+ mtx_unlock(&ffclock_mtx);
+
+ printf("ffclock reset: %s (%llu Hz), time = %ld.%09lu\n", tc->tc_name,
+ (unsigned long long)tc->tc_frequency, (long)ts->tv_sec,
+ (unsigned long)ts->tv_nsec);
+}
+
+/*
+ * Sub-routine to convert a time interval measured in RAW counter units to time
+ * in seconds stored in bintime format.
+ * NOTE: bintime_mul requires u_int, but the value of the ffcounter may be
+ * larger than the max value of u_int (on 32 bit architecture). Loop to consume
+ * extra cycles.
+ */
+static void
+ffclock_convert_delta(ffcounter ffdelta, uint64_t period, struct bintime *bt)
+{
+ struct bintime bt2;
+ ffcounter delta, delta_max;
+
+ delta_max = (1ULL << (8 * sizeof(unsigned int))) - 1;
+ bintime_clear(bt);
+ do {
+ if (ffdelta > delta_max)
+ delta = delta_max;
+ else
+ delta = ffdelta;
+ bt2.sec = 0;
+ bt2.frac = period;
+ bintime_mul(&bt2, (unsigned int)delta);
+ bintime_add(bt, &bt2);
+ ffdelta -= delta;
+ } while (ffdelta > 0);
+}
+
+/*
+ * Update the fftimehands.
+ * Push the tick ffcount and time(s) forward based on current clock estimate.
+ * The conversion from ffcounter to bintime relies on the difference clock
+ * principle, whose accuracy relies on computing small time intervals. If a new
+ * clock estimate has been passed by the synchronisation daemon, make it
+ * current, and compute the linear interpolation for monotonic time if needed.
+ */
+static void
+ffclock_windup(unsigned int delta)
+{
+ struct ffclock_estimate *cest;
+ struct fftimehands *ffth;
+ struct bintime bt, gap_lerp;
+ ffcounter ffdelta;
+ uint64_t frac;
+ unsigned int polling;
+ uint8_t forward_jump, ogen;
+
+ /*
+ * Pick the next timehand, copy current ffclock estimates and move tick
+ * times and counter forward.
+ */
+ forward_jump = 0;
+ ffth = fftimehands->next;
+ ogen = ffth->gen;
+ ffth->gen = 0;
+ cest = &ffth->cest;
+ bcopy(&fftimehands->cest, cest, sizeof(struct ffclock_estimate));
+ ffdelta = (ffcounter)delta;
+ ffth->period_lerp = fftimehands->period_lerp;
+
+ ffth->tick_time = fftimehands->tick_time;
+ ffclock_convert_delta(ffdelta, cest->period, &bt);
+ bintime_add(&ffth->tick_time, &bt);
+
+ ffth->tick_time_lerp = fftimehands->tick_time_lerp;
+ ffclock_convert_delta(ffdelta, ffth->period_lerp, &bt);
+ bintime_add(&ffth->tick_time_lerp, &bt);
+
+ ffth->tick_ffcount = fftimehands->tick_ffcount + ffdelta;
+
+ /*
+ * Assess the status of the clock, if the last update is too old, it is
+ * likely the synchronisation daemon is dead and the clock is free
+ * running.
+ */
+ if (ffclock_updated == 0) {
+ ffdelta = ffth->tick_ffcount - cest->update_ffcount;
+ ffclock_convert_delta(ffdelta, cest->period, &bt);
+ if (bt.sec > 2 * FFCLOCK_SKM_SCALE)
+ ffclock_status |= FFCLOCK_STA_UNSYNC;
+ }
+
+ /*
+ * If available, grab updated clock estimates and make them current.
+ * Recompute time at this tick using the updated estimates. The clock
+ * estimates passed the feed-forward synchronisation daemon may result
+ * in time conversion that is not monotonically increasing (just after
+ * the update). time_lerp is a particular linear interpolation over the
+ * synchronisation algo polling period that ensures monotonicity for the
+ * clock ids requesting it.
+ */
+ if (ffclock_updated > 0) {
+ bcopy(&ffclock_estimate, cest, sizeof(struct ffclock_estimate));
+ ffdelta = ffth->tick_ffcount - cest->update_ffcount;
+ ffth->tick_time = cest->update_time;
+ ffclock_convert_delta(ffdelta, cest->period, &bt);
+ bintime_add(&ffth->tick_time, &bt);
+
+ /* ffclock_reset sets ffclock_updated to INT8_MAX */
+ if (ffclock_updated == INT8_MAX)
+ ffth->tick_time_lerp = ffth->tick_time;
+
+ if (bintime_cmp(&ffth->tick_time, &ffth->tick_time_lerp, >))
+ forward_jump = 1;
+ else
+ forward_jump = 0;
+
+ bintime_clear(&gap_lerp);
+ if (forward_jump) {
+ gap_lerp = ffth->tick_time;
+ bintime_sub(&gap_lerp, &ffth->tick_time_lerp);
+ } else {
+ gap_lerp = ffth->tick_time_lerp;
+ bintime_sub(&gap_lerp, &ffth->tick_time);
+ }
+
+ /*
+ * The reset from the RTC clock may be far from accurate, and
+ * reducing the gap between real time and interpolated time
+ * could take a very long time if the interpolated clock insists
+ * on strict monotonicity. The clock is reset under very strict
+ * conditions (kernel time is known to be wrong and
+ * synchronization daemon has been restarted recently.
+ * ffclock_boottime absorbs the jump to ensure boot time is
+ * correct and uptime functions stay consistent.
+ */
+ if (((ffclock_status & FFCLOCK_STA_UNSYNC) == FFCLOCK_STA_UNSYNC) &&
+ ((cest->status & FFCLOCK_STA_UNSYNC) == 0) &&
+ ((cest->status & FFCLOCK_STA_WARMUP) == FFCLOCK_STA_WARMUP)) {
+ if (forward_jump)
+ bintime_add(&ffclock_boottime, &gap_lerp);
+ else
+ bintime_sub(&ffclock_boottime, &gap_lerp);
+ ffth->tick_time_lerp = ffth->tick_time;
+ bintime_clear(&gap_lerp);
+ }
+
+ ffclock_status = cest->status;
+ ffth->period_lerp = cest->period;
+
+ /*
+ * Compute corrected period used for the linear interpolation of
+ * time. The rate of linear interpolation is capped to 5000PPM
+ * (5ms/s).
