summaryrefslogtreecommitdiffstats
path: root/c/src/lib/libbsp/powerpc/mcp750/bootloader/em86real.S
diff options
context:
space:
mode:
authorJoel Sherrill <joel.sherrill@OARcorp.com>1999-06-14 16:51:13 +0000
committerJoel Sherrill <joel.sherrill@OARcorp.com>1999-06-14 16:51:13 +0000
commitba46ffa6169c0927c19d97816286b5ffaf2e9ab2 (patch)
tree2d71e9fa43bed5fe628a202df8710772b7ddb037 /c/src/lib/libbsp/powerpc/mcp750/bootloader/em86real.S
parentRegenerated. (diff)
downloadrtems-ba46ffa6169c0927c19d97816286b5ffaf2e9ab2.tar.bz2
This is a large patch from Eric Valette <valette@crf.canon.fr> that was
described in the message following this paragraph. This patch also includes a mcp750 BSP. From valette@crf.canon.fr Mon Jun 14 10:03:08 1999 Date: Tue, 18 May 1999 01:30:14 +0200 (CEST) From: VALETTE Eric <valette@crf.canon.fr> To: joel@oarcorp.com Cc: raguet@crf.canon.fr, rtems-snapshots@oarcorp.com, valette@crf.canon.fr Subject: Questions/Suggestion regarding RTEMS PowerPC code (long) Dear knowledgeable RTEMS powerpc users, As some of you may know, I'm currently finalizing a port of RTEMS on a MCP750 Motorola board. I have done most of it but have some questions to ask before submitting the port. In order to understand some of the changes I have made or would like to make, maybe it is worth describing the MCP750 Motorola board. the MCP750 is a COMPACT PCI powerpc board with : 1) a MPC750 233 MHz processor, 2) a raven bus bridge/PCI controller that implement an OPENPIC compliant interrupt controller, 3) a VIA 82C586 PCI/ISA bridge that offers a PC compliant IO for keyboard, serial line, IDE, and the well known PC 8259 cascaded PIC interrupt architecture model, 4) a DEC 21140 Ethernet controller, 5) the PPCBUG Motorola firmware in flash, 6) A DEC PCI bridge, This architecture is common to most Motorola 60x/7xx board except that : 1) on VME board, the DEC PCI bridge is replaced by a VME chipset, 2) the VIA 82C586 PCI/ISA bridge is replaced by another bridge that is almost fully compatible with the via bridge... So the port should be a rather close basis for many 60x/7xx motorola board... On this board, I already have ported Linux 2.2.3 and use it both as a development and target board. Now the questions/suggestions I have : 1) EXCEPTION CODE ------------------- As far as I know exceptions on PPC are handled like interrupts. I dislike this very much as : a) Except for the decrementer exception (and maybe some other on mpc8xx), exceptions are not recoverable and the handler just need to print the full context and go to the firmware or debugger... b) The interrupt switch is only necessary for the decrementer and external interrupt (at least on 6xx,7xx). c) The full context for exception is never saved and thus cannot be used by debugger... I do understand the most important for interrupts low level code is to save the minimal context enabling to call C code for performance reasons. On non recoverable exception on the other hand, the most important is to save the maximum information concerning proc status in order to analyze the reason of the fault. At least we will need this in order to implement the port of RGDB on PPC ==> I wrote an API for connecting raw exceptions (and thus raw interrupts) for mpc750. It should be valid for most powerpc processors... I hope to find a way to make this coexist with actual code layout. The code is actually located in lib/libcpu/powerpc/mpc750 and is thus optional (provided I write my own version of exec/score/cpu/powerpc/cpu.c ...) See remark about files/directory layout organization in 4) 2) Current Implementation of ISR low level code ----------------------------------------------- I do not understand why the MSR EE flags is cleared again in exec/score/cpu/powerpc/irq_stubs.S #if (PPC_USE_SPRG) mfmsr r5 mfspr r6, sprg2 #else lwz r6,msr_initial(r11) lis r5,~PPC_MSR_DISABLE_MASK@ha ori r5,r5,~PPC_MSR_DISABLE_MASK@l and r6,r6,r5 mfmsr r5 #endif Reading the doc, when a decrementer interrupt or an external interrupt is active, the MSR EE flag is already cleared. BTW if exception/interrupt could occur, it would trash SRR0 and SRR1. In fact the code may be useful to set MSR[RI] that re-enables exception processing. BTW I will need to set other value in MSR to handle interrupts : a) I want the MSR[IR] and MSR[DR] to be set for performance reasons and also because I need DBAT support to have access to PCI memory space as the interrupt controller is in the PCI space. Reading the code, I see others have the same kind of request : /* SCE 980217 * * We need address translation ON when we call our ISR routine mtmsr r5 */ This is just another prof that even the lowest level IRQ code is fundamentally board dependent and not simply processor dependent especially when the processor use external interrupt controller because it has a single interrupt request line... Note that if you look at the PPC code high level interrupt handling code, as the "set_vector" routine that really connects the interrupt is in the BSP/startup/genpvec.c, the fact that IRQ handling is BSP specific is DE-FACTO acknowledged. I know I have already expressed this and understand that this would require some heavy change in the code but believe me you will reach a point where you will not be able to find a compatible while optimum implementation for low level interrupt handling code...) In my case this is already true... So please consider removing low level IRQ handling from exec/score/cpu/* and only let there exception handling code... Exceptions are usually only processor dependent and do not depend on external hardware mechanism to be masked or acknowledged or re-enabled (there are probably exception but ...) I have already done this for pc386 bsp but need to make it again. This time I will even propose an API. 3) R2/R13 manipulation for EABI implementation ---------------------------------------------- I do not understand the handling of r2 and r13 in the EABI case. The specification for r2 says pointer to sdata2, sbss2 section => constant. However I do not see -ffixed-r2 passed to any compilation system in make/custom/* (for info linux does this on PPC). So either this is a default compiler option when choosing powerpc-rtems and thus we do not need to do anything with this register as all the code is compiled with this compiler and linked together OR this register may be used by rtems code and then we do not need any special initialization or handling. The specification for r13 says pointer to the small data area. r13 argumentation is the same except that as far as I know the usage of the small data area requires specific compiler support so that access to variables is compiled via loading the LSB in a register and then using r13 to get full address... It is like a small memory model and it was present in IBM C compilers. => I propose to suppress any specific code for r2 and r13 in the EABI case. 4) Code layout organization (yes again :-)) ------------------------------------------- I think there are a number of design flaws in the way the code is for ppc organized and I will try to point them out. I have been beaten by this again on this new port, and was beaten last year while modifying code for pc386. a) exec/score/cpu/* vs lib/libcpu/cpu/*. I think that too many things are put in exec/score/cpu that have nothing to do with RTEMS internals but are rather related to CPU feature. This include at least : a) registers access routine (e.g GET_MSR_Value), b) interrupt masking/unmasking routines, c) cache_mngt_routine, d) mmu_mngt_routine, e) Routines to connect the raw_exception, raw_interrupt handler, b) lib/libcpu/cpu/powerpc/* With a processor family as exuberant as the powerpc family, and their well known subtle differences (604 vs 750) or unfortunately majors (8xx vs 60x) the directory structure is fine (except maybe the names that are not homogeneous) powerpc ppc421 mpc821 ... I only needed to add mpc750. But the fact that libcpu.a was not produced was a pain and the fact that this organization may duplicates code is also problematic. So, except if the support of automake provides a better solution I would like to propose something like this : powerpc mpc421 mpc821 ... mpc750 shared wrapup with the following rules : a) "shared" would act as a source container for sources that may be shared among processors. Needed files would be compiled inside the processor specific directory using the vpath Makefile mechanism. "shared" may also contain compilation code for routine that are really shared and not worth to inline... (did not found many things so far as registers access routine ARE WORTH INLINING)... In the case something is compiled there, it should create libcpushared.a b) layout under processor specific directory is free provided that 1)the result of the compilation process exports : libcpu/powerpc/"PROC"/*.h in $(PROJECT_INCLUDE)/libcpu 2) each processor specific directory creates a library called libcpuspecific.a Note that this organization enables to have a file that is nearly the same than in shared but that must differ because of processor differences... c) "wrapup" should create libcpu.a using libcpushared.a libcpuspecific.a and export it $(PROJECT_INCLUDE)/libcpu The only thing I have no ideal solution is the way to put shared definitions in "shared" and only processor specific definition in "proc". To give a concrete example, most MSR bit definition are shared among PPC processors and only some differs. if we create a