summaryrefslogtreecommitdiffstats
path: root/cpukit/score/include/rtems/score/thread.h
diff options
context:
space:
mode:
authorChris Johns <chrisj@rtems.org>2017-12-23 18:18:56 +1100
committerSebastian Huber <sebastian.huber@embedded-brains.de>2018-01-25 08:45:26 +0100
commit2afb22b7e1ebcbe40373ff7e0efae7d207c655a9 (patch)
tree44759efe9374f13200a97e96d91bd9a2b7e5ce2a /cpukit/score/include/rtems/score/thread.h
parentMAINTAINERS: Add myself to Write After Approval. (diff)
downloadrtems-2afb22b7e1ebcbe40373ff7e0efae7d207c655a9.tar.bz2
Remove make preinstall
A speciality of the RTEMS build system was the make preinstall step. It copied header files from arbitrary locations into the build tree. The header files were included via the -Bsome/build/tree/path GCC command line option. This has at least seven problems: * The make preinstall step itself needs time and disk space. * Errors in header files show up in the build tree copy. This makes it hard for editors to open the right file to fix the error. * There is no clear relationship between source and build tree header files. This makes an audit of the build process difficult. * The visibility of all header files in the build tree makes it difficult to enforce API barriers. For example it is discouraged to use BSP-specifics in the cpukit. * An introduction of a new build system is difficult. * Include paths specified by the -B option are system headers. This may suppress warnings. * The parallel build had sporadic failures on some hosts. This patch removes the make preinstall step. All installed header files are moved to dedicated include directories in the source tree. Let @RTEMS_CPU@ be the target architecture, e.g. arm, powerpc, sparc, etc. Let @RTEMS_BSP_FAMILIY@ be a BSP family base directory, e.g. erc32, imx, qoriq, etc. The new cpukit include directories are: * cpukit/include * cpukit/score/cpu/@RTEMS_CPU@/include * cpukit/libnetworking The new BSP include directories are: * bsps/include * bsps/@RTEMS_CPU@/include * bsps/@RTEMS_CPU@/@RTEMS_BSP_FAMILIY@/include There are build tree include directories for generated files. The include directory order favours the most general header file, e.g. it is not possible to override general header files via the include path order. The "bootstrap -p" option was removed. The new "bootstrap -H" option should be used to regenerate the "headers.am" files. Update #3254.
Diffstat (limited to 'cpukit/score/include/rtems/score/thread.h')
-rw-r--r--cpukit/score/include/rtems/score/thread.h935
1 files changed, 0 insertions, 935 deletions
diff --git a/cpukit/score/include/rtems/score/thread.h b/cpukit/score/include/rtems/score/thread.h
deleted file mode 100644
index 7e0e2722dd..0000000000
--- a/cpukit/score/include/rtems/score/thread.h
+++ /dev/null
@@ -1,935 +0,0 @@
-/**
- * @file rtems/score/thread.h
- *
- * @brief Constants and Structures Related with the Thread Control Block
- *
- * This include file contains all constants and structures associated
- * with the thread control block.
- */
-
-/*
- * COPYRIGHT (c) 1989-2014.
- * On-Line Applications Research Corporation (OAR).
- *
- * Copyright (c) 2014, 2016 embedded brains GmbH.
- *
- * The license and distribution terms for this file may be
- * found in the file LICENSE in this distribution or at
- * http://www.rtems.org/license/LICENSE.
