summaryrefslogtreecommitdiffstats
path: root/cpukit/score/cpu
diff options
context:
space:
mode:
authorRalf Corsepius <ralf.corsepius@rtems.org>2008-02-20 02:59:59 +0000
committerRalf Corsepius <ralf.corsepius@rtems.org>2008-02-20 02:59:59 +0000
commit70f326cf3ff2766c146870923a3589cbcad917b3 (patch)
tree45db5903d56c681a9fb6ea70532725d3f030815b /cpukit/score/cpu
parent2008-02-19 Joel Sherrill <joel.sherrill@oarcorp.com> (diff)
downloadrtems-70f326cf3ff2766c146870923a3589cbcad917b3.tar.bz2
Remove (Abandoned).
Diffstat (limited to 'cpukit/score/cpu')
-rw-r--r--cpukit/score/cpu/powerpc/rtems/old-exceptions/cpu.h450
1 files changed, 0 insertions, 450 deletions
diff --git a/cpukit/score/cpu/powerpc/rtems/old-exceptions/cpu.h b/cpukit/score/cpu/powerpc/rtems/old-exceptions/cpu.h
deleted file mode 100644
index 7fa9371dda..0000000000
--- a/cpukit/score/cpu/powerpc/rtems/old-exceptions/cpu.h
+++ /dev/null
@@ -1,450 +0,0 @@
-/* cpu.h
- *
- * This include file contains information pertaining to the PowerPC
- * processor.
- *
- * Author: Andrew Bray <andy@i-cubed.co.uk>
- *
- * COPYRIGHT (c) 1995 by i-cubed ltd.
- *
- * To anyone who acknowledges that this file is provided "AS IS"
- * without any express or implied warranty:
- * permission to use, copy, modify, and distribute this file
- * for any purpose is hereby granted without fee, provided that
- * the above copyright notice and this notice appears in all
- * copies, and that the name of i-cubed limited not be used in
- * advertising or publicity pertaining to distribution of the
- * software without specific, written prior permission.
- * i-cubed limited makes no representations about the suitability
- * of this software for any purpose.
- *
- * Derived from c/src/exec/cpu/no_cpu/cpu.h:
- *
- * COPYRIGHT (c) 1989-2007.
- * On-Line Applications Research Corporation (OAR).
- *
- * The license and distribution terms for this file may in
- * the file LICENSE in this distribution or at
- * http://www.rtems.com/license/LICENSE.
- *
- * $Id$
- */
-
-#ifndef _RTEMS_OLD_EXCEPTIONS_CPU_H
-#define _RTEMS_OLD_EXCEPTIONS_CPU_H
-
-#ifndef _RTEMS_SCORE_CPU_H
-#error "You should include <rtems/score/cpu.h>"
-#endif
-
-#ifdef __cplusplus
-extern "C" {
-#endif
-
-#ifndef ASM
-struct CPU_Interrupt_frame;
-typedef void ( *ppc_isr_entry )( int, struct CPU_Interrupt_frame * );
-#endif
-
-/* conditional compilation parameters */
-
-/*
- * Does RTEMS manage a dedicated interrupt stack in software?
- *
- * If TRUE, then a stack is allocated in _ISR_Handler_initialization.
- * If FALSE, nothing is done.
- *
- * If the CPU supports a dedicated interrupt stack in hardware,
- * then it is generally the responsibility of the BSP to allocate it
- * and set it up.
- *
- * If the CPU does not support a dedicated interrupt stack, then
- * the porter has two options: (1) execute interrupts on the
- * stack of the interrupted task, and (2) have RTEMS manage a dedicated
- * interrupt stack.
- *
- * If this is TRUE, CPU_ALLOCATE_INTERRUPT_STACK should also be TRUE.
- *
- * Only one of CPU_HAS_SOFTWARE_INTERRUPT_STACK and
- * CPU_HAS_HARDWARE_INTERRUPT_STACK should be set to TRUE. It is
- * possible that both are FALSE for a particular CPU. Although it
- * is unclear what that would imply about the interrupt processing
- * procedure on that CPU.
- */
-
-#define CPU_HAS_SOFTWARE_INTERRUPT_STACK FALSE
-
-/*
- * Does this CPU have hardware support for a dedicated interrupt stack?
- *
- * If TRUE, then it must be installed during initialization.
- * If FALSE, then no installation is performed.