single msr.h in shared it will have ifdef. If in msr.h we include libcpu/msr_c.h we will need to have it in each prowerpc specific directory (even empty). Opinions are welcomed ... Note that a similar mechanism exist in libbsp/i386 that also contains a shared directory that is used by several bsp like pc386 and i386ex and a similar wrapup mechanism... NB: I have done this for mpc750 and other processors could just use similar Makefiles... c) The exec/score/cpu/powerpc directory layout. I think the directory layout should be the same than the libcpu/powerpc. As it is not, there are a lot of ifdefs inside the code... And of course low level interrupt handling code should be removed... Besides that I do not understand why 1) things are compiled in the wrap directory, 2) some includes are moved to rtems/score, I think the "preinstall" mechanism enables to put everything in the current directory (or better in a per processor directory), 5) Interrupt handling API ------------------------- Again :-). But I think that using all the features the PIC offers is a MUST for RT system. I already explained in the prologue of this (long and probably boring) mail that the MCP750 boards offers an OPENPIC compliant architecture and that the VIA 82586 PCI/ISA bridge offers a PC compatible IO and PIC mapping. Here is a logical view of the RAVEN/VIA 82586 interrupt mapping : --------- 0 ------ | OPEN | <-----|8259| | PIC | | | 2 ------ |(RAVEN)| | | <-----|8259| | | | | | | 11 | | | | | | <---- | | | | | | | | | | | | --------- ------ | | ^ ------ | VIA PCI/ISA bridge | x -------- PCI interrupts OPENPIC offers interrupt priorities among PCI interrupts and interrupt selective masking. The 8259 offers the same kind of feature. With actual powerpc interrupt code : 1) there is no way to specify priorities among interrupts handler. This is REALLY a bad thing. For me it is as importnat as having priorities for threads... 2) for my implementation, each ISR should contain the code that acknowledge the RAVEN and 8259 cascade, modify interrupt mask on both chips, and reenable interrupt at processor level, ..., restore then on interrupt return,.... This code is actually similar to code located in some genpvec.c powerpc files, 3) I must update _ISR_Nesting_level because irq.inl use it... 4) the libchip code connects the ISR via set_vector but the libchip handler code does not contain any code to manipulate external interrupt controller hardware in order to acknoledge the interrupt or re-enable them (except for the target hardware of course) So this code is broken unless set_vector adds an additionnal prologue/epilogue before calling/returning from in order to acknoledge/mask the raven and the 8259 PICS... => Anyway already EACH BSP MUST REWRITE PART OF INTERRUPT HANDLING CODE TO CORRECTLY IMPLEMENT SET_VECTOR. I would rather offer an API similar to the one provided in libbsp/i386/shared/irq/irq.h so that : 1) Once the driver supplied methods is called the only things the ISR has to do is to worry about the external hardware that triggered the interrupt. Everything on openpic/VIA/processor would have been done by the low levels (same things as set-vector) 2) The caller will need to supply the on/off/isOn routine that are fundamental to correctly implements debuggers/performance monitoring is a portable way 3) A globally configurable interrupt priorities mechanism... I have nothing against providing a compatible set_vector just to make libchip happy but as I have already explained in other mails (months ago), I really think that the ISR connection should be handled by the BSP and that no code containing irq connection should exist the rtems generic layers... Thus I really dislike libchip on this aspect because in a long term it will force to adopt the less reach API for interrupt handling that exists (set_vector). Additional note : I think the _ISR_Is_in_progress() inline routine should be : 1) Put in a processor specific section, 2) Should not rely on a global variable, As : a) on symmetric MP, there is one interrupt level per CPU, b) On processor that have an ISP (e,g 68040), this variable is useless (MSR bit testing could be used) c) On PPC, instead of using the address of the variable via __CPU_IRQ_info.Nest_level a dedicated SPR could be used. NOTE: most of this is also true for _Thread_Dispatch_disable_level END NOTE -------- Please do not take what I said in the mail as a criticism for anyone who submitted ppc code. Any code present helped me a lot understanding PPC behavior. I just wanted by this mail to : 1) try to better understand the actual code, 2) propose concrete ways of enhancing current code by providing an alternative implementation for MCP750. I will make my best effort to try to brake nothing but this is actually hard due to the file layout organisation. 3) make understandable some changes I will probably make if joel let me do them :-) Any comments/objections are welcomed as usual. -- __ / ` Eric Valette /-- __ o _. Canon CRF (___, / (_(_(__ Rue de la touche lambert 35517 Cesson-Sevigne Cedex FRANCE Tel: +33 (0)2 99 87 68 91 Fax: +33 (0)2 99 84 11 30 E-mail: valette@crf.canon.fr
Diffstat (limited to 'c/src/lib/libbsp/powerpc/mcp750/bootloader/em86real.S')
-rw-r--r--c/src/lib/libbsp/powerpc/mcp750/bootloader/em86real.S4554
1 files changed, 4554 insertions, 0 deletions
diff --git a/c/src/lib/libbsp/powerpc/mcp750/bootloader/em86real.S b/c/src/lib/libbsp/powerpc/mcp750/bootloader/em86real.S
new file mode 100644
index 0000000000..ac254055eb
--- /dev/null
+++ b/c/src/lib/libbsp/powerpc/mcp750/bootloader/em86real.S
@@ -0,0 +1,4554 @@
+/*
+ * arch/ppc/boot/em86real.S -- Small x86 emulator for video board setup
+ *
+ * Copyright (C) 1998 Gabriel Paubert, paubert@iram.es
+ *
+ * This file is subject to the terms and conditions of the GNU General Public
+ * License. See the file COPYING in the main directory of this archive
+ * for more details.
+ */
+
+/* If the symbol __BOOT__ is defined, a slightly different version is
+ * generated to be compiled with the -m relocatable option
+ */
+
+#ifdef __BOOT__
+#include "bootldr.h"
+/* It is impossible to gather statistics in the boot version */
+#undef EIP_STATS
+#endif
+
+/*
+ *
+ * Given the size of this code, it deserves a few comments on how it works,
+ * and why it was implemented the way it is.
+ *
+ * The goal is to have a real mode i486SX emulator to initialize hardware,
+ * mostly graphics boards, by interpreting ROM BIOSes. The choice of a 486SX
+ * is logical since this is the lowest processor that PCI ROM BIOSes must run
+ * on.
+ *
+ * The goal of this emulator is not performance, but a small enough memory
+ * footprint to include it in a bootloader.
+ *
+ * It is actually likely to be comparable to a 25MHz 386DX on a 200MHz 603e !
+ * This is not as serious as it seems since most of the BIOS code performs
+ * a lot of accesses to I/O and non-cacheable memory spaces. For such
+ * instructions, the execution time is often dominated by bus accesses.
+ * Statistics of the code also shows that it spends a large function of
+ * the time in loops waiting for vertical retrace or programs one of the
+ * timers and waits for the count to go down to zero. This type of loop
+ * runs emulated at the same speed as on 5 GHz Pentium IV++ ;)
+ *
+ */
+
+/*
+ * Known bugs or differences with a real 486SX (real mode):
+ * - segment limits are not enforced (too costly)
+ * - xchg instructions with memory are not locked
+ * - lock prefixes are not implemented at all
+ * - long divides implemented but perhaps still buggy
+ * - miscellaneous system instructions not implemented
+ * (some probably cannot be implemented)
+ * - neither control nor debug registers are implemented for the time being
+ * (debug registers are impossible to implement at a reasonable cost)
+ */
+
+/* Code options, put them on the compiler command line */
+/* #define EIP_STATS */ /* EIP based profiling */
+/* #undef EIP_STATS */
+
+/*
+ * Implementation notes:
+ *
+ * A) flags emulation.
+ *
+ * The most important decisions when it comes to obtain a reasonable speed
+ * are related to how the EFLAGS register is emulated.
+ *
+ * Note: the code to set up flags is complex, but it is only seldom
+ * executed since cmp and test instructions use much faster flag evaluation
+ * paths. For example the overflow flag is almost only needed for pushf and
+ * int. Comparison results only involve (SF^OF) or (SF^OF)+ZF and the
+ * implementation is fast in this case.
+ *
+ * Rarely used flags: AC, NT and IOPL are kept in a memory EFLAGS image.
+ * All other flags are either kept explicitly in PPC cr (DF, IF, and TF) or
+ * lazily evaluated from the state of 4 registers called flags, result, op1,
+ * op2, and sometimes the cr itself. The emulation has been designed for
+ * minimal overhead for the common case where the flags are never used. With
+ * few exceptions, all instructions that set flags leave the result of the
+ * computation in a register called result, and operands are taken from op1
+ * and op2 registers. However a few instructions like cmp, test and bit tests
+ * (bt/btc/btr/bts/bsf/bsr) explicitly set cr bits to short circuit
+ * condition code evaluation of conditional instructions.
+ *
+ * As a very brief summary:
+ *
+ * - the result of the last flag setting operation is often either in the
+ * result register or in op2 after increment or decrement instructions
+ * because result and op1 may be needed to compute the carry.