- */
-
-#ifndef _RTEMS_SCORE_THREAD_H
-#define _RTEMS_SCORE_THREAD_H
-
-#include <rtems/score/atomic.h>
-#include <rtems/score/context.h>
-#if defined(RTEMS_MULTIPROCESSING)
-#include <rtems/score/mppkt.h>
-#endif
-#include <rtems/score/isrlock.h>
-#include <rtems/score/object.h>
-#include <rtems/score/priority.h>
-#include <rtems/score/schedulernode.h>
-#include <rtems/score/stack.h>
-#include <rtems/score/states.h>
-#include <rtems/score/threadq.h>
-#include <rtems/score/timestamp.h>
-#include <rtems/score/watchdog.h>
-
-#if defined(RTEMS_SMP)
-#include <rtems/score/processormask.h>
-#endif
-
-struct _pthread_cleanup_context;
-
-struct Per_CPU_Control;
-
-struct _Scheduler_Control;
-
-struct User_extensions_Iterator;
-
-#ifdef __cplusplus
-extern "C" {
-#endif
-
-/**
- * @defgroup ScoreThread Thread Handler
- *
- * @ingroup Score
- *
- * This handler encapsulates functionality related to the management of
- * threads. This includes the creation, deletion, and scheduling of threads.
- *
- * The following variables are maintained as part of the per cpu data
- * structure.
- *
- * + Idle thread pointer
- * + Executing thread pointer
- * + Heir thread pointer
- */
-/**@{*/
-
-#if defined(RTEMS_POSIX_API)
- #define RTEMS_SCORE_THREAD_ENABLE_EXHAUST_TIMESLICE
-#endif
-
-/*
- * With the addition of the Constant Block Scheduler (CBS),
- * this feature is needed even when POSIX is disabled.
- */
-#define RTEMS_SCORE_THREAD_ENABLE_SCHEDULER_CALLOUT
-
-#if defined(RTEMS_POSIX_API)
- #define RTEMS_SCORE_THREAD_ENABLE_USER_PROVIDED_STACK_VIA_API
-#endif
-
-#if defined(RTEMS_DEBUG)
-#define RTEMS_SCORE_THREAD_ENABLE_RESOURCE_COUNT
-#endif
-
-/*
- * Only provided for backward compatiblity to not break application
- * configurations.
- */
-typedef void *Thread RTEMS_DEPRECATED;
-
-/**
- * @brief Type of the numeric argument of a thread entry function with at
- * least one numeric argument.
- *
- * This numeric argument type designates an unsigned integer type with the
- * property that any valid pointer to void can be converted to this type and
- * then converted back to a pointer to void. The result will compare equal to
- * the original pointer.
- */
-typedef CPU_Uint32ptr Thread_Entry_numeric_type;
-
-/**
- * @brief Data for idle thread entry.
- */
-typedef struct {
- void *( *entry )( uintptr_t argument );
-} Thread_Entry_idle;
-
-/**
- * @brief Data for thread entry with one numeric argument and no return value.
- */
-typedef struct {
- void ( *entry )( Thread_Entry_numeric_type argument );
- Thread_Entry_numeric_type argument;
-} Thread_Entry_numeric;
-
-/**
- * @brief Data for thread entry with one pointer argument and a pointer return
- * value.
- */
-typedef struct {
- void *( *entry )( void *argument );
- void *argument;
-} Thread_Entry_pointer;
-
-/**
- * @brief Thread entry information.
- */
-typedef struct {
- /**
- * @brief Thread entry adaptor.
- *
- * Calls the corresponding thread entry with the right parameters.
- *
- * @param executing The executing thread.
- */
- void ( *adaptor )( Thread_Control *executing );
-
- /**
- * @brief Thread entry data used by the adaptor to call the thread entry
- * function with the right parameters.
- */
- union {
- Thread_Entry_idle Idle;
- Thread_Entry_numeric Numeric;
- Thread_Entry_pointer Pointer;
- } Kinds;
-} Thread_Entry_information;
-
-/**
- * The following lists the algorithms used to manage the thread cpu budget.
- *
- * Reset Timeslice: At each context switch, reset the time quantum.
- * Exhaust Timeslice: Only reset the quantum once it is consumed.
- * Callout: Execute routine when budget is consumed.