- *
- * If this is TRUE, CPU_ALLOCATE_INTERRUPT_STACK should also be TRUE.
- *
- * Only one of CPU_HAS_SOFTWARE_INTERRUPT_STACK and
- * CPU_HAS_HARDWARE_INTERRUPT_STACK should be set to TRUE. It is
- * possible that both are FALSE for a particular CPU. Although it
- * is unclear what that would imply about the interrupt processing
- * procedure on that CPU.
- */
-
-/*
- * ACB: This is a lie, but it gets us a handle on a call to set up
- * a variable derived from the top of the interrupt stack.
- */
-
-#define CPU_HAS_HARDWARE_INTERRUPT_STACK TRUE
-
-/*
- * Does RTEMS allocate a dedicated interrupt stack in the Interrupt Manager?
- *
- * If TRUE, then the memory is allocated during initialization.
- * If FALSE, then the memory is allocated during initialization.
- *
- * This should be TRUE is CPU_HAS_SOFTWARE_INTERRUPT_STACK is TRUE.
- */
-
-#define CPU_ALLOCATE_INTERRUPT_STACK TRUE
-
-/*
- * Does the RTEMS invoke the user's ISR with the vector number and
- * a pointer to the saved interrupt frame (1) or just the vector
- * number (0)?
- */
-
-#define CPU_ISR_PASSES_FRAME_POINTER 1
-
-/*
- * Should the saving of the floating point registers be deferred
- * until a context switch is made to another different floating point
- * task?
- *
- * If TRUE, then the floating point context will not be stored until
- * necessary. It will remain in the floating point registers and not
- * disturned until another floating point task is switched to.
- *
- * If FALSE, then the floating point context is saved when a floating
- * point task is switched out and restored when the next floating point
- * task is restored. The state of the floating point registers between
- * those two operations is not specified.
- *
- * If the floating point context does NOT have to be saved as part of
- * interrupt dispatching, then it should be safe to set this to TRUE.
- *
- * Setting this flag to TRUE results in using a different algorithm
- * for deciding when to save and restore the floating point context.
- * The deferred FP switch algorithm minimizes the number of times
- * the FP context is saved and restored. The FP context is not saved
- * until a context switch is made to another, different FP task.
- * Thus in a system with only one FP task, the FP context will never
- * be saved or restored.
- */
-/*
- * ACB Note: This could make debugging tricky..
- */
-
-#define CPU_USE_DEFERRED_FP_SWITCH TRUE
-
-/*
- * The following defines the number of bits actually used in the
- * interrupt field of the task mode. How those bits map to the
- * CPU interrupt levels is defined by the routine _CPU_ISR_Set_level().
- *
- * The interrupt level is bit mapped for the PowerPC family. The
- * bits are set to 0 to indicate that a particular exception source
- * enabled and 1 if it is disabled. This keeps with RTEMS convention
- * that interrupt level 0 means all sources are enabled.
- *
- * The bits are assigned to correspond to enable bits in the MSR.
- */
-
-#define PPC_INTERRUPT_LEVEL_ME 0x01
-#define PPC_INTERRUPT_LEVEL_EE 0x02
-#define PPC_INTERRUPT_LEVEL_CE 0x04
-
-/* XXX should these be maskable? */
-#if 0
-#define PPC_INTERRUPT_LEVEL_DE 0x08
-#define PPC_INTERRUPT_LEVEL_BE 0x10
-#define PPC_INTERRUPT_LEVEL_SE 0x20
-#endif
-
-#define CPU_MODES_INTERRUPT_MASK 0x00000007
-
-/*
- * Processor defined structures required for cpukit/score.
- */
-
-/*
- * The following type defines an entry in the PPC's trap table.
- *
- * NOTE: The instructions chosen are RTEMS dependent although one is
- * obligated to use two of the four instructions to perform a
- * long jump. The other instructions load one register with the
- * trap type (a.k.a. vector) and another with the psr.
- */
-
-#ifndef ASM
-typedef struct {
- uint32_t stwu_r1; /* stwu %r1, -(??+IP_END)(%1)*/
- uint32_t stw_r0; /* stw %r0, IP_0(%r1) */
- uint32_t li_r0_IRQ; /* li %r0, _IRQ */
- uint32_t b_Handler; /* b PROC (_ISR_Handler) */
-} CPU_Trap_table_entry;
-#endif
-
-/*
- * This variable is optional. It is used on CPUs on which it is difficult
- * to generate an "uninitialized" FP context. It is filled in by
- * _CPU_Initialize and copied into the task's FP context area during
- * _CPU_Context_Initialize.
