summaryrefslogtreecommitdiffstats
path: root/c/src/lib/libcpu/m68k/m68040/fpsp/res_func.s
diff options
context:
space:
mode:
authorJoel Sherrill <joel.sherrill@OARcorp.com>1997-04-16 17:33:04 +0000
committerJoel Sherrill <joel.sherrill@OARcorp.com>1997-04-16 17:33:04 +0000
commitf9b93da8b47ff7ea4d6573b75b6077f6efb8dbc6 (patch)
tree46e2747b2b8f04d36d530daad59481f4f79e3c00 /c/src/lib/libcpu/m68k/m68040/fpsp/res_func.s
parentAdded --disable-tcpip option. (diff)
downloadrtems-f9b93da8b47ff7ea4d6573b75b6077f6efb8dbc6.tar.bz2
Added the MC68040 Floating Point Support Package. This was ported
to RTEMS by Eric Norum. It is freely distributable and was acquired from the Motorola WWW site. More info is in the FPSP README.
Diffstat (limited to 'c/src/lib/libcpu/m68k/m68040/fpsp/res_func.s')
-rw-r--r--c/src/lib/libcpu/m68k/m68040/fpsp/res_func.s2040
1 files changed, 2040 insertions, 0 deletions
diff --git a/c/src/lib/libcpu/m68k/m68040/fpsp/res_func.s b/c/src/lib/libcpu/m68k/m68040/fpsp/res_func.s
new file mode 100644
index 0000000000..df8d0d9313
--- /dev/null
+++ b/c/src/lib/libcpu/m68k/m68040/fpsp/res_func.s
@@ -0,0 +1,2040 @@
+//
+// res_func.sa 3.9 7/29/91
+//
+// Normalizes denormalized numbers if necessary and updates the
+// stack frame. The function is then restored back into the
+// machine and the 040 completes the operation. This routine
+// is only used by the unsupported data type/format handler.
+// (Exception vector 55).
+//
+// For packed move out (fmove.p fpm,<ea>) the operation is
+// completed here; data is packed and moved to user memory.
+// The stack is restored to the 040 only in the case of a
+// reportable exception in the conversion.
+//
+//
+// Copyright (C) Motorola, Inc. 1990
+// All Rights Reserved
+//
+// THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA
+// The copyright notice above does not evidence any
+// actual or intended publication of such source code.
+
+RES_FUNC: //idnt 2,1 | Motorola 040 Floating Point Software Package
+
+ |section 8
+
+ .include "fpsp.defs"
+
+sp_bnds: .short 0x3f81,0x407e
+ .short 0x3f6a,0x0000
+dp_bnds: .short 0x3c01,0x43fe
+ .short 0x3bcd,0x0000
+
+ |xref mem_write
+ |xref bindec
+ |xref get_fline
+ |xref round
+ |xref denorm
+ |xref dest_ext
+ |xref dest_dbl
+ |xref dest_sgl
+ |xref unf_sub
+ |xref nrm_set
+ |xref dnrm_lp
+ |xref ovf_res
+ |xref reg_dest
+ |xref t_ovfl
+ |xref t_unfl
+
+ .global res_func
+ .global p_move
+
+res_func:
+ clrb DNRM_FLG(%a6)
+ clrb RES_FLG(%a6)
+ clrb CU_ONLY(%a6)
+ tstb DY_MO_FLG(%a6)
+ beqs monadic
+dyadic:
+ btstb #7,DTAG(%a6) //if dop = norm=000, zero=001,
+// ;inf=010 or nan=011
+ beqs monadic //then branch
+// ;else denorm
+// HANDLE DESTINATION DENORM HERE
+// ;set dtag to norm
+// ;write the tag & fpte15 to the fstack
+ leal FPTEMP(%a6),%a0
+
+ bclrb #sign_bit,LOCAL_EX(%a0)
+ sne LOCAL_SGN(%a0)
+
+ bsr nrm_set //normalize number (exp will go negative)
+ bclrb #sign_bit,LOCAL_EX(%a0) //get rid of false sign
+ bfclr LOCAL_SGN(%a0){#0:#8} //change back to IEEE ext format
+ beqs dpos
+ bsetb #sign_bit,LOCAL_EX(%a0)
+dpos:
+ bfclr DTAG(%a6){#0:#4} //set tag to normalized, FPTE15 = 0
+ bsetb #4,DTAG(%a6) //set FPTE15
+ orb #0x0f,DNRM_FLG(%a6)
+monadic:
+ leal ETEMP(%a6),%a0
+ btstb #direction_bit,CMDREG1B(%a6) //check direction
+ bne opclass3 //it is a mv out
+//
+// At this point, only opclass 0 and 2 possible
+//
+ btstb #7,STAG(%a6) //if sop = norm=000, zero=001,
+// ;inf=010 or nan=011
+ bne mon_dnrm //else denorm
+ tstb DY_MO_FLG(%a6) //all cases of dyadic instructions would
+ bne normal //require normalization of denorm
+
+// At this point:
+// monadic instructions: fabs = $18 fneg = $1a ftst = $3a
+// fmove = $00 fsmove = $40 fdmove = $44
+// fsqrt = $05* fssqrt = $41 fdsqrt = $45
+// (*fsqrt reencoded to $05)
+//
+ movew CMDREG1B(%a6),%d0 //get command register
+ andil #0x7f,%d0 //strip to only command word
+//
+// At this point, fabs, fneg, fsmove, fdmove, ftst, fsqrt, fssqrt, and
+// fdsqrt are possible.
+// For cases fabs, fneg, fsmove, and fdmove goto spos (do not normalize)
+// For cases fsqrt, fssqrt, and fdsqrt goto nrm_src (do normalize)
+//
+ btstl #0,%d0
+ bne normal //weed out fsqrt instructions
+//
+// cu_norm handles fmove in instructions with normalized inputs.
+// The routine round is used to correctly round the input for the
+// destination precision and mode.
+//
+cu_norm:
+ st CU_ONLY(%a6) //set cu-only inst flag
+ movew CMDREG1B(%a6),%d0
+ andib #0x3b,%d0 //isolate bits to select inst
+ tstb %d0
+ beql cu_nmove //if zero, it is an fmove
+ cmpib #0x18,%d0
+ beql cu_nabs //if $18, it is fabs
+ cmpib #0x1a,%d0
+ beql cu_nneg //if $1a, it is fneg
+//
+// Inst is ftst. Check the source operand and set the cc's accordingly.
+// No write is done, so simply rts.
+//
+cu_ntst:
+ movew LOCAL_EX(%a0),%d0
+ bclrl #15,%d0
+ sne LOCAL_SGN(%a0)
+ beqs cu_ntpo
+ orl #neg_mask,USER_FPSR(%a6) //set N
+cu_ntpo:
+ cmpiw #0x7fff,%d0 //test for inf/nan
+ bnes cu_ntcz
+ tstl LOCAL_HI(%a0)
+ bnes cu_ntn
+ tstl LOCAL_LO(%a0)
+ bnes cu_ntn
+ orl #inf_mask,USER_FPSR(%a6)
+ rts
+cu_ntn:
+ orl #nan_mask,USER_FPSR(%a6)
+ movel ETEMP_EX(%a6),FPTEMP_EX(%a6) //set up fptemp sign for
+// ;snan handler
+
+ rts
+cu_ntcz:
+ tstl LOCAL_HI(%a0)
+ bnel cu_ntsx
+ tstl LOCAL_LO(%a0)
+ bnel cu_ntsx
+ orl #z_mask,USER_FPSR(%a6)
+cu_ntsx:
+ rts
+//
+// Inst is fabs. Execute the absolute value function on the input.
+// Branch to the fmove code. If the operand is NaN, do nothing.
+//
+cu_nabs:
+ moveb STAG(%a6),%d0
+ btstl #5,%d0 //test for NaN or zero
+ bne wr_etemp //if either, simply write it
+ bclrb #7,LOCAL_EX(%a0) //do abs
+ bras cu_nmove //fmove code will finish
+//
+// Inst is fneg. Execute the negate value function on the input.
+// Fall though to the fmove code. If the operand is NaN, do nothing.
+//
+cu_nneg:
+ moveb STAG(%a6),%d0
+ btstl #5,%d0 //test for NaN or zero
+ bne wr_etemp //if either, simply write it
+ bchgb #7,LOCAL_EX(%a0) //do neg
+//
+// Inst is fmove. This code also handles all result writes.
+// If bit 2 is set, round is forced to double. If it is clear,
+// and bit 6 is set, round is forced to single. If both are clear,
+// the round precision is found in the fpcr. If the rounding precision
+// is double or single, round the result before the write.
+//
+cu_nmove:
+ moveb STAG(%a6),%d0
+ andib #0xe0,%d0 //isolate stag bits
+ bne wr_etemp //if not norm, simply write it
+ btstb #2,CMDREG1B+1(%a6) //check for rd
+ bne cu_nmrd
+ btstb #6,CMDREG1B+1(%a6) //check for rs
+ bne cu_nmrs
+//
+// The move or operation is not with forced precision. Test for
+// nan or inf as the input; if so, simply write it to FPn. Use the
+// FPCR_MODE byte to get rounding on norms and zeros.
+//
+cu_nmnr:
+ bfextu FPCR_MODE(%a6){#0:#2},%d0
+ tstb %d0 //check for extended
+ beq cu_wrexn //if so, just write result
+ cmpib #1,%d0 //check for single
+ beq cu_nmrs //fall through to double
+//
+// The move is fdmove or round precision is double.
+//
+cu_nmrd:
+ movel #2,%d0 //set up the size for denorm
+ movew LOCAL_EX(%a0),%d1 //compare exponent to double threshold
+ andw #0x7fff,%d1
+ cmpw #0x3c01,%d1
+ bls cu_nunfl
+ bfextu FPCR_MODE(%a6){#2:#2},%d1 //get rmode
+ orl #0x00020000,%d1 //or in rprec (double)
+ clrl %d0 //clear g,r,s for round
+ bclrb #sign_bit,LOCAL_EX(%a0) //convert to internal format
+ sne LOCAL_SGN(%a0)
+ bsrl round
+ bfclr LOCAL_SGN(%a0){#0:#8}
+ beqs cu_nmrdc
+ bsetb #sign_bit,LOCAL_EX(%a0)
+cu_nmrdc:
+ movew LOCAL_EX(%a0),%d1 //check for overflow
+ andw #0x7fff,%d1
+ cmpw #0x43ff,%d1
+ bge cu_novfl //take care of overflow case
+ bra cu_wrexn
+//
+// The move is fsmove or round precision is single.
