summaryrefslogtreecommitdiffstats
path: root/c/src/lib/libcpu/m68k/m68040/fpsp/slogn.s
diff options
context:
space:
mode:
authorJoel Sherrill <joel.sherrill@OARcorp.com>1997-04-16 17:33:04 +0000
committerJoel Sherrill <joel.sherrill@OARcorp.com>1997-04-16 17:33:04 +0000
commitf9b93da8b47ff7ea4d6573b75b6077f6efb8dbc6 (patch)
tree46e2747b2b8f04d36d530daad59481f4f79e3c00 /c/src/lib/libcpu/m68k/m68040/fpsp/slogn.s
parentAdded --disable-tcpip option. (diff)
downloadrtems-f9b93da8b47ff7ea4d6573b75b6077f6efb8dbc6.tar.bz2
Added the MC68040 Floating Point Support Package. This was ported
to RTEMS by Eric Norum. It is freely distributable and was acquired from the Motorola WWW site. More info is in the FPSP README.
Diffstat (limited to 'c/src/lib/libcpu/m68k/m68040/fpsp/slogn.s')
-rw-r--r--c/src/lib/libcpu/m68k/m68040/fpsp/slogn.s592
1 files changed, 592 insertions, 0 deletions
diff --git a/c/src/lib/libcpu/m68k/m68040/fpsp/slogn.s b/c/src/lib/libcpu/m68k/m68040/fpsp/slogn.s
new file mode 100644
index 0000000000..74cb5f99eb
--- /dev/null
+++ b/c/src/lib/libcpu/m68k/m68040/fpsp/slogn.s
@@ -0,0 +1,592 @@
+//
+// slogn.sa 3.1 12/10/90
+//
+// slogn computes the natural logarithm of an
+// input value. slognd does the same except the input value is a
+// denormalized number. slognp1 computes log(1+X), and slognp1d
+// computes log(1+X) for denormalized X.
+//
+// Input: Double-extended value in memory location pointed to by address
+// register a0.
+//
+// Output: log(X) or log(1+X) returned in floating-point register Fp0.
+//
+// Accuracy and Monotonicity: The returned result is within 2 ulps in
+// 64 significant bit, i.e. within 0.5001 ulp to 53 bits if the
+// result is subsequently rounded to double precision. The
+// result is provably monotonic in double precision.
+//
+// Speed: The program slogn takes approximately 190 cycles for input
+// argument X such that |X-1| >= 1/16, which is the the usual
+// situation. For those arguments, slognp1 takes approximately
+// 210 cycles. For the less common arguments, the program will
+// run no worse than 10% slower.
+//
+// Algorithm:
+// LOGN:
+// Step 1. If |X-1| < 1/16, approximate log(X) by an odd polynomial in
+// u, where u = 2(X-1)/(X+1). Otherwise, move on to Step 2.
+//
+// Step 2. X = 2**k * Y where 1 <= Y < 2. Define F to be the first seven
+// significant bits of Y plus 2**(-7), i.e. F = 1.xxxxxx1 in base
+// 2 where the six "x" match those of Y. Note that |Y-F| <= 2**(-7).
+//
+// Step 3. Define u = (Y-F)/F. Approximate log(1+u) by a polynomial in u,
+// log(1+u) = poly.
+//
+// Step 4. Reconstruct log(X) = log( 2**k * Y ) = k*log(2) + log(F) + log(1+u)
+// by k*log(2) + (log(F) + poly). The values of log(F) are calculated
+// beforehand and stored in the program.
+//
+// lognp1:
+// Step 1: If |X| < 1/16, approximate log(1+X) by an odd polynomial in
+// u where u = 2X/(2+X). Otherwise, move on to Step 2.
+//
+// Step 2: Let 1+X = 2**k * Y, where 1 <= Y < 2. Define F as done in Step 2
+// of the algorithm for LOGN and compute log(1+X) as
+// k*log(2) + log(F) + poly where poly approximates log(1+u),
+// u = (Y-F)/F.
+//
+// Implementation Notes:
+// Note 1. There are 64 different possible values for F, thus 64 log(F)'s
+// need to be tabulated. Moreover, the values of 1/F are also
+// tabulated so that the division in (Y-F)/F can be performed by a
+// multiplication.
+//
+// Note 2. In Step 2 of lognp1, in order to preserved accuracy, the value
+// Y-F has to be calculated carefully when 1/2 <= X < 3/2.
+//
+// Note 3. To fully exploit the pipeline, polynomials are usually separated
+// into two parts evaluated independently before being added up.