+ */
+ if (bintime_isset(&gap_lerp)) {
+ ffdelta = cest->update_ffcount;
+ ffdelta -= fftimehands->cest.update_ffcount;
+ ffclock_convert_delta(ffdelta, cest->period, &bt);
+ polling = bt.sec;
+ bt.sec = 0;
+ bt.frac = 5000000 * (uint64_t)18446744073LL;
+ bintime_mul(&bt, polling);
+ if (bintime_cmp(&gap_lerp, &bt, >))
+ gap_lerp = bt;
+
+ /* Approximate 1 sec by 1-(1/2^64) to ease arithmetic */
+ frac = 0;
+ if (gap_lerp.sec > 0) {
+ frac -= 1;
+ frac /= ffdelta / gap_lerp.sec;
+ }
+ frac += gap_lerp.frac / ffdelta;
+
+ if (forward_jump)
+ ffth->period_lerp += frac;
+ else
+ ffth->period_lerp -= frac;
+ }
+
+ ffclock_updated = 0;
+ }
+ if (++ogen == 0)
+ ogen = 1;
+ ffth->gen = ogen;
+ fftimehands = ffth;
+}
+
+/*
+ * Adjust the fftimehands when the timecounter is changed. Stating the obvious,
+ * the old and new hardware counter cannot be read simultaneously. tc_windup()
+ * does read the two counters 'back to back', but a few cycles are effectively
+ * lost, and not accumulated in tick_ffcount. This is a fairly radical
+ * operation for a feed-forward synchronization daemon, and it is its job to not
+ * pushing irrelevant data to the kernel. Because there is no locking here,
+ * simply force to ignore pending or next update to give daemon a chance to
+ * realize the counter has changed.
+ */
+static void
+ffclock_change_tc(struct timehands *th)
+{
+ struct fftimehands *ffth;
+ struct ffclock_estimate *cest;
+ struct timecounter *tc;
+ uint8_t ogen;
+
+ tc = th->th_counter;
+ ffth = fftimehands->next;
+ ogen = ffth->gen;
+ ffth->gen = 0;
+
+ cest = &ffth->cest;
+ bcopy(&(fftimehands->cest), cest, sizeof(struct ffclock_estimate));
+ cest->period = ((1ULL << 63) / tc->tc_frequency ) << 1;
+ cest->errb_abs = 0;
+ cest->errb_rate = 0;
+ cest->status |= FFCLOCK_STA_UNSYNC;
+
+ ffth->tick_ffcount = fftimehands->tick_ffcount;
+ ffth->tick_time_lerp = fftimehands->tick_time_lerp;
+ ffth->tick_time = fftimehands->tick_time;
+ ffth->period_lerp = cest->period;
+
+ /* Do not lock but ignore next update from synchronization daemon. */
+ ffclock_updated--;
+
+ if (++ogen == 0)
+ ogen = 1;
+ ffth->gen = ogen;
+ fftimehands = ffth;
+}
+
+/*
+ * Retrieve feed-forward counter and time of last kernel tick.
+ */
+void
+ffclock_last_tick(ffcounter *ffcount, struct bintime *bt, uint32_t flags)
+{
+ struct fftimehands *ffth;
+ uint8_t gen;
+
+ /*
+ * No locking but check generation has not changed. Also need to make
+ * sure ffdelta is positive, i.e. ffcount > tick_ffcount.
+ */
+ do {
+ ffth = fftimehands;
+ gen = ffth->gen;
+ if ((flags & FFCLOCK_LERP) == FFCLOCK_LERP)
+ *bt = ffth->tick_time_lerp;
+ else
+ *bt = ffth->tick_time;
+ *ffcount = ffth->tick_ffcount;
+ } while (gen == 0 || gen != ffth->gen);
+}
+
+/*
+ * Absolute clock conversion. Low level function to convert ffcounter to
+ * bintime. The ffcounter is converted using the current ffclock period estimate
+ * or the "interpolated period" to ensure monotonicity.
+ * NOTE: this conversion may have been deferred, and the clock updated since the
+ * hardware counter has been read.
+ */
+void
+ffclock_convert_abs(ffcounter ffcount, struct bintime *bt, uint32_t flags)
+{
+ struct fftimehands *ffth;
+ struct bintime bt2;
+ ffcounter ffdelta;
+ uint8_t gen;
+
+ /*
+ * No locking but check generation has not changed. Also need to make
+ * sure ffdelta is positive, i.e. ffcount > tick_ffcount.
+ */
+ do {
+ ffth = fftimehands;
+ gen = ffth->gen;
+ if (ffcount > ffth->tick_ffcount)
+ ffdelta = ffcount - ffth->tick_ffcount;
+ else
+ ffdelta = ffth->tick_ffcount - ffcount;
+
+ if ((flags & FFCLOCK_LERP) == FFCLOCK_LERP) {
+ *bt = ffth->tick_time_lerp;
+ ffclock_convert_delta(ffdelta, ffth->period_lerp, &bt2);
+ } else {
+ *bt = ffth->tick_time;
+ ffclock_convert_delta(ffdelta, ffth->cest.period, &bt2);
+ }
+
+ if (ffcount > ffth->tick_ffcount)
+ bintime_add(bt, &bt2);
+ else
+ bintime_sub(bt, &bt2);
+ } while (gen == 0 || gen != ffth->gen);
+}
+
+/*
+ * Difference clock conversion.
+ * Low level function to Convert a time interval measured in RAW counter units
+ * into bintime. The difference clock allows measuring small intervals much more
+ * reliably than the absolute clock.
+ */
+void
+ffclock_convert_diff(ffcounter ffdelta, struct bintime *bt)
+{
+ struct fftimehands *ffth;
+ uint8_t gen;
+
+ /* No locking but check generation has not changed. */
+ do {
+ ffth = fftimehands;
+ gen = ffth->gen;
+ ffclock_convert_delta(ffdelta, ffth->cest.period, bt);
+ } while (gen == 0 || gen != ffth->gen);
+}
+
+/*
+ * Access to current ffcounter value.
+ */
+void
+ffclock_read_counter(ffcounter *ffcount)
+{
+ struct timehands *th;
+ struct fftimehands *ffth;
+ unsigned int gen, delta;
+
+ /*
+ * ffclock_windup() called from tc_windup(), safe to rely on
+ * th->th_generation only, for correct delta and ffcounter.