+ *
+ * - compare instruction leave the result of the unsigned comparison
+ * in cr4 and of signed comparison in cr6. This means that:
+ * - cr4[0]=CF (short circuit for jc/jnc)
+ * - cr4[1]=~(CF+ZF) (short circuit for ja/jna)
+ * - cr6[0]=(OF^SF) (short circuit for jl/jnl)
+ * - cr6[1]=~((SF^OF)+ZF) (short circuit for jg/jng)
+ * - cr6[2]=ZF (short circuit for jz/jnz)
+ *
+ * - test instruction set flags in cr6 and clear overflow. This means that:
+ * - cr6[0]=SF=(SF^OF) (short circuit for jl/jnl/js/jns)
+ * - cr6[1]=~((SF^OF)+ZF) (short circuit for jg/jng)
+ * - cr6[2]=ZF (short circuit for jz/jnz)
+ *
+ * All flags may be lazily evaluated from several values kept in registers:
+ *
+ * Flag: Depends upon:
+ * OF result, op1, op2, flags[INCDEC_FIELD,SUBTRACTING,OF_STATE_MASK]
+ * SF result, op2, flags[INCDEC_FIELD,RES_SIZE]
+ * ZF result, op2, cr6[2], flags[INCDEC_FIELD,RES_SIZE,ZF_PROTECT]
+ * AF op1, op2, flags[INCDEC_FIELD,SUBTRACTING,CF_IN]
+ * PF result, op2, flags[INCDEC_FIELD]
+ * CF result, op1, flags[CF_STATE_MASK, CF_IN]
+ *
+ * The order of the fields in the flags register has been chosen so that a
+ * single rlwimi is necessary for common instruction that do not affect all
+ * flags. (See the code for inc/dec emulation).
+ *
+ *
+ * B) opcodes and prefixes.
+ *
+ * The register called opcode holds in its low order 8 bits the opcode
+ * (second byte if the first byte is 0x0f). More precisely it holds the
+ * last byte fetched before the modrm byte or the immediate operand(s)
+ * of the instruction, if any. High order 24 bits are zero unless the
+ * instruction has prefixes. These higher order bits have the following
+ * meaning:
+ * 0x80000000 segment override prefix
+ * 0x00001000 repnz prefix (0xf2)
+ * 0x00000800 repz prefix (0xf3)
+ * 0x00000400 address size prefix (0x67)
+ * 0x00000200 operand size prefix (0x66)
+ * (bit 0x1000 and 0x800 cannot be set simultaneously)
+ *
+ * Therefore if there is a segment override the value will be between very
+ * negative (between 0x80000000 and 0x800016ff), if there is no segment
+ * override, the value will be between 0 and 0x16ff. The reason for
+ * this choice will be understood in the next part.
+ *
+ * C) addresing mode description tables.
+ *
+ * the encoding of the modrm bytes (especially in 16 bit mode) is quite
+ * complex. Hence a table, indexed by the five useful bits of the modrm
+ * byte is used to simplify decoding. Here is a description:
+ *
+ * bit mask meaning
+ * 0x80000000 use ss as default segment register
+ * 0x00004000 means that this addressing mode needs a base register
+ * (set for all entries except sib and displacement-only)
+ * 0x00002000 set if preceding is not set
+ * 0x00001000 set if an sib follows
+ * 0x00000700 base register to use (16 and 32 bit)
+ * 0x00000080 set in 32 bit addressing mode table, cleared in 16 bit
+ * (so extsb mask,entry; ori mask,mask,0xffff gives a mask)
+ * 0x00000070 kludge field, possible values are
+ * 0: 16 bit addressing mode without index
+ * 10: 32 bit addressing mode
+ * 60: 16 bit addressing mode with %si as index
+ * 70: 16 bit addressing mode with %di as index
+ *
+ * This convention leads to the following special values used to check for
+ * sib present and displacement-only, which happen to the three lowest
+ * values in the table (unsigned):
+ * 0x00003090 sib follows (implies it is a 32 bit mode)
+ * 0x00002090 32 bit displacement-only
+ * 0x00002000 16 bit displacement-only
+ *
+ * This means that all entries are either very negative in the 0x80002000
+ * range if the segment defaults to ss or higher than 0x2000 if it defaults
+ * to ds. Combined with the value in opcode this gives the following table:
+ * opcode entry entry>opcode ? segment to use
+ * positive positive yes ds (default)
+ * negative positive yes overriden by prefix
+ * positive negative no ss
+ * negative negative yes overridden by prefix
+ *
+ * Hence a simple comparison allows to check for the need to override
+ * the current base with ss, i.e., when ss is the default base and the
+ * instruction has no override prefix.
+ *
+ * D) BUGS
+ *
+ * This software is obviously bug-free :-). Nevertheless, if you encounter
+ * an interesting feature. Mail me a note, if possible with a detailed
+ * instruction example showing where and how it fails.
+ *
+ */
+
+
+/* Now the details of flag evaluation with the necessary macros */
+
+/* Alignment check is toggable so the system believes it is a 486, but
+CPUID is not to avoid unnecessary complexities. However, alignment
+is actually never checked (real mode is CPL 0 anyway). */
+#define AC86 13 /* Can only be toggled */
+#define VM86 14 /* Not used for now */
+#define RF86 15 /* Not emulated precisely */
+/* Actually NT and IOPL are kept in memory */
+#define NT86 17
+#define IOPL86 18 /* Actually 18 and 19 */
+#define OF86 20
+#define DF86 21
+#define IF86 22
+#define TF86 23
+#define SF86 24
+#define ZF86 25
+#define AF86 27
+#define PF86 29
+#define CF86 31
+
+/* Where the less important flags are placed in PPC cr */
+#define RF 20 /* Suppress trap flag: cr5[0] */
+#define DF 21 /* Direction flag: cr5[1] */
+#define IF 22 /* Interrupt flag: cr5[2] */
+#define TF 23 /* Single step flag: cr5[3] */
+
+/* Now the flags which are frequently used */
+/*
+ * CF_IN is a copy of the input carry with PPC polarity,
+ * it is cleared for add, set for sub and cmp,
+ * equal to the x86 carry for adc and to its complement for sbb.
+ * it is used to evaluate AF and CF.
+ */
+#define CF_IN 0x80000000
+
+/* #define GET_CF_IN(dst) rlwinm dst,flags,1,0x01 */
+
+/* CF_IN_CR set in flags means that cr4[0] is a copy of carry bit */
+#define CF_IN_CR 0x40000000
+
+#define EVAL_CF andis. r3,flags,(CF_IN_CR)>>16; beql- _eval_cf
+
+/*
+ * CF_STATE tells how to compute the carry bit.
+ * NOTRESULT16 and NOTRESULT8 are never set explicitly,
+ * but they may happen after a cmc instruction.
+ */
+#define CF 16 /* cr4[0] */
+#define CF_LOCATION 0x30000000
+#define CF_ZERO 0x00000000
+#define CF_EXPLICIT 0x00000000
+#define CF_COMPLEMENT 0x08000000 /* Indeed a polarity bit */
+#define CF_STATE_MASK (CF_LOCATION|CF_COMPLEMENT)
+#define CF_VALUE 0x08000000
+#define CF_SET 0x08000000
+#define CF_RES32 0x10000000
+#define CF_NOTRES32 0x18000000
+#define CF_RES16 0x20000000
+#define CF_NOTRES16 0x28000000
+#define CF_RES8 0x30000000
+#define CF_NOTRES8 0x38000000
+
+#define CF_ADDL CF_RES32
+#define CF_SUBL CF_NOTRES32
+#define CF_ADDW CF_RES16
+#define CF_SUBW CF_RES16
+#define CF_ADDB CF_RES8
+#define CF_SUBB CF_RES8
+
+#define CF_ROTCNT(dst) rlwinm dst,flags,7,0x18
+#define CF_POL(dst,pos) rlwinm dst,flags,(36-pos)%32,pos,pos
+#define CF_POL_INSERT(dst,pos) \
+ rlwimi dst,flags,(36-pos)%32,pos,pos
+#define RES2CF(dst) rlwinm dst,result,8,7,15
+
+/*
+ * OF_STATE tells how to compute the overflow bit. When the low order bit
+ * is set (OF_EXPLICIT), it means that OF is the exclusive or of the
+ * two other bits. For the reason of this choice, see rotate instructions.
+ */
+#define OF 1 /* Only after EVAL_OF */
+#define OF_STATE_MASK 0x07000000
+#define OF_INCDEC 0x00000000
+#define OF_EXPLICIT 0x01000000
+#define OF_ZERO 0x01000000
+#define OF_VALUE 0x04000000
+#define OF_SET 0x04000000
+#define OF_ONE 0x05000000
+#define OF_XOR 0x06000000
+#define OF_ARITHL 0x06000000
+#define OF_ARITHW 0x02000000
+#define OF_ARITHB 0x04000000
+
+#define EVAL_OF rlwinm. r3,flags,6,0,1; bngl+ _eval_of; andis. r3,flags,OF_VALUE>>16
+
+/* See _eval_of to see how this can be used */
+#define OF_ROTCNT(dst) rlwinm dst,flags,10,0x1c
+
+/*
+ * SIGNED_IN_CR means that cr6 is set as after a signed compare:
+ * - cr6[0] is SF^OF for jl/jnl/setl/setnl...
+ * - cr6[1] is ~((SF^OF)+ZF) for jg/jng/setg/setng...