+//
+cu_nmrs:
+ movel #1,%d0
+ movew LOCAL_EX(%a0),%d1
+ andw #0x7fff,%d1
+ cmpw #0x3f81,%d1
+ bls cu_nunfl
+ bfextu FPCR_MODE(%a6){#2:#2},%d1
+ orl #0x00010000,%d1
+ clrl %d0
+ bclrb #sign_bit,LOCAL_EX(%a0)
+ sne LOCAL_SGN(%a0)
+ bsrl round
+ bfclr LOCAL_SGN(%a0){#0:#8}
+ beqs cu_nmrsc
+ bsetb #sign_bit,LOCAL_EX(%a0)
+cu_nmrsc:
+ movew LOCAL_EX(%a0),%d1
+ andw #0x7FFF,%d1
+ cmpw #0x407f,%d1
+ blt cu_wrexn
+//
+// The operand is above precision boundaries. Use t_ovfl to
+// generate the correct value.
+//
+cu_novfl:
+ bsr t_ovfl
+ bra cu_wrexn
+//
+// The operand is below precision boundaries. Use denorm to
+// generate the correct value.
+//
+cu_nunfl:
+ bclrb #sign_bit,LOCAL_EX(%a0)
+ sne LOCAL_SGN(%a0)
+ bsr denorm
+ bfclr LOCAL_SGN(%a0){#0:#8} //change back to IEEE ext format
+ beqs cu_nucont
+ bsetb #sign_bit,LOCAL_EX(%a0)
+cu_nucont:
+ bfextu FPCR_MODE(%a6){#2:#2},%d1
+ btstb #2,CMDREG1B+1(%a6) //check for rd
+ bne inst_d
+ btstb #6,CMDREG1B+1(%a6) //check for rs
+ bne inst_s
+ swap %d1
+ moveb FPCR_MODE(%a6),%d1
+ lsrb #6,%d1
+ swap %d1
+ bra inst_sd
+inst_d:
+ orl #0x00020000,%d1
+ bra inst_sd
+inst_s:
+ orl #0x00010000,%d1
+inst_sd:
+ bclrb #sign_bit,LOCAL_EX(%a0)
+ sne LOCAL_SGN(%a0)
+ bsrl round
+ bfclr LOCAL_SGN(%a0){#0:#8}
+ beqs cu_nuflp
+ bsetb #sign_bit,LOCAL_EX(%a0)
+cu_nuflp:
+ btstb #inex2_bit,FPSR_EXCEPT(%a6)
+ beqs cu_nuninx
+ orl #aunfl_mask,USER_FPSR(%a6) //if the round was inex, set AUNFL
+cu_nuninx:
+ tstl LOCAL_HI(%a0) //test for zero
+ bnes cu_nunzro
+ tstl LOCAL_LO(%a0)
+ bnes cu_nunzro
+//
+// The mantissa is zero from the denorm loop. Check sign and rmode
+// to see if rounding should have occurred which would leave the lsb.
+//
+ movel USER_FPCR(%a6),%d0
+ andil #0x30,%d0 //isolate rmode
+ cmpil #0x20,%d0
+ blts cu_nzro
+ bnes cu_nrp
+cu_nrm:
+ tstw LOCAL_EX(%a0) //if positive, set lsb
+ bges cu_nzro
+ btstb #7,FPCR_MODE(%a6) //check for double
+ beqs cu_nincs
+ bras cu_nincd
+cu_nrp:
+ tstw LOCAL_EX(%a0) //if positive, set lsb
+ blts cu_nzro
+ btstb #7,FPCR_MODE(%a6) //check for double
+ beqs cu_nincs
+cu_nincd:
+ orl #0x800,LOCAL_LO(%a0) //inc for double
+ bra cu_nunzro
+cu_nincs:
+ orl #0x100,LOCAL_HI(%a0) //inc for single
+ bra cu_nunzro
+cu_nzro:
+ orl #z_mask,USER_FPSR(%a6)
+ moveb STAG(%a6),%d0
+ andib #0xe0,%d0
+ cmpib #0x40,%d0 //check if input was tagged zero
+ beqs cu_numv
+cu_nunzro:
+ orl #unfl_mask,USER_FPSR(%a6) //set unfl
+cu_numv:
+ movel (%a0),ETEMP(%a6)
+ movel 4(%a0),ETEMP_HI(%a6)
+ movel 8(%a0),ETEMP_LO(%a6)
+//
+// Write the result to memory, setting the fpsr cc bits. NaN and Inf
+// bypass cu_wrexn.
+//
+cu_wrexn:
+ tstw LOCAL_EX(%a0) //test for zero
+ beqs cu_wrzero
+ cmpw #0x8000,LOCAL_EX(%a0) //test for zero
+ bnes cu_wreon
+cu_wrzero:
+ orl #z_mask,USER_FPSR(%a6) //set Z bit
+cu_wreon:
+ tstw LOCAL_EX(%a0)
+ bpl wr_etemp
+ orl #neg_mask,USER_FPSR(%a6)
+ bra wr_etemp
+
+//
+// HANDLE SOURCE DENORM HERE
+//
+// ;clear denorm stag to norm
+// ;write the new tag & ete15 to the fstack
+mon_dnrm:
+//
+// At this point, check for the cases in which normalizing the
+// denorm produces incorrect results.
+//
+ tstb DY_MO_FLG(%a6) //all cases of dyadic instructions would
+ bnes nrm_src //require normalization of denorm
+
+// At this point:
+// monadic instructions: fabs = $18 fneg = $1a ftst = $3a
+// fmove = $00 fsmove = $40 fdmove = $44
+// fsqrt = $05* fssqrt = $41 fdsqrt = $45
+// (*fsqrt reencoded to $05)
+//
+ movew CMDREG1B(%a6),%d0 //get command register
+ andil #0x7f,%d0 //strip to only command word
+//
+// At this point, fabs, fneg, fsmove, fdmove, ftst, fsqrt, fssqrt, and
+// fdsqrt are possible.
+// For cases fabs, fneg, fsmove, and fdmove goto spos (do not normalize)
+// For cases fsqrt, fssqrt, and fdsqrt goto nrm_src (do normalize)
+//
+ btstl #0,%d0
+ bnes nrm_src //weed out fsqrt instructions
+ st CU_ONLY(%a6) //set cu-only inst flag
+ bra cu_dnrm //fmove, fabs, fneg, ftst
+// ;cases go to cu_dnrm
+nrm_src:
+ bclrb #sign_bit,LOCAL_EX(%a0)
+ sne LOCAL_SGN(%a0)
+ bsr nrm_set //normalize number (exponent will go
+// ; negative)
+ bclrb #sign_bit,LOCAL_EX(%a0) //get rid of false sign
+
+ bfclr LOCAL_SGN(%a0){#0:#8} //change back to IEEE ext format
+ beqs spos
+ bsetb #sign_bit,LOCAL_EX(%a0)
+spos:
+ bfclr STAG(%a6){#0:#4} //set tag to normalized, FPTE15 = 0
+ bsetb #4,STAG(%a6) //set ETE15
+ orb #0xf0,DNRM_FLG(%a6)
+normal:
+ tstb DNRM_FLG(%a6) //check if any of the ops were denorms
+ bne ck_wrap //if so, check if it is a potential
+// ;wrap-around case
+fix_stk:
+ moveb #0xfe,CU_SAVEPC(%a6)
+ bclrb #E1,E_BYTE(%a6)
+
+ clrw NMNEXC(%a6)
+
+ st RES_FLG(%a6) //indicate that a restore is needed
+ rts
+
+//
+// cu_dnrm handles all cu-only instructions (fmove, fabs, fneg, and
+// ftst) completely in software without an frestore to the 040.
+//
+cu_dnrm:
+ st CU_ONLY(%a6)
+ movew CMDREG1B(%a6),%d0
+ andib #0x3b,%d0 //isolate bits to select inst
+ tstb %d0
+ beql cu_dmove //if zero, it is an fmove
+ cmpib #0x18,%d0
+ beql cu_dabs //if $18, it is fabs
+ cmpib #0x1a,%d0
+ beql cu_dneg //if $1a, it is fneg
+//
+// Inst is ftst. Check the source operand and set the cc's accordingly.
+// No write is done, so simply rts.
+//
+cu_dtst:
+ movew LOCAL_EX(%a0),%d0
+ bclrl #15,%d0
+ sne LOCAL_SGN(%a0)
+ beqs cu_dtpo
+ orl #neg_mask,USER_FPSR(%a6) //set N
+cu_dtpo:
+ cmpiw #0x7fff,%d0 //test for inf/nan
+ bnes cu_dtcz
+ tstl LOCAL_HI(%a0)
+ bnes cu_dtn
+ tstl LOCAL_LO(%a0)
+ bnes cu_dtn
+ orl #inf_mask,USER_FPSR(%a6)
+ rts
+cu_dtn:
+ orl #nan_mask,USER_FPSR(%a6)
+ movel ETEMP_EX(%a6),FPTEMP_EX(%a6) //set up fptemp sign for
+// ;snan handler
+ rts
+cu_dtcz:
+ tstl LOCAL_HI(%a0)
+ bnel cu_dtsx
+ tstl LOCAL_LO(%a0)
+ bnel cu_dtsx
+ orl #z_mask,USER_FPSR(%a6)
+cu_dtsx:
+ rts
+//
+// Inst is fabs. Execute the absolute value function on the input.
+// Branch to the fmove code.
+//
+cu_dabs:
+ bclrb #7,LOCAL_EX(%a0) //do abs
+ bras cu_dmove //fmove code will finish
+//
+// Inst is fneg. Execute the negate value function on the input.
+// Fall though to the fmove code.
+//
+cu_dneg:
+ bchgb #7,LOCAL_EX(%a0) //do neg
+//
+// Inst is fmove. This code also handles all result writes.
+// If bit 2 is set, round is forced to double. If it is clear,
+// and bit 6 is set, round is forced to single. If both are clear,
+// the round precision is found in the fpcr. If the rounding precision
+// is double or single, the result is zero, and the mode is checked
+// to determine if the lsb of the result should be set.
+//
+cu_dmove:
+ btstb #2,CMDREG1B+1(%a6) //check for rd
+ bne cu_dmrd
+ btstb #6,CMDREG1B+1(%a6) //check for rs
+ bne cu_dmrs
+//
+// The move or operation is not with forced precision. Use the
+// FPCR_MODE byte to get rounding.
