summaryrefslogtreecommitdiffstats
path: root/c/src/lib/libbsp/powerpc/motorola_powerpc/bootloader/zlib.h
diff options
context:
space:
mode:
authorJoel Sherrill <joel.sherrill@OARcorp.com>1999-06-14 16:51:13 +0000
committerJoel Sherrill <joel.sherrill@OARcorp.com>1999-06-14 16:51:13 +0000
commitba46ffa6169c0927c19d97816286b5ffaf2e9ab2 (patch)
tree2d71e9fa43bed5fe628a202df8710772b7ddb037 /c/src/lib/libbsp/powerpc/motorola_powerpc/bootloader/zlib.h
parentRegenerated. (diff)
downloadrtems-ba46ffa6169c0927c19d97816286b5ffaf2e9ab2.tar.bz2
This is a large patch from Eric Valette <valette@crf.canon.fr> that was
described in the message following this paragraph. This patch also includes a mcp750 BSP. From valette@crf.canon.fr Mon Jun 14 10:03:08 1999 Date: Tue, 18 May 1999 01:30:14 +0200 (CEST) From: VALETTE Eric <valette@crf.canon.fr> To: joel@oarcorp.com Cc: raguet@crf.canon.fr, rtems-snapshots@oarcorp.com, valette@crf.canon.fr Subject: Questions/Suggestion regarding RTEMS PowerPC code (long) Dear knowledgeable RTEMS powerpc users, As some of you may know, I'm currently finalizing a port of RTEMS on a MCP750 Motorola board. I have done most of it but have some questions to ask before submitting the port. In order to understand some of the changes I have made or would like to make, maybe it is worth describing the MCP750 Motorola board. the MCP750 is a COMPACT PCI powerpc board with : 1) a MPC750 233 MHz processor, 2) a raven bus bridge/PCI controller that implement an OPENPIC compliant interrupt controller, 3) a VIA 82C586 PCI/ISA bridge that offers a PC compliant IO for keyboard, serial line, IDE, and the well known PC 8259 cascaded PIC interrupt architecture model, 4) a DEC 21140 Ethernet controller, 5) the PPCBUG Motorola firmware in flash, 6) A DEC PCI bridge, This architecture is common to most Motorola 60x/7xx board except that : 1) on VME board, the DEC PCI bridge is replaced by a VME chipset, 2) the VIA 82C586 PCI/ISA bridge is replaced by another bridge that is almost fully compatible with the via bridge... So the port should be a rather close basis for many 60x/7xx motorola board... On this board, I already have ported Linux 2.2.3 and use it both as a development and target board. Now the questions/suggestions I have : 1) EXCEPTION CODE ------------------- As far as I know exceptions on PPC are handled like interrupts. I dislike this very much as : a) Except for the decrementer exception (and maybe some other on mpc8xx), exceptions are not recoverable and the handler just need to print the full context and go to the firmware or debugger... b) The interrupt switch is only necessary for the decrementer and external interrupt (at least on 6xx,7xx). c) The full context for exception is never saved and thus cannot be used by debugger... I do understand the most important for interrupts low level code is to save the minimal context enabling to call C code for performance reasons. On non recoverable exception on the other hand, the most important is to save the maximum information concerning proc status in order to analyze the reason of the fault. At least we will need this in order to implement the port of RGDB on PPC ==> I wrote an API for connecting raw exceptions (and thus raw interrupts) for mpc750. It should be valid for most powerpc processors... I hope to find a way to make this coexist with actual code layout. The code is actually located in lib/libcpu/powerpc/mpc750 and is thus optional (provided I write my own version of exec/score/cpu/powerpc/cpu.c ...) See remark about files/directory layout organization in 4) 2) Current Implementation of ISR low level code ----------------------------------------------- I do not understand why the MSR EE flags is cleared again in exec/score/cpu/powerpc/irq_stubs.S #if (PPC_USE_SPRG) mfmsr r5 mfspr r6, sprg2 #else lwz r6,msr_initial(r11) lis r5,~PPC_MSR_DISABLE_MASK@ha ori r5,r5,~PPC_MSR_DISABLE_MASK@l and r6,r6,r5 mfmsr r5 #endif Reading the doc, when a decrementer interrupt or an external interrupt is active, the MSR EE flag is already cleared. BTW if exception/interrupt could occur, it would trash SRR0 and SRR1. In fact the code