+ */
+ do {
+ th = timehands;
+ gen = th->th_generation;
+ ffth = fftimehands;
+ delta = tc_delta(th);
+ *ffcount = ffth->tick_ffcount;
+ } while (gen == 0 || gen != th->th_generation);
+
+ *ffcount += delta;
+}
+
+void
+binuptime(struct bintime *bt)
+{
+
+ binuptime_fromclock(bt, sysclock_active);
+}
+
+void
+nanouptime(struct timespec *tsp)
+{
+
+ nanouptime_fromclock(tsp, sysclock_active);
+}
+
+void
+microuptime(struct timeval *tvp)
+{
+
+ microuptime_fromclock(tvp, sysclock_active);
+}
+
+void
+bintime(struct bintime *bt)
+{
+
+ bintime_fromclock(bt, sysclock_active);
+}
+
+void
+nanotime(struct timespec *tsp)
+{
+
+ nanotime_fromclock(tsp, sysclock_active);
+}
+
+void
+microtime(struct timeval *tvp)
+{
+
+ microtime_fromclock(tvp, sysclock_active);
+}
+
+void
+getbinuptime(struct bintime *bt)
+{
+
+ getbinuptime_fromclock(bt, sysclock_active);
+}
+
+void
+getnanouptime(struct timespec *tsp)
+{
+
+ getnanouptime_fromclock(tsp, sysclock_active);
+}
+
+void
+getmicrouptime(struct timeval *tvp)
+{
+
+ getmicrouptime_fromclock(tvp, sysclock_active);
+}
+
+void
+getbintime(struct bintime *bt)
+{
+
+ getbintime_fromclock(bt, sysclock_active);
+}
+
+void
+getnanotime(struct timespec *tsp)
+{
+
+ getnanotime_fromclock(tsp, sysclock_active);
+}
+
+void
+getmicrotime(struct timeval *tvp)
+{
+
+ getmicrouptime_fromclock(tvp, sysclock_active);
+}
+
+#endif /* FFCLOCK */
+
+/*
+ * This is a clone of getnanotime and used for walltimestamps.
+ * The dtrace_ prefix prevents fbt from creating probes for
+ * it so walltimestamp can be safely used in all fbt probes.
+ */
+void
+dtrace_getnanotime(struct timespec *tsp)
+{
+ struct timehands *th;
+ u_int gen;
+
+ do {
+ th = timehands;
+ gen = th->th_generation;
+ *tsp = th->th_nanotime;
+ } while (gen == 0 || gen != th->th_generation);
+}
+
+/*
+ * System clock currently providing time to the system. Modifiable via sysctl
+ * when the FFCLOCK option is defined.
+ */
+int sysclock_active = SYSCLOCK_FBCK;
+
+/* Internal NTP status and error estimates. */
+extern int time_status;
+extern long time_esterror;
+
+/*
+ * Take a snapshot of sysclock data which can be used to compare system clocks
+ * and generate timestamps after the fact.
+ */
+void
+sysclock_getsnapshot(struct sysclock_snap *clock_snap, int fast)
+{
+ struct fbclock_info *fbi;
+ struct timehands *th;
+ struct bintime bt;
+ unsigned int delta, gen;
+#ifdef FFCLOCK
+ ffcounter ffcount;
+ struct fftimehands *ffth;
+ struct ffclock_info *ffi;
+ struct ffclock_estimate cest;
+
+ ffi = &clock_snap->ff_info;
+#endif
+
+ fbi = &clock_snap->fb_info;
+ delta = 0;
+
+ do {
+ th = timehands;
+ gen = th->th_generation;
+ fbi->th_scale = th->th_scale;
+ fbi->tick_time = th->th_offset;
+#ifdef FFCLOCK
+ ffth = fftimehands;
+ ffi->tick_time = ffth->tick_time_lerp;
+ ffi->tick_time_lerp = ffth->tick_time_lerp;
+ ffi->period = ffth->cest.period;
+ ffi->period_lerp = ffth->period_lerp;
+ clock_snap->ffcount = ffth->tick_ffcount;
+ cest = ffth->cest;
+#endif
+ if (!fast)
+ delta = tc_delta(th);
+ } while (gen == 0 || gen != th->th_generation);
+
+ clock_snap->delta = delta;
+ clock_snap->sysclock_active = sysclock_active;
+
+ /* Record feedback clock status and error. */
+ clock_snap->fb_info.status = time_status;
+ /* XXX: Very crude estimate of feedback clock error. */
+ bt.sec = time_esterror / 1000000;
+ bt.frac = ((time_esterror - bt.sec) * 1000000) *
+ (uint64_t)18446744073709ULL;
+ clock_snap->fb_info.error = bt;
+
+#ifdef FFCLOCK
+ if (!fast)
+ clock_snap->ffcount += delta;
+
+ /* Record feed-forward clock leap second adjustment. */
+ ffi->leapsec_adjustment = cest.leapsec_total;
+ if (clock_snap->ffcount > cest.leapsec_next)
+ ffi->leapsec_adjustment -= cest.leapsec;
+
+ /* Record feed-forward clock status and error. */
+ clock_snap->ff_info.status = cest.status;
+ ffcount = clock_snap->ffcount - cest.update_ffcount;
+ ffclock_convert_delta(ffcount, cest.period, &bt);
+ /* 18446744073709 = int(2^64/1e12), err_bound_rate in [ps/s]. */
+ bintime_mul(&bt, cest.errb_rate * (uint64_t)18446744073709ULL);
+ /* 18446744073 = int(2^64 / 1e9), since err_abs in [ns]. */
+ bintime_addx(&bt, cest.errb_abs * (uint64_t)18446744073ULL);
+ clock_snap->ff_info.error = bt;
+#endif
+}
+
+/*
+ * Convert a sysclock snapshot into a struct bintime based on the specified
+ * clock source and flags.
+ */
+int
+sysclock_snap2bintime(struct sysclock_snap *cs, struct bintime *bt,
+ int whichclock, uint32_t flags)
+{
+#ifdef FFCLOCK
+ struct bintime bt2;
+ uint64_t period;
+#endif
+
+ switch (whichclock) {
+ case SYSCLOCK_FBCK:
+ *bt = cs->fb_info.tick_time;
+
+ /* If snapshot was created with !fast, delta will be >0. */
+ if (cs->delta > 0)
+ bintime_addx(bt, cs->fb_info.th_scale * cs->delta);
+
+ if ((flags & FBCLOCK_UPTIME) == 0)
+ bintime_add(bt, &boottimebin);
+ break;
+#ifdef FFCLOCK
+ case SYSCLOCK_FFWD:
+ if (flags & FFCLOCK_LERP) {
+ *bt = cs->ff_info.tick_time_lerp;
+ period = cs->ff_info.period_lerp;
+ } else {
+ *bt = cs->ff_info.tick_time;
+ period = cs->ff_info.period;
+ }
+
+ /* If snapshot was created with !fast, delta will be >0. */
+ if (cs->delta > 0) {
+ ffclock_convert_delta(cs->delta, period, &bt2);
+ bintime_add(bt, &bt2);
+ }
+
+ /* Leap second adjustment. */
+ if (flags & FFCLOCK_LEAPSEC)
+ bt->sec -= cs->ff_info.leapsec_adjustment;
+
+ /* Boot time adjustment, for uptime/monotonic clocks. */
+ if (flags & FFCLOCK_UPTIME)
+ bintime_sub(bt, &ffclock_boottime);
+ break;
+#endif
+ default:
+ return (EINVAL);
+ break;
+ }
+
+ return (0);
+}
+
+/*
+ * Initialize a new timecounter and possibly use it.