+//
+cu_dmnr:
+ bfextu FPCR_MODE(%a6){#0:#2},%d0
+ tstb %d0 //check for extended
+ beq cu_wrexd //if so, just write result
+ cmpib #1,%d0 //check for single
+ beq cu_dmrs //fall through to double
+//
+// The move is fdmove or round precision is double. Result is zero.
+// Check rmode for rp or rm and set lsb accordingly.
+//
+cu_dmrd:
+ bfextu FPCR_MODE(%a6){#2:#2},%d1 //get rmode
+ tstw LOCAL_EX(%a0) //check sign
+ blts cu_dmdn
+ cmpib #3,%d1 //check for rp
+ bne cu_dpd //load double pos zero
+ bra cu_dpdr //load double pos zero w/lsb
+cu_dmdn:
+ cmpib #2,%d1 //check for rm
+ bne cu_dnd //load double neg zero
+ bra cu_dndr //load double neg zero w/lsb
+//
+// The move is fsmove or round precision is single. Result is zero.
+// Check for rp or rm and set lsb accordingly.
+//
+cu_dmrs:
+ bfextu FPCR_MODE(%a6){#2:#2},%d1 //get rmode
+ tstw LOCAL_EX(%a0) //check sign
+ blts cu_dmsn
+ cmpib #3,%d1 //check for rp
+ bne cu_spd //load single pos zero
+ bra cu_spdr //load single pos zero w/lsb
+cu_dmsn:
+ cmpib #2,%d1 //check for rm
+ bne cu_snd //load single neg zero
+ bra cu_sndr //load single neg zero w/lsb
+//
+// The precision is extended, so the result in etemp is correct.
+// Simply set unfl (not inex2 or aunfl) and write the result to
+// the correct fp register.
+cu_wrexd:
+ orl #unfl_mask,USER_FPSR(%a6)
+ tstw LOCAL_EX(%a0)
+ beq wr_etemp
+ orl #neg_mask,USER_FPSR(%a6)
+ bra wr_etemp
+//
+// These routines write +/- zero in double format. The routines
+// cu_dpdr and cu_dndr set the double lsb.
+//
+cu_dpd:
+ movel #0x3c010000,LOCAL_EX(%a0) //force pos double zero
+ clrl LOCAL_HI(%a0)
+ clrl LOCAL_LO(%a0)
+ orl #z_mask,USER_FPSR(%a6)
+ orl #unfinx_mask,USER_FPSR(%a6)
+ bra wr_etemp
+cu_dpdr:
+ movel #0x3c010000,LOCAL_EX(%a0) //force pos double zero
+ clrl LOCAL_HI(%a0)
+ movel #0x800,LOCAL_LO(%a0) //with lsb set
+ orl #unfinx_mask,USER_FPSR(%a6)
+ bra wr_etemp
+cu_dnd:
+ movel #0xbc010000,LOCAL_EX(%a0) //force pos double zero
+ clrl LOCAL_HI(%a0)
+ clrl LOCAL_LO(%a0)
+ orl #z_mask,USER_FPSR(%a6)
+ orl #neg_mask,USER_FPSR(%a6)
+ orl #unfinx_mask,USER_FPSR(%a6)
+ bra wr_etemp
+cu_dndr:
+ movel #0xbc010000,LOCAL_EX(%a0) //force pos double zero
+ clrl LOCAL_HI(%a0)
+ movel #0x800,LOCAL_LO(%a0) //with lsb set
+ orl #neg_mask,USER_FPSR(%a6)
+ orl #unfinx_mask,USER_FPSR(%a6)
+ bra wr_etemp
+//
+// These routines write +/- zero in single format. The routines
+// cu_dpdr and cu_dndr set the single lsb.
+//
+cu_spd:
+ movel #0x3f810000,LOCAL_EX(%a0) //force pos single zero
+ clrl LOCAL_HI(%a0)
+ clrl LOCAL_LO(%a0)
+ orl #z_mask,USER_FPSR(%a6)
+ orl #unfinx_mask,USER_FPSR(%a6)
+ bra wr_etemp
+cu_spdr:
+ movel #0x3f810000,LOCAL_EX(%a0) //force pos single zero
+ movel #0x100,LOCAL_HI(%a0) //with lsb set
+ clrl LOCAL_LO(%a0)
+ orl #unfinx_mask,USER_FPSR(%a6)
+ bra wr_etemp
+cu_snd:
+ movel #0xbf810000,LOCAL_EX(%a0) //force pos single zero
+ clrl LOCAL_HI(%a0)
+ clrl LOCAL_LO(%a0)
+ orl #z_mask,USER_FPSR(%a6)
+ orl #neg_mask,USER_FPSR(%a6)
+ orl #unfinx_mask,USER_FPSR(%a6)
+ bra wr_etemp
+cu_sndr:
+ movel #0xbf810000,LOCAL_EX(%a0) //force pos single zero
+ movel #0x100,LOCAL_HI(%a0) //with lsb set
+ clrl LOCAL_LO(%a0)
+ orl #neg_mask,USER_FPSR(%a6)
+ orl #unfinx_mask,USER_FPSR(%a6)
+ bra wr_etemp
+
+//
+// This code checks for 16-bit overflow conditions on dyadic
+// operations which are not restorable into the floating-point
+// unit and must be completed in software. Basically, this
+// condition exists with a very large norm and a denorm. One
+// of the operands must be denormalized to enter this code.
+//
+// Flags used:
+// DY_MO_FLG contains 0 for monadic op, $ff for dyadic
+// DNRM_FLG contains $00 for neither op denormalized
+// $0f for the destination op denormalized
+// $f0 for the source op denormalized
+// $ff for both ops denormalized
+//
+// The wrap-around condition occurs for add, sub, div, and cmp
+// when
+//
+// abs(dest_exp - src_exp) >= $8000
+//
+// and for mul when
+//
+// (dest_exp + src_exp) < $0
+//
+// we must process the operation here if this case is true.
+//
+// The rts following the frcfpn routine is the exit from res_func
+// for this condition. The restore flag (RES_FLG) is left clear.
+// No frestore is done unless an exception is to be reported.
+//
+// For fadd:
+// if(sign_of(dest) != sign_of(src))
+// replace exponent of src with $3fff (keep sign)
+// use fpu to perform dest+new_src (user's rmode and X)
+// clr sticky
+// else
+// set sticky
+// call round with user's precision and mode
+// move result to fpn and wbtemp
+//
+// For fsub:
+// if(sign_of(dest) == sign_of(src))
+// replace exponent of src with $3fff (keep sign)
+// use fpu to perform dest+new_src (user's rmode and X)
+// clr sticky
+// else
+// set sticky
+// call round with user's precision and mode
+// move result to fpn and wbtemp
+//
+// For fdiv/fsgldiv:
+// if(both operands are denorm)
+// restore_to_fpu;
+// if(dest is norm)
+// force_ovf;
+// else(dest is denorm)
+// force_unf:
+//
+// For fcmp:
+// if(dest is norm)
+// N = sign_of(dest);
+// else(dest is denorm)
+// N = sign_of(src);
+//
+// For fmul:
+// if(both operands are denorm)
+// force_unf;
+// if((dest_exp + src_exp) < 0)
+// force_unf:
+// else
+// restore_to_fpu;
+//
+// local equates:
+ .set addcode,0x22
+ .set subcode,0x28
+ .set mulcode,0x23
+ .set divcode,0x20
+ .set cmpcode,0x38
+ck_wrap:
+ | tstb DY_MO_FLG(%a6) ;check for fsqrt
+ beq fix_stk //if zero, it is fsqrt
+ movew CMDREG1B(%a6),%d0
+ andiw #0x3b,%d0 //strip to command bits
+ cmpiw #addcode,%d0
+ beq wrap_add
+ cmpiw #subcode,%d0
+ beq wrap_sub
+ cmpiw #mulcode,%d0
+ beq wrap_mul
+ cmpiw #cmpcode,%d0
+ beq wrap_cmp
+//
+// Inst is fdiv.
+//
+wrap_div:
+ cmpb #0xff,DNRM_FLG(%a6) //if both ops denorm,
+ beq fix_stk //restore to fpu
+//
+// One of the ops is denormalized. Test for wrap condition
+// and force the result.
+//
+ cmpb #0x0f,DNRM_FLG(%a6) //check for dest denorm
+ bnes div_srcd
+div_destd:
+ bsrl ckinf_ns
+ bne fix_stk
+ bfextu ETEMP_EX(%a6){#1:#15},%d0 //get src exp (always pos)
+ bfexts FPTEMP_EX(%a6){#1:#15},%d1 //get dest exp (always neg)
+ subl %d1,%d0 //subtract dest from src
+ cmpl #0x7fff,%d0
+ blt fix_stk //if less, not wrap case
+ clrb WBTEMP_SGN(%a6)
+ movew ETEMP_EX(%a6),%d0 //find the sign of the result
+ movew FPTEMP_EX(%a6),%d1
+ eorw %d1,%d0
+ andiw #0x8000,%d0
+ beq force_unf
+ st WBTEMP_SGN(%a6)
+ bra force_unf
+
+ckinf_ns:
+ moveb STAG(%a6),%d0 //check source tag for inf or nan
+ bra ck_in_com
+ckinf_nd:
+ moveb DTAG(%a6),%d0 //check destination tag for inf or nan
+ck_in_com:
+ andib #0x60,%d0 //isolate tag bits
+ cmpb #0x40,%d0 //is it inf?
+ beq nan_or_inf //not wrap case
+ cmpb #0x60,%d0 //is it nan?
+ beq nan_or_inf //yes, not wrap case?
+ cmpb #0x20,%d0 //is it a zero?
+ beq nan_or_inf //yes
+ clrl %d0
+ rts //then ; it is either a zero of norm,
+// ;check wrap case
+nan_or_inf:
+ moveql #-1,%d0
+ rts
+
+
+
+div_srcd:
+ bsrl ckinf_nd
+ bne fix_stk
+ bfextu FPTEMP_EX(%a6){#1:#15},%d0 //get dest exp (always pos)
+ bfexts ETEMP_EX(%a6){#1:#15},%d1 //get src exp (always neg)
+ subl %d1,%d0 //subtract src from dest
+ cmpl #0x8000,%d0
+ blt fix_stk //if less, not wrap case
+ clrb WBTEMP_SGN(%a6)
+ movew ETEMP_EX(%a6),%d0 //find the sign of the result
+ movew FPTEMP_EX(%a6),%d1
+ eorw %d1,%d0
+ andiw #0x8000,%d0
+ beqs force_ovf
+ st WBTEMP_SGN(%a6)
+//
+// This code handles the case of the instruction resulting in
+// an overflow condition.