may be useful to set MSR[RI] that re-enables exception processing. BTW I will need to set other value in MSR to handle interrupts : a) I want the MSR[IR] and MSR[DR] to be set for performance reasons and also because I need DBAT support to have access to PCI memory space as the interrupt controller is in the PCI space. Reading the code, I see others have the same kind of request : /* SCE 980217 * * We need address translation ON when we call our ISR routine mtmsr r5 */ This is just another prof that even the lowest level IRQ code is fundamentally board dependent and not simply processor dependent especially when the processor use external interrupt controller because it has a single interrupt request line... Note that if you look at the PPC code high level interrupt handling code, as the "set_vector" routine that really connects the interrupt is in the BSP/startup/genpvec.c, the fact that IRQ handling is BSP specific is DE-FACTO acknowledged. I know I have already expressed this and understand that this would require some heavy change in the code but believe me you will reach a point where you will not be able to find a compatible while optimum implementation for low level interrupt handling code...) In my case this is already true... So please consider removing low level IRQ handling from exec/score/cpu/* and only let there exception handling code... Exceptions are usually only processor dependent and do not depend on external hardware mechanism to be masked or acknowledged or re-enabled (there are probably exception but ...) I have already done this for pc386 bsp but need to make it again. This time I will even propose an API. 3) R2/R13 manipulation for EABI implementation ---------------------------------------------- I do not understand the handling of r2 and r13 in the EABI case. The specification for r2 says pointer to sdata2, sbss2 section => constant. However I do not see -ffixed-r2 passed to any compilation system in make/custom/* (for info linux does this on PPC). So either this is a default compiler option when choosing powerpc-rtems and thus we do not need to do anything with this register as all the code is compiled with this compiler and linked together OR this register may be used by rtems code and then we do not need any special initialization or handling. The specification for r13 says pointer to the small data area. r13 argumentation is the same except that as far as I know the usage of the small data area requires specific compiler support so that access to variables is compiled via loading the LSB in a register and then using r13 to get full address... It is like a small memory model and it was present in IBM C compilers. => I propose to suppress any specific code for r2 and r13 in the EABI case. 4) Code layout organization (yes again :-)) ------------------------------------------- I think there are a number of design flaws in the way the code is for ppc organized and I will try to point them out. I have been beaten by this again on this new port, and was beaten last year while modifying code for pc386. a) exec/score/cpu/* vs lib/libcpu/cpu/*. I think that too many things are put in exec/score/cpu that have nothing to do with RTEMS internals but are rather related to CPU feature. This include at least : a) registers access routine (e.g GET_MSR_Value), b) interrupt masking/unmasking routines, c) cache_mngt_routine, d) mmu_mngt_routine, e) Routines to connect the raw_exception, raw_interrupt handler, b) lib/libcpu/cpu/powerpc/* With a processor family as exuberant as the powerpc family, and their well known subtle differences (604 vs 750) or unfortunately majors (8xx vs 60x) the directory structure is fine (except maybe the names that are not homogeneous) powerpc ppc421 mpc821 ... I only needed to add mpc750. But the fact that libcpu.a was not produced was a pain and the fact that this organization may duplicates code is also problematic. So, except if the support of automake provides a better solution I would like to propose something like this : powerpc mpc421 mpc821 ... mpc750 shared wrapup with the following rules : a) "shared" would act as a source