+//
+
+// Copyright (C) Motorola, Inc. 1990
+// All Rights Reserved
+//
+// THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA
+// The copyright notice above does not evidence any
+// actual or intended publication of such source code.
+
+//slogn idnt 2,1 | Motorola 040 Floating Point Software Package
+
+ |section 8
+
+ .include "fpsp.defs"
+
+BOUNDS1: .long 0x3FFEF07D,0x3FFF8841
+BOUNDS2: .long 0x3FFE8000,0x3FFFC000
+
+LOGOF2: .long 0x3FFE0000,0xB17217F7,0xD1CF79AC,0x00000000
+
+one: .long 0x3F800000
+zero: .long 0x00000000
+infty: .long 0x7F800000
+negone: .long 0xBF800000
+
+LOGA6: .long 0x3FC2499A,0xB5E4040B
+LOGA5: .long 0xBFC555B5,0x848CB7DB
+
+LOGA4: .long 0x3FC99999,0x987D8730
+LOGA3: .long 0xBFCFFFFF,0xFF6F7E97
+
+LOGA2: .long 0x3FD55555,0x555555a4
+LOGA1: .long 0xBFE00000,0x00000008
+
+LOGB5: .long 0x3F175496,0xADD7DAD6
+LOGB4: .long 0x3F3C71C2,0xFE80C7E0
+
+LOGB3: .long 0x3F624924,0x928BCCFF
+LOGB2: .long 0x3F899999,0x999995EC
+
+LOGB1: .long 0x3FB55555,0x55555555
+TWO: .long 0x40000000,0x00000000
+
+LTHOLD: .long 0x3f990000,0x80000000,0x00000000,0x00000000
+
+LOGTBL:
+ .long 0x3FFE0000,0xFE03F80F,0xE03F80FE,0x00000000
+ .long 0x3FF70000,0xFF015358,0x833C47E2,0x00000000
+ .long 0x3FFE0000,0xFA232CF2,0x52138AC0,0x00000000
+ .long 0x3FF90000,0xBDC8D83E,0xAD88D549,0x00000000
+ .long 0x3FFE0000,0xF6603D98,0x0F6603DA,0x00000000
+ .long 0x3FFA0000,0x9CF43DCF,0xF5EAFD48,0x00000000
+ .long 0x3FFE0000,0xF2B9D648,0x0F2B9D65,0x00000000
+ .long 0x3FFA0000,0xDA16EB88,0xCB8DF614,0x00000000
+ .long 0x3FFE0000,0xEF2EB71F,0xC4345238,0x00000000
+ .long 0x3FFB0000,0x8B29B775,0x1BD70743,0x00000000
+ .long 0x3FFE0000,0xEBBDB2A5,0xC1619C8C,0x00000000
+ .long 0x3FFB0000,0xA8D839F8,0x30C1FB49,0x00000000
+ .long 0x3FFE0000,0xE865AC7B,0x7603A197,0x00000000
+ .long 0x3FFB0000,0xC61A2EB1,0x8CD907AD,0x00000000
+ .long 0x3FFE0000,0xE525982A,0xF70C880E,0x00000000
+ .long 0x3FFB0000,0xE2F2A47A,0xDE3A18AF,0x00000000
+ .long 0x3FFE0000,0xE1FC780E,0x1FC780E2,0x00000000
+ .long 0x3FFB0000,0xFF64898E,0xDF55D551,0x00000000
+ .long 0x3FFE0000,0xDEE95C4C,0xA037BA57,0x00000000
+ .long 0x3FFC0000,0x8DB956A9,0x7B3D0148,0x00000000
+ .long 0x3FFE0000,0xDBEB61EE,0xD19C5958,0x00000000
+ .long 0x3FFC0000,0x9B8FE100,0xF47BA1DE,0x00000000
+ .long 0x3FFE0000,0xD901B203,0x6406C80E,0x00000000
+ .long 0x3FFC0000,0xA9372F1D,0x0DA1BD17,0x00000000
+ .long 0x3FFE0000,0xD62B80D6,0x2B80D62C,0x00000000
+ .long 0x3FFC0000,0xB6B07F38,0xCE90E46B,0x00000000
+ .long 0x3FFE0000,0xD3680D36,0x80D3680D,0x00000000
+ .long 0x3FFC0000,0xC3FD0329,0x06488481,0x00000000
+ .long 0x3FFE0000,0xD0B69FCB,0xD2580D0B,0x00000000
+ .long 0x3FFC0000,0xD11DE0FF,0x15AB18CA,0x00000000
+ .long 0x3FFE0000,0xCE168A77,0x25080CE1,0x00000000
+ .long 0x3FFC0000,0xDE1433A1,0x6C66B150,0x00000000