+//
+force_ovf:
+ bclrb #E1,E_BYTE(%a6)
+ orl #ovfl_inx_mask,USER_FPSR(%a6)
+ clrw NMNEXC(%a6)
+ leal WBTEMP(%a6),%a0 //point a0 to memory location
+ movew CMDREG1B(%a6),%d0
+ btstl #6,%d0 //test for forced precision
+ beqs frcovf_fpcr
+ btstl #2,%d0 //check for double
+ bnes frcovf_dbl
+ movel #0x1,%d0 //inst is forced single
+ bras frcovf_rnd
+frcovf_dbl:
+ movel #0x2,%d0 //inst is forced double
+ bras frcovf_rnd
+frcovf_fpcr:
+ bfextu FPCR_MODE(%a6){#0:#2},%d0 //inst not forced - use fpcr prec
+frcovf_rnd:
+
+// The 881/882 does not set inex2 for the following case, so the
+// line is commented out to be compatible with 881/882
+// tst.b %d0
+// beq.b frcovf_x
+// or.l #inex2_mask,USER_FPSR(%a6) ;if prec is s or d, set inex2
+
+//frcovf_x:
+ bsrl ovf_res //get correct result based on
+// ;round precision/mode. This
+// ;sets FPSR_CC correctly
+// ;returns in external format
+ bfclr WBTEMP_SGN(%a6){#0:#8}
+ beq frcfpn
+ bsetb #sign_bit,WBTEMP_EX(%a6)
+ bra frcfpn
+//
+// Inst is fadd.
+//
+wrap_add:
+ cmpb #0xff,DNRM_FLG(%a6) //if both ops denorm,
+ beq fix_stk //restore to fpu
+//
+// One of the ops is denormalized. Test for wrap condition
+// and complete the instruction.
+//
+ cmpb #0x0f,DNRM_FLG(%a6) //check for dest denorm
+ bnes add_srcd
+add_destd:
+ bsrl ckinf_ns
+ bne fix_stk
+ bfextu ETEMP_EX(%a6){#1:#15},%d0 //get src exp (always pos)
+ bfexts FPTEMP_EX(%a6){#1:#15},%d1 //get dest exp (always neg)
+ subl %d1,%d0 //subtract dest from src
+ cmpl #0x8000,%d0
+ blt fix_stk //if less, not wrap case
+ bra add_wrap
+add_srcd:
+ bsrl ckinf_nd
+ bne fix_stk
+ bfextu FPTEMP_EX(%a6){#1:#15},%d0 //get dest exp (always pos)
+ bfexts ETEMP_EX(%a6){#1:#15},%d1 //get src exp (always neg)
+ subl %d1,%d0 //subtract src from dest
+ cmpl #0x8000,%d0
+ blt fix_stk //if less, not wrap case
+//
+// Check the signs of the operands. If they are unlike, the fpu
+// can be used to add the norm and 1.0 with the sign of the
+// denorm and it will correctly generate the result in extended
+// precision. We can then call round with no sticky and the result
+// will be correct for the user's rounding mode and precision. If
+// the signs are the same, we call round with the sticky bit set
+// and the result will be correct for the user's rounding mode and
+// precision.
+//
+add_wrap:
+ movew ETEMP_EX(%a6),%d0
+ movew FPTEMP_EX(%a6),%d1
+ eorw %d1,%d0
+ andiw #0x8000,%d0
+ beq add_same
+//
+// The signs are unlike.
+//
+ cmpb #0x0f,DNRM_FLG(%a6) //is dest the denorm?
+ bnes add_u_srcd
+ movew FPTEMP_EX(%a6),%d0
+ andiw #0x8000,%d0
+ orw #0x3fff,%d0 //force the exponent to +/- 1
+ movew %d0,FPTEMP_EX(%a6) //in the denorm
+ movel USER_FPCR(%a6),%d0
+ andil #0x30,%d0
+ fmovel %d0,%fpcr //set up users rmode and X
+ fmovex ETEMP(%a6),%fp0
+ faddx FPTEMP(%a6),%fp0
+ leal WBTEMP(%a6),%a0 //point a0 to wbtemp in frame
+ fmovel %fpsr,%d1
+ orl %d1,USER_FPSR(%a6) //capture cc's and inex from fadd
+ fmovex %fp0,WBTEMP(%a6) //write result to memory
+ lsrl #4,%d0 //put rmode in lower 2 bits
+ movel USER_FPCR(%a6),%d1
+ andil #0xc0,%d1
+ lsrl #6,%d1 //put precision in upper word
+ swap %d1
+ orl %d0,%d1 //set up for round call
+ clrl %d0 //force sticky to zero
+ bclrb #sign_bit,WBTEMP_EX(%a6)
+ sne WBTEMP_SGN(%a6)
+ bsrl round //round result to users rmode & prec
+ bfclr WBTEMP_SGN(%a6){#0:#8} //convert back to IEEE ext format
+ beq frcfpnr
+ bsetb #sign_bit,WBTEMP_EX(%a6)
+ bra frcfpnr
+add_u_srcd:
+ movew ETEMP_EX(%a6),%d0
+ andiw #0x8000,%d0
+ orw #0x3fff,%d0 //force the exponent to +/- 1
+ movew %d0,ETEMP_EX(%a6) //in the denorm
+ movel USER_FPCR(%a6),%d0
+ andil #0x30,%d0
+ fmovel %d0,%fpcr //set up users rmode and X
+ fmovex ETEMP(%a6),%fp0
+ faddx FPTEMP(%a6),%fp0
+ fmovel %fpsr,%d1
+ orl %d1,USER_FPSR(%a6) //capture cc's and inex from fadd
+ leal WBTEMP(%a6),%a0 //point a0 to wbtemp in frame
+ fmovex %fp0,WBTEMP(%a6) //write result to memory
+ lsrl #4,%d0 //put rmode in lower 2 bits
+ movel USER_FPCR(%a6),%d1
+ andil #0xc0,%d1
+ lsrl #6,%d1 //put precision in upper word
+ swap %d1
+ orl %d0,%d1 //set up for round call
+ clrl %d0 //force sticky to zero
+ bclrb #sign_bit,WBTEMP_EX(%a6)
+ sne WBTEMP_SGN(%a6) //use internal format for round
+ bsrl round //round result to users rmode & prec
+ bfclr WBTEMP_SGN(%a6){#0:#8} //convert back to IEEE ext format
+ beq frcfpnr
+ bsetb #sign_bit,WBTEMP_EX(%a6)
+ bra frcfpnr
+//
+// Signs are alike:
+//
+add_same:
+ cmpb #0x0f,DNRM_FLG(%a6) //is dest the denorm?
+ bnes add_s_srcd
+add_s_destd:
+ leal ETEMP(%a6),%a0
+ movel USER_FPCR(%a6),%d0
+ andil #0x30,%d0
+ lsrl #4,%d0 //put rmode in lower 2 bits
+ movel USER_FPCR(%a6),%d1
+ andil #0xc0,%d1
+ lsrl #6,%d1 //put precision in upper word
+ swap %d1
+ orl %d0,%d1 //set up for round call
+ movel #0x20000000,%d0 //set sticky for round
+ bclrb #sign_bit,ETEMP_EX(%a6)
+ sne ETEMP_SGN(%a6)
+ bsrl round //round result to users rmode & prec
+ bfclr ETEMP_SGN(%a6){#0:#8} //convert back to IEEE ext format
+ beqs add_s_dclr
+ bsetb #sign_bit,ETEMP_EX(%a6)
+add_s_dclr:
+ leal WBTEMP(%a6),%a0
+ movel ETEMP(%a6),(%a0) //write result to wbtemp
+ movel ETEMP_HI(%a6),4(%a0)
+ movel ETEMP_LO(%a6),8(%a0)
+ tstw ETEMP_EX(%a6)
+ bgt add_ckovf
+ orl #neg_mask,USER_FPSR(%a6)
+ bra add_ckovf
+add_s_srcd:
+ leal FPTEMP(%a6),%a0
+ movel USER_FPCR(%a6),%d0
+ andil #0x30,%d0
+ lsrl #4,%d0 //put rmode in lower 2 bits
+ movel USER_FPCR(%a6),%d1
+ andil #0xc0,%d1
+ lsrl #6,%d1 //put precision in upper word
+ swap %d1
+ orl %d0,%d1 //set up for round call
+ movel #0x20000000,%d0 //set sticky for round
+ bclrb #sign_bit,FPTEMP_EX(%a6)
+ sne FPTEMP_SGN(%a6)
+ bsrl round //round result to users rmode & prec
+ bfclr FPTEMP_SGN(%a6){#0:#8} //convert back to IEEE ext format
+ beqs add_s_sclr
+ bsetb #sign_bit,FPTEMP_EX(%a6)
+add_s_sclr:
+ leal WBTEMP(%a6),%a0
+ movel FPTEMP(%a6),(%a0) //write result to wbtemp
+ movel FPTEMP_HI(%a6),4(%a0)
+ movel FPTEMP_LO(%a6),8(%a0)
+ tstw FPTEMP_EX(%a6)
+ bgt add_ckovf
+ orl #neg_mask,USER_FPSR(%a6)
+add_ckovf:
+ movew WBTEMP_EX(%a6),%d0
+ andiw #0x7fff,%d0
+ cmpiw #0x7fff,%d0
+ bne frcfpnr
+//
+// The result has overflowed to $7fff exponent. Set I, ovfl,
+// and aovfl, and clr the mantissa (incorrectly set by the
+// round routine.)
+//
+ orl #inf_mask+ovfl_inx_mask,USER_FPSR(%a6)
+ clrl 4(%a0)
+ bra frcfpnr
+//
+// Inst is fsub.
+//
+wrap_sub:
+ cmpb #0xff,DNRM_FLG(%a6) //if both ops denorm,
+ beq fix_stk //restore to fpu
+//
+// One of the ops is denormalized. Test for wrap condition
+// and complete the instruction.