- */
-typedef enum {
- THREAD_CPU_BUDGET_ALGORITHM_NONE,
- THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE,
- #if defined(RTEMS_SCORE_THREAD_ENABLE_EXHAUST_TIMESLICE)
- THREAD_CPU_BUDGET_ALGORITHM_EXHAUST_TIMESLICE,
- #endif
- #if defined(RTEMS_SCORE_THREAD_ENABLE_SCHEDULER_CALLOUT)
- THREAD_CPU_BUDGET_ALGORITHM_CALLOUT
- #endif
-} Thread_CPU_budget_algorithms;
-
-/** This defines thes the entry point for the thread specific timeslice
- * budget management algorithm.
- */
-typedef void (*Thread_CPU_budget_algorithm_callout )( Thread_Control * );
-
-/**
- * The following structure contains the information which defines
- * the starting state of a thread.
- */
-typedef struct {
- /** This field contains the thread entry information. */
- Thread_Entry_information Entry;
- /*-------------- initial execution modes ----------------- */
- /** This field indicates whether the thread was preemptible when
- * it started.
- */
- bool is_preemptible;
- /** This field indicates the CPU budget algorith. */
- Thread_CPU_budget_algorithms budget_algorithm;
- /** This field is the routine to invoke when the CPU allotment is
- * consumed.
- */
- Thread_CPU_budget_algorithm_callout budget_callout;
- /** This field is the initial ISR disable level of this thread. */
- uint32_t isr_level;
- /** This field is the initial priority. */
- Priority_Control initial_priority;
- #if defined(RTEMS_SCORE_THREAD_ENABLE_USER_PROVIDED_STACK_VIA_API)
- /** This field indicates whether the SuperCore allocated the stack. */
- bool core_allocated_stack;
- #endif
- /** This field is the stack information. */
- Stack_Control Initial_stack;
- #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
- /** This field is the initial FP context area address. */
- Context_Control_fp *fp_context;
- #endif
- /** This field is the initial stack area address. */
- void *stack;
- /** The thread-local storage (TLS) area */
- void *tls_area;
-} Thread_Start_information;
-
-#if defined(RTEMS_SMP)
-/**
- * @brief The thread state with respect to the scheduler.
- */
-typedef enum {
- /**
- * @brief This thread is blocked with respect to the scheduler.
- *
- * This thread uses no scheduler nodes.
- */
- THREAD_SCHEDULER_BLOCKED,
-
- /**
- * @brief This thread is scheduled with respect to the scheduler.
- *
- * This thread executes using one of its scheduler nodes. This could be its
- * own scheduler node or in case it owns resources taking part in the
- * scheduler helping protocol a scheduler node of another thread.
- */
- THREAD_SCHEDULER_SCHEDULED,
-
- /**
- * @brief This thread is ready with respect to the scheduler.
- *
- * None of the scheduler nodes of this thread is scheduled.
- */
- THREAD_SCHEDULER_READY
-} Thread_Scheduler_state;
-#endif
-
-/**
- * @brief Thread scheduler control.
- */
-typedef struct {
-#if defined(RTEMS_SMP)
- /**
- * @brief Lock to protect the scheduler node change requests.
- */
- ISR_lock_Control Lock;
-
- /**
- * @brief The current scheduler state of this thread.
- */
- Thread_Scheduler_state state;
-
- /**
- * @brief The home scheduler control of this thread.
- */
- const struct _Scheduler_Control *home;
-
- /**
- * @brief The processor assigned by the current scheduler.
- */
- struct Per_CPU_Control *cpu;
-
- /**
- * @brief Scheduler nodes immediately available to the thread by its home
- * scheduler instance and due to thread queue ownerships.
- *
- * This chain is protected by the thread wait lock.
- *
- * This chain is never empty. The first scheduler node on the chain is the
- * scheduler node of the home scheduler instance.
- */
- Chain_Control Wait_nodes;
-
- /**
- * @brief Scheduler nodes immediately available to the schedulers for this
- * thread.
- *
- * This chain is protected by the thread state lock.
- *
- * This chain is never empty. The first scheduler node on the chain is the
- * scheduler node of the home scheduler instance.