container for sources that may be shared among processors. Needed files would be compiled inside the processor specific directory using the vpath Makefile mechanism. "shared" may also contain compilation code for routine that are really shared and not worth to inline... (did not found many things so far as registers access routine ARE WORTH INLINING)... In the case something is compiled there, it should create libcpushared.a b) layout under processor specific directory is free provided that 1)the result of the compilation process exports : libcpu/powerpc/"PROC"/*.h in $(PROJECT_INCLUDE)/libcpu 2) each processor specific directory creates a library called libcpuspecific.a Note that this organization enables to have a file that is nearly the same than in shared but that must differ because of processor differences... c) "wrapup" should create libcpu.a using libcpushared.a libcpuspecific.a and export it $(PROJECT_INCLUDE)/libcpu The only thing I have no ideal solution is the way to put shared definitions in "shared" and only processor specific definition in "proc". To give a concrete example, most MSR bit definition are shared among PPC processors and only some differs. if we create a single msr.h in shared it will have ifdef. If in msr.h we include libcpu/msr_c.h we will need to have it in each prowerpc specific directory (even empty). Opinions are welcomed ... Note that a similar mechanism exist in libbsp/i386 that also contains a shared directory that is used by several bsp like pc386 and i386ex and a similar wrapup mechanism... NB: I have done this for mpc750 and other processors could just use similar Makefiles... c) The exec/score/cpu/powerpc directory layout. I think the directory layout should be the same than the libcpu/powerpc. As it is not, there are a lot of ifdefs inside the code... And of course low level interrupt handling code should be removed... Besides that I do not understand why 1) things are compiled in the wrap directory, 2) some includes are moved to rtems/score, I think the "preinstall" mechanism enables to put everything in the current directory (or better in a per processor directory), 5) Interrupt handling API ------------------------- Again :-). But I think that using all the features the PIC offers is a MUST for RT system. I already explained in the prologue of this (long and probably boring) mail that the MCP750 boards offers an OPENPIC compliant architecture and that the VIA 82586 PCI/ISA bridge offers a PC compatible IO and PIC mapping. Here is a logical view of the RAVEN/VIA 82586 interrupt mapping : --------- 0 ------ | OPEN | <-----|8259| | PIC | | | 2 ------ |(RAVEN)| | | <-----|8259| | | | | | | 11 | | | | | | <---- | | | | | | | | | | | | --------- ------ | | ^ ------ | VIA PCI/ISA bridge | x -------- PCI interrupts OPENPIC offers interrupt priorities among PCI interrupts and interrupt selective masking. The 8259 offers the same kind of feature. With actual powerpc interrupt code : 1) there is no way to specify priorities among interrupts handler. This is REALLY a bad thing. For me it is as importnat as having priorities for threads... 2) for my implementation, each ISR should contain the code that acknowledge the RAVEN and 8259 cascade, modify interrupt mask on both chips, and reenable interrupt at processor level, ..., restore then on interrupt return,.... This code is actually similar to code located in some genpvec.c powerpc files, 3) I must update _ISR_Nesting_level because irq.inl use it... 4) the libchip code connects the ISR via set_vector but the libchip handler code does not contain any code to manipulate external interrupt controller hardware in order to acknoledge the interrupt or re-enable them (except for the target hardware of course) So this code is broken unless set_vector adds an additionnal prologue/epilogue before calling/returning from in order to acknoledge/mask the raven and the 8259 PICS... => Anyway already EACH BSP MUST REWRITE PART OF INTERRUPT HANDLING CODE TO CORRECTLY IMPLEMENT SET_VECTOR. I would rather offer an API similar to the one provided in libbsp/i386/shared/irq/irq.h so that : 1) Once the driver