+ .long 0x3FFE0000,0xCB8727C0,0x65C393E0,0x00000000
+ .long 0x3FFC0000,0xEAE10B5A,0x7DDC8ADD,0x00000000
+ .long 0x3FFE0000,0xC907DA4E,0x871146AD,0x00000000
+ .long 0x3FFC0000,0xF7856E5E,0xE2C9B291,0x00000000
+ .long 0x3FFE0000,0xC6980C69,0x80C6980C,0x00000000
+ .long 0x3FFD0000,0x82012CA5,0xA68206D7,0x00000000
+ .long 0x3FFE0000,0xC4372F85,0x5D824CA6,0x00000000
+ .long 0x3FFD0000,0x882C5FCD,0x7256A8C5,0x00000000
+ .long 0x3FFE0000,0xC1E4BBD5,0x95F6E947,0x00000000
+ .long 0x3FFD0000,0x8E44C60B,0x4CCFD7DE,0x00000000
+ .long 0x3FFE0000,0xBFA02FE8,0x0BFA02FF,0x00000000
+ .long 0x3FFD0000,0x944AD09E,0xF4351AF6,0x00000000
+ .long 0x3FFE0000,0xBD691047,0x07661AA3,0x00000000
+ .long 0x3FFD0000,0x9A3EECD4,0xC3EAA6B2,0x00000000
+ .long 0x3FFE0000,0xBB3EE721,0xA54D880C,0x00000000
+ .long 0x3FFD0000,0xA0218434,0x353F1DE8,0x00000000
+ .long 0x3FFE0000,0xB92143FA,0x36F5E02E,0x00000000
+ .long 0x3FFD0000,0xA5F2FCAB,0xBBC506DA,0x00000000
+ .long 0x3FFE0000,0xB70FBB5A,0x19BE3659,0x00000000
+ .long 0x3FFD0000,0xABB3B8BA,0x2AD362A5,0x00000000
+ .long 0x3FFE0000,0xB509E68A,0x9B94821F,0x00000000
+ .long 0x3FFD0000,0xB1641795,0xCE3CA97B,0x00000000
+ .long 0x3FFE0000,0xB30F6352,0x8917C80B,0x00000000
+ .long 0x3FFD0000,0xB7047551,0x5D0F1C61,0x00000000
+ .long 0x3FFE0000,0xB11FD3B8,0x0B11FD3C,0x00000000
+ .long 0x3FFD0000,0xBC952AFE,0xEA3D13E1,0x00000000
+ .long 0x3FFE0000,0xAF3ADDC6,0x80AF3ADE,0x00000000
+ .long 0x3FFD0000,0xC2168ED0,0xF458BA4A,0x00000000
+ .long 0x3FFE0000,0xAD602B58,0x0AD602B6,0x00000000
+ .long 0x3FFD0000,0xC788F439,0xB3163BF1,0x00000000
+ .long 0x3FFE0000,0xAB8F69E2,0x8359CD11,0x00000000
+ .long 0x3FFD0000,0xCCECAC08,0xBF04565D,0x00000000
+ .long 0x3FFE0000,0xA9C84A47,0xA07F5638,0x00000000
+ .long 0x3FFD0000,0xD2420487,0x2DD85160,0x00000000
+ .long 0x3FFE0000,0xA80A80A8,0x0A80A80B,0x00000000
+ .long 0x3FFD0000,0xD7894992,0x3BC3588A,0x00000000
+ .long 0x3FFE0000,0xA655C439,0x2D7B73A8,0x00000000
+ .long 0x3FFD0000,0xDCC2C4B4,0x9887DACC,0x00000000
+ .long 0x3FFE0000,0xA4A9CF1D,0x96833751,0x00000000
+ .long 0x3FFD0000,0xE1EEBD3E,0x6D6A6B9E,0x00000000
+ .long 0x3FFE0000,0xA3065E3F,0xAE7CD0E0,0x00000000
+ .long 0x3FFD0000,0xE70D785C,0x2F9F5BDC,0x00000000
+ .long 0x3FFE0000,0xA16B312E,0xA8FC377D,0x00000000
+ .long 0x3FFD0000,0xEC1F392C,0x5179F283,0x00000000
+ .long 0x3FFE0000,0x9FD809FD,0x809FD80A,0x00000000
+ .long 0x3FFD0000,0xF12440D3,0xE36130E6,0x00000000
+ .long 0x3FFE0000,0x9E4CAD23,0xDD5F3A20,0x00000000
+ .long 0x3FFD0000,0xF61CCE92,0x346600BB,0x00000000
+ .long 0x3FFE0000,0x9CC8E160,0xC3FB19B9,0x00000000
+ .long 0x3FFD0000,0xFB091FD3,0x8145630A,0x00000000
+ .long 0x3FFE0000,0x9B4C6F9E,0xF03A3CAA,0x00000000
+ .long 0x3FFD0000,0xFFE97042,0xBFA4C2AD,0x00000000
+ .long 0x3FFE0000,0x99D722DA,0xBDE58F06,0x00000000