+//
+ cmpb #0x0f,DNRM_FLG(%a6) //check for dest denorm
+ bnes sub_srcd
+sub_destd:
+ bsrl ckinf_ns
+ bne fix_stk
+ bfextu ETEMP_EX(%a6){#1:#15},%d0 //get src exp (always pos)
+ bfexts FPTEMP_EX(%a6){#1:#15},%d1 //get dest exp (always neg)
+ subl %d1,%d0 //subtract src from dest
+ cmpl #0x8000,%d0
+ blt fix_stk //if less, not wrap case
+ bra sub_wrap
+sub_srcd:
+ bsrl ckinf_nd
+ bne fix_stk
+ bfextu FPTEMP_EX(%a6){#1:#15},%d0 //get dest exp (always pos)
+ bfexts ETEMP_EX(%a6){#1:#15},%d1 //get src exp (always neg)
+ subl %d1,%d0 //subtract dest from src
+ cmpl #0x8000,%d0
+ blt fix_stk //if less, not wrap case
+//
+// Check the signs of the operands. If they are alike, the fpu
+// can be used to subtract from the norm 1.0 with the sign of the
+// denorm and it will correctly generate the result in extended
+// precision. We can then call round with no sticky and the result
+// will be correct for the user's rounding mode and precision. If
+// the signs are unlike, we call round with the sticky bit set
+// and the result will be correct for the user's rounding mode and
+// precision.
+//
+sub_wrap:
+ movew ETEMP_EX(%a6),%d0
+ movew FPTEMP_EX(%a6),%d1
+ eorw %d1,%d0
+ andiw #0x8000,%d0
+ bne sub_diff
+//
+// The signs are alike.
+//
+ cmpb #0x0f,DNRM_FLG(%a6) //is dest the denorm?
+ bnes sub_u_srcd
+ movew FPTEMP_EX(%a6),%d0
+ andiw #0x8000,%d0
+ orw #0x3fff,%d0 //force the exponent to +/- 1
+ movew %d0,FPTEMP_EX(%a6) //in the denorm
+ movel USER_FPCR(%a6),%d0
+ andil #0x30,%d0
+ fmovel %d0,%fpcr //set up users rmode and X
+ fmovex FPTEMP(%a6),%fp0
+ fsubx ETEMP(%a6),%fp0
+ fmovel %fpsr,%d1
+ orl %d1,USER_FPSR(%a6) //capture cc's and inex from fadd
+ leal WBTEMP(%a6),%a0 //point a0 to wbtemp in frame
+ fmovex %fp0,WBTEMP(%a6) //write result to memory
+ lsrl #4,%d0 //put rmode in lower 2 bits
+ movel USER_FPCR(%a6),%d1
+ andil #0xc0,%d1
+ lsrl #6,%d1 //put precision in upper word
+ swap %d1
+ orl %d0,%d1 //set up for round call
+ clrl %d0 //force sticky to zero
+ bclrb #sign_bit,WBTEMP_EX(%a6)
+ sne WBTEMP_SGN(%a6)
+ bsrl round //round result to users rmode & prec
+ bfclr WBTEMP_SGN(%a6){#0:#8} //convert back to IEEE ext format
+ beq frcfpnr
+ bsetb #sign_bit,WBTEMP_EX(%a6)
+ bra frcfpnr
+sub_u_srcd:
+ movew ETEMP_EX(%a6),%d0
+ andiw #0x8000,%d0
+ orw #0x3fff,%d0 //force the exponent to +/- 1
+ movew %d0,ETEMP_EX(%a6) //in the denorm
+ movel USER_FPCR(%a6),%d0
+ andil #0x30,%d0
+ fmovel %d0,%fpcr //set up users rmode and X
+ fmovex FPTEMP(%a6),%fp0
+ fsubx ETEMP(%a6),%fp0
+ fmovel %fpsr,%d1
+ orl %d1,USER_FPSR(%a6) //capture cc's and inex from fadd
+ leal WBTEMP(%a6),%a0 //point a0 to wbtemp in frame
+ fmovex %fp0,WBTEMP(%a6) //write result to memory
+ lsrl #4,%d0 //put rmode in lower 2 bits
+ movel USER_FPCR(%a6),%d1
+ andil #0xc0,%d1
+ lsrl #6,%d1 //put precision in upper word
+ swap %d1
+ orl %d0,%d1 //set up for round call
+ clrl %d0 //force sticky to zero
+ bclrb #sign_bit,WBTEMP_EX(%a6)
+ sne WBTEMP_SGN(%a6)
+ bsrl round //round result to users rmode & prec
+ bfclr WBTEMP_SGN(%a6){#0:#8} //convert back to IEEE ext format
+ beq frcfpnr
+ bsetb #sign_bit,WBTEMP_EX(%a6)
+ bra frcfpnr
+//
+// Signs are unlike:
+//
+sub_diff:
+ cmpb #0x0f,DNRM_FLG(%a6) //is dest the denorm?
+ bnes sub_s_srcd
+sub_s_destd:
+ leal ETEMP(%a6),%a0
+ movel USER_FPCR(%a6),%d0
+ andil #0x30,%d0
+ lsrl #4,%d0 //put rmode in lower 2 bits
+ movel USER_FPCR(%a6),%d1
+ andil #0xc0,%d1
+ lsrl #6,%d1 //put precision in upper word
+ swap %d1
+ orl %d0,%d1 //set up for round call
+ movel #0x20000000,%d0 //set sticky for round
+//
+// Since the dest is the denorm, the sign is the opposite of the
+// norm sign.
+//
+ eoriw #0x8000,ETEMP_EX(%a6) //flip sign on result
+ tstw ETEMP_EX(%a6)
+ bgts sub_s_dwr
+ orl #neg_mask,USER_FPSR(%a6)
+sub_s_dwr:
+ bclrb #sign_bit,ETEMP_EX(%a6)
+ sne ETEMP_SGN(%a6)
+ bsrl round //round result to users rmode & prec
+ bfclr ETEMP_SGN(%a6){#0:#8} //convert back to IEEE ext format
+ beqs sub_s_dclr
+ bsetb #sign_bit,ETEMP_EX(%a6)
+sub_s_dclr:
+ leal WBTEMP(%a6),%a0
+ movel ETEMP(%a6),(%a0) //write result to wbtemp
+ movel ETEMP_HI(%a6),4(%a0)
+ movel ETEMP_LO(%a6),8(%a0)
+ bra sub_ckovf
+sub_s_srcd:
+ leal FPTEMP(%a6),%a0
+ movel USER_FPCR(%a6),%d0
+ andil #0x30,%d0
+ lsrl #4,%d0 //put rmode in lower 2 bits
+ movel USER_FPCR(%a6),%d1
+ andil #0xc0,%d1
+ lsrl #6,%d1 //put precision in upper word
+ swap %d1
+ orl %d0,%d1 //set up for round call
+ movel #0x20000000,%d0 //set sticky for round
+ bclrb #sign_bit,FPTEMP_EX(%a6)
+ sne FPTEMP_SGN(%a6)
+ bsrl round //round result to users rmode & prec
+ bfclr FPTEMP_SGN(%a6){#0:#8} //convert back to IEEE ext format
+ beqs sub_s_sclr
+ bsetb #sign_bit,FPTEMP_EX(%a6)
+sub_s_sclr:
+ leal WBTEMP(%a6),%a0
+ movel FPTEMP(%a6),(%a0) //write result to wbtemp
+ movel FPTEMP_HI(%a6),4(%a0)
+ movel FPTEMP_LO(%a6),8(%a0)
+ tstw FPTEMP_EX(%a6)
+ bgt sub_ckovf
+ orl #neg_mask,USER_FPSR(%a6)
+sub_ckovf:
+ movew WBTEMP_EX(%a6),%d0
+ andiw #0x7fff,%d0
+ cmpiw #0x7fff,%d0
+ bne frcfpnr
+//
+// The result has overflowed to $7fff exponent. Set I, ovfl,
+// and aovfl, and clr the mantissa (incorrectly set by the
+// round routine.)
+//
+ orl #inf_mask+ovfl_inx_mask,USER_FPSR(%a6)
+ clrl 4(%a0)
+ bra frcfpnr
+//
+// Inst is fcmp.
+//
+wrap_cmp:
+ cmpb #0xff,DNRM_FLG(%a6) //if both ops denorm,
+ beq fix_stk //restore to fpu
+//
+// One of the ops is denormalized. Test for wrap condition
+// and complete the instruction.
+//
+ cmpb #0x0f,DNRM_FLG(%a6) //check for dest denorm
+ bnes cmp_srcd
+cmp_destd:
+ bsrl ckinf_ns
+ bne fix_stk
+ bfextu ETEMP_EX(%a6){#1:#15},%d0 //get src exp (always pos)
+ bfexts FPTEMP_EX(%a6){#1:#15},%d1 //get dest exp (always neg)
+ subl %d1,%d0 //subtract dest from src
+ cmpl #0x8000,%d0
+ blt fix_stk //if less, not wrap case
+ tstw ETEMP_EX(%a6) //set N to ~sign_of(src)
+ bge cmp_setn
+ rts
+cmp_srcd:
+ bsrl ckinf_nd
+ bne fix_stk
+ bfextu FPTEMP_EX(%a6){#1:#15},%d0 //get dest exp (always pos)
+ bfexts ETEMP_EX(%a6){#1:#15},%d1 //get src exp (always neg)
+ subl %d1,%d0 //subtract src from dest
+ cmpl #0x8000,%d0
+ blt fix_stk //if less, not wrap case
+ tstw FPTEMP_EX(%a6) //set N to sign_of(dest)
+ blt cmp_setn
+ rts
+cmp_setn:
+ orl #neg_mask,USER_FPSR(%a6)
+ rts
+
+//
+// Inst is fmul.
+//
+wrap_mul:
+ cmpb #0xff,DNRM_FLG(%a6) //if both ops denorm,
+ beq force_unf //force an underflow (really!)
+//
+// One of the ops is denormalized. Test for wrap condition
+// and complete the instruction.
+//
+ cmpb #0x0f,DNRM_FLG(%a6) //check for dest denorm
+ bnes mul_srcd
+mul_destd:
+ bsrl ckinf_ns
+ bne fix_stk
+ bfextu ETEMP_EX(%a6){#1:#15},%d0 //get src exp (always pos)
+ bfexts FPTEMP_EX(%a6){#1:#15},%d1 //get dest exp (always neg)
+ addl %d1,%d0 //subtract dest from src
+ bgt fix_stk
+ bra force_unf
+mul_srcd:
+ bsrl ckinf_nd
+ bne fix_stk
+ bfextu FPTEMP_EX(%a6){#1:#15},%d0 //get dest exp (always pos)
+ bfexts ETEMP_EX(%a6){#1:#15},%d1 //get src exp (always neg)
+ addl %d1,%d0 //subtract src from dest
+ bgt fix_stk
+
+//
+// This code handles the case of the instruction resulting in
+// an underflow condition.