- */
- Chain_Control Scheduler_nodes;
-
- /**
- * @brief Node for the Per_CPU_Control::Threads_in_need_for_help chain.
- *
- * This chain is protected by the Per_CPU_Control::Lock lock of the assigned
- * processor.
- */
- Chain_Node Help_node;
-
- /**
- * @brief Count of nodes scheduler nodes minus one.
- *
- * This chain is protected by the thread state lock.
- */
- size_t helping_nodes;
-
- /**
- * @brief List of pending scheduler node requests.
- *
- * This list is protected by the thread scheduler lock.
- */
- Scheduler_Node *requests;
-
- /**
- * @brief The thread processor affinity set.
- */
- Processor_mask Affinity;
-#endif
-
- /**
- * @brief The scheduler nodes of this thread.
- *
- * Each thread has a scheduler node for each scheduler instance.
- */
- Scheduler_Node *nodes;
-} Thread_Scheduler_control;
-
-/**
- * @brief Union type to hold a pointer to an immutable or a mutable object.
- *
- * The main purpose is to enable passing of pointers to read-only send buffers
- * in the message passing subsystem. This approach is somewhat fragile since
- * it prevents the compiler to check if the operations on objects are valid
- * with respect to the constant qualifier. An alternative would be to add a
- * third pointer argument for immutable objects, but this would increase the
- * structure size.
- */
-typedef union {
- void *mutable_object;
- const void *immutable_object;
-} Thread_Wait_information_Object_argument_type;
-
-/**
- * @brief This type is able to contain several flags used to control the wait
- * class and state of a thread.
- *
- * The mutually exclusive wait class flags are
- * - @ref THREAD_WAIT_CLASS_EVENT,
- * - @ref THREAD_WAIT_CLASS_SYSTEM_EVENT, and
- * - @ref THREAD_WAIT_CLASS_OBJECT.
- *
- * The mutually exclusive wait state flags are
- * - @ref THREAD_WAIT_STATE_INTEND_TO_BLOCK,
- * - @ref THREAD_WAIT_STATE_BLOCKED, and
- * - @ref THREAD_WAIT_STATE_READY_AGAIN.
- */
-typedef unsigned int Thread_Wait_flags;
-
-/**
- * @brief Information required to manage a thread while it is blocked.
- *
- * This contains the information required to manage a thread while it is
- * blocked and to return information to it.
- */
-typedef struct {
-#if defined(RTEMS_MULTIPROCESSING)
- /*
- * @brief This field is the identifier of the remote object this thread is
- * waiting upon.
- */
- Objects_Id remote_id;
-#endif
- /** This field is used to return an integer while when blocked. */
- uint32_t count;
- /** This field is for a pointer to a user return argument. */
- void *return_argument;
- /** This field is for a pointer to a second user return argument. */
- Thread_Wait_information_Object_argument_type
- return_argument_second;
- /** This field contains any options in effect on this blocking operation. */
- uint32_t option;
- /** This field will contain the return status from a blocking operation.
- *
- * @note The following assumes that all API return codes can be
- * treated as an uint32_t.
- */
- uint32_t return_code;
-
- /**
- * @brief This field contains several flags used to control the wait class
- * and state of a thread in case fine-grained locking is used.
- */
-#if defined(RTEMS_SMP)
- Atomic_Uint flags;
-#else
- Thread_Wait_flags flags;
-#endif
-
-#if defined(RTEMS_SMP)
- /**
- * @brief Thread wait lock control block.
- *
- * Parts of the thread wait information are protected by the thread wait
- * default lock and additionally a thread queue lock in case the thread
- * is enqueued on a thread queue.
- *
- * The thread wait lock mechanism protects the following thread variables
- * - POSIX_API_Control::Attributes,
- * - Scheduler_Node::Wait,
- * - Thread_Control::Wait::Lock::Pending_requests,
- * - Thread_Control::Wait::queue, and
- * - Thread_Control::Wait::operations.