+ .long 0x3FFE0000,0x825EFCED,0x49369330,0x00000000
+ .long 0x3FFE0000,0x9868C809,0x868C8098,0x00000000
+ .long 0x3FFE0000,0x84C37A7A,0xB9A905C9,0x00000000
+ .long 0x3FFE0000,0x97012E02,0x5C04B809,0x00000000
+ .long 0x3FFE0000,0x87224C2E,0x8E645FB7,0x00000000
+ .long 0x3FFE0000,0x95A02568,0x095A0257,0x00000000
+ .long 0x3FFE0000,0x897B8CAC,0x9F7DE298,0x00000000
+ .long 0x3FFE0000,0x94458094,0x45809446,0x00000000
+ .long 0x3FFE0000,0x8BCF55DE,0xC4CD05FE,0x00000000
+ .long 0x3FFE0000,0x92F11384,0x0497889C,0x00000000
+ .long 0x3FFE0000,0x8E1DC0FB,0x89E125E5,0x00000000
+ .long 0x3FFE0000,0x91A2B3C4,0xD5E6F809,0x00000000
+ .long 0x3FFE0000,0x9066E68C,0x955B6C9B,0x00000000
+ .long 0x3FFE0000,0x905A3863,0x3E06C43B,0x00000000
+ .long 0x3FFE0000,0x92AADE74,0xC7BE59E0,0x00000000
+ .long 0x3FFE0000,0x8F1779D9,0xFDC3A219,0x00000000
+ .long 0x3FFE0000,0x94E9BFF6,0x15845643,0x00000000
+ .long 0x3FFE0000,0x8DDA5202,0x37694809,0x00000000
+ .long 0x3FFE0000,0x9723A1B7,0x20134203,0x00000000
+ .long 0x3FFE0000,0x8CA29C04,0x6514E023,0x00000000
+ .long 0x3FFE0000,0x995899C8,0x90EB8990,0x00000000
+ .long 0x3FFE0000,0x8B70344A,0x139BC75A,0x00000000
+ .long 0x3FFE0000,0x9B88BDAA,0x3A3DAE2F,0x00000000
+ .long 0x3FFE0000,0x8A42F870,0x5669DB46,0x00000000
+ .long 0x3FFE0000,0x9DB4224F,0xFFE1157C,0x00000000
+ .long 0x3FFE0000,0x891AC73A,0xE9819B50,0x00000000
+ .long 0x3FFE0000,0x9FDADC26,0x8B7A12DA,0x00000000
+ .long 0x3FFE0000,0x87F78087,0xF78087F8,0x00000000
+ .long 0x3FFE0000,0xA1FCFF17,0xCE733BD4,0x00000000
+ .long 0x3FFE0000,0x86D90544,0x7A34ACC6,0x00000000
+ .long 0x3FFE0000,0xA41A9E8F,0x5446FB9F,0x00000000
+ .long 0x3FFE0000,0x85BF3761,0x2CEE3C9B,0x00000000
+ .long 0x3FFE0000,0xA633CD7E,0x6771CD8B,0x00000000
+ .long 0x3FFE0000,0x84A9F9C8,0x084A9F9D,0x00000000
+ .long 0x3FFE0000,0xA8489E60,0x0B435A5E,0x00000000
+ .long 0x3FFE0000,0x83993052,0x3FBE3368,0x00000000
+ .long 0x3FFE0000,0xAA59233C,0xCCA4BD49,0x00000000
+ .long 0x3FFE0000,0x828CBFBE,0xB9A020A3,0x00000000
+ .long 0x3FFE0000,0xAC656DAE,0x6BCC4985,0x00000000
+ .long 0x3FFE0000,0x81848DA8,0xFAF0D277,0x00000000
+ .long 0x3FFE0000,0xAE6D8EE3,0x60BB2468,0x00000000
+ .long 0x3FFE0000,0x80808080,0x80808081,0x00000000
+ .long 0x3FFE0000,0xB07197A2,0x3C46C654,0x00000000
+
+ .set ADJK,L_SCR1
+
+ .set X,FP_SCR1
+ .set XDCARE,X+2
+ .set XFRAC,X+4
+
+ .set F,FP_SCR2
+ .set FFRAC,F+4
+
+ .set KLOG2,FP_SCR3
+
+ .set SAVEU,FP_SCR4
+
+ | xref t_frcinx
+ |xref t_extdnrm
+ |xref t_operr
+ |xref t_dz
+
+ .global slognd
+slognd:
+//--ENTRY POINT FOR LOG(X) FOR DENORMALIZED INPUT
+
+ movel #-100,ADJK(%a6) // ...INPUT = 2^(ADJK) * FP0
+
+//----normalize the input value by left shifting k bits (k to be determined
+//----below), adjusting exponent and storing -k to ADJK
+//----the value TWOTO100 is no longer needed.