+ */
+void
+tc_init(struct timecounter *tc)
+{
+ u_int u;
+ struct sysctl_oid *tc_root;
+
+ u = tc->tc_frequency / tc->tc_counter_mask;
+ /* XXX: We need some margin here, 10% is a guess */
+ u *= 11;
+ u /= 10;
+ if (u > hz && tc->tc_quality >= 0) {
+ tc->tc_quality = -2000;
+ if (bootverbose) {
+ printf("Timecounter \"%s\" frequency %ju Hz",
+ tc->tc_name, (uintmax_t)tc->tc_frequency);
+ printf(" -- Insufficient hz, needs at least %u\n", u);
+ }
+ } else if (tc->tc_quality >= 0 || bootverbose) {
+ printf("Timecounter \"%s\" frequency %ju Hz quality %d\n",
+ tc->tc_name, (uintmax_t)tc->tc_frequency,
+ tc->tc_quality);
+ }
+
+ tc->tc_next = timecounters;
+ timecounters = tc;
+ /*
+ * Set up sysctl tree for this counter.
+ */
+ tc_root = SYSCTL_ADD_NODE(NULL,
+ SYSCTL_STATIC_CHILDREN(_kern_timecounter_tc), OID_AUTO, tc->tc_name,
+ CTLFLAG_RW, 0, "timecounter description");
+ SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
+ "mask", CTLFLAG_RD, &(tc->tc_counter_mask), 0,
+ "mask for implemented bits");
+ SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
+ "counter", CTLTYPE_UINT | CTLFLAG_RD, tc, sizeof(*tc),
+ sysctl_kern_timecounter_get, "IU", "current timecounter value");
+ SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
+ "frequency", CTLTYPE_U64 | CTLFLAG_RD, tc, sizeof(*tc),
+ sysctl_kern_timecounter_freq, "QU", "timecounter frequency");
+ SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
+ "quality", CTLFLAG_RD, &(tc->tc_quality), 0,
+ "goodness of time counter");
+ /*
+ * Never automatically use a timecounter with negative quality.
+ * Even though we run on the dummy counter, switching here may be
+ * worse since this timecounter may not be monotonous.
+ */
+ if (tc->tc_quality < 0)
+ return;
+ if (tc->tc_quality < timecounter->tc_quality)
+ return;
+ if (tc->tc_quality == timecounter->tc_quality &&
+ tc->tc_frequency < timecounter->tc_frequency)
+ return;
+ (void)tc->tc_get_timecount(tc);
+ (void)tc->tc_get_timecount(tc);
+ timecounter = tc;
+}
+
+/* Report the frequency of the current timecounter. */
+uint64_t
+tc_getfrequency(void)
+{
+
+ return (timehands->th_counter->tc_frequency);
+}
+
+/*
+ * Step our concept of UTC. This is done by modifying our estimate of
+ * when we booted.
+ * XXX: not locked.
+ */
+void
+tc_setclock(struct timespec *ts)
+{
+ struct timespec tbef, taft;
+ struct bintime bt, bt2;
+
+ cpu_tick_calibrate(1);
+ nanotime(&tbef);
+ timespec2bintime(ts, &bt);
+ binuptime(&bt2);
+ bintime_sub(&bt, &bt2);
+ bintime_add(&bt2, &boottimebin);
+ boottimebin = bt;
+ bintime2timeval(&bt, &boottime);
+
+ /* XXX fiddle all the little crinkly bits around the fiords... */
+ tc_windup();
+ nanotime(&taft);
+ if (timestepwarnings) {
+ log(LOG_INFO,
+ "Time stepped from %jd.%09ld to %jd.%09ld (%jd.%09ld)\n",
+ (intmax_t)tbef.tv_sec, tbef.tv_nsec,
+ (intmax_t)taft.tv_sec, taft.tv_nsec,
+ (intmax_t)ts->tv_sec, ts->tv_nsec);
+ }
+ cpu_tick_calibrate(1);
+}
+
+/*
+ * Initialize the next struct timehands in the ring and make
+ * it the active timehands. Along the way we might switch to a different
+ * timecounter and/or do seconds processing in NTP. Slightly magic.
+ */
+static void
+tc_windup(void)
+{
+ struct bintime bt;
+ struct timehands *th, *tho;
+ uint64_t scale;
+ u_int delta, ncount, ogen;
+ int i;
+ time_t t;
+
+ /*
+ * Make the next timehands a copy of the current one, but do not
+ * overwrite the generation or next pointer. While we update
+ * the contents, the generation must be zero.
+ */
+ tho = timehands;
+ th = tho->th_next;
+ ogen = th->th_generation;
+ th->th_generation = 0;
+ bcopy(tho, th, offsetof(struct timehands, th_generation));
+
+ /*
+ * Capture a timecounter delta on the current timecounter and if
+ * changing timecounters, a counter value from the new timecounter.
+ * Update the offset fields accordingly.
+ */
+ delta = tc_delta(th);
+ if (th->th_counter != timecounter)
+ ncount = timecounter->tc_get_timecount(timecounter);
+ else
+ ncount = 0;
+#ifdef FFCLOCK
+ ffclock_windup(delta);
+#endif
+ th->th_offset_count += delta;
+ th->th_offset_count &= th->th_counter->tc_counter_mask;
+ while (delta > th->th_counter->tc_frequency) {
+ /* Eat complete unadjusted seconds. */
+ delta -= th->th_counter->tc_frequency;
+ th->th_offset.sec++;
+ }
+ if ((delta > th->th_counter->tc_frequency / 2) &&
+ (th->th_scale * delta < ((uint64_t)1 << 63))) {
+ /* The product th_scale * delta just barely overflows. */
+ th->th_offset.sec++;
+ }
+ bintime_addx(&th->th_offset, th->th_scale * delta);
+
+ /*
+ * Hardware latching timecounters may not generate interrupts on
+ * PPS events, so instead we poll them. There is a finite risk that
+ * the hardware might capture a count which is later than the one we
+ * got above, and therefore possibly in the next NTP second which might
+ * have a different rate than the current NTP second. It doesn't
+ * matter in practice.