- *
- * @see _Thread_Wait_acquire(), _Thread_Wait_release(), _Thread_Wait_claim(),
- * _Thread_Wait_restore_default() and _Thread_Wait_tranquilize().
- */
- struct {
- /**
- * @brief Thread wait default lock.
- */
- ISR_lock_Control Default;
-
- /**
- * @brief The pending thread wait lock acquire or tranquilize requests in
- * case the thread is enqueued on a thread queue.
- */
- Chain_Control Pending_requests;
-
- /**
- * @brief Tranquilizer gate used by _Thread_Wait_tranquilize().
- *
- * This gate is closed by _Thread_Wait_claim(). In case there are no
- * pending requests during a _Thread_Wait_restore_default(), then this gate
- * is opened immediately, otherwise it is placed on the pending request
- * chain and opened by _Thread_Wait_remove_request_locked() as the last
- * gate on the chain to signal overall request completion.
- */
- Thread_queue_Gate Tranquilizer;
- } Lock;
-
- /**
- * @brief Thread queue link provided for use by the thread wait lock owner to
- * build a thread queue path.
- */
- Thread_queue_Link Link;
-#endif
-
- /**
- * @brief The current thread queue.
- *
- * If this field is NULL the thread is not enqueued on a thread queue. This
- * field is protected by the thread wait default lock.
- *
- * @see _Thread_Wait_claim().
- */
- Thread_queue_Queue *queue;
-
- /**
- * @brief The current thread queue operations.
- *
- * This field is protected by the thread lock wait default lock.
- *
- * @see _Thread_Wait_claim().
- */
- const Thread_queue_Operations *operations;
-
- Thread_queue_Heads *spare_heads;
-} Thread_Wait_information;
-
-/**
- * @brief Information required to manage a thread timer.
- */
-typedef struct {
- ISR_LOCK_MEMBER( Lock )
- Watchdog_Header *header;
- Watchdog_Control Watchdog;
-} Thread_Timer_information;
-
-/**
- * The following defines the control block used to manage
- * each thread proxy.
- *
- * @note It is critical that proxies and threads have identical
- * memory images for the shared part.
- */
-typedef struct {
- /** This field is the object management structure for each proxy. */
- Objects_Control Object;
-
- /**
- * @see Thread_Control::Join_queue
- */
- Thread_queue_Control Join_queue;
-
- /** This field is the current execution state of this proxy. */
- States_Control current_state;
-
- /**
- * @brief The base priority of this thread in its home scheduler instance.
- */
- Priority_Node Real_priority;
-
-#if defined(RTEMS_SCORE_THREAD_ENABLE_RESOURCE_COUNT)
- /** This field is the number of mutexes currently held by this proxy. */
- uint32_t resource_count;
-#endif
-
- /**
- * @brief Scheduler related control.
- */
- Thread_Scheduler_control Scheduler;
-
- /** This field is the blocking information for this proxy. */
- Thread_Wait_information Wait;
- /** This field is the Watchdog used to manage proxy delays and timeouts. */
- Thread_Timer_information Timer;
-#if defined(RTEMS_MULTIPROCESSING)
- /** This field is the received response packet in an MP system. */
- MP_packet_Prefix *receive_packet;
- /****************** end of common block ********************/
-
- /**
- * @brief Thread queue callout for _Thread_queue_Enqueue().
- */
- Thread_queue_MP_callout thread_queue_callout;
-
- /**
- * @brief This field is used to manage the set of active proxies in the system.
- */
- RBTree_Node Active;
-
- /**
- * @brief The scheduler node providing the thread wait nodes used to enqueue
- * this thread proxy on a thread queue.
- */
- Scheduler_Node Scheduler_node;
-
- /**
- * @brief Provide thread queue heads for this thread proxy.
- *
- * The actual size of the thread queue heads depends on the application
- * configuration. Since thread proxies are never destroyed we can use the
- * same storage place for the thread queue heads.