+//----Note that this code assumes the denormalized input is NON-ZERO.
+
+ moveml %d2-%d7,-(%a7) // ...save some registers
+ movel #0x00000000,%d3 // ...D3 is exponent of smallest norm. #
+ movel 4(%a0),%d4
+ movel 8(%a0),%d5 // ...(D4,D5) is (Hi_X,Lo_X)
+ clrl %d2 // ...D2 used for holding K
+
+ tstl %d4
+ bnes HiX_not0
+
+HiX_0:
+ movel %d5,%d4
+ clrl %d5
+ movel #32,%d2
+ clrl %d6
+ bfffo %d4{#0:#32},%d6
+ lsll %d6,%d4
+ addl %d6,%d2 // ...(D3,D4,D5) is normalized
+
+ movel %d3,X(%a6)
+ movel %d4,XFRAC(%a6)
+ movel %d5,XFRAC+4(%a6)
+ negl %d2
+ movel %d2,ADJK(%a6)
+ fmovex X(%a6),%fp0
+ moveml (%a7)+,%d2-%d7 // ...restore registers
+ lea X(%a6),%a0
+ bras LOGBGN // ...begin regular log(X)
+
+
+HiX_not0:
+ clrl %d6
+ bfffo %d4{#0:#32},%d6 // ...find first 1
+ movel %d6,%d2 // ...get k
+ lsll %d6,%d4
+ movel %d5,%d7 // ...a copy of D5
+ lsll %d6,%d5
+ negl %d6
+ addil #32,%d6
+ lsrl %d6,%d7
+ orl %d7,%d4 // ...(D3,D4,D5) normalized
+
+ movel %d3,X(%a6)
+ movel %d4,XFRAC(%a6)
+ movel %d5,XFRAC+4(%a6)
+ negl %d2
+ movel %d2,ADJK(%a6)
+ fmovex X(%a6),%fp0
+ moveml (%a7)+,%d2-%d7 // ...restore registers
+ lea X(%a6),%a0
+ bras LOGBGN // ...begin regular log(X)
+
+
+ .global slogn
+slogn:
+//--ENTRY POINT FOR LOG(X) FOR X FINITE, NON-ZERO, NOT NAN'S
+
+ fmovex (%a0),%fp0 // ...LOAD INPUT
+ movel #0x00000000,ADJK(%a6)
+
+LOGBGN:
+//--FPCR SAVED AND CLEARED, INPUT IS 2^(ADJK)*FP0, FP0 CONTAINS
+//--A FINITE, NON-ZERO, NORMALIZED NUMBER.
+
+ movel (%a0),%d0
+ movew 4(%a0),%d0
+
+ movel (%a0),X(%a6)
+ movel 4(%a0),X+4(%a6)
+ movel 8(%a0),X+8(%a6)
+
+ cmpil #0,%d0 // ...CHECK IF X IS NEGATIVE
+ blt LOGNEG // ...LOG OF NEGATIVE ARGUMENT IS INVALID
+ cmp2l BOUNDS1,%d0 // ...X IS POSITIVE, CHECK IF X IS NEAR 1
+ bcc LOGNEAR1 // ...BOUNDS IS ROUGHLY [15/16, 17/16]
+
+LOGMAIN:
+//--THIS SHOULD BE THE USUAL CASE, X NOT VERY CLOSE TO 1
+
+//--X = 2^(K) * Y, 1 <= Y < 2. THUS, Y = 1.XXXXXXXX....XX IN BINARY.
+//--WE DEFINE F = 1.XXXXXX1, I.E. FIRST 7 BITS OF Y AND ATTACH A 1.
+//--THE IDEA IS THAT LOG(X) = K*LOG2 + LOG(Y)
+//-- = K*LOG2 + LOG(F) + LOG(1 + (Y-F)/F).