- */
-
-#ifndef ASM
-/* EXTERN Context_Control_fp _CPU_Null_fp_context; */
-#endif
-
-/*
- * On some CPUs, RTEMS supports a software managed interrupt stack.
- * This stack is allocated by the Interrupt Manager and the switch
- * is performed in _ISR_Handler. These variables contain pointers
- * to the lowest and highest addresses in the chunk of memory allocated
- * for the interrupt stack. Since it is unknown whether the stack
- * grows up or down (in general), this give the CPU dependent
- * code the option of picking the version it wants to use.
- *
- * NOTE: These two variables are required if the macro
- * CPU_HAS_SOFTWARE_INTERRUPT_STACK is defined as TRUE.
- */
-
-#ifndef ASM
-SCORE_EXTERN void *_CPU_Interrupt_stack_low;
-SCORE_EXTERN void *_CPU_Interrupt_stack_high;
-#endif
-
-/*
- * With some compilation systems, it is difficult if not impossible to
- * call a high-level language routine from assembly language. This
- * is especially true of commercial Ada compilers and name mangling
- * C++ ones. This variable can be optionally defined by the CPU porter
- * and contains the address of the routine _Thread_Dispatch. This
- * can make it easier to invoke that routine at the end of the interrupt
- * sequence (if a dispatch is necessary).
- */
-
-#ifndef ASM
-/* EXTERN void (*_CPU_Thread_dispatch_pointer)(); */
-#endif
-
-/*
- * Nothing prevents the porter from declaring more CPU specific variables.
- */
-
-
-#ifndef ASM
-SCORE_EXTERN struct {
- uint32_t volatile* Nest_level;
- uint32_t volatile* Disable_level;
- void *Vector_table;
- void *Stack;
- uint32_t Default_r2;
- uint32_t Default_r13;
- volatile boolean *Switch_necessary;
- boolean *Signal;
-
- uint32_t msr_initial;
-} _CPU_IRQ_info CPU_STRUCTURE_ALIGNMENT;
-#endif
-
-/*
- * The size of the floating point context area. On some CPUs this
- * will not be a "sizeof" because the format of the floating point
- * area is not defined -- only the size is. This is usually on
- * CPUs with a "floating point save context" instruction.
- */
-
-#define CPU_CONTEXT_FP_SIZE sizeof( Context_Control_fp )
-
-/*
- * (Optional) # of bytes for libmisc/stackchk to check
- * If not specifed, then it defaults to something reasonable
- * for most architectures.
- */
-
-#define CPU_STACK_CHECK_SIZE (128)
-
-/*
- * Amount of extra stack (above minimum stack size) required by
- * MPCI receive server thread. Remember that in a multiprocessor
- * system this thread must exist and be able to process all directives.
- */
-
-#define CPU_MPCI_RECEIVE_SERVER_EXTRA_STACK 0
-
-/*
- * This defines the number of entries in the ISR_Vector_table managed
- * by RTEMS.
- */
-
-#define CPU_INTERRUPT_NUMBER_OF_VECTORS (PPC_INTERRUPT_MAX)
-#define CPU_INTERRUPT_MAXIMUM_VECTOR_NUMBER (PPC_INTERRUPT_MAX - 1)
-
-/*
- * This is defined if the port has a special way to report the ISR nesting
- * level. Most ports maintain the variable _ISR_Nest_level.
- */
-
-#define CPU_PROVIDES_ISR_IS_IN_PROGRESS TRUE
-
-/*
- * ISR handler macros
- */
-
-#ifndef ASM
-void _CPU_Initialize_vectors(void);
-#endif
-
-/*
- * Disable all interrupts for an RTEMS critical section. The previous
- * level is returned in _isr_cookie.