- */
- Thread_queue_Heads Thread_queue_heads[ RTEMS_ZERO_LENGTH_ARRAY ];
-#endif
-} Thread_Proxy_control;
-
-/**
- * The following record defines the control block used
- * to manage each thread.
- *
- * @note It is critical that proxies and threads have identical
- * memory images for the shared part.
- */
-typedef enum {
- /** This value is for the Classic RTEMS API. */
- THREAD_API_RTEMS,
- /** This value is for the POSIX API. */
- THREAD_API_POSIX
-} Thread_APIs;
-
-/** This macro defines the first API which has threads. */
-#define THREAD_API_FIRST THREAD_API_RTEMS
-
-/** This macro defines the last API which has threads. */
-#define THREAD_API_LAST THREAD_API_POSIX
-
-typedef struct Thread_Action Thread_Action;
-
-/**
- * @brief Thread action handler.
- *
- * The thread action handler will be called with interrupts disabled and a
- * corresponding lock acquired, e.g. _Thread_State_acquire(). The handler must
- * release the corresponding lock, e.g. _Thread_State_release(). So, the
- * corresponding lock may be used to protect private data used by the
- * particular action.
- *
- * Since the action is passed to the handler additional data may be accessed
- * via RTEMS_CONTAINER_OF().
- *
- * @param[in] the_thread The thread performing the action.
- * @param[in] action The thread action.
- * @param[in] lock_context The lock context to use for the lock release.
- */
-typedef void ( *Thread_Action_handler )(
- Thread_Control *the_thread,
- Thread_Action *action,
- ISR_lock_Context *lock_context
-);
-
-/**
- * @brief Thread action.
- *
- * Thread actions can be chained together to trigger a set of actions on
- * particular events like for example a thread post-switch. Use
- * _Thread_Action_initialize() to initialize this structure.
- *
- * Thread actions are the building block for efficient implementation of
- * - Classic signals delivery,
- * - POSIX signals delivery, and
- * - thread life-cycle changes.
- *
- * @see _Thread_Add_post_switch_action() and _Thread_Run_post_switch_actions().
- */
-struct Thread_Action {
- Chain_Node Node;
- Thread_Action_handler handler;
-};
-
-/**
- * @brief Per-thread information for POSIX Keys.
- */
-typedef struct {
- /**
- * @brief Key value pairs registered for this thread.
- */
- RBTree_Control Key_value_pairs;
-
- /**
- * @brief Lock to protect the tree operations.
- */
- ISR_LOCK_MEMBER( Lock )
-} Thread_Keys_information;
-
-/**
- * @brief Control block to manage thread actions.
- *
- * Use _Thread_Action_control_initialize() to initialize this structure.
- */
-typedef struct {
- Chain_Control Chain;
-} Thread_Action_control;
-
-/**
- * @brief Thread life states.
- *
- * The thread life states are orthogonal to the thread states used for
- * synchronization primitives and blocking operations. They reflect the state
- * changes triggered with thread restart and delete requests.
- *
- * The individual state values must be a power of two to allow use of bit
- * operations to manipulate and evaluate the thread life state.
- */
-typedef enum {
- THREAD_LIFE_PROTECTED = 0x1,
- THREAD_LIFE_RESTARTING = 0x2,
- THREAD_LIFE_TERMINATING = 0x4,
- THREAD_LIFE_CHANGE_DEFERRED = 0x8,
- THREAD_LIFE_DETACHED = 0x10
-} Thread_Life_state;
-
-/**
- * @brief Thread life control.
- */
-typedef struct {
- /**
- * @brief Thread life action used to react upon thread restart and delete
- * requests.
- */
- Thread_Action Action;
-
- /**
- * @brief The current thread life state.
- */
- Thread_Life_state state;
-
- /**
- * @brief The count of pending life change requests.