+//--NOTE THAT U = (Y-F)/F IS VERY SMALL AND THUS APPROXIMATING
+//--LOG(1+U) CAN BE VERY EFFICIENT.
+//--ALSO NOTE THAT THE VALUE 1/F IS STORED IN A TABLE SO THAT NO
+//--DIVISION IS NEEDED TO CALCULATE (Y-F)/F.
+
+//--GET K, Y, F, AND ADDRESS OF 1/F.
+ asrl #8,%d0
+ asrl #8,%d0 // ...SHIFTED 16 BITS, BIASED EXPO. OF X
+ subil #0x3FFF,%d0 // ...THIS IS K
+ addl ADJK(%a6),%d0 // ...ADJUST K, ORIGINAL INPUT MAY BE DENORM.
+ lea LOGTBL,%a0 // ...BASE ADDRESS OF 1/F AND LOG(F)
+ fmovel %d0,%fp1 // ...CONVERT K TO FLOATING-POINT FORMAT
+
+//--WHILE THE CONVERSION IS GOING ON, WE GET F AND ADDRESS OF 1/F
+ movel #0x3FFF0000,X(%a6) // ...X IS NOW Y, I.E. 2^(-K)*X
+ movel XFRAC(%a6),FFRAC(%a6)
+ andil #0xFE000000,FFRAC(%a6) // ...FIRST 7 BITS OF Y
+ oril #0x01000000,FFRAC(%a6) // ...GET F: ATTACH A 1 AT THE EIGHTH BIT
+ movel FFRAC(%a6),%d0 // ...READY TO GET ADDRESS OF 1/F
+ andil #0x7E000000,%d0
+ asrl #8,%d0
+ asrl #8,%d0
+ asrl #4,%d0 // ...SHIFTED 20, D0 IS THE DISPLACEMENT
+ addal %d0,%a0 // ...A0 IS THE ADDRESS FOR 1/F
+
+ fmovex X(%a6),%fp0
+ movel #0x3fff0000,F(%a6)
+ clrl F+8(%a6)
+ fsubx F(%a6),%fp0 // ...Y-F
+ fmovemx %fp2-%fp2/%fp3,-(%sp) // ...SAVE FP2 WHILE FP0 IS NOT READY
+//--SUMMARY: FP0 IS Y-F, A0 IS ADDRESS OF 1/F, FP1 IS K
+//--REGISTERS SAVED: FPCR, FP1, FP2
+
+LP1CONT1:
+//--AN RE-ENTRY POINT FOR LOGNP1
+ fmulx (%a0),%fp0 // ...FP0 IS U = (Y-F)/F
+ fmulx LOGOF2,%fp1 // ...GET K*LOG2 WHILE FP0 IS NOT READY
+ fmovex %fp0,%fp2
+ fmulx %fp2,%fp2 // ...FP2 IS V=U*U
+ fmovex %fp1,KLOG2(%a6) // ...PUT K*LOG2 IN MEMORY, FREE FP1
+
+//--LOG(1+U) IS APPROXIMATED BY
+//--U + V*(A1+U*(A2+U*(A3+U*(A4+U*(A5+U*A6))))) WHICH IS
+//--[U + V*(A1+V*(A3+V*A5))] + [U*V*(A2+V*(A4+V*A6))]
+
+ fmovex %fp2,%fp3
+ fmovex %fp2,%fp1
+
+ fmuld LOGA6,%fp1 // ...V*A6
+ fmuld LOGA5,%fp2 // ...V*A5
+
+ faddd LOGA4,%fp1 // ...A4+V*A6
+ faddd LOGA3,%fp2 // ...A3+V*A5
+
+ fmulx %fp3,%fp1 // ...V*(A4+V*A6)
+ fmulx %fp3,%fp2 // ...V*(A3+V*A5)
+
+ faddd LOGA2,%fp1 // ...A2+V*(A4+V*A6)
+ faddd LOGA1,%fp2 // ...A1+V*(A3+V*A5)
+
+ fmulx %fp3,%fp1 // ...V*(A2+V*(A4+V*A6))
+ addal #16,%a0 // ...ADDRESS OF LOG(F)
+ fmulx %fp3,%fp2 // ...V*(A1+V*(A3+V*A5)), FP3 RELEASED
+
+ fmulx %fp0,%fp1 // ...U*V*(A2+V*(A4+V*A6))
+ faddx %fp2,%fp0 // ...U+V*(A1+V*(A3+V*A5)), FP2 RELEASED
+
+ faddx (%a0),%fp1 // ...LOG(F)+U*V*(A2+V*(A4+V*A6))
+ fmovemx (%sp)+,%fp2-%fp2/%fp3 // ...RESTORE FP2
+ faddx %fp1,%fp0 // ...FP0 IS LOG(F) + LOG(1+U)
+
+ fmovel %d1,%fpcr
+ faddx KLOG2(%a6),%fp0 // ...FINAL ADD
+ bra t_frcinx
+
+
+LOGNEAR1:
+//--REGISTERS SAVED: FPCR, FP1. FP0 CONTAINS THE INPUT.