- */
-
-#ifndef ASM
-extern const unsigned int _PPC_MSR_DISABLE_MASK;
-
-#define _CPU_MSR_GET( _msr_value ) \
- do { \
- _msr_value = 0; \
- asm volatile ("mfmsr %0" : "=&r" ((_msr_value)) : "0" ((_msr_value))); \
- } while (0)
-
-/* FIXME: Backward compatibility
- * new-exception-processing uses _CPU_MSR_GET
- * old-exception-processing had used _CPU_MSR_Value
- */
-#define _CPU_MSR_Value(_msr_value) _CPU_MSR_GET(_msr_value)
-
-#define _CPU_MSR_SET( _msr_value ) \
-{ asm volatile ("mtmsr %0" : "=&r" ((_msr_value)) : "0" ((_msr_value))); }
-
-#if 0
-#define _CPU_ISR_Disable( _isr_cookie ) \
- { register unsigned int _disable_mask = _PPC_MSR_DISABLE_MASK; \
- _isr_cookie = 0; \
- asm volatile (
- "mfmsr %0" : \
- "=r" ((_isr_cookie)) : \
- "0" ((_isr_cookie)) \
- ); \
- asm volatile (
- "andc %1,%0,%1" : \
- "=r" ((_isr_cookie)), "=&r" ((_disable_mask)) : \
- "0" ((_isr_cookie)), "1" ((_disable_mask)) \
- ); \
- asm volatile (
- "mtmsr %1" : \
- "=r" ((_disable_mask)) : \
- "0" ((_disable_mask)) \
- ); \
- }
-#endif
-
-#define _CPU_ISR_Disable( _isr_cookie ) \
- { register unsigned int _disable_mask = _PPC_MSR_DISABLE_MASK; \
- _isr_cookie = 0; \
- asm volatile ( \
- "mfmsr %0; andc %1,%0,%1; mtmsr %1" : \
- "=&r" ((_isr_cookie)), "=&r" ((_disable_mask)) : \
- "0" ((_isr_cookie)), "1" ((_disable_mask)) \
- ); \
- }
-#endif
-
-/*
- * Enable interrupts to the previous level (returned by _CPU_ISR_Disable).
- * This indicates the end of an RTEMS critical section. The parameter
- * _isr_cookie is not modified.
- */
-
-#ifndef ASM
-#define _CPU_ISR_Enable( _isr_cookie ) \
- { \
- asm volatile ( "mtmsr %0" : \
- "=r" ((_isr_cookie)) : \
- "0" ((_isr_cookie))); \
- }
-#endif
-
-/*
- * This temporarily restores the interrupt to _isr_cookie before immediately
- * disabling them again. This is used to divide long RTEMS critical
- * sections into two or more parts. The parameter _isr_cookie is not
- * modified.
- *
- * NOTE: The version being used is not very optimized but it does
- * not trip a problem in gcc where the disable mask does not
- * get loaded. Check this for future (post 10/97 gcc versions.
- */
-
-#ifndef ASM
-#define _CPU_ISR_Flash( _isr_cookie ) \
- { register unsigned int _disable_mask = _PPC_MSR_DISABLE_MASK; \
- asm volatile ( \
- "mtmsr %0; andc %1,%0,%1; mtmsr %1" : \
- "=&r" ((_isr_cookie)), "=&r" ((_disable_mask)) : \
- "0" ((_isr_cookie)), "1" ((_disable_mask)) \
- ); \
- }
-#endif
-
-/*
- * Map interrupt level in task mode onto the hardware that the CPU
- * actually provides. Currently, interrupt levels which do not
- * map onto the CPU in a generic fashion are undefined. Someday,
- * it would be nice if these were "mapped" by the application
- * via a callout. For example, m68k has 8 levels 0 - 7, levels
- * 8 - 255 would be available for bsp/application specific meaning.
- * This could be used to manage a programmable interrupt controller
- * via the rtems_task_mode directive.
- */
-
-#ifndef ASM
-uint32_t _CPU_ISR_Calculate_level(
- uint32_t new_level
-);
-
-void _CPU_ISR_Set_level(
- uint32_t new_level
-);
-
-uint32_t _CPU_ISR_Get_level( void );
-
-void _CPU_ISR_install_raw_handler(
- uint32_t vector,
- proc_ptr new_handler,
- proc_ptr *old_handler
-);
-#endif
-
-/* end of ISR handler macros */
-
-/* Fatal Error manager macros */
-
-/*
- * This routine copies _error into a known place -- typically a stack
- * location or a register, optionally disables interrupts, and
- * halts/stops the CPU.
- */
-
-#define _CPU_Fatal_halt( _error ) \
- _CPU_Fatal_error(_error)
-
-/* end of Fatal Error manager macros */
-
-
-#ifdef __cplusplus
-}
-#endif
-
-#endif