supplied methods is called the only things the ISR has to do is to worry about the external hardware that triggered the interrupt. Everything on openpic/VIA/processor would have been done by the low levels (same things as set-vector) 2) The caller will need to supply the on/off/isOn routine that are fundamental to correctly implements debuggers/performance monitoring is a portable way 3) A globally configurable interrupt priorities mechanism... I have nothing against providing a compatible set_vector just to make libchip happy but as I have already explained in other mails (months ago), I really think that the ISR connection should be handled by the BSP and that no code containing irq connection should exist the rtems generic layers... Thus I really dislike libchip on this aspect because in a long term it will force to adopt the less reach API for interrupt handling that exists (set_vector). Additional note : I think the _ISR_Is_in_progress() inline routine should be : 1) Put in a processor specific section, 2) Should not rely on a global variable, As : a) on symmetric MP, there is one interrupt level per CPU, b) On processor that have an ISP (e,g 68040), this variable is useless (MSR bit testing could be used) c) On PPC, instead of using the address of the variable via __CPU_IRQ_info.Nest_level a dedicated SPR could be used. NOTE: most of this is also true for _Thread_Dispatch_disable_level END NOTE -------- Please do not take what I said in the mail as a criticism for anyone who submitted ppc code. Any code present helped me a lot understanding PPC behavior. I just wanted by this mail to : 1) try to better understand the actual code, 2) propose concrete ways of enhancing current code by providing an alternative implementation for MCP750. I will make my best effort to try to brake nothing but this is actually hard due to the file layout organisation. 3) make understandable some changes I will probably make if joel let me do them :-) Any comments/objections are welcomed as usual. -- __ / ` Eric Valette /-- __ o _. Canon CRF (___, / (_(_(__ Rue de la touche lambert 35517 Cesson-Sevigne Cedex FRANCE Tel: +33 (0)2 99 87 68 91 Fax: +33 (0)2 99 84 11 30 E-mail: valette@crf.canon.fr
Diffstat (limited to 'c/src/lib/libbsp/powerpc/motorola_powerpc/bootloader/zlib.h')
-rw-r--r--c/src/lib/libbsp/powerpc/motorola_powerpc/bootloader/zlib.h438
1 files changed, 438 insertions, 0 deletions
diff --git a/c/src/lib/libbsp/powerpc/motorola_powerpc/bootloader/zlib.h b/c/src/lib/libbsp/powerpc/motorola_powerpc/bootloader/zlib.h
new file mode 100644
index 0000000000..31485f4632
--- /dev/null
+++ b/c/src/lib/libbsp/powerpc/motorola_powerpc/bootloader/zlib.h
@@ -0,0 +1,438 @@
+/* $Id$ */
+
+/*
+ * This file is derived from zlib.h and zconf.h from the zlib-0.95
+ * distribution by Jean-loup Gailly and Mark Adler, with some additions
+ * by Paul Mackerras to aid in implementing Deflate compression and
+ * decompression for PPP packets.
+ */
+
+/*
+ * ==FILEVERSION 960122==
+ *
+ * This marker is used by the Linux installation script to determine
+ * whether an up-to-date version of this file is already installed.
+ */
+
+/* zlib.h -- interface of the 'zlib' general purpose compression library
+ version 0.95, Aug 16th, 1995.
+
+ Copyright (C) 1995 Jean-loup Gailly and Mark Adler
+
+ This software is provided 'as-is', without any express or implied
+ warranty. In no event will the authors be held liable for any damages
+ arising from the use of this software.
+
+ Permission is granted to anyone to use this software for any purpose,
+ including commercial applications, and to alter it and redistribute it
+ freely, subject to the following restrictions:
+
+ 1. The origin of this software must not be misrepresented; you must not
+ claim that you wrote the original software. If you use this software
+ in a product, an acknowledgment in the product documentation would be
+ appreciated but is not required.
+ 2. Altered source versions must be plainly marked as such, and must not be
+ misrepresented as being the original software.
+ 3. This notice may not be removed or altered from any source distribution.