+ */
+ if (tho->th_counter->tc_poll_pps)
+ tho->th_counter->tc_poll_pps(tho->th_counter);
+
+ /*
+ * Deal with NTP second processing. The for loop normally
+ * iterates at most once, but in extreme situations it might
+ * keep NTP sane if timeouts are not run for several seconds.
+ * At boot, the time step can be large when the TOD hardware
+ * has been read, so on really large steps, we call
+ * ntp_update_second only twice. We need to call it twice in
+ * case we missed a leap second.
+ */
+ bt = th->th_offset;
+ bintime_add(&bt, &boottimebin);
+ i = bt.sec - tho->th_microtime.tv_sec;
+ if (i > LARGE_STEP)
+ i = 2;
+ for (; i > 0; i--) {
+ t = bt.sec;
+ ntp_update_second(&th->th_adjustment, &bt.sec);
+ if (bt.sec != t)
+ boottimebin.sec += bt.sec - t;
+ }
+ /* Update the UTC timestamps used by the get*() functions. */
+ /* XXX shouldn't do this here. Should force non-`get' versions. */
+ bintime2timeval(&bt, &th->th_microtime);
+ bintime2timespec(&bt, &th->th_nanotime);
+
+ /* Now is a good time to change timecounters. */
+ if (th->th_counter != timecounter) {
+#ifndef __arm__
+ if ((timecounter->tc_flags & TC_FLAGS_C2STOP) != 0)
+ cpu_disable_c2_sleep++;
+ if ((th->th_counter->tc_flags & TC_FLAGS_C2STOP) != 0)
+ cpu_disable_c2_sleep--;
+#endif
+ th->th_counter = timecounter;
+ th->th_offset_count = ncount;
+ tc_min_ticktock_freq = max(1, timecounter->tc_frequency /
+ (((uint64_t)timecounter->tc_counter_mask + 1) / 3));
+#ifdef FFCLOCK
+ ffclock_change_tc(th);
+#endif
+ }
+
+ /*-
+ * Recalculate the scaling factor. We want the number of 1/2^64
+ * fractions of a second per period of the hardware counter, taking
+ * into account the th_adjustment factor which the NTP PLL/adjtime(2)
+ * processing provides us with.
+ *
+ * The th_adjustment is nanoseconds per second with 32 bit binary
+ * fraction and we want 64 bit binary fraction of second:
+ *
+ * x = a * 2^32 / 10^9 = a * 4.294967296
+ *
+ * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
+ * we can only multiply by about 850 without overflowing, that
+ * leaves no suitably precise fractions for multiply before divide.
+ *
+ * Divide before multiply with a fraction of 2199/512 results in a
+ * systematic undercompensation of 10PPM of th_adjustment. On a
+ * 5000PPM adjustment this is a 0.05PPM error. This is acceptable.
+ *
+ * We happily sacrifice the lowest of the 64 bits of our result
+ * to the goddess of code clarity.
+ *
+ */
+ scale = (uint64_t)1 << 63;
+ scale += (th->th_adjustment / 1024) * 2199;
+ scale /= th->th_counter->tc_frequency;
+ th->th_scale = scale * 2;
+
+ /*
+ * Now that the struct timehands is again consistent, set the new
+ * generation number, making sure to not make it zero.
+ */
+ if (++ogen == 0)
+ ogen = 1;
+ th->th_generation = ogen;
+
+ /* Go live with the new struct timehands. */
+#ifdef FFCLOCK
+ switch (sysclock_active) {
+ case SYSCLOCK_FBCK:
+#endif
+ time_second = th->th_microtime.tv_sec;
+ time_uptime = th->th_offset.sec;
+#ifdef FFCLOCK
+ break;
+ case SYSCLOCK_FFWD:
+ time_second = fftimehands->tick_time_lerp.sec;
+ time_uptime = fftimehands->tick_time_lerp.sec - ffclock_boottime.sec;
+ break;
+ }
+#endif
+
+ timehands = th;
+ timekeep_push_vdso();
+}
+
+/* Report or change the active timecounter hardware. */
+static int
+sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS)
+{
+ char newname[32];
+ struct timecounter *newtc, *tc;
+ int error;
+
+ tc = timecounter;
+ strlcpy(newname, tc->tc_name, sizeof(newname));
+
+ error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req);
+ if (error != 0 || req->newptr == NULL ||
+ strcmp(newname, tc->tc_name) == 0)
+ return (error);
+ for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
+ if (strcmp(newname, newtc->tc_name) != 0)
+ continue;
+
+ /* Warm up new timecounter. */
+ (void)newtc->tc_get_timecount(newtc);
+ (void)newtc->tc_get_timecount(newtc);
+
+ timecounter = newtc;
+
+ /*
+ * The vdso timehands update is deferred until the next
+ * 'tc_windup()'.
+ *
+ * This is prudent given that 'timekeep_push_vdso()' does not
+ * use any locking and that it can be called in hard interrupt
+ * context via 'tc_windup()'.
+ */
+ return (0);
+ }
+ return (EINVAL);
+}
+
+SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware, CTLTYPE_STRING | CTLFLAG_RW,
+ 0, 0, sysctl_kern_timecounter_hardware, "A",
+ "Timecounter hardware selected");
+
+
+/* Report or change the active timecounter hardware. */
+static int
+sysctl_kern_timecounter_choice(SYSCTL_HANDLER_ARGS)
+{
+ char buf[32], *spc;
+ struct timecounter *tc;
+ int error;
+
+ spc = "";
+ error = 0;
+ for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
+ sprintf(buf, "%s%s(%d)",
+ spc, tc->tc_name, tc->tc_quality);
+ error = SYSCTL_OUT(req, buf, strlen(buf));
+ spc = " ";
+ }
+ return (error);
+}
+
+SYSCTL_PROC(_kern_timecounter, OID_AUTO, choice, CTLTYPE_STRING | CTLFLAG_RD,
+ 0, 0, sysctl_kern_timecounter_choice, "A", "Timecounter hardware detected");
+
+/*
+ * RFC 2783 PPS-API implementation.
+ */
+
+static int
+pps_fetch(struct pps_fetch_args *fapi, struct pps_state *pps)
+{
+ int err, timo;
+ pps_seq_t aseq, cseq;
+ struct timeval tv;
+
+ if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
+ return (EINVAL);
+
+ /*
+ * If no timeout is requested, immediately return whatever values were
+ * most recently captured. If timeout seconds is -1, that's a request
+ * to block without a timeout. WITNESS won't let us sleep forever
+ * without a lock (we really don't need a lock), so just repeatedly
+ * sleep a long time.