+ fmovex %fp0,%fp1
+ fsubs one,%fp1 // ...FP1 IS X-1
+ fadds one,%fp0 // ...FP0 IS X+1
+ faddx %fp1,%fp1 // ...FP1 IS 2(X-1)
+//--LOG(X) = LOG(1+U/2)-LOG(1-U/2) WHICH IS AN ODD POLYNOMIAL
+//--IN U, U = 2(X-1)/(X+1) = FP1/FP0
+
+LP1CONT2:
+//--THIS IS AN RE-ENTRY POINT FOR LOGNP1
+ fdivx %fp0,%fp1 // ...FP1 IS U
+ fmovemx %fp2-%fp2/%fp3,-(%sp) // ...SAVE FP2
+//--REGISTERS SAVED ARE NOW FPCR,FP1,FP2,FP3
+//--LET V=U*U, W=V*V, CALCULATE
+//--U + U*V*(B1 + V*(B2 + V*(B3 + V*(B4 + V*B5)))) BY
+//--U + U*V*( [B1 + W*(B3 + W*B5)] + [V*(B2 + W*B4)] )
+ fmovex %fp1,%fp0
+ fmulx %fp0,%fp0 // ...FP0 IS V
+ fmovex %fp1,SAVEU(%a6) // ...STORE U IN MEMORY, FREE FP1
+ fmovex %fp0,%fp1
+ fmulx %fp1,%fp1 // ...FP1 IS W
+
+ fmoved LOGB5,%fp3
+ fmoved LOGB4,%fp2
+
+ fmulx %fp1,%fp3 // ...W*B5
+ fmulx %fp1,%fp2 // ...W*B4
+
+ faddd LOGB3,%fp3 // ...B3+W*B5
+ faddd LOGB2,%fp2 // ...B2+W*B4
+
+ fmulx %fp3,%fp1 // ...W*(B3+W*B5), FP3 RELEASED
+
+ fmulx %fp0,%fp2 // ...V*(B2+W*B4)
+
+ faddd LOGB1,%fp1 // ...B1+W*(B3+W*B5)
+ fmulx SAVEU(%a6),%fp0 // ...FP0 IS U*V
+
+ faddx %fp2,%fp1 // ...B1+W*(B3+W*B5) + V*(B2+W*B4), FP2 RELEASED
+ fmovemx (%sp)+,%fp2-%fp2/%fp3 // ...FP2 RESTORED
+
+ fmulx %fp1,%fp0 // ...U*V*( [B1+W*(B3+W*B5)] + [V*(B2+W*B4)] )
+
+ fmovel %d1,%fpcr
+ faddx SAVEU(%a6),%fp0
+ bra t_frcinx
+ rts
+
+LOGNEG:
+//--REGISTERS SAVED FPCR. LOG(-VE) IS INVALID
+ bra t_operr
+
+ .global slognp1d
+slognp1d:
+//--ENTRY POINT FOR LOG(1+Z) FOR DENORMALIZED INPUT
+// Simply return the denorm
+
+ bra t_extdnrm
+
+ .global slognp1
+slognp1:
+//--ENTRY POINT FOR LOG(1+X) FOR X FINITE, NON-ZERO, NOT NAN'S
+
+ fmovex (%a0),%fp0 // ...LOAD INPUT
+ fabsx %fp0 //test magnitude
+ fcmpx LTHOLD,%fp0 //compare with min threshold
+ fbgt LP1REAL //if greater, continue
+ fmovel #0,%fpsr //clr N flag from compare
+ fmovel %d1,%fpcr
+ fmovex (%a0),%fp0 //return signed argument
+ bra t_frcinx
+
+LP1REAL:
+ fmovex (%a0),%fp0 // ...LOAD INPUT
+ movel #0x00000000,ADJK(%a6)
+ fmovex %fp0,%fp1 // ...FP1 IS INPUT Z
+ fadds one,%fp0 // ...X := ROUND(1+Z)
+ fmovex %fp0,X(%a6)
+ movew XFRAC(%a6),XDCARE(%a6)
+ movel X(%a6),%d0
+ cmpil #0,%d0
+ ble LP1NEG0 // ...LOG OF ZERO OR -VE
+ cmp2l BOUNDS2,%d0
+ bcs LOGMAIN // ...BOUNDS2 IS [1/2,3/2]
+//--IF 1+Z > 3/2 OR 1+Z < 1/2, THEN X, WHICH IS ROUNDING 1+Z,
+//--CONTAINS AT LEAST 63 BITS OF INFORMATION OF Z. IN THAT CASE,
+//--SIMPLY INVOKE LOG(X) FOR LOG(1+Z).