+
+ Jean-loup Gailly Mark Adler
+ gzip@prep.ai.mit.edu madler@alumni.caltech.edu
+ */
+
+#ifndef _ZLIB_H
+#define _ZLIB_H
+
+#define local
+#ifdef DEBUG_ZLIB
+#include <bsp/consoleIo.h>
+#define fprintf printk
+#endif
+
+/* #include "zconf.h" */ /* included directly here */
+
+/* zconf.h -- configuration of the zlib compression library
+ * Copyright (C) 1995 Jean-loup Gailly.
+ * For conditions of distribution and use, see copyright notice in zlib.h
+ */
+
+/* From: zconf.h,v 1.12 1995/05/03 17:27:12 jloup Exp */
+
+/*
+ The library does not install any signal handler. It is recommended to
+ add at least a handler for SIGSEGV when decompressing; the library checks
+ the consistency of the input data whenever possible but may go nuts
+ for some forms of corrupted input.
+ */
+
+/*
+ * Compile with -DMAXSEG_64K if the alloc function cannot allocate more
+ * than 64k bytes at a time (needed on systems with 16-bit int).
+ * Compile with -DUNALIGNED_OK if it is OK to access shorts or ints
+ * at addresses which are not a multiple of their size.
+ * Under DOS, -DFAR=far or -DFAR=__far may be needed.
+ */
+
+#ifndef STDC
+# if defined(MSDOS) || defined(__STDC__) || defined(__cplusplus)
+# define STDC
+# endif
+#endif
+
+#ifdef __MWERKS__ /* Metrowerks CodeWarrior declares fileno() in unix.h */
+# include <unix.h>
+#endif
+
+/* Maximum value for memLevel in deflateInit2 */
+#ifndef MAX_MEM_LEVEL
+# ifdef MAXSEG_64K
+# define MAX_MEM_LEVEL 8
+# else
+# define MAX_MEM_LEVEL 9
+# endif
+#endif
+
+#ifndef FAR
+# define FAR
+#endif
+
+/* Maximum value for windowBits in deflateInit2 and inflateInit2 */
+#ifndef MAX_WBITS
+# define MAX_WBITS 15 /* 32K LZ77 window */
+#endif
+
+/* The memory requirements for deflate are (in bytes):
+ 1 << (windowBits+2) + 1 << (memLevel+9)
+ that is: 128K for windowBits=15 + 128K for memLevel = 8 (default values)
+ plus a few kilobytes for small objects. For example, if you want to reduce
+ the default memory requirements from 256K to 128K, compile with
+ make CFLAGS="-O -DMAX_WBITS=14 -DMAX_MEM_LEVEL=7"
+ Of course this will generally degrade compression (there's no free lunch).
+
+ The memory requirements for inflate are (in bytes) 1 << windowBits
+ that is, 32K for windowBits=15 (default value) plus a few kilobytes
+ for small objects.
+*/
+
+ /* Type declarations */
+
+#ifndef OF /* function prototypes */
+# ifdef STDC
+# define OF(args) args
+# else
+# define OF(args) ()
+# endif
+#endif
+
+typedef unsigned char Byte; /* 8 bits */
+typedef unsigned int uInt; /* 16 bits or more */
+typedef unsigned long uLong; /* 32 bits or more */
+
+typedef Byte FAR Bytef;
+typedef char FAR charf;
+typedef int FAR intf;
+typedef uInt FAR uIntf;
+typedef uLong FAR uLongf;
+
+#ifdef STDC
+ typedef void FAR *voidpf;
+ typedef void *voidp;
+#else
+ typedef Byte FAR *voidpf;
+ typedef Byte *voidp;
+#endif
+
+/* end of original zconf.h */
+
+#define ZLIB_VERSION "0.95P"
+
+/*
+ The 'zlib' compression library provides in-memory compression and
+ decompression functions, including integrity checks of the uncompressed
+ data. This version of the library supports only one compression method
+ (deflation) but other algorithms may be added later and will have the same
+ stream interface.
+
+ For compression the application must provide the output buffer and
+ may optionally provide the input buffer for optimization. For decompression,
+ the application must provide the input buffer and may optionally provide
+ the output buffer for optimization.