+ */
+ if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec) {
+ if (fapi->timeout.tv_sec == -1)
+ timo = 0x7fffffff;
+ else {
+ tv.tv_sec = fapi->timeout.tv_sec;
+ tv.tv_usec = fapi->timeout.tv_nsec / 1000;
+ timo = tvtohz(&tv);
+ }
+ aseq = pps->ppsinfo.assert_sequence;
+ cseq = pps->ppsinfo.clear_sequence;
+ while (aseq == pps->ppsinfo.assert_sequence &&
+ cseq == pps->ppsinfo.clear_sequence) {
+ err = tsleep(pps, PCATCH, "ppsfch", timo);
+ if (err == EWOULDBLOCK && fapi->timeout.tv_sec == -1) {
+ continue;
+ } else if (err != 0) {
+ return (err);
+ }
+ }
+ }
+
+ pps->ppsinfo.current_mode = pps->ppsparam.mode;
+ fapi->pps_info_buf = pps->ppsinfo;
+
+ return (0);
+}
+
+int
+pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
+{
+ pps_params_t *app;
+ struct pps_fetch_args *fapi;
+#ifdef FFCLOCK
+ struct pps_fetch_ffc_args *fapi_ffc;
+#endif
+#ifdef PPS_SYNC
+ struct pps_kcbind_args *kapi;
+#endif
+
+ KASSERT(pps != NULL, ("NULL pps pointer in pps_ioctl"));
+ switch (cmd) {
+ case PPS_IOC_CREATE:
+ return (0);
+ case PPS_IOC_DESTROY:
+ return (0);
+ case PPS_IOC_SETPARAMS:
+ app = (pps_params_t *)data;
+ if (app->mode & ~pps->ppscap)
+ return (EINVAL);
+#ifdef FFCLOCK
+ /* Ensure only a single clock is selected for ffc timestamp. */
+ if ((app->mode & PPS_TSCLK_MASK) == PPS_TSCLK_MASK)
+ return (EINVAL);
+#endif
+ pps->ppsparam = *app;
+ return (0);
+ case PPS_IOC_GETPARAMS:
+ app = (pps_params_t *)data;
+ *app = pps->ppsparam;
+ app->api_version = PPS_API_VERS_1;
+ return (0);
+ case PPS_IOC_GETCAP:
+ *(int*)data = pps->ppscap;
+ return (0);
+ case PPS_IOC_FETCH:
+ fapi = (struct pps_fetch_args *)data;
+ return (pps_fetch(fapi, pps));
+#ifdef FFCLOCK
+ case PPS_IOC_FETCH_FFCOUNTER:
+ fapi_ffc = (struct pps_fetch_ffc_args *)data;
+ if (fapi_ffc->tsformat && fapi_ffc->tsformat !=
+ PPS_TSFMT_TSPEC)
+ return (EINVAL);
+ if (fapi_ffc->timeout.tv_sec || fapi_ffc->timeout.tv_nsec)
+ return (EOPNOTSUPP);
+ pps->ppsinfo_ffc.current_mode = pps->ppsparam.mode;
+ fapi_ffc->pps_info_buf_ffc = pps->ppsinfo_ffc;
+ /* Overwrite timestamps if feedback clock selected. */
+ switch (pps->ppsparam.mode & PPS_TSCLK_MASK) {
+ case PPS_TSCLK_FBCK:
+ fapi_ffc->pps_info_buf_ffc.assert_timestamp =
+ pps->ppsinfo.assert_timestamp;
+ fapi_ffc->pps_info_buf_ffc.clear_timestamp =
+ pps->ppsinfo.clear_timestamp;
+ break;
+ case PPS_TSCLK_FFWD:
+ break;
+ default:
+ break;
+ }
+ return (0);
+#endif /* FFCLOCK */
+ case PPS_IOC_KCBIND:
+#ifdef PPS_SYNC
+ kapi = (struct pps_kcbind_args *)data;
+ /* XXX Only root should be able to do this */
+ if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
+ return (EINVAL);
+ if (kapi->kernel_consumer != PPS_KC_HARDPPS)
+ return (EINVAL);
+ if (kapi->edge & ~pps->ppscap)
+ return (EINVAL);
+ pps->kcmode = kapi->edge;
+ return (0);
+#else
+ return (EOPNOTSUPP);
+#endif
+ default:
+ return (ENOIOCTL);
+ }
+}
+
+void
+pps_init(struct pps_state *pps)
+{
+ pps->ppscap |= PPS_TSFMT_TSPEC | PPS_CANWAIT;
+ if (pps->ppscap & PPS_CAPTUREASSERT)
+ pps->ppscap |= PPS_OFFSETASSERT;
+ if (pps->ppscap & PPS_CAPTURECLEAR)
+ pps->ppscap |= PPS_OFFSETCLEAR;
+#ifdef FFCLOCK
+ pps->ppscap |= PPS_TSCLK_MASK;
+#endif
+}
+
+void
+pps_capture(struct pps_state *pps)
+{
+ struct timehands *th;
+
+ KASSERT(pps != NULL, ("NULL pps pointer in pps_capture"));
+ th = timehands;
+ pps->capgen = th->th_generation;
+ pps->capth = th;
+#ifdef FFCLOCK
+ pps->capffth = fftimehands;
+#endif
+ pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
+ if (pps->capgen != th->th_generation)
+ pps->capgen = 0;
+}
+
+void
+pps_event(struct pps_state *pps, int event)
+{
+ struct bintime bt;
+ struct timespec ts, *tsp, *osp;
+ u_int tcount, *pcount;
+ int foff, fhard;
+ pps_seq_t *pseq;
+#ifdef FFCLOCK
+ struct timespec *tsp_ffc;
+ pps_seq_t *pseq_ffc;
+ ffcounter *ffcount;
+#endif
+
+ KASSERT(pps != NULL, ("NULL pps pointer in pps_event"));
+ /* If the timecounter was wound up underneath us, bail out. */
+ if (pps->capgen == 0 || pps->capgen != pps->capth->th_generation)
+ return;
+
+ /* Things would be easier with arrays. */
+ if (event == PPS_CAPTUREASSERT) {
+ tsp = &pps->ppsinfo.assert_timestamp;
+ osp = &pps->ppsparam.assert_offset;
+ foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
+ fhard = pps->kcmode & PPS_CAPTUREASSERT;
+ pcount = &pps->ppscount[0];
+ pseq = &pps->ppsinfo.assert_sequence;
+#ifdef FFCLOCK
+ ffcount = &pps->ppsinfo_ffc.assert_ffcount;
+ tsp_ffc = &pps->ppsinfo_ffc.assert_timestamp;
+ pseq_ffc = &pps->ppsinfo_ffc.assert_sequence;
+#endif
+ } else {
+ tsp = &pps->ppsinfo.clear_timestamp;
+ osp = &pps->ppsparam.clear_offset;
+ foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
+ fhard = pps->kcmode & PPS_CAPTURECLEAR;
+ pcount = &pps->ppscount[1];
+ pseq = &pps->ppsinfo.clear_sequence;
+#ifdef FFCLOCK
+ ffcount = &pps->ppsinfo_ffc.clear_ffcount;
+ tsp_ffc = &pps->ppsinfo_ffc.clear_timestamp;
+ pseq_ffc = &pps->ppsinfo_ffc.clear_sequence;
+#endif
+ }
+
+ /*
+ * If the timecounter changed, we cannot compare the count values, so
+ * we have to drop the rest of the PPS-stuff until the next event.