+//
+force_unf:
+ bclrb #E1,E_BYTE(%a6)
+ orl #unfinx_mask,USER_FPSR(%a6)
+ clrw NMNEXC(%a6)
+ clrb WBTEMP_SGN(%a6)
+ movew ETEMP_EX(%a6),%d0 //find the sign of the result
+ movew FPTEMP_EX(%a6),%d1
+ eorw %d1,%d0
+ andiw #0x8000,%d0
+ beqs frcunfcont
+ st WBTEMP_SGN(%a6)
+frcunfcont:
+ lea WBTEMP(%a6),%a0 //point a0 to memory location
+ movew CMDREG1B(%a6),%d0
+ btstl #6,%d0 //test for forced precision
+ beqs frcunf_fpcr
+ btstl #2,%d0 //check for double
+ bnes frcunf_dbl
+ movel #0x1,%d0 //inst is forced single
+ bras frcunf_rnd
+frcunf_dbl:
+ movel #0x2,%d0 //inst is forced double
+ bras frcunf_rnd
+frcunf_fpcr:
+ bfextu FPCR_MODE(%a6){#0:#2},%d0 //inst not forced - use fpcr prec
+frcunf_rnd:
+ bsrl unf_sub //get correct result based on
+// ;round precision/mode. This
+// ;sets FPSR_CC correctly
+ bfclr WBTEMP_SGN(%a6){#0:#8} //convert back to IEEE ext format
+ beqs frcfpn
+ bsetb #sign_bit,WBTEMP_EX(%a6)
+ bra frcfpn
+
+//
+// Write the result to the user's fpn. All results must be HUGE to be
+// written; otherwise the results would have overflowed or underflowed.
+// If the rounding precision is single or double, the ovf_res routine
+// is needed to correctly supply the max value.
+//
+frcfpnr:
+ movew CMDREG1B(%a6),%d0
+ btstl #6,%d0 //test for forced precision
+ beqs frcfpn_fpcr
+ btstl #2,%d0 //check for double
+ bnes frcfpn_dbl
+ movel #0x1,%d0 //inst is forced single
+ bras frcfpn_rnd
+frcfpn_dbl:
+ movel #0x2,%d0 //inst is forced double
+ bras frcfpn_rnd
+frcfpn_fpcr:
+ bfextu FPCR_MODE(%a6){#0:#2},%d0 //inst not forced - use fpcr prec
+ tstb %d0
+ beqs frcfpn //if extended, write what you got
+frcfpn_rnd:
+ bclrb #sign_bit,WBTEMP_EX(%a6)
+ sne WBTEMP_SGN(%a6)
+ bsrl ovf_res //get correct result based on
+// ;round precision/mode. This
+// ;sets FPSR_CC correctly
+ bfclr WBTEMP_SGN(%a6){#0:#8} //convert back to IEEE ext format
+ beqs frcfpn_clr
+ bsetb #sign_bit,WBTEMP_EX(%a6)
+frcfpn_clr:
+ orl #ovfinx_mask,USER_FPSR(%a6)
+//
+// Perform the write.
+//
+frcfpn:
+ bfextu CMDREG1B(%a6){#6:#3},%d0 //extract fp destination register
+ cmpib #3,%d0
+ bles frc0123 //check if dest is fp0-fp3
+ movel #7,%d1
+ subl %d0,%d1
+ clrl %d0
+ bsetl %d1,%d0
+ fmovemx WBTEMP(%a6),%d0
+ rts
+frc0123:
+ cmpib #0,%d0
+ beqs frc0_dst
+ cmpib #1,%d0
+ beqs frc1_dst
+ cmpib #2,%d0
+ beqs frc2_dst
+frc3_dst:
+ movel WBTEMP_EX(%a6),USER_FP3(%a6)
+ movel WBTEMP_HI(%a6),USER_FP3+4(%a6)
+ movel WBTEMP_LO(%a6),USER_FP3+8(%a6)
+ rts
+frc2_dst:
+ movel WBTEMP_EX(%a6),USER_FP2(%a6)
+ movel WBTEMP_HI(%a6),USER_FP2+4(%a6)
+ movel WBTEMP_LO(%a6),USER_FP2+8(%a6)
+ rts
+frc1_dst:
+ movel WBTEMP_EX(%a6),USER_FP1(%a6)
+ movel WBTEMP_HI(%a6),USER_FP1+4(%a6)
+ movel WBTEMP_LO(%a6),USER_FP1+8(%a6)
+ rts
+frc0_dst:
+ movel WBTEMP_EX(%a6),USER_FP0(%a6)
+ movel WBTEMP_HI(%a6),USER_FP0+4(%a6)
+ movel WBTEMP_LO(%a6),USER_FP0+8(%a6)
+ rts
+
+//
+// Write etemp to fpn.
+// A check is made on enabled and signalled snan exceptions,
+// and the destination is not overwritten if this condition exists.
+// This code is designed to make fmoveins of unsupported data types
+// faster.
+//
+wr_etemp:
+ btstb #snan_bit,FPSR_EXCEPT(%a6) //if snan is set, and
+ beqs fmoveinc //enabled, force restore
+ btstb #snan_bit,FPCR_ENABLE(%a6) //and don't overwrite
+ beqs fmoveinc //the dest
+ movel ETEMP_EX(%a6),FPTEMP_EX(%a6) //set up fptemp sign for
+// ;snan handler
+ tstb ETEMP(%a6) //check for negative
+ blts snan_neg
+ rts
+snan_neg:
+ orl #neg_bit,USER_FPSR(%a6) //snan is negative; set N
+ rts
+fmoveinc:
+ clrw NMNEXC(%a6)
+ bclrb #E1,E_BYTE(%a6)
+ moveb STAG(%a6),%d0 //check if stag is inf
+ andib #0xe0,%d0
+ cmpib #0x40,%d0
+ bnes fminc_cnan
+ orl #inf_mask,USER_FPSR(%a6) //if inf, nothing yet has set I
+ tstw LOCAL_EX(%a0) //check sign
+ bges fminc_con
+ orl #neg_mask,USER_FPSR(%a6)
+ bra fminc_con
+fminc_cnan:
+ cmpib #0x60,%d0 //check if stag is NaN
+ bnes fminc_czero
+ orl #nan_mask,USER_FPSR(%a6) //if nan, nothing yet has set NaN
+ movel ETEMP_EX(%a6),FPTEMP_EX(%a6) //set up fptemp sign for
+// ;snan handler
+ tstw LOCAL_EX(%a0) //check sign
+ bges fminc_con
+ orl #neg_mask,USER_FPSR(%a6)
+ bra fminc_con
+fminc_czero:
+ cmpib #0x20,%d0 //check if zero
+ bnes fminc_con
+ orl #z_mask,USER_FPSR(%a6) //if zero, set Z
+ tstw LOCAL_EX(%a0) //check sign
+ bges fminc_con
+ orl #neg_mask,USER_FPSR(%a6)
+fminc_con:
+ bfextu CMDREG1B(%a6){#6:#3},%d0 //extract fp destination register
+ cmpib #3,%d0
+ bles fp0123 //check if dest is fp0-fp3
+ movel #7,%d1
+ subl %d0,%d1
+ clrl %d0
+ bsetl %d1,%d0
+ fmovemx ETEMP(%a6),%d0
+ rts
+
+fp0123:
+ cmpib #0,%d0
+ beqs fp0_dst
+ cmpib #1,%d0
+ beqs fp1_dst
+ cmpib #2,%d0
+ beqs fp2_dst
+fp3_dst:
+ movel ETEMP_EX(%a6),USER_FP3(%a6)
+ movel ETEMP_HI(%a6),USER_FP3+4(%a6)
+ movel ETEMP_LO(%a6),USER_FP3+8(%a6)
+ rts
+fp2_dst:
+ movel ETEMP_EX(%a6),USER_FP2(%a6)
+ movel ETEMP_HI(%a6),USER_FP2+4(%a6)
+ movel ETEMP_LO(%a6),USER_FP2+8(%a6)
+ rts
+fp1_dst:
+ movel ETEMP_EX(%a6),USER_FP1(%a6)
+ movel ETEMP_HI(%a6),USER_FP1+4(%a6)
+ movel ETEMP_LO(%a6),USER_FP1+8(%a6)
+ rts
+fp0_dst:
+ movel ETEMP_EX(%a6),USER_FP0(%a6)
+ movel ETEMP_HI(%a6),USER_FP0+4(%a6)
+ movel ETEMP_LO(%a6),USER_FP0+8(%a6)
+ rts
+
+opclass3:
+ st CU_ONLY(%a6)
+ movew CMDREG1B(%a6),%d0 //check if packed moveout
+ andiw #0x0c00,%d0 //isolate last 2 bits of size field
+ cmpiw #0x0c00,%d0 //if size is 011 or 111, it is packed
+ beq pack_out //else it is norm or denorm
+ bra mv_out
+
+
+//
+// MOVE OUT
+//
+
+mv_tbl:
+ .long li
+ .long sgp
+ .long xp
+ .long mvout_end //should never be taken
+ .long wi
+ .long dp
+ .long bi
+ .long mvout_end //should never be taken
+mv_out:
+ bfextu CMDREG1B(%a6){#3:#3},%d1 //put source specifier in d1
+ leal mv_tbl,%a0
+ movel %a0@(%d1:l:4),%a0
+ jmp (%a0)
+
+//
+// This exit is for move-out to memory. The aunfl bit is
+// set if the result is inex and unfl is signalled.
+//
+mvout_end:
+ btstb #inex2_bit,FPSR_EXCEPT(%a6)
+ beqs no_aufl
+ btstb #unfl_bit,FPSR_EXCEPT(%a6)
+ beqs no_aufl
+ bsetb #aunfl_bit,FPSR_AEXCEPT(%a6)
+no_aufl:
+ clrw NMNEXC(%a6)
+ bclrb #E1,E_BYTE(%a6)
+ fmovel #0,%FPSR //clear any cc bits from res_func
+//
+// Return ETEMP to extended format from internal extended format so
+// that gen_except will have a correctly signed value for ovfl/unfl
+// handlers.
+//
+ bfclr ETEMP_SGN(%a6){#0:#8}
+ beqs mvout_con
+ bsetb #sign_bit,ETEMP_EX(%a6)
+mvout_con:
+ rts
+//
+// This exit is for move-out to int register. The aunfl bit is
+// not set in any case for this move.
+//
+mvouti_end:
+ clrw NMNEXC(%a6)
+ bclrb #E1,E_BYTE(%a6)
+ fmovel #0,%FPSR //clear any cc bits from res_func
+//
+// Return ETEMP to extended format from internal extended format so
+// that gen_except will have a correctly signed value for ovfl/unfl
+// handlers.