+
+ Compression can be done in a single step if the buffers are large
+ enough (for example if an input file is mmap'ed), or can be done by
+ repeated calls of the compression function. In the latter case, the
+ application must provide more input and/or consume the output
+ (providing more output space) before each call.
+*/
+
+typedef voidpf (*alloc_func) OF((voidpf opaque, uInt items, uInt size));
+typedef void (*free_func) OF((voidpf opaque, voidpf address, uInt nbytes));
+
+struct internal_state;
+
+typedef struct z_stream_s {
+ Bytef *next_in; /* next input byte */
+ uInt avail_in; /* number of bytes available at next_in */
+ uLong total_in; /* total nb of input bytes read so far */
+
+ Bytef *next_out; /* next output byte should be put there */
+ uInt avail_out; /* remaining free space at next_out */
+ uLong total_out; /* total nb of bytes output so far */
+
+ char *msg; /* last error message, NULL if no error */
+ struct internal_state FAR *state; /* not visible by applications */
+
+ alloc_func zalloc; /* used to allocate the internal state */
+ free_func zfree; /* used to free the internal state */
+ voidp opaque; /* private data object passed to zalloc and zfree */
+
+ Byte data_type; /* best guess about the data type: ascii or binary */
+
+} z_stream;
+
+/*
+ The application must update next_in and avail_in when avail_in has
+ dropped to zero. It must update next_out and avail_out when avail_out
+ has dropped to zero. The application must initialize zalloc, zfree and
+ opaque before calling the init function. All other fields are set by the
+ compression library and must not be updated by the application.
+
+ The opaque value provided by the application will be passed as the first
+ parameter for calls of zalloc and zfree. This can be useful for custom
+ memory management. The compression library attaches no meaning to the
+ opaque value.
+
+ zalloc must return Z_NULL if there is not enough memory for the object.
+ On 16-bit systems, the functions zalloc and zfree must be able to allocate
+ exactly 65536 bytes, but will not be required to allocate more than this
+ if the symbol MAXSEG_64K is defined (see zconf.h). WARNING: On MSDOS,
+ pointers returned by zalloc for objects of exactly 65536 bytes *must*
+ have their offset normalized to zero. The default allocation function
+ provided by this library ensures this (see zutil.c). To reduce memory
+ requirements and avoid any allocation of 64K objects, at the expense of
+ compression ratio, compile the library with -DMAX_WBITS=14 (see zconf.h).
+
+ The fields total_in and total_out can be used for statistics or
+ progress reports. After compression, total_in holds the total size of
+ the uncompressed data and may be saved for use in the decompressor
+ (particularly if the decompressor wants to decompress everything in
+ a single step).
+*/
+
+ /* constants */
+
+#define Z_NO_FLUSH 0
+#define Z_PARTIAL_FLUSH 1
+#define Z_FULL_FLUSH 2
+#define Z_SYNC_FLUSH 3 /* experimental: partial_flush + byte align */
+#define Z_FINISH 4
+#define Z_PACKET_FLUSH 5
+/* See deflate() below for the usage of these constants */
+
+#define Z_OK 0
+#define Z_STREAM_END 1
+#define Z_ERRNO (-1)
+#define Z_STREAM_ERROR (-2)
+#define Z_DATA_ERROR (-3)
+#define Z_MEM_ERROR (-4)
+#define Z_BUF_ERROR (-5)
+/* error codes for the compression/decompression functions */
+
+#define Z_BEST_SPEED 1
+#define Z_BEST_COMPRESSION 9
+#define Z_DEFAULT_COMPRESSION (-1)
+/* compression levels */
+
+#define Z_FILTERED 1
+#define Z_HUFFMAN_ONLY 2
+#define Z_DEFAULT_STRATEGY 0
+
+#define Z_BINARY 0
+#define Z_ASCII 1
+#define Z_UNKNOWN 2
+/* Used to set the data_type field */
+
+#define Z_NULL 0 /* for initializing zalloc, zfree, opaque */
+
+extern char *zlib_version;
+/* The application can compare zlib_version and ZLIB_VERSION for consistency.