+ * - cr6[2] is ZF (ZF_IN_CR is always set if this bit is set)
+ */
+#define SLT 24 /* cr6[0], signed less than */
+#define SGT 25 /* cr6[1], signed greater than */
+#define SIGNED_IN_CR 0x00800000
+
+#define EVAL_SIGNED andis. r3,flags,SIGNED_IN_CR>>16; beql- _eval_signed
+
+/*
+ * Above in CR means that cr4 is set as after an unsigned compare:
+ * - cr4[0] is CF (CF_IN_CR is also set)
+ * - cr4[1] is ~(CF+ZF) (ZF_IN_CR is also set)
+ */
+#define ABOVE 17 /* cr4[1] */
+#define ABOVE_IN_CR 0x00400000
+
+#define EVAL_ABOVE andis. r3,flags,ABOVE_IN_CR>>16; beql- _eval_above
+
+/* SF_IN_CR means cr6[0] is a copy of SF. It implies ZF_IN_CR is also set */
+#define SF 24 /* cr6[0] */
+#define SF_IN_CR 0x00200000
+
+#define EVAL_SF andis. r3,flags,SF_IN_CR>>16; beql- _eval_sf_zf
+
+/* ZF_IN_CR means cr6[2] is a copy of ZF. */
+#define ZF 26
+#define ZF_IN_CR 0x00100000
+
+#define EVAL_ZF andis. r3,flags,ZF_IN_CR>>16; beql- _eval_sf_zf
+#define ZF2ZF86(s,d) rlwimi d,s,ZF-ZF86,ZF86,ZF86
+#define ZF862ZF(reg) rlwimi reg,reg,32+ZF86-ZF,ZF,ZF
+
+/*
+ * ZF_PROTECT means cr6[2] is the only valid value for ZF. This is necessary
+ * because some infrequent instructions may leave SF and ZF in an apparently
+ * inconsistent state (both set): sahf, popf and the few (not implemented)
+ * instructions that only affect ZF.
+ */
+#define ZF_PROTECT 0x00080000
+
+/* The parity is always evaluated when it is needed */
+#define PF 0 /* Only after EVAL_PF */
+#define EVAL_PF bl _eval_pf
+
+/* This field gives the shift amount to use to evaluate SF
+ and ZF when ZF_PROTECT is not set */
+#define RES_SIZE_MASK 0x00060000
+#define RESL 0x00000000
+#define RESW 0x00040000
+#define RESB 0x00060000
+
+#define RES_SHIFT(dst) rlwinm dst,flags,18,0x18
+
+/* SUBTRACTING is set if the last flag setting instruction was sub/sbb/cmp,
+ used to evaluate OF and AF */
+#define SUBTRACTING 0x00010000
+
+#define GET_ADDSUB(dst) rlwinm dst,flags,16,0x01
+
+/* rotate (rcl/rcr/rol/ror) affect CF and OF but not other flags */
+#define ROTATE_MASK (CF_IN_CR|CF_STATE_MASK|ABOVE_IN_CR|OF_STATE_MASK|SIGNED_IN_CR)
+#define ROTATE_FLAGS rlwimi flags,one,24,ROTATE_MASK
+
+/*
+ * INCDEC_FIELD has at most one bit set when the last flag setting instruction
+ * was either inc or dec (which do not affect the carry). When one of these
+ * bits is set, it affects the way OF, SF, ZF, AF, and PF are evaluated.
+ */
+#define INCDEC_FIELD 0x0000ff00
+
+#define DECB_SHIFT 8
+#define INCB_SHIFT 9
+#define DECW_SHIFT 10
+#define INCW_SHIFT 11
+#define DECL_SHIFT 14
+#define INCL_SHIFT 15
+
+#define INCDEC_MASK (OF_STATE_MASK|SIGNED_IN_CR|ABOVE_IN_CR|SF_IN_CR|\
+ ZF_IN_CR|ZF_PROTECT|RES_SIZE_MASK|SUBTRACTING|\
+ INCDEC_FIELD)
+/* Operations to perform to tell where the flags are after inc or dec */
+#define INC_FLAGS(BWL) rlwimi flags,one,INC##BWL##_SHIFT,INCDEC_MASK
+#define DEC_FLAGS(BWL) rlwimi flags,one,DEC##BWL##_SHIFT,INCDEC_MASK
+
+/* How the flags are set after arithmetic operations */
+#define FLAGS_ADD(BWL) (CF_ADD##BWL|OF_ARITH##BWL|RES##BWL)
+#define FLAGS_SBB(BWL) (CF_SUB##BWL|OF_ARITH##BWL|RES##BWL|SUBTRACTING)
+#define FLAGS_SUB(BWL) FLAGS_SBB(BWL)|CF_IN
+#define FLAGS_CMP(BWL) FLAGS_SUB(BWL)|ZF_IN_CR|CF_IN_CR|SIGNED_IN_CR|ABOVE_IN_CR
+
+/* How the flags are set after logical operations */
+#define FLAGS_LOG(BWL) (CF_ZERO|OF_ZERO|RES##BWL)
+#define FLAGS_TEST(BWL) FLAGS_LOG(BWL)|ZF_IN_CR|SIGNED_IN_CR|SF_IN_CR
+
+/* How the flags are set after bt/btc/btr/bts. */
+#define FLAGS_BTEST CF_IN_CR|CF_ADDL|OF_ZERO|RESL
+
+/* How the flags are set after bsf/bsr. */
+#define FLAGS_BSRCH(WL) CF_ZERO|OF_ZERO|RES##WL|ZF_IN_CR
+
+/* How the flags are set after logical right shifts */
+#define FLAGS_SHR(BWL) (CF_EXPLICIT|OF_ARITH##BWL|RES##BWL)
+
+/* How the flags are set after double length shifts */
+#define FLAGS_DBLSH(WL) (CF_EXPLICIT|OF_ARITH##WL|RES##WL)
+
+/* How the flags are set after multiplies */
+#define FLAGS_MUL (CF_EXPLICIT|OF_EXPLICIT)
+
+#define SET_FLAGS(fl) lis flags,(fl)>>16
+#define ADD_FLAGS(fl) addis flags,flags,(fl)>>16
+
+/*
+ * We are always off by one when compared with Intel's eip, this shortens
+ * code by allowing to load next byte with lbzu x,1(eip). The register
+ * called eip actually contains csbase+eip, and thus should be called lip
+ * for linear ip.
+ */
+
+/*
+ * Reason codes passed to the C part of the emulator, this includes all
+ * instructions which may change the current code segment. These definitions
+ * will soon go into a separate include file. Codes 0 to 255 correspond
+ * directly to the interrupt/trap that has to be generated.
+ */
+
+#define code_divide_err 0
+#define code_trap 1
+#define code_int3 3
+#define code_into 4
+#define code_bound 5
+#define code_ud 6
+#define code_dna 7 /* FPU not available */
+
+#define code_iretw 256 /* Interrupt returns */
+#define code_iretl 257
+#define code_lcallw 258 /* Far calls and jumps */
+#define code_lcalll 259
+#define code_ljmpw 260
+#define code_ljmpl 261
+#define code_lretw 262 /* Far returns */
+#define code_lretl 263
+#define code_softint 264 /* int $xx */
+#define code_lock 265 /* Lock prefix */
+/* Codes 1024 to 2047 are used for I/O port access instructions:
+ - The three LSB define the port size (1, 2 or 4)
+ - bit of weight 512 means out if set, in if clear
+ - bit of weight 256 means ins/outs if set, in/out if clear
+ - bit of weight 128 means use 32 bit addresses if set, 16 bit if clear
+ (only used for ins/outs instructions, always clear for in/out)
+ */
+#define code_inb 1024+1
+#define code_inw 1024+2
+#define code_inl 1024+4
+#define code_outb 1024+512+1
+#define code_outw 1024+512+2
+#define code_outl 1024+512+4
+#define code_insb_a16 1024+256+1
+#define code_insw_a16 1024+256+2
+#define code_insl_a16 1024+256+4
+#define code_outsb_a16 1024+512+256+1
+#define code_outsw_a16 1024+512+256+2
+#define code_outsl_a16 1024+512+256+4
+#define code_insb_a32 1024+256+128+1
+#define code_insw_a32 1024+256+128+2
+#define code_insl_a32 1024+256+128+4
+#define code_outsb_a32 1024+512+256+128+1
+#define code_outsw_a32 1024+512+256+128+2
+#define code_outsl_a32 1024+512+256+128+4
+
+#define state 31
+/* r31 (state) is a pointer to a structure describing the emulated x86
+processor, its layout is the following:
+
+first the general purpose registers, they are in little endian byte order
+
+offset name
+
+ 0 eax/ax/al
+ 1 ah
+ 4 ecx/cx/cl
+ 5 ch
+ 8 edx/dx/dl
+ 9 dh
+ 12 ebx/bx/bl
+ 13 bh
+ 16 esp/sp
+ 20 ebp/bp
+ 24 esi/si
+ 28 edi/di
+*/
+
+#define AL 0
+#define AX 0
+#define EAX 0
+#define AH 1
+#define CL 4
+#define CX 4
+#define ECX 4
+#define DX 8
+#define EDX 8
+#define BX 12
+#define EBX 12
+#define SP 16
+#define ESP 16
+#define BP 20
+#define EBP 20
+#define SI 24
+#define ESI 24
+#define DI 28
+#define EDI 28
+
+/*
+than the rest of the machine state, big endian !