+//
+ bfclr ETEMP_SGN(%a6){#0:#8}
+ beqs mvouti_con
+ bsetb #sign_bit,ETEMP_EX(%a6)
+mvouti_con:
+ rts
+//
+// li is used to handle a long integer source specifier
+//
+
+li:
+ moveql #4,%d0 //set byte count
+
+ btstb #7,STAG(%a6) //check for extended denorm
+ bne int_dnrm //if so, branch
+
+ fmovemx ETEMP(%a6),%fp0-%fp0
+ fcmpd #0x41dfffffffc00000,%fp0
+// 41dfffffffc00000 in dbl prec = 401d0000fffffffe00000000 in ext prec
+ fbge lo_plrg
+ fcmpd #0xc1e0000000000000,%fp0
+// c1e0000000000000 in dbl prec = c01e00008000000000000000 in ext prec
+ fble lo_nlrg
+//
+// at this point, the answer is between the largest pos and neg values
+//
+ movel USER_FPCR(%a6),%d1 //use user's rounding mode
+ andil #0x30,%d1
+ fmovel %d1,%fpcr
+ fmovel %fp0,L_SCR1(%a6) //let the 040 perform conversion
+ fmovel %fpsr,%d1
+ orl %d1,USER_FPSR(%a6) //capture inex2/ainex if set
+ bra int_wrt
+
+
+lo_plrg:
+ movel #0x7fffffff,L_SCR1(%a6) //answer is largest positive int
+ fbeq int_wrt //exact answer
+ fcmpd #0x41dfffffffe00000,%fp0
+// 41dfffffffe00000 in dbl prec = 401d0000ffffffff00000000 in ext prec
+ fbge int_operr //set operr
+ bra int_inx //set inexact
+
+lo_nlrg:
+ movel #0x80000000,L_SCR1(%a6)
+ fbeq int_wrt //exact answer
+ fcmpd #0xc1e0000000100000,%fp0
+// c1e0000000100000 in dbl prec = c01e00008000000080000000 in ext prec
+ fblt int_operr //set operr
+ bra int_inx //set inexact
+
+//
+// wi is used to handle a word integer source specifier
+//
+
+wi:
+ moveql #2,%d0 //set byte count
+
+ btstb #7,STAG(%a6) //check for extended denorm
+ bne int_dnrm //branch if so
+
+ fmovemx ETEMP(%a6),%fp0-%fp0
+ fcmps #0x46fffe00,%fp0
+// 46fffe00 in sgl prec = 400d0000fffe000000000000 in ext prec
+ fbge wo_plrg
+ fcmps #0xc7000000,%fp0
+// c7000000 in sgl prec = c00e00008000000000000000 in ext prec
+ fble wo_nlrg
+
+//
+// at this point, the answer is between the largest pos and neg values
+//
+ movel USER_FPCR(%a6),%d1 //use user's rounding mode
+ andil #0x30,%d1
+ fmovel %d1,%fpcr
+ fmovew %fp0,L_SCR1(%a6) //let the 040 perform conversion
+ fmovel %fpsr,%d1
+ orl %d1,USER_FPSR(%a6) //capture inex2/ainex if set
+ bra int_wrt
+
+wo_plrg:
+ movew #0x7fff,L_SCR1(%a6) //answer is largest positive int
+ fbeq int_wrt //exact answer
+ fcmps #0x46ffff00,%fp0
+// 46ffff00 in sgl prec = 400d0000ffff000000000000 in ext prec
+ fbge int_operr //set operr
+ bra int_inx //set inexact
+
+wo_nlrg:
+ movew #0x8000,L_SCR1(%a6)
+ fbeq int_wrt //exact answer
+ fcmps #0xc7000080,%fp0
+// c7000080 in sgl prec = c00e00008000800000000000 in ext prec
+ fblt int_operr //set operr
+ bra int_inx //set inexact
+
+//
+// bi is used to handle a byte integer source specifier
+//
+
+bi:
+ moveql #1,%d0 //set byte count
+
+ btstb #7,STAG(%a6) //check for extended denorm
+ bne int_dnrm //branch if so
+
+ fmovemx ETEMP(%a6),%fp0-%fp0
+ fcmps #0x42fe0000,%fp0
+// 42fe0000 in sgl prec = 40050000fe00000000000000 in ext prec
+ fbge by_plrg
+ fcmps #0xc3000000,%fp0
+// c3000000 in sgl prec = c00600008000000000000000 in ext prec
+ fble by_nlrg
+
+//
+// at this point, the answer is between the largest pos and neg values
+//
+ movel USER_FPCR(%a6),%d1 //use user's rounding mode
+ andil #0x30,%d1
+ fmovel %d1,%fpcr
+ fmoveb %fp0,L_SCR1(%a6) //let the 040 perform conversion
+ fmovel %fpsr,%d1
+ orl %d1,USER_FPSR(%a6) //capture inex2/ainex if set
+ bra int_wrt
+
+by_plrg:
+ moveb #0x7f,L_SCR1(%a6) //answer is largest positive int
+ fbeq int_wrt //exact answer
+ fcmps #0x42ff0000,%fp0
+// 42ff0000 in sgl prec = 40050000ff00000000000000 in ext prec
+ fbge int_operr //set operr
+ bra int_inx //set inexact
+
+by_nlrg:
+ moveb #0x80,L_SCR1(%a6)
+ fbeq int_wrt //exact answer
+ fcmps #0xc3008000,%fp0
+// c3008000 in sgl prec = c00600008080000000000000 in ext prec
+ fblt int_operr //set operr
+ bra int_inx //set inexact
+
+//
+// Common integer routines
+//
+// int_drnrm---account for possible nonzero result for round up with positive
+// operand and round down for negative answer. In the first case (result = 1)
+// byte-width (store in d0) of result must be honored. In the second case,
+// -1 in L_SCR1(a6) will cover all contingencies (FMOVE.B/W/L out).
+
+int_dnrm:
+ movel #0,L_SCR1(%a6) // initialize result to 0
+ bfextu FPCR_MODE(%a6){#2:#2},%d1 // d1 is the rounding mode
+ cmpb #2,%d1
+ bmis int_inx // if RN or RZ, done
+ bnes int_rp // if RP, continue below
+ tstw ETEMP(%a6) // RM: store -1 in L_SCR1 if src is negative
+ bpls int_inx // otherwise result is 0
+ movel #-1,L_SCR1(%a6)
+ bras int_inx
+int_rp:
+ tstw ETEMP(%a6) // RP: store +1 of proper width in L_SCR1 if
+// ; source is greater than 0
+ bmis int_inx // otherwise, result is 0
+ lea L_SCR1(%a6),%a1 // a1 is address of L_SCR1
+ addal %d0,%a1 // offset by destination width -1
+ subal #1,%a1
+ bsetb #0,(%a1) // set low bit at a1 address
+int_inx:
+ oril #inx2a_mask,USER_FPSR(%a6)
+ bras int_wrt
+int_operr:
+ fmovemx %fp0-%fp0,FPTEMP(%a6) //FPTEMP must contain the extended
+// ;precision source that needs to be
+// ;converted to integer this is required
+// ;if the operr exception is enabled.
+// ;set operr/aiop (no inex2 on int ovfl)
+
+ oril #opaop_mask,USER_FPSR(%a6)
+// ;fall through to perform int_wrt
+int_wrt:
+ movel EXC_EA(%a6),%a1 //load destination address
+ tstl %a1 //check to see if it is a dest register
+ beqs wrt_dn //write data register
+ lea L_SCR1(%a6),%a0 //point to supervisor source address
+ bsrl mem_write
+ bra mvouti_end
+
+wrt_dn:
+ movel %d0,-(%sp) //d0 currently contains the size to write
+ bsrl get_fline //get_fline returns Dn in d0
+ andiw #0x7,%d0 //isolate register
+ movel (%sp)+,%d1 //get size
+ cmpil #4,%d1 //most frequent case
+ beqs sz_long
+ cmpil #2,%d1
+ bnes sz_con
+ orl #8,%d0 //add 'word' size to register#
+ bras sz_con
+sz_long:
+ orl #0x10,%d0 //add 'long' size to register#
+sz_con:
+ movel %d0,%d1 //reg_dest expects size:reg in d1
+ bsrl reg_dest //load proper data register
+ bra mvouti_end
+xp:
+ lea ETEMP(%a6),%a0
+ bclrb #sign_bit,LOCAL_EX(%a0)
+ sne LOCAL_SGN(%a0)
+ btstb #7,STAG(%a6) //check for extended denorm
+ bne xdnrm
+ clrl %d0
+ bras do_fp //do normal case
+sgp:
+ lea ETEMP(%a6),%a0
+ bclrb #sign_bit,LOCAL_EX(%a0)
+ sne LOCAL_SGN(%a0)
+ btstb #7,STAG(%a6) //check for extended denorm
+ bne sp_catas //branch if so
+ movew LOCAL_EX(%a0),%d0
+ lea sp_bnds,%a1
+ cmpw (%a1),%d0
+ blt sp_under
+ cmpw 2(%a1),%d0
+ bgt sp_over
+ movel #1,%d0 //set destination format to single
+ bras do_fp //do normal case
+dp:
+ lea ETEMP(%a6),%a0
+ bclrb #sign_bit,LOCAL_EX(%a0)
+ sne LOCAL_SGN(%a0)
+
+ btstb #7,STAG(%a6) //check for extended denorm
+ bne dp_catas //branch if so
+
+ movew LOCAL_EX(%a0),%d0
+ lea dp_bnds,%a1
+
+ cmpw (%a1),%d0
+ blt dp_under
+ cmpw 2(%a1),%d0
+ bgt dp_over
+
+ movel #2,%d0 //set destination format to double
+// ;fall through to do_fp
+//
+do_fp:
+ bfextu FPCR_MODE(%a6){#2:#2},%d1 //rnd mode in d1
+ swap %d0 //rnd prec in upper word
+ addl %d0,%d1 //d1 has PREC/MODE info
+
+ clrl %d0 //clear g,r,s
+
+ bsrl round //round
+
+ movel %a0,%a1
+ movel EXC_EA(%a6),%a0
+
+ bfextu CMDREG1B(%a6){#3:#3},%d1 //extract destination format
+// ;at this point only the dest
+// ;formats sgl, dbl, ext are
+// ;possible
+ cmpb #2,%d1
+ bgts ddbl //double=5, extended=2, single=1
+ bnes dsgl
+// ;fall through to dext
+dext:
+ bsrl dest_ext
+ bra mvout_end