+ If the first character differs, the library code actually used is
+ not compatible with the zlib.h header file used by the application.
+ */
+
+ /* basic functions */
+
+extern int inflateInit OF((z_stream *strm));
+/*
+ Initializes the internal stream state for decompression. The fields
+ zalloc and zfree must be initialized before by the caller. If zalloc and
+ zfree are set to Z_NULL, inflateInit updates them to use default allocation
+ functions.
+
+ inflateInit returns Z_OK if success, Z_MEM_ERROR if there was not
+ enough memory. msg is set to null if there is no error message.
+ inflateInit does not perform any decompression: this will be done by
+ inflate().
+*/
+
+
+extern int inflate OF((z_stream *strm, int flush));
+/*
+ Performs one or both of the following actions:
+
+ - Decompress more input starting at next_in and update next_in and avail_in
+ accordingly. If not all input can be processed (because there is not
+ enough room in the output buffer), next_in is updated and processing
+ will resume at this point for the next call of inflate().
+
+ - Provide more output starting at next_out and update next_out and avail_out
+ accordingly. inflate() always provides as much output as possible
+ (until there is no more input data or no more space in the output buffer).
+
+ Before the call of inflate(), the application should ensure that at least
+ one of the actions is possible, by providing more input and/or consuming
+ more output, and updating the next_* and avail_* values accordingly.
+ The application can consume the uncompressed output when it wants, for
+ example when the output buffer is full (avail_out == 0), or after each
+ call of inflate().
+
+ If the parameter flush is set to Z_PARTIAL_FLUSH or Z_PACKET_FLUSH,
+ inflate flushes as much output as possible to the output buffer. The
+ flushing behavior of inflate is not specified for values of the flush
+ parameter other than Z_PARTIAL_FLUSH, Z_PACKET_FLUSH or Z_FINISH, but the
+ current implementation actually flushes as much output as possible
+ anyway. For Z_PACKET_FLUSH, inflate checks that once all the input data
+ has been consumed, it is expecting to see the length field of a stored
+ block; if not, it returns Z_DATA_ERROR.
+
+ inflate() should normally be called until it returns Z_STREAM_END or an
+ error. However if all decompression is to be performed in a single step
+ (a single call of inflate), the parameter flush should be set to
+ Z_FINISH. In this case all pending input is processed and all pending
+ output is flushed; avail_out must be large enough to hold all the
+ uncompressed data. (The size of the uncompressed data may have been saved
+ by the compressor for this purpose.) The next operation on this stream must
+ be inflateEnd to deallocate the decompression state. The use of Z_FINISH
+ is never required, but can be used to inform inflate that a faster routine
+ may be used for the single inflate() call.
+
+ inflate() returns Z_OK if some progress has been made (more input
+ processed or more output produced), Z_STREAM_END if the end of the
+ compressed data has been reached and all uncompressed output has been
+ produced, Z_DATA_ERROR if the input data was corrupted, Z_STREAM_ERROR if
+ the stream structure was inconsistent (for example if next_in or next_out
+ was NULL), Z_MEM_ERROR if there was not enough memory, Z_BUF_ERROR if no
+ progress is possible or if there was not enough room in the output buffer
+ when Z_FINISH is used. In the Z_DATA_ERROR case, the application may then
+ call inflateSync to look for a good compression block. */
+
+
+extern int inflateEnd OF((z_stream *strm));
+/*
+ All dynamically allocated data structures for this stream are freed.
+ This function discards any unprocessed input and does not flush any
+ pending output.
+
+ inflateEnd returns Z_OK if success, Z_STREAM_ERROR if the stream state
+ was inconsistent. In the error case, msg may be set but then points to a
+ static string (which must not be deallocated).