+
+offset name
+
+ 32 essel segment register selectors (values)
+ 36 cssel
+ 40 sssel
+ 44 dssel
+ 48 fssel
+ 52 gssel
+ 56 eipimg true eip (register named eip is csbase+eip)
+ 60 eflags eip and eflags only valid when C code running !
+ 64 esbase segment registers bases
+ 68 csbase
+ 72 ssbase
+ 76 dsbase
+ 80 fsbase
+ 84 gsbase
+ 88 iobase For I/O instructions, I/O space virtual base
+ 92 ioperm I/O permission bitmap pointer
+ 96 reason Reason code when calling external emulator
+ 100 nexteip eip past instruction for external emulator
+ 104 parm1 parameter for external emulator
+ 108 parm2 parameter for external emulator
+ 112 _opcode current opcode register for external emulator
+ 116 _base segment register base for external emulator
+ 120 _offset intruction operand offset
+ More internal state was dumped here for debugging in first versions
+
+ 128 vbase where the 1Mb memory is mapped
+ 132 cntimg instruction counter
+ 136 scratch
+ 192 eipstat array of 32k unsigned long pairs for eip stats
+*/
+
+#define essel 32
+#define cssel 36
+#define sssel 40
+#define dssel 44
+#define fssel 48
+#define gssel 52
+#define eipimg 56
+#define eflags 60
+#define esbase 64
+#define csbase 68
+#define ssbase 72
+#define dsbase 76
+#define fsbase 80
+#define gsbase 84
+#define iobase 88
+#define ioperm 92
+#define reason 96
+#define nexteip 100
+#define parm1 104
+#define parm2 108
+#define _opcode 112
+#define _base 116
+#define _offset 120
+#define vbase 128
+#define cntimg 132
+#ifdef EIP_STATS
+#define eipstat 192
+#endif
+/* Global registers */
+
+/* Some segment register bases are permanently kept in registers since they
+are often used: these are csb, esb and ssb because they are
+required for jumps, string instructions, and pushes/pops/calls/rets.
+dsbase is not kept in a register but loaded from memory to allow somewhat
+more parallelism in the main emulation loop.
+*/
+
+#define one 30 /* Constant one, so pervasive */
+#define ssb 29
+#define csb 28
+#define esb 27
+#define eip 26 /* That one is indeed csbase+(e)ip-1 */
+#define result 25 /* For the use of result, op1, op2 */
+#define op1 24 /* see the section on flag emulation */
+#define op2 23
+#define opbase 22 /* default opcode table */
+#define flags 21 /* See earlier description */
+#define opcode 20 /* Opcode */
+#define opreg 19 /* Opcode extension/register number */
+/* base is reloaded with the base of the ds segment at the beginning of
+every instruction, it is modified by segment override prefixes, when
+the default base segment is ss, or when the modrm byte specifies a
+register operand */
+#define base 18 /* Instruction's operand segment base */
+#define offset 17 /* Instruction's memory operand offset */
+/* used to address a table telling how to decode the addressing mode
+specified by the modrm byte */
+#define adbase 16 /* addressing mode table */
+/* Following registers are used only as dedicated temporaries during decoding,
+they are free for use during emulation */
+/*
+ * ceip (current eip) is only in use when we call the external emulator for
+ * instructions that fault. Note that it is forbidden to change flags before
+ * the check for the fault happens (divide by zero...) ! ceip is also used
+ * when measuring timing.
+ */
+#define ceip 15
+
+/* A register used to measure timing information (when enabled) */
+#ifdef EIP_STATS
+#define tstamp 14
+#endif
+
+#define count 12 /* Instruction counter. */
+
+#define r0 0
+#define r1 1 /* PPC Stack pointer. */
+#define r3 3
+#define r4 4
+#define r5 5
+#define r6 6
+#define r7 7
+
+/* Macros to read code stream */
+#define NEXTBYTE(dest) lbzu dest,1(eip)
+#define NEXTWORD(dest) lhbrx dest,eip,one; la eip,2(eip)
+#define NEXTDWORD(dest) lwbrx dest,eip,one; la eip,4(eip)
+#define NEXT b nop
+#define GOTNEXT b gotopcode
+
+#ifdef __BOOT__
+ START_GOT
+ GOT_ENTRY(_jtables)
+ GOT_ENTRY(jtab_www)
+ GOT_ENTRY(adtable)
+ END_GOT
+#else
+ .text
+#endif
+ .align 2
+ .global em86_enter
+ .type em86_enter,@function
+em86_enter: stwu r1,-96(r1) # allocate stack
+ mflr r0
+ stmw 14,24(r1)
+ mfcr r4
+ stw r0,100(r1)
+ mr state,r3
+ stw r4,20(r1)
+#ifdef __BOOT__
+/* We need this since r30 is the default GOT pointer */
+#define r30 30
+ GET_GOT
+/* The relocation of these tables is explicit, this could be done
+ * automatically with fixups but would add more than 8kb in the fixup tables.
+ */
+ lwz r3,GOT(_jtables)
+ lwz r4,_endjtables-_jtables(r3)
+ sub. r4,r3,r4
+ beq+ 1f
+ li r0,((_endjtables-_jtables)>>2)+1
+ addi r3,r3,-4
+ mtctr r0
+0: lwzu r5,4(r3)
+ add r5,r5,r4
+ stw r5,0(r3)
+ bdnz 0b
+1: lwz adbase,GOT(adtable)
+ lwz opbase,GOT(jtab_www)
+/* Now r30 is only used as constant 1 */
+#undef r30
+ li one,1 # pervasive constant
+#else
+ lis opbase,jtab_www@ha
+ lis adbase,adtable@ha
+ li one,1 # pervasive constant
+ addi opbase,opbase,jtab_www@l
+ addi adbase,adbase,adtable@l
+#ifdef EIP_STATS
+ li ceip,0
+ mftb tstamp
+#endif
+#endif
+/* We branch back here when calling an external function tells us to resume */
+restart: lwz r3,eflags(state)
+ lis flags,(OF_EXPLICIT|ZF_IN_CR|ZF_PROTECT|SF_IN_CR)>>16
+ lwz csb,csbase(state)
+ extsb result,r3 # SF/PF
+ rlwinm op1,r3,31,0x08 # AF
+ lwz eip,eipimg(state)
+ ZF862ZF(r3) # cr6
+ addi op2,op1,0 # AF
+ lwz ssb,ssbase(state)
+ rlwimi flags,r3,15,OF_VALUE # OF
+ rlwimi r3,r3,32+RF86-RF,RF,RF # RF
+ lwz esb,esbase(state)
+ ori result,result,0xfb # PF
+ mtcrf 0x06,r3 # RF/DF/IF/TF/SF/ZF
+ lbzux opcode,eip,csb
+ rlwimi flags,r3,27,CF_VALUE # CF
+ xori result,result,0xff # PF
+ lwz count,cntimg(state)
+ GOTNEXT # start the emulator
+
+/* Now return */
+exit: lwz r0,100(r1)
+ lwz r4,20(r1)
+ mtlr r0
+ lmw 14,24(r1)
+ mtcr r4
+ addi r1,r1,96
+ blr
+
+trap: crmove 0,RF
+ crclr RF
+ bt- 0,resume
+ sub ceip,eip,csb
+ li r3,code_trap
+complex: addi eip,eip,1
+ stw r3,reason(state)
+ sub eip,eip,csb
+ stw op1,240(state)
+ stw op2,244(state)
+ stw result,248(state)
+ stw flags,252(state)
+ stw r4,parm1(state)
+ stw r5,parm2(state)
+ stw opcode,_opcode(state)
+ bl _eval_flags
+ stw base,_base(state)
+ stw eip,nexteip(state)
+ stw r3,eflags(state)
+ mr r3,state
+ stw offset,_offset(state)
+ stw ceip,eipimg(state)
+ stw count,cntimg(state)
+ bl em86_trap
+ cmpwi r3,0
+ bne exit
+ b restart
+
+/* Main loop */
+/*
+ * The two LSB of each entry in the main table mean the following:
+ * 00: indirect opcode: modrm follows and the three middle bits are an
+ * opcode extension. The entry points to another jump table.
+ * 01: direct instruction, branch directly to the routine.
+ * 10: modrm specifies byte size memory and register operands.
+ * 11: modrm specifies word/long memory and register operands.
+ *
+ * The modrm byte, if present, is always loaded in r7.
+ *
+ * Note: most "mr x,y" instructions have been replaced by "addi x,y,0" since
+ * the latter can be executed in the second integer unit on 603e.
+ */
+
+/*
+ * This code is very good example of absolutely unmaintainable code.
+ * It was actually much easier to write than it is to understand !
+ * If my computations are right, the maximum path length from fetching
+ * the opcode to exiting to the actual instruction execution is
+ * 46 instructions (for non-prefixed, single byte opcode instructions).