+ */
+ if (pps->ppstc != pps->capth->th_counter) {
+ pps->ppstc = pps->capth->th_counter;
+ *pcount = pps->capcount;
+ pps->ppscount[2] = pps->capcount;
+ return;
+ }
+
+ /* Convert the count to a timespec. */
+ tcount = pps->capcount - pps->capth->th_offset_count;
+ tcount &= pps->capth->th_counter->tc_counter_mask;
+ bt = pps->capth->th_offset;
+ bintime_addx(&bt, pps->capth->th_scale * tcount);
+ bintime_add(&bt, &boottimebin);
+ bintime2timespec(&bt, &ts);
+
+ /* If the timecounter was wound up underneath us, bail out. */
+ if (pps->capgen != pps->capth->th_generation)
+ return;
+
+ *pcount = pps->capcount;
+ (*pseq)++;
+ *tsp = ts;
+
+ if (foff) {
+ timespecadd(tsp, osp);
+ if (tsp->tv_nsec < 0) {
+ tsp->tv_nsec += 1000000000;
+ tsp->tv_sec -= 1;
+ }
+ }
+
+#ifdef FFCLOCK
+ *ffcount = pps->capffth->tick_ffcount + tcount;
+ bt = pps->capffth->tick_time;
+ ffclock_convert_delta(tcount, pps->capffth->cest.period, &bt);
+ bintime_add(&bt, &pps->capffth->tick_time);
+ bintime2timespec(&bt, &ts);
+ (*pseq_ffc)++;
+ *tsp_ffc = ts;
+#endif
+
+#ifdef PPS_SYNC
+ if (fhard) {
+ uint64_t scale;
+
+ /*
+ * Feed the NTP PLL/FLL.
+ * The FLL wants to know how many (hardware) nanoseconds
+ * elapsed since the previous event.
+ */
+ tcount = pps->capcount - pps->ppscount[2];
+ pps->ppscount[2] = pps->capcount;
+ tcount &= pps->capth->th_counter->tc_counter_mask;
+ scale = (uint64_t)1 << 63;
+ scale /= pps->capth->th_counter->tc_frequency;
+ scale *= 2;
+ bt.sec = 0;
+ bt.frac = 0;
+ bintime_addx(&bt, scale * tcount);
+ bintime2timespec(&bt, &ts);
+ hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
+ }
+#endif
+
+ /* Wakeup anyone sleeping in pps_fetch(). */
+ wakeup(pps);
+}
+
+/*
+ * Timecounters need to be updated every so often to prevent the hardware
+ * counter from overflowing. Updating also recalculates the cached values
+ * used by the get*() family of functions, so their precision depends on
+ * the update frequency.
+ */
+
+static int tc_tick;
+SYSCTL_INT(_kern_timecounter, OID_AUTO, tick, CTLFLAG_RD, &tc_tick, 0,
+ "Approximate number of hardclock ticks in a millisecond");
+
+void
+tc_ticktock(int cnt)
+{
+ static int count;
+
+ count += cnt;
+ if (count < tc_tick)
+ return;
+ count = 0;
+ tc_windup();
+}
+
+static void __inline
+tc_adjprecision(void)
+{
+ int t;
+
+ if (tc_timepercentage > 0) {
+ t = (99 + tc_timepercentage) / tc_timepercentage;
+ tc_precexp = fls(t + (t >> 1)) - 1;
+ FREQ2BT(hz / tc_tick, &bt_timethreshold);
+ FREQ2BT(hz, &bt_tickthreshold);
+ bintime_shift(&bt_timethreshold, tc_precexp);
+ bintime_shift(&bt_tickthreshold, tc_precexp);
+ } else {
+ tc_precexp = 31;
+ bt_timethreshold.sec = INT_MAX;
+ bt_timethreshold.frac = ~(uint64_t)0;
+ bt_tickthreshold = bt_timethreshold;
+ }
+ sbt_timethreshold = bttosbt(bt_timethreshold);
+ sbt_tickthreshold = bttosbt(bt_tickthreshold);
+}
+
+static int
+sysctl_kern_timecounter_adjprecision(SYSCTL_HANDLER_ARGS)
+{
+ int error, val;
+
+ val = tc_timepercentage;
+ error = sysctl_handle_int(oidp, &val, 0, req);
+ if (error != 0 || req->newptr == NULL)
+ return (error);
+ tc_timepercentage = val;
+ if (cold)
+ goto done;
+ tc_adjprecision();
+done:
+ return (0);
+}
+
+static void
+inittimecounter(void *dummy)
+{
+ u_int p;
+ int tick_rate;
+
+ /*
+ * Set the initial timeout to
+ * max(1, <approx. number of hardclock ticks in a millisecond>).
+ * People should probably not use the sysctl to set the timeout
+ * to smaller than its inital value, since that value is the
+ * smallest reasonable one. If they want better timestamps they
+ * should use the non-"get"* functions.