+*/
+
+ /* advanced functions */
+
+extern int inflateInit2 OF((z_stream *strm,
+ int windowBits));
+/*
+ This is another version of inflateInit with more compression options. The
+ fields next_out, zalloc and zfree must be initialized before by the caller.
+
+ The windowBits parameter is the base two logarithm of the maximum window
+ size (the size of the history buffer). It should be in the range 8..15 for
+ this version of the library (the value 16 will be allowed soon). The
+ default value is 15 if inflateInit is used instead. If a compressed stream
+ with a larger window size is given as input, inflate() will return with
+ the error code Z_DATA_ERROR instead of trying to allocate a larger window.
+
+ If next_out is not null, the library will use this buffer for the history
+ buffer; the buffer must either be large enough to hold the entire output
+ data, or have at least 1<<windowBits bytes. If next_out is null, the
+ library will allocate its own buffer (and leave next_out null). next_in
+ need not be provided here but must be provided by the application for the
+ next call of inflate().
+
+ If the history buffer is provided by the application, next_out must
+ never be changed by the application since the decompressor maintains
+ history information inside this buffer from call to call; the application
+ can only reset next_out to the beginning of the history buffer when
+ avail_out is zero and all output has been consumed.
+
+ inflateInit2 returns Z_OK if success, Z_MEM_ERROR if there was
+ not enough memory, Z_STREAM_ERROR if a parameter is invalid (such as
+ windowBits < 8). msg is set to null if there is no error message.
+ inflateInit2 does not perform any decompression: this will be done by
+ inflate().
+*/
+
+extern int inflateSync OF((z_stream *strm));
+/*
+ Skips invalid compressed data until the special marker (see deflate()
+ above) can be found, or until all available input is skipped. No output
+ is provided.
+
+ inflateSync returns Z_OK if the special marker has been found, Z_BUF_ERROR
+ if no more input was provided, Z_DATA_ERROR if no marker has been found,
+ or Z_STREAM_ERROR if the stream structure was inconsistent. In the success
+ case, the application may save the current current value of total_in which
+ indicates where valid compressed data was found. In the error case, the
+ application may repeatedly call inflateSync, providing more input each time,
+ until success or end of the input data.
+*/
+
+extern int inflateReset OF((z_stream *strm));
+/*
+ This function is equivalent to inflateEnd followed by inflateInit,
+ but does not free and reallocate all the internal decompression state.
+ The stream will keep attributes that may have been set by inflateInit2.
+
+ inflateReset returns Z_OK if success, or Z_STREAM_ERROR if the source
+ stream state was inconsistent (such as zalloc or state being NULL).
+*/
+
+extern int inflateIncomp OF((z_stream *strm));
+/*
+ This function adds the data at next_in (avail_in bytes) to the output
+ history without performing any output. There must be no pending output,
+ and the decompressor must be expecting to see the start of a block.
+ Calling this function is equivalent to decompressing a stored block
+ containing the data at next_in (except that the data is not output).
+*/
+
+ /* checksum functions */
+
+/*
+ This function is not related to compression but is exported
+ anyway because it might be useful in applications using the
+ compression library.
+*/
+
+extern uLong adler32 OF((uLong adler, Bytef *buf, uInt len));
+
+/*
+ Update a running Adler-32 checksum with the bytes buf[0..len-1] and
+ return the updated checksum. If buf is NULL, this function returns
+ the required initial value for the checksum.
+ An Adler-32 checksum is almost as reliable as a CRC32 but can be computed
+ much faster. Usage example:
+
+ uLong adler = adler32(0L, Z_NULL, 0);
+
+ while (read_buffer(buffer, length) != EOF) {
+ adler = adler32(adler, buffer, length);
+ }
+ if (adler != original_adler) error();
+*/
+
+#ifndef _Z_UTIL_H
+ struct internal_state {int dummy;}; /* hack for buggy compilers */
+#endif
+
+#endif /* _ZLIB_H */