+ *
+ */
+ .align 5
+#ifdef EIP_STATS
+nop: NEXTBYTE(opcode)
+gotopcode: slwi r3,opcode,2
+ bt- TF,trap
+resume: lwzx r4,opbase,r3
+ addi r5,state,eipstat+4
+ clrlslwi r6,ceip,17,3
+ mtctr r4
+ lwzux r7,r5,r6
+ slwi. r0,r4,30 # two lsb of table entry
+ sub r7,r7,tstamp
+ lwz r6,-4(r5)
+ mftb tstamp
+ addi r6,r6,1
+ sub ceip,eip,csb
+ stw r6,-4(r5)
+ add r7,r7,tstamp
+ lwz base,dsbase(state)
+ stw r7,0(r5)
+#else
+nop: NEXTBYTE(opcode)
+gotopcode: slwi r3,opcode,2
+ bt- TF,trap
+resume: lwzx r4,opbase,r3
+ sub ceip,eip,csb
+ mtctr r4
+ slwi. r0,r4,30 # two lsb of table entry
+ lwz base,dsbase(state)
+ addi count,count,1
+#endif
+ bgtctr- # for instructions without modrm
+
+/* modrm byte present */
+ NEXTBYTE(r7) # modrm byte
+ cmplwi cr1,r7,192
+ rlwinm opreg,r7,31,0x1c
+ beq- cr0,8f # extended opcode
+/* modrm with middle 3 bits specifying a register (non prefixed) */
+ rlwinm r0,r4,3,0x8
+ li r4,0x1c0d
+ rlwimi opreg,r7,27,0x01
+ srw r4,r4,r0
+ and opreg,opreg,r4
+ blt cr1,9f
+/* modrm with 2 register operands */
+1: rlwinm offset,r7,2,0x1c
+ addi base,state,0
+ rlwimi offset,r7,30,0x01
+ and offset,offset,r4
+ bctr
+
+/* Prefixes: first segment overrides */
+ .align 4
+_es: NEXTBYTE(r7); addi base,esb,0
+ oris opcode,opcode,0x8000; b 2f
+_cs: NEXTBYTE(r7); addi base,csb,0
+ oris opcode,opcode,0x8000; b 2f
+_fs: NEXTBYTE(r7); lwz base,fsbase(state)
+ oris opcode,opcode,0x8000; b 2f
+_gs: NEXTBYTE(r7); lwz base,gsbase(state)
+ oris opcode,opcode,0x8000; b 2f
+_ss: NEXTBYTE(r7); addi base,ssb,0
+ oris opcode,opcode,0x8000; b 2f
+_ds: NEXTBYTE(r7)
+ oris opcode,opcode,0x8000; b 2f
+
+/* Lock (unimplemented) and repeat prefixes */
+_lock: li r3,code_lock; b complex
+_repnz: NEXTBYTE(r7); rlwimi opcode,one,12,0x1800; b 2f
+_repz: NEXTBYTE(r7); rlwimi opcode,one,11,0x1800; b 2f
+
+/* Operand and address size prefixes */
+ .align 4
+_opsize: NEXTBYTE(r7); ori opcode,opcode,0x200
+ rlwinm r3,opcode,2,0x1ffc; b 2f
+_adsize: NEXTBYTE(r7); ori opcode,opcode,0x400
+ rlwinm r3,opcode,2,0x1ffc; b 2f
+
+_twobytes: NEXTBYTE(r7); addi r3,r3,0x400
+2: rlwimi r3,r7,2,0x3fc
+ lwzx r4,opbase,r3
+ rlwimi opcode,r7,0,0xff
+ mtctr r4
+ slwi. r0,r4,30
+ bgtctr- # direct instruction
+/* modrm byte in a prefixed instruction */
+ NEXTBYTE(r7) # modrm byte
+ cmpwi cr1,r7,192
+ rlwinm opreg,r7,31,0x1c
+ beq- 6f
+/* modrm with middle 3 bits specifying a register (prefixed) */
+ rlwinm r0,r4,3,0x8
+ li r4,0x1c0d
+ rlwimi opreg,r7,27,0x01
+ srw r4,r4,r0
+ and opreg,opreg,r4
+ bnl cr1,1b # 2 register operands
+/* modrm specifying memory with prefix */
+3: rlwinm r3,r3,27,0xff80
+ rlwimi adbase,r7,2,0x1c
+ extsh r3,r3
+ rlwimi r3,r7,31,0x60
+ lwzx r4,r3,adbase
+ cmpwi cr1,r4,0x3090
+ bnl+ cr1,10f
+/* displacement only addressing modes */
+4: cmpwi r4,0x2000
+ bne 5f
+ NEXTWORD(offset)
+ bctr
+5: NEXTDWORD(offset)
+ bctr
+/* modrm with opcode extension (prefixed) */
+6: lwzx r4,r4,opreg
+ mtctr r4
+ blt cr1,3b
+/* modrm with opcode extension and register operand */
+7: rlwinm offset,r7,2,0x1c
+ addi base,state,0
+ rlwinm r0,r4,3,0x8
+ li r4,0x1c0d
+ rlwimi offset,r7,30,0x01
+ srw r4,r4,r0
+ and offset,offset,r4
+ bctr
+/* modrm with opcode extension (non prefixed) */
+8: lwzx r4,r4,opreg
+ mtctr r4
+/* FIXME ? We continue fetching even if the opcode extension is undefined.
+ * It shouldn't do any harm on real mode emulation anyway, and for ROM
+ * BIOS emulation, we are supposed to read valid code.
+ */
+ bnl cr1,7b
+/* modrm specifying memory without prefix */
+9: rlwimi adbase,r7,2,0x1c # memory addressing mode computation
+ rlwinm r3,r7,31,0x60
+ lwzx r4,r3,adbase
+ cmplwi cr1,r4,0x3090
+ blt- cr1,4b # displacement only addressing mode
+10: rlwinm. r0,r7,24,0,1 # three cases distinguished
+ beq- cr1,15f # an sib follows
+ rlwinm r3,r4,30,0x1c # 16bit/32bit/%si index/%di index
+ cmpwi cr1,r3,8 # set cr1 as early as possible
+ rlwinm r6,r4,26,0x1c # base register
+ lwbrx offset,state,r6 # load the base register
+ beq cr0,14f # no displacement
+ cmpw cr2,r4,opcode # check for ss as default base
+ bgt cr0,12f # byte offset
+ beq cr1,11f # 32 bit displacement
+ NEXTWORD(r5) # 16 bit displacement
+ bgt cr1,13f # d16(base,index)
+/* d16(base) */
+ add offset,offset,r5
+ clrlwi offset,offset,16
+ bgtctr cr2
+ addi base,ssb,0
+ bctr
+/* d32(base) */
+11: NEXTDWORD(r5)
+ add offset,offset,r5
+ bgtctr cr2
+ addi base,ssb,0
+ bctr
+/* 8 bit displacement */
+12: NEXTBYTE(r5)
+ extsb r5,r5
+ bgt cr1,13f
+/* d8(base) */
+ extsb r6,r4
+ add offset,offset,r5
+ ori r6,r6,0xffff
+ and offset,offset,r6
+ bgtctr cr2
+ addi base,ssb,0
+ bctr
+/* d8(base,index) and d16(base,index) share this code ! */
+13: lhbrx r3,state,r3
+ add offset,offset,r5
+ add offset,offset,r3
+ clrlwi offset,offset,16
+ bgtctr cr2
+ addi base,ssb,0
+ bctr
+/* no displacement: only indexed modes may use ss as default base */
+14: beqctr cr1 # 32 bit register indirect
+ clrlwi offset,offset,16
+ bltctr cr1 # 16 bit register indirect
+/* (base,index) */
+ lhbrx r3,state,r3 # 16 bit [{bp,bx}+{si,di}]
+ cmpw cr2,r4,opcode # check for ss as default base
+ add offset,offset,r3
+ clrlwi offset,offset,r3
+ bgtctr+ cr2
+ addi base,ssb,0
+ bctr
+/* sib modes, note that the size of the offset can be known from cr0 */
+15: NEXTBYTE(r7) # get sib
+ rlwinm r3,r7,31,0x1c # index
+ rlwinm offset,r7,2,0x1c # base
+ cmpwi cr1,r3,ESP # has index ?
+ bne cr0,18f # base+d8/d32
+ cmpwi offset,EBP
+ beq 17f # d32(,index,scale)
+ xori r4,one,0xcc01 # build 0x0000cc00
+ rlwnm r4,r4,offset,0,1 # 0 or 0xc0000000
+ lwbrx offset,state,offset
+ cmpw cr2,r4,opcode # use ss ?
+ beq- cr1,16f # no index
+/* (base,index,scale) */
+ lwbrx r3,state,r3
+ srwi r6,r7,6
+ slw r3,r3,r6
+ add offset,offset,r3
+ bgtctr cr2
+ addi base,ssb,0
+ bctr
+/* (base), in practice only (%esp) is coded this way */
+16: bgtctr cr2
+ addi base,ssb,0
+ bctr
+/* d32(,index,scale) */
+17: NEXTDWORD(offset)
+ beqctr- cr1 # no index: very unlikely
+ lwbrx r3,state,r3
+ srwi r6,r7,6
+ slw r3,r3,r6
+ add offset,offset,r3
+ bctr
+/* 8 or 32 bit displacement */
+18: xori r4,one,0xcc01 # build 0x0000cc00
+ rlwnm r4,r4,offset,0,1 # 0 or 0xc0000000
+ lwbrx offset,state,offset
+ cmpw cr2,r4,opcode # use ss ?