+ */
+ if (hz > 1000)
+ tc_tick = (hz + 500) / 1000;
+ else
+ tc_tick = 1;
+ tc_adjprecision();
+ FREQ2BT(hz, &tick_bt);
+ tick_sbt = bttosbt(tick_bt);
+ tick_rate = hz / tc_tick;
+ FREQ2BT(tick_rate, &tc_tick_bt);
+ tc_tick_sbt = bttosbt(tc_tick_bt);
+ p = (tc_tick * 1000000) / hz;
+ printf("Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000);
+
+#ifdef FFCLOCK
+ ffclock_init();
+#endif
+ /* warm up new timecounter (again) and get rolling. */
+ (void)timecounter->tc_get_timecount(timecounter);
+ (void)timecounter->tc_get_timecount(timecounter);
+ tc_windup();
+}
+
+SYSINIT(timecounter, SI_SUB_CLOCKS, SI_ORDER_SECOND, inittimecounter, NULL);
+
+/* Cpu tick handling -------------------------------------------------*/
+
+static int cpu_tick_variable;
+static uint64_t cpu_tick_frequency;
+
+static uint64_t
+tc_cpu_ticks(void)
+{
+ static uint64_t base;
+ static unsigned last;
+ unsigned u;
+ struct timecounter *tc;
+
+ tc = timehands->th_counter;
+ u = tc->tc_get_timecount(tc) & tc->tc_counter_mask;
+ if (u < last)
+ base += (uint64_t)tc->tc_counter_mask + 1;
+ last = u;
+ return (u + base);
+}
+
+void
+cpu_tick_calibration(void)
+{
+ static time_t last_calib;
+
+ if (time_uptime != last_calib && !(time_uptime & 0xf)) {
+ cpu_tick_calibrate(0);
+ last_calib = time_uptime;
+ }
+}
+
+/*
+ * This function gets called every 16 seconds on only one designated
+ * CPU in the system from hardclock() via cpu_tick_calibration()().
+ *
+ * Whenever the real time clock is stepped we get called with reset=1
+ * to make sure we handle suspend/resume and similar events correctly.
+ */
+
+static void
+cpu_tick_calibrate(int reset)
+{
+ static uint64_t c_last;
+ uint64_t c_this, c_delta;
+ static struct bintime t_last;
+ struct bintime t_this, t_delta;
+ uint32_t divi;
+
+ if (reset) {
+ /* The clock was stepped, abort & reset */
+ t_last.sec = 0;
+ return;
+ }
+
+ /* we don't calibrate fixed rate cputicks */
+ if (!cpu_tick_variable)
+ return;
+
+ getbinuptime(&t_this);
+ c_this = cpu_ticks();
+ if (t_last.sec != 0) {
+ c_delta = c_this - c_last;
+ t_delta = t_this;
+ bintime_sub(&t_delta, &t_last);
+ /*
+ * Headroom:
+ * 2^(64-20) / 16[s] =
+ * 2^(44) / 16[s] =
+ * 17.592.186.044.416 / 16 =
+ * 1.099.511.627.776 [Hz]
+ */
+ divi = t_delta.sec << 20;
+ divi |= t_delta.frac >> (64 - 20);
+ c_delta <<= 20;
+ c_delta /= divi;
+ if (c_delta > cpu_tick_frequency) {
+ if (0 && bootverbose)
+ printf("cpu_tick increased to %ju Hz\n",
+ c_delta);
+ cpu_tick_frequency = c_delta;
+ }
+ }
+ c_last = c_this;
+ t_last = t_this;
+}
+
+void
+set_cputicker(cpu_tick_f *func, uint64_t freq, unsigned var)
+{
+
+ if (func == NULL) {
+ cpu_ticks = tc_cpu_ticks;
+ } else {
+ cpu_tick_frequency = freq;
+ cpu_tick_variable = var;
+ cpu_ticks = func;
+ }
+}
+
+uint64_t
+cpu_tickrate(void)
+{
+
+ if (cpu_ticks == tc_cpu_ticks)
+ return (tc_getfrequency());
+ return (cpu_tick_frequency);
+}
+
+/*
+ * We need to be slightly careful converting cputicks to microseconds.
+ * There is plenty of margin in 64 bits of microseconds (half a million
+ * years) and in 64 bits at 4 GHz (146 years), but if we do a multiply
+ * before divide conversion (to retain precision) we find that the
+ * margin shrinks to 1.5 hours (one millionth of 146y).
+ * With a three prong approach we never lose significant bits, no
+ * matter what the cputick rate and length of timeinterval is.
+ */
+
+uint64_t
+cputick2usec(uint64_t tick)
+{
+
+ if (tick > 18446744073709551LL) /* floor(2^64 / 1000) */
+ return (tick / (cpu_tickrate() / 1000000LL));
+ else if (tick > 18446744073709LL) /* floor(2^64 / 1000000) */
+ return ((tick * 1000LL) / (cpu_tickrate() / 1000LL));
+ else
+ return ((tick * 1000000LL) / cpu_tickrate());
+}
+
+cpu_tick_f *cpu_ticks = tc_cpu_ticks;
+
+static int vdso_th_enable = 1;
+static int
+sysctl_fast_gettime(SYSCTL_HANDLER_ARGS)
+{
+ int old_vdso_th_enable, error;
+
+ old_vdso_th_enable = vdso_th_enable;
+ error = sysctl_handle_int(oidp, &old_vdso_th_enable, 0, req);
+ if (error != 0)
+ return (error);
+ vdso_th_enable = old_vdso_th_enable;
+ return (0);
+}
+SYSCTL_PROC(_kern_timecounter, OID_AUTO, fast_gettime,
+ CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
+ NULL, 0, sysctl_fast_gettime, "I", "Enable fast time of day");
+
+uint32_t
+tc_fill_vdso_timehands(struct vdso_timehands *vdso_th)
+{
+ struct timehands *th;
+ uint32_t enabled;
+
+ th = timehands;
+ vdso_th->th_algo = VDSO_TH_ALGO_1;
+ vdso_th->th_scale = th->th_scale;
+ vdso_th->th_offset_count = th->th_offset_count;
+ vdso_th->th_counter_mask = th->th_counter->tc_counter_mask;
+ vdso_th->th_offset = th->th_offset;
+ vdso_th->th_boottime = boottimebin;
+ enabled = cpu_fill_vdso_timehands(vdso_th, th->th_counter);
+ if (!vdso_th_enable)
+ enabled = 0;
+ return (enabled);
+}
+
+#ifdef COMPAT_FREEBSD32
+uint32_t
+tc_fill_vdso_timehands32(struct vdso_timehands32 *vdso_th32)
+{
+ struct timehands *th;
+ uint32_t enabled;
+
+ th = timehands;
+ vdso_th32->th_algo = VDSO_TH_ALGO_1;
+ *(uint64_t *)&vdso_th32->th_scale[0] = th->th_scale;
+ vdso_th32->th_offset_count = th->th_offset_count;
+ vdso_th32->th_counter_mask = th->th_counter->tc_counter_mask;
+ vdso_th32->th_offset.sec = th->th_offset.sec;
+ *(uint64_t *)&vdso_th32->th_offset.frac[0] = th->th_offset.frac;
+ vdso_th32->th_boottime.sec = boottimebin.sec;
+ *(uint64_t *)&vdso_th32->th_boottime.frac[0] = boottimebin.frac;
+ enabled = cpu_fill_vdso_timehands32(vdso_th32, th->th_counter);
+ if (!vdso_th_enable)
+ enabled = 0;
+ return (enabled);
+}
+#endif