- */
- uint32_t pending_life_change_requests;
-
-#if defined(RTEMS_POSIX_API)
- /**
- * @brief The thread exit value.
- *
- * It is,
- * - the value passed to pthread_exit(), or
- * - PTHREAD_CANCELED in case it is cancelled via pthread_cancel(), or
- * - NULL.
- */
- void *exit_value;
-#endif
-} Thread_Life_control;
-
-typedef struct {
- uint32_t flags;
- void * control;
-}Thread_Capture_control;
-
-/**
- * This structure defines the Thread Control Block (TCB).
- *
- * Uses a leading underscore in the structure name to allow forward
- * declarations in standard header files provided by Newlib and GCC.
- *
- * In case the second member changes (currently Join_queue), then the memset()
- * in _Thread_Initialize() must be adjusted.
- */
-struct _Thread_Control {
- /** This field is the object management structure for each thread. */
- Objects_Control Object;
-
- /**
- * @brief Thread queue for thread join operations and multi-purpose lock.
- *
- * The lock of this thread queue is used for various purposes. It protects
- * the following fields
- *
- * - RTEMS_API_Control::Signal,
- * - Thread_Control::budget_algorithm,
- * - Thread_Control::budget_callout,
- * - Thread_Control::cpu_time_budget,
- * - Thread_Control::current_state,
- * - Thread_Control::Post_switch_actions,
- * - Thread_Control::Scheduler::control, and
- * - Thread_Control::Scheduler::own_control.
- *
- * @see _Thread_State_acquire().
- */
- Thread_queue_Control Join_queue;
-
- /** This field is the current execution state of this thread. */
- States_Control current_state;
-
- /**
- * @brief The base priority of this thread in its home scheduler instance.
- */
- Priority_Node Real_priority;
-
-#if defined(RTEMS_SCORE_THREAD_ENABLE_RESOURCE_COUNT)
- /** This field is the number of mutexes currently held by this thread. */
- uint32_t resource_count;
-#endif
-
- /**
- * @brief Scheduler related control.
- */
- Thread_Scheduler_control Scheduler;
-
- /** This field is the blocking information for this thread. */
- Thread_Wait_information Wait;
- /** This field is the Watchdog used to manage thread delays and timeouts. */
- Thread_Timer_information Timer;
-#if defined(RTEMS_MULTIPROCESSING)
- /** This field is the received response packet in an MP system. */
- MP_packet_Prefix *receive_packet;
-#endif
- /*================= end of common block =================*/
-
-#if defined(RTEMS_SMP) && defined(RTEMS_PROFILING)
- /**
- * @brief Potpourri lock statistics.
- *
- * These SMP lock statistics are used for all lock objects that lack a
- * storage space for the statistics. Examples are lock objects used in
- * external libraries which are independent of the actual RTEMS build
- * configuration.
- */
- SMP_lock_Stats Potpourri_stats;
-#endif
-
- /** This field is true if the thread is an idle thread. */
- bool is_idle;
-#if defined(RTEMS_MULTIPROCESSING)
- /** This field is true if the thread is offered globally */
- bool is_global;
-#endif
- /** This field is true if the thread is preemptible. */
- bool is_preemptible;
- /** This field is true if the thread uses the floating point unit. */
- bool is_fp;
-
- /**
- * @brief True, if the thread was created with an inherited scheduler
- * (PTHREAD_INHERIT_SCHED), and false otherwise.
- */
- bool was_created_with_inherited_scheduler;
-
- /** This field is the length of the time quantum that this thread is
- * allowed to consume. The algorithm used to manage limits on CPU usage
- * is specified by budget_algorithm.
- */
- uint32_t cpu_time_budget;
- /** This field is the algorithm used to manage this thread's time
- * quantum. The algorithm may be specified as none which case,
- * no limit is in place.
- */
- Thread_CPU_budget_algorithms budget_algorithm;
- /** This field is the method invoked with the budgeted time is consumed. */
- Thread_CPU_budget_algorithm_callout budget_callout;
- /** This field is the amount of CPU time consumed by this thread
- * since it was created.