+ bgt cr0,20f # 8 bit offset
+/* 32 bit displacement */
+ NEXTDWORD(r5)
+ beq- cr1,21f
+/* d(base,index,scale) */
+19: lwbrx r3,state,r3
+ add offset,offset,r5
+ add offset,offset,r3
+ bgtctr cr2
+ addi base,ssb,0
+ bctr
+/* 8 bit displacement */
+20: NEXTBYTE(r5)
+ extsb r5,r5
+ bne+ cr1,19b
+/* d(base), in practice base is %esp */
+21: add offset,offset,r5
+ bgtctr- cr2
+ addi base,ssb,0
+ bctr
+
+/*
+ * Flag evaluation subroutines: they have not been written for performance
+ * since they are not often used in practice. The rule of the game was to
+ * write them with as few branches as possible.
+ * The first routines eveluate either one or 2 (ZF and SF simultaneously)
+ * flags and do not use r0 and r7.
+ * The more complex routines (_eval_above, _eval_signed and _eval_flags)
+ * call the former ones, using r0 as a return address save register and
+ * r7 as a safe temporary.
+ */
+
+/*
+ * _eval_sf_zf evaluates simultaneously SF and ZF unless ZF is already valid
+ * and protected because it is possible, although it is exceptional, to have
+ * SF and ZF set at the same time after a few instructions which may leave the
+ * flags in this apparently inconsistent state: sahf, popf, iret and the few
+ * (for now unimplemented) instructions which only affect ZF (lar, lsl, arpl,
+ * cmpxchg8b). This also solves the obscure case of ZF set and PF clear.
+ * On return: SF=cr6[0], ZF=cr6[2].
+ */
+
+_eval_sf_zf: andis. r5,flags,ZF_PROTECT>>16
+ rlwinm r3,flags,0,INCDEC_FIELD
+ RES_SHIFT(r4)
+ cntlzw r3,r3
+ slw r4,result,r4
+ srwi r5,r3,5 # ? use result : use op1
+ rlwinm r3,r3,2,0x18
+ oris flags,flags,(SF_IN_CR|SIGNED_IN_CR|ZF_IN_CR)>>16
+ neg r5,r5 # mux result/op2
+ slw r3,op2,r3
+ and r4,r4,r5
+ andc r3,r3,r5
+ xoris flags,flags,(SIGNED_IN_CR)>>16
+ bne- 1f # 12 instructions between set
+ or r3,r3,r4 # and test, good for folding
+ cmpwi cr6,r3,0
+ blr
+1: or. r3,r3,r4
+ crmove SF,0
+ blr
+
+/*
+ * _eval_cf may be called at any time, no other flag is affected.
+ * On return: CF=cr4[0], r3= CF ? 0x100:0 = CF<<8.
+ */
+_eval_cf: addc r3,flags,flags # CF_IN to xer[ca]
+ RES2CF(r4) # get 8 or 16 bit carry
+ subfe r3,result,op1 # generate PPC carry for
+ CF_ROTCNT(r5) # preceding operation
+ addze r3,r4 # put carry into LSB
+ CF_POL(r4,23) # polarity & 0x100
+ oris flags,flags,(CF_IN_CR|ABOVE_IN_CR)>>16
+ rlwnm r3,r3,r5,23,23 # shift carry there
+ xor r3,r3,r4 # CF <<8
+ xoris flags,flags,(ABOVE_IN_CR)>>16
+ cmplw cr4,one,r3 # sets cr4[0]
+ blr
+
+/*
+ * eval_of returns the overflow flag in OF_STATE field, which will be
+ * either 001 (OF clear) or 101 (OF set), is is only called when the two
+ * low order bits of OF_STATE are not 01 (otherwise it will work but
+ * it is an elaborate variant of a nop with a few registers destroyed)
+ * The code multiplexes several sources in a branchless way, was fun to write.
+ */
+_eval_of: GET_ADDSUB(r4) # 0(add)/1(sub)
+ rlwinm r3,flags,0,INCDEC_FIELD
+ neg r4,r4 # 0(add)/-1(sub)
+ eqv r5,result,op1 # result[]==op1[] (bit by bit)
+ cntlzw r3,r3 # inc/dec
+ xor r4,r4,op2 # true sign of op2
+ oris r5,r5,0x0808 # bits to clear
+ clrlwi r6,r3,31 # 0(inc)/1(dec)
+ eqv r4,r4,op1 # op1[]==op2[] (bit by bit)
+ add r6,op2,r6 # add 1 if dec
+ rlwinm r3,r3,2,0x18 # incdec_shift
+ andc r4,r4,r5 # arithmetic overflow
+ slw r3,r6,r3 # shifted inc/dec result
+ addis r3,r3,0x8000 # compare with 0x80000000
+ ori r4,r4,0x0808 # bits to set
+ cntlzw r3,r3 # 32 if inc/dec overflow
+ OF_ROTCNT(r6)
+ rlwimi r4,r3,18,0x00800000 # insert inc/dec overflow
+ rlwimi flags,one,24,OF_STATE_MASK
+ rlwnm r3,r4,r6,8,8 # get field
+ rlwimi flags,r3,3,OF_VALUE # insert OF
+ blr
+
+/*
+ * _eval_pf will always be called when needed (complex but infrequent),
+ * there are a few quirks for a branchless solution.
+ * On return: PF=cr0[0], PF=MSB(r3)
+ */
+_eval_pf: rlwinm r3,flags,0,INCDEC_FIELD
+ rotrwi r4,op2,4 # from inc/dec
+ rotrwi r5,result,4 # from result
+ cntlzw r3,r3 # use result if 32
+ xor r4,r4,op2
+ xor r5,r5,result
+ rlwinm r3,r3,26,0,0 # 32 becomes 0x80000000
+ clrlwi r4,r4,28
+ lis r6,0x9669 # constant to shift
+ clrlwi r5,r5,28
+ rlwnm r4,r6,r4,0,0 # parity from inc/dec
+ rlwnm r5,r6,r5,0,0 # parity from result
+ andc r4,r4,r3 # select which one
+ and r5,r5,r3
+ add. r3,r4,r5 # and test to simplify
+ blr # returns in r3 and cr0 set.
+
+/*
+ * _eval_af will always be called when needed (complex but infrequent):
+ * - if after inc, af is set when 4 low order bits of op1 are 0
+ * - if after dec, af is set when 4 low order bits of op1 are 1
+ * (or 0 after adding 1 as implemented here)
+ * - if after add/sub/adc/sbb/cmp af is set from sum of 4 LSB of op1
+ * and 4 LSB of op2 (eventually complemented) plus carry in.
+ * - other instructions leave AF undefined so the returned value is irrelevant.
+ * Returned value must be masked with 0x10, since all other bits are undefined.
+ * There branchless code is perhaps not the most efficient, but quite parallel.
+ */
+_eval_af: rlwinm r3,flags,0,INCDEC_FIELD
+ clrlwi r5,op2,28 # 4 LSB of op2
+ addc r4,flags,flags # carry_in
+ GET_ADDSUB(r6)
+ cntlzw r3,r3 # if inc/dec 16..23 else 32
+ neg r6,r6 # add/sub
+ clrlwi r4,r3,31 # if dec 1 else 0
+ xor r5,r5,r6 # conditionally complement
+ clrlwi r6,op1,28 # 4 LSB of op1
+ add r4,op2,r4 # op2+(dec ? 1 : 0)
+ clrlwi r4,r4,28 # 4 LSB of op2+(dec ? 1 : 0)
+ adde r5,r6,r5 # op1+cy_in+(op2/~op2)
+ cntlzw r4,r4 # 28..31 if not AF, 32 if set
+ andc r5,r5,r3 # masked AF from add/sub...
+ andc r4,r3,r4 # masked AF from inc/dec
+ or r3,r4,r5
+ blr
+
+/*
+ * _eval_above will only be called if ABOVE_IN_CR is not set.