+dsgl:
+ bsrl dest_sgl
+ bra mvout_end
+ddbl:
+ bsrl dest_dbl
+ bra mvout_end
+
+//
+// Handle possible denorm or catastrophic underflow cases here
+//
+xdnrm:
+ bsr set_xop //initialize WBTEMP
+ bsetb #wbtemp15_bit,WB_BYTE(%a6) //set wbtemp15
+
+ movel %a0,%a1
+ movel EXC_EA(%a6),%a0 //a0 has the destination pointer
+ bsrl dest_ext //store to memory
+ bsetb #unfl_bit,FPSR_EXCEPT(%a6)
+ bra mvout_end
+
+sp_under:
+ bsetb #etemp15_bit,STAG(%a6)
+
+ cmpw 4(%a1),%d0
+ blts sp_catas //catastrophic underflow case
+
+ movel #1,%d0 //load in round precision
+ movel #sgl_thresh,%d1 //load in single denorm threshold
+ bsrl dpspdnrm //expects d1 to have the proper
+// ;denorm threshold
+ bsrl dest_sgl //stores value to destination
+ bsetb #unfl_bit,FPSR_EXCEPT(%a6)
+ bra mvout_end //exit
+
+dp_under:
+ bsetb #etemp15_bit,STAG(%a6)
+
+ cmpw 4(%a1),%d0
+ blts dp_catas //catastrophic underflow case
+
+ movel #dbl_thresh,%d1 //load in double precision threshold
+ movel #2,%d0
+ bsrl dpspdnrm //expects d1 to have proper
+// ;denorm threshold
+// ;expects d0 to have round precision
+ bsrl dest_dbl //store value to destination
+ bsetb #unfl_bit,FPSR_EXCEPT(%a6)
+ bra mvout_end //exit
+
+//
+// Handle catastrophic underflow cases here
+//
+sp_catas:
+// Temp fix for z bit set in unf_sub
+ movel USER_FPSR(%a6),-(%a7)
+
+ movel #1,%d0 //set round precision to sgl
+
+ bsrl unf_sub //a0 points to result
+
+ movel (%a7)+,USER_FPSR(%a6)
+
+ movel #1,%d0
+ subw %d0,LOCAL_EX(%a0) //account for difference between
+// ;denorm/norm bias
+
+ movel %a0,%a1 //a1 has the operand input
+ movel EXC_EA(%a6),%a0 //a0 has the destination pointer
+
+ bsrl dest_sgl //store the result
+ oril #unfinx_mask,USER_FPSR(%a6)
+ bra mvout_end
+
+dp_catas:
+// Temp fix for z bit set in unf_sub
+ movel USER_FPSR(%a6),-(%a7)
+
+ movel #2,%d0 //set round precision to dbl
+ bsrl unf_sub //a0 points to result
+
+ movel (%a7)+,USER_FPSR(%a6)
+
+ movel #1,%d0
+ subw %d0,LOCAL_EX(%a0) //account for difference between
+// ;denorm/norm bias
+
+ movel %a0,%a1 //a1 has the operand input
+ movel EXC_EA(%a6),%a0 //a0 has the destination pointer
+
+ bsrl dest_dbl //store the result
+ oril #unfinx_mask,USER_FPSR(%a6)
+ bra mvout_end
+
+//
+// Handle catastrophic overflow cases here
+//
+sp_over:
+// Temp fix for z bit set in unf_sub
+ movel USER_FPSR(%a6),-(%a7)
+
+ movel #1,%d0
+ leal FP_SCR1(%a6),%a0 //use FP_SCR1 for creating result
+ movel ETEMP_EX(%a6),(%a0)
+ movel ETEMP_HI(%a6),4(%a0)
+ movel ETEMP_LO(%a6),8(%a0)
+ bsrl ovf_res
+
+ movel (%a7)+,USER_FPSR(%a6)
+
+ movel %a0,%a1
+ movel EXC_EA(%a6),%a0
+ bsrl dest_sgl
+ orl #ovfinx_mask,USER_FPSR(%a6)
+ bra mvout_end
+
+dp_over:
+// Temp fix for z bit set in ovf_res
+ movel USER_FPSR(%a6),-(%a7)
+
+ movel #2,%d0
+ leal FP_SCR1(%a6),%a0 //use FP_SCR1 for creating result
+ movel ETEMP_EX(%a6),(%a0)
+ movel ETEMP_HI(%a6),4(%a0)
+ movel ETEMP_LO(%a6),8(%a0)
+ bsrl ovf_res
+
+ movel (%a7)+,USER_FPSR(%a6)
+
+ movel %a0,%a1
+ movel EXC_EA(%a6),%a0
+ bsrl dest_dbl
+ orl #ovfinx_mask,USER_FPSR(%a6)
+ bra mvout_end
+
+//
+// DPSPDNRM
+//
+// This subroutine takes an extended normalized number and denormalizes
+// it to the given round precision. This subroutine also decrements
+// the input operand's exponent by 1 to account for the fact that
+// dest_sgl or dest_dbl expects a normalized number's bias.
+//
+// Input: a0 points to a normalized number in internal extended format
+// d0 is the round precision (=1 for sgl; =2 for dbl)
+// d1 is the the single precision or double precision
+// denorm threshold
+//
+// Output: (In the format for dest_sgl or dest_dbl)
+// a0 points to the destination
+// a1 points to the operand
+//
+// Exceptions: Reports inexact 2 exception by setting USER_FPSR bits
+//
+dpspdnrm:
+ movel %d0,-(%a7) //save round precision
+ clrl %d0 //clear initial g,r,s
+ bsrl dnrm_lp //careful with d0, it's needed by round
+
+ bfextu FPCR_MODE(%a6){#2:#2},%d1 //get rounding mode
+ swap %d1
+ movew 2(%a7),%d1 //set rounding precision
+ swap %d1 //at this point d1 has PREC/MODE info
+ bsrl round //round result, sets the inex bit in
+// ;USER_FPSR if needed
+
+ movew #1,%d0
+ subw %d0,LOCAL_EX(%a0) //account for difference in denorm
+// ;vs norm bias
+
+ movel %a0,%a1 //a1 has the operand input
+ movel EXC_EA(%a6),%a0 //a0 has the destination pointer
+ addw #4,%a7 //pop stack
+ rts
+//
+// SET_XOP initialized WBTEMP with the value pointed to by a0
+// input: a0 points to input operand in the internal extended format
+//
+set_xop:
+ movel LOCAL_EX(%a0),WBTEMP_EX(%a6)
+ movel LOCAL_HI(%a0),WBTEMP_HI(%a6)
+ movel LOCAL_LO(%a0),WBTEMP_LO(%a6)
+ bfclr WBTEMP_SGN(%a6){#0:#8}
+ beqs sxop
+ bsetb #sign_bit,WBTEMP_EX(%a6)
+sxop:
+ bfclr STAG(%a6){#5:#4} //clear wbtm66,wbtm1,wbtm0,sbit
+ rts
+//
+// P_MOVE
+//
+p_movet:
+ .long p_move
+ .long p_movez
+ .long p_movei
+ .long p_moven
+ .long p_move
+p_regd:
+ .long p_dyd0
+ .long p_dyd1
+ .long p_dyd2
+ .long p_dyd3
+ .long p_dyd4
+ .long p_dyd5
+ .long p_dyd6
+ .long p_dyd7
+
+pack_out:
+ leal p_movet,%a0 //load jmp table address
+ movew STAG(%a6),%d0 //get source tag
+ bfextu %d0{#16:#3},%d0 //isolate source bits
+ movel (%a0,%d0.w*4),%a0 //load a0 with routine label for tag
+ jmp (%a0) //go to the routine
+
+p_write:
+ movel #0x0c,%d0 //get byte count
+ movel EXC_EA(%a6),%a1 //get the destination address
+ bsr mem_write //write the user's destination
+ moveb #0,CU_SAVEPC(%a6) //set the cu save pc to all 0's
+
+//
+// Also note that the dtag must be set to norm here - this is because
+// the 040 uses the dtag to execute the correct microcode.
+//
+ bfclr DTAG(%a6){#0:#3} //set dtag to norm
+
+ rts
+
+// Notes on handling of special case (zero, inf, and nan) inputs:
+// 1. Operr is not signalled if the k-factor is greater than 18.
+// 2. Per the manual, status bits are not set.
+//
+
+p_move:
+ movew CMDREG1B(%a6),%d0
+ btstl #kfact_bit,%d0 //test for dynamic k-factor
+ beqs statick //if clear, k-factor is static
+dynamick:
+ bfextu %d0{#25:#3},%d0 //isolate register for dynamic k-factor
+ lea p_regd,%a0
+ movel %a0@(%d0:l:4),%a0
+ jmp (%a0)
+statick:
+ andiw #0x007f,%d0 //get k-factor
+ bfexts %d0{#25:#7},%d0 //sign extend d0 for bindec
+ leal ETEMP(%a6),%a0 //a0 will point to the packed decimal
+ bsrl bindec //perform the convert; data at a6
+ leal FP_SCR1(%a6),%a0 //load a0 with result address
+ bral p_write
+p_movez:
+ leal ETEMP(%a6),%a0 //a0 will point to the packed decimal
+ clrw 2(%a0) //clear lower word of exp
+ clrl 4(%a0) //load second lword of ZERO
+ clrl 8(%a0) //load third lword of ZERO
+ bra p_write //go write results
+p_movei:
+ fmovel #0,%FPSR //clear aiop
+ leal ETEMP(%a6),%a0 //a0 will point to the packed decimal
+ clrw 2(%a0) //clear lower word of exp
+ bra p_write //go write the result
+p_moven:
+ leal ETEMP(%a6),%a0 //a0 will point to the packed decimal
+ clrw 2(%a0) //clear lower word of exp
+ bra p_write //go write the result
+
+//
+// Routines to read the dynamic k-factor from Dn.
+//
+p_dyd0:
+ movel USER_D0(%a6),%d0
+ bras statick
+p_dyd1:
+ movel USER_D1(%a6),%d0
+ bras statick
+p_dyd2:
+ movel %d2,%d0
+ bras statick
+p_dyd3:
+ movel %d3,%d0
+ bras statick
+p_dyd4:
+ movel %d4,%d0
+ bras statick
+p_dyd5:
+ movel %d5,%d0
+ bras statick
+p_dyd6:
+ movel %d6,%d0
+ bra statick
+p_dyd7:
+ movel %d7,%d0
+ bra statick
+
+ |end