- */
- Timestamp_Control cpu_time_used;
-
- /** This field contains information about the starting state of
- * this thread.
- */
- Thread_Start_information Start;
-
- Thread_Action_control Post_switch_actions;
-
- /** This field contains the context of this thread. */
- Context_Control Registers;
-#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
- /** This field points to the floating point context for this thread.
- * If NULL, the thread is integer only.
- */
- Context_Control_fp *fp_context;
-#endif
- /** This field points to the newlib reentrancy structure for this thread. */
- struct _reent *libc_reent;
- /** This array contains the API extension area pointers. */
- void *API_Extensions[ THREAD_API_LAST + 1 ];
-
- /**
- * @brief The POSIX Keys information.
- */
- Thread_Keys_information Keys;
-
- /**
- * @brief Thread life-cycle control.
- *
- * Control state changes triggered by thread restart and delete requests.
- */
- Thread_Life_control Life;
-
- Thread_Capture_control Capture;
-
- /**
- * @brief LIFO list of POSIX cleanup contexts.
- */
- struct _pthread_cleanup_context *last_cleanup_context;
-
- /**
- * @brief LIFO list of user extensions iterators.
- */
- struct User_extensions_Iterator *last_user_extensions_iterator;
-
- /**
- * @brief Variable length array of user extension pointers.
- *
- * The length is defined by the application via <rtems/confdefs.h>.
- */
- void *extensions[ RTEMS_ZERO_LENGTH_ARRAY ];
-};
-
-#if (CPU_PROVIDES_IDLE_THREAD_BODY == FALSE)
-/**
- * This routine is the body of the system idle thread.
- *
- * NOTE: This routine is actually instantiated by confdefs.h when needed.
- */
-void *_Thread_Idle_body(
- uintptr_t ignored
-);
-#endif
-
-typedef void (*rtems_per_thread_routine)( Thread_Control * );
-
-/* Use rtems_task_iterate() instead */
-void rtems_iterate_over_all_threads(
- rtems_per_thread_routine routine
-) RTEMS_DEPRECATED;
-
-/**
- * @brief Thread control add-on.
- */
-typedef struct {
- /**
- * @brief Offset of the pointer field in Thread_Control referencing an
- * application configuration dependent memory area in the thread control
- * block.
- */
- size_t destination_offset;
-
- /**
- * @brief Offset relative to the thread control block begin to an application
- * configuration dependent memory area.
- */
- size_t source_offset;
-} Thread_Control_add_on;
-
-/**
- * @brief Thread control add-ons.
- *
- * The thread control block contains fields that point to application
- * configuration dependent memory areas, like the scheduler information, the
- * API control blocks, the user extension context table, and the Newlib
- * re-entrancy support. Account for these areas in the configuration and
- * avoid extra workspace allocations for these areas.
- *
- * This array is provided via <rtems/confdefs.h>.
- *
- * @see _Thread_Control_add_on_count and _Thread_Control_size.
- */
-extern const Thread_Control_add_on _Thread_Control_add_ons[];
-
-/**
- * @brief Thread control add-on count.
- *
- * Count of entries in _Thread_Control_add_ons.
- *
- * This value is provided via <rtems/confdefs.h>.
- */
-extern const size_t _Thread_Control_add_on_count;
-
-/**
- * @brief Size of the thread control block of a particular application.
- *
- * This value is provided via <rtems/confdefs.h>.
- *
- * @see _Thread_Control_add_ons.
- */
-extern const size_t _Thread_Control_size;
-
-/**
- * @brief Maximum size of a thread name in characters (including the
- * terminating '\0' character).
- *
- * This value is provided via <rtems/confdefs.h>.
- */
-extern const size_t _Thread_Maximum_name_size;
-
-/**@}*/
-
-#ifdef __cplusplus
-}
-#endif
-
-#endif
-/* end of include file */