+
+LP1NEAR1:
+//--NEXT SEE IF EXP(-1/16) < X < EXP(1/16)
+ cmp2l BOUNDS1,%d0
+ bcss LP1CARE
+
+LP1ONE16:
+//--EXP(-1/16) < X < EXP(1/16). LOG(1+Z) = LOG(1+U/2) - LOG(1-U/2)
+//--WHERE U = 2Z/(2+Z) = 2Z/(1+X).
+ faddx %fp1,%fp1 // ...FP1 IS 2Z
+ fadds one,%fp0 // ...FP0 IS 1+X
+//--U = FP1/FP0
+ bra LP1CONT2
+
+LP1CARE:
+//--HERE WE USE THE USUAL TABLE DRIVEN APPROACH. CARE HAS TO BE
+//--TAKEN BECAUSE 1+Z CAN HAVE 67 BITS OF INFORMATION AND WE MUST
+//--PRESERVE ALL THE INFORMATION. BECAUSE 1+Z IS IN [1/2,3/2],
+//--THERE ARE ONLY TWO CASES.
+//--CASE 1: 1+Z < 1, THEN K = -1 AND Y-F = (2-F) + 2Z
+//--CASE 2: 1+Z > 1, THEN K = 0 AND Y-F = (1-F) + Z
+//--ON RETURNING TO LP1CONT1, WE MUST HAVE K IN FP1, ADDRESS OF
+//--(1/F) IN A0, Y-F IN FP0, AND FP2 SAVED.
+
+ movel XFRAC(%a6),FFRAC(%a6)
+ andil #0xFE000000,FFRAC(%a6)
+ oril #0x01000000,FFRAC(%a6) // ...F OBTAINED
+ cmpil #0x3FFF8000,%d0 // ...SEE IF 1+Z > 1
+ bges KISZERO
+
+KISNEG1:
+ fmoves TWO,%fp0
+ movel #0x3fff0000,F(%a6)
+ clrl F+8(%a6)
+ fsubx F(%a6),%fp0 // ...2-F
+ movel FFRAC(%a6),%d0
+ andil #0x7E000000,%d0
+ asrl #8,%d0
+ asrl #8,%d0
+ asrl #4,%d0 // ...D0 CONTAINS DISPLACEMENT FOR 1/F
+ faddx %fp1,%fp1 // ...GET 2Z
+ fmovemx %fp2-%fp2/%fp3,-(%sp) // ...SAVE FP2
+ faddx %fp1,%fp0 // ...FP0 IS Y-F = (2-F)+2Z
+ lea LOGTBL,%a0 // ...A0 IS ADDRESS OF 1/F
+ addal %d0,%a0
+ fmoves negone,%fp1 // ...FP1 IS K = -1
+ bra LP1CONT1
+
+KISZERO:
+ fmoves one,%fp0
+ movel #0x3fff0000,F(%a6)
+ clrl F+8(%a6)
+ fsubx F(%a6),%fp0 // ...1-F
+ movel FFRAC(%a6),%d0
+ andil #0x7E000000,%d0
+ asrl #8,%d0
+ asrl #8,%d0
+ asrl #4,%d0
+ faddx %fp1,%fp0 // ...FP0 IS Y-F
+ fmovemx %fp2-%fp2/%fp3,-(%sp) // ...FP2 SAVED
+ lea LOGTBL,%a0
+ addal %d0,%a0 // ...A0 IS ADDRESS OF 1/F
+ fmoves zero,%fp1 // ...FP1 IS K = 0
+ bra LP1CONT1
+
+LP1NEG0:
+//--FPCR SAVED. D0 IS X IN COMPACT FORM.
+ cmpil #0,%d0
+ blts LP1NEG
+LP1ZERO:
+ fmoves negone,%fp0
+
+ fmovel %d1,%fpcr
+ bra t_dz
+
+LP1NEG:
+ fmoves zero,%fp0
+
+ fmovel %d1,%fpcr
+ bra t_operr
+
+ |end