+ * On return: ZF=cr6[2], CF=cr4[0], ABOVE=cr4[1]
+ */
+_eval_above: andis. r3,flags,ZF_IN_CR>>16
+ mflr r0
+ beql+ _eval_sf_zf
+ andis. r3,flags,CF_IN_CR>>16
+ beql+ _eval_cf
+ mtlr r0
+ oris flags,flags,ABOVE_IN_CR>>16
+ crnor ABOVE,ZF,CF
+ blr
+
+/* _eval_signed may only be called when signed_in_cr is clear ! */
+_eval_signed: andis. r3,flags,SF_IN_CR>>16
+ mflr r0
+ beql+ _eval_sf_zf
+# SF_IN_CR and ZF_IN_CR are set, SIGNED_IN_CR is clear
+ rlwinm. r3,flags,5,0,1
+ xoris flags,flags,(SIGNED_IN_CR|SF_IN_CR)>>16
+ bngl+ _eval_of
+ andis. r3,flags,OF_VALUE>>16
+ mtlr r0
+ crxor SLT,SF,OF
+ crnor SGT,SLT,ZF
+ blr
+
+_eval_flags: mflr r0
+ bl _eval_cf
+ li r7,2
+ rlwimi r7,r3,24,CF86,CF86 # 2 if CF clear, 3 if set
+ bl _eval_pf
+ andis. r4,flags,SF_IN_CR>>16
+ rlwimi r7,r3,32+PF-PF86,PF86,PF86
+ bl _eval_af
+ rlwimi r7,r3,0,AF86,AF86
+ beql+ _eval_sf_zf
+ mfcr r3
+ rlwinm. r4,flags,5,0,1
+ rlwimi r7,r3,0,DF86,SF86
+ ZF2ZF86(r3,r7)
+ bngl+ _eval_of
+ mtlr r0
+ lis r4,0x0004
+ lwz r3,eflags(state)
+ addi r4,r4,0x7000
+ rlwimi r7,flags,17,OF86,OF86
+ and r3,r3,r4
+ or r3,r3,r7
+ blr
+
+/* Quite simple for real mode, input in r4, returns in r3. */
+_segment_load: lwz r5,vbase(state)
+ rlwinm r3,r4,4,0xffff0 # segment selector * 16
+ add r3,r3,r5
+ blr
+
+/* To allow I/O port virtualization if necessary, code for exception in r3,
+port number in r4 */
+_check_port: lwz r5,ioperm(state)
+ rlwinm r6,r4,29,0x1fff # 0 to 8kB
+ lis r0,0xffff
+ lhbrx r5,r5,r6
+ clrlwi r6,r4,29 # modulo 8
+ rlwnm r0,r0,r3,0x0f # 1, 3, or 0xf
+ slw r0,r0,r6
+ and. r0,r0,r5
+ bne- complex
+ blr
+/*
+ * Instructions are in approximate functional order:
+ * 1) move, exchange, lea, push/pop, pusha/popa
+ * 2) cbw/cwde/cwd/cdq, zero/sign extending moves, in/out
+ * 3) arithmetic: add/sub/adc/sbb/cmp/inc/dec/neg
+ * 4) logical: and/or/xor/test/not/bt/btc/btr/bts/bsf/bsr
+ * 5) jump, call, ret
+ * 6) string instructions and xlat
+ * 7) rotate/shift/mul/div
+ * 8) segment register, far jumps, calls and rets, interrupts
+ * 9) miscellenaous (flags, bcd,...)
+ */
+
+#define MEM offset,base
+#define REG opreg,state
+#define SELECTORS 32
+#define SELBASES 64
+
+/* Immediate moves */
+movb_imm_reg: rlwinm opreg,opcode,2,28,29; lbz r3,1(eip)
+ rlwimi opreg,opcode,30,31,31; lbzu opcode,2(eip)
+ stbx r3,REG; GOTNEXT
+
+movw_imm_reg: lhz r3,1(eip); clrlslwi opreg,opcode,29,2; lbzu opcode,3(eip)
+ sthx r3,REG; GOTNEXT
+
+movl_imm_reg: lwz r3,1(eip); clrlslwi opreg,opcode,29,2; lbzu opcode,5(eip)
+ stwx r3,REG; GOTNEXT
+
+movb_imm_mem: lbz r0,1(eip); cmpwi opreg,0
+ lbzu opcode,2(eip); bne- ud
+ stbx r0,MEM; GOTNEXT
+
+movw_imm_mem: lhz r0,1(eip); cmpwi opreg,0
+ lbzu opcode,3(eip); bne- ud
+ sthx r0,MEM; GOTNEXT
+
+movl_imm_mem: lwz r0,1(eip); cmpwi opreg,0
+ lbzu opcode,5(eip); bne- ud
+ stwx r0,MEM; GOTNEXT
+
+/* The special short form moves between memory and al/ax/eax */
+movb_al_a32: lwbrx offset,eip,one; lbz r0,AL(state); lbzu opcode,5(eip)
+ stbx r0,MEM; GOTNEXT
+
+movb_al_a16: lhbrx offset,eip,one; lbz r0,AL(state); lbzu opcode,3(eip)
+ stbx r0,MEM; GOTNEXT
+
+movw_ax_a32: lwbrx offset,eip,one; lhz r0,AX(state); lbzu opcode,5(eip)
+ sthx r0,MEM; GOTNEXT
+
+movw_ax_a16: lhbrx offset,eip,one; lhz r0,AX(state); lbzu opcode,3(eip)
+ sthx r0,MEM; GOTNEXT
+
+movl_eax_a32: lwbrx offset,eip,one; lwz r0,EAX(state); lbzu opcode,5(eip)
+ stwx r0,MEM; GOTNEXT
+
+movl_eax_a16: lhbrx offset,eip,one; lwz r0,EAX(state); lbzu opcode,3(eip)
+ stwx r0,MEM; GOTNEXT
+
+movb_a32_al: lwbrx offset,eip,one; lbzu opcode,5(eip); lbzx r0,MEM
+ stb r0,AL(state); GOTNEXT
+
+movb_a16_al: lhbrx offset,eip,one; lbzu opcode,3(eip); lbzx r0,MEM
+ stb r0,AL(state); GOTNEXT
+
+movw_a32_ax: lwbrx offset,eip,one; lbzu opcode,5(eip); lhzx r0,MEM
+ sth r0,AX(state); GOTNEXT
+
+movw_a16_ax: lhbrx offset,eip,one; lbzu opcode,3(eip); lhzx r0,MEM
+ sth r0,AX(state); GOTNEXT
+
+movl_a32_eax: lwbrx offset,eip,one; lbzu opcode,5(eip); lwzx r0,MEM
+ stw r0,EAX(state); GOTNEXT
+
+movl_a16_eax: lhbrx offset,eip,one; lbzu opcode,3(eip); lwzx r0,MEM
+ stw r0,EAX(state); GOTNEXT
+
+/* General purpose move (all are exactly 4 instructions long) */
+ .align 4
+movb_reg_mem: lbzx r0,REG
+ NEXTBYTE(opcode)
+ stbx r0,MEM
+ GOTNEXT
+
+movw_reg_mem: lhzx r0,REG
+ NEXTBYTE(opcode)
+ sthx r0,MEM
+ GOTNEXT
+
+movl_reg_mem: lwzx r0,REG
+ NEXTBYTE(opcode)
+ stwx r0,MEM
+ GOTNEXT
+
+movb_mem_reg: lbzx r0,MEM
+ NEXTBYTE(opcode)
+ stbx r0,REG
+ GOTNEXT
+
+movw_mem_reg: lhzx r0,MEM
+ NEXTBYTE(opcode)
+ sthx r0,REG
+ GOTNEXT
+
+movl_mem_reg: lwzx r0,MEM
+ NEXTBYTE(opcode)
+ stwx r0,REG
+ GOTNEXT
+
+/* short form exchange ax/eax with register */
+xchgw_ax_reg: clrlslwi opreg,opcode,29,2
+ lhz r3,AX(state)
+ lhzx r4,REG
+ sthx r3,REG
+ sth r4,AX(state)
+ NEXT
+
+xchgl_eax_reg: clrlslwi opreg,opcode,29,2
+ lwz r3,EAX(state)
+ lwzx r4,REG
+ stwx r3,REG
+ stw r4,EAX(state)
+ NEXT
+
+/* General exchange (unlocked!) */
+xchgb_reg_mem: lbzx r3,MEM
+ lbzx r4,REG
+ NEXTBYTE(opcode)
+ stbx r3,REG
+ stbx r4,MEM
+ GOTNEXT
+
+xchgw_reg_mem: lhzx r3,MEM
+ lhzx r4,REG
+ sthx r3,REG
+ sthx r4,MEM
+ NEXT
+
+xchgl_reg_mem: lwzx r3,MEM
+ lwzx r4,REG
+ stwx r3,REG
+ stwx r4,MEM
+ NEXT
+
+/* lea, one of the simplest instructions */
+leaw: cmpw base,state
+ beq- ud
+ sthbrx offset,REG
+ NEXT
+
+leal: cmpw base,state
+ beq- ud
+ stwbrx offset,REG
+ NEXT
+
+/* Short form pushes and pops */
+pushw_sp_reg: li r3,SP
+ lhbrx r4,state,r3
+ clrlslwi opreg,opcode,29,2
+ lhzx r0,REG
+ addi r4,r4,-2
+ sthbrx r4,state,r3
+ clrlwi r4,r4,16
+ sthx r0,ssb,r4
+ NEXT
+
+pushl_sp_reg: li r3,SP
+ lhbrx r4,state,r3
+ clrlslwi opreg,opcode,29,2
+ lwzx r0,REG
+ addi r4,r4,-4
+ sthbrx r4,state,r3
+ clrlwi r4,r4,16
+ stwx r0,ssb,r4
+ NEXT
+
+popw_sp_reg: li r3,SP
+ lhbrx r4,state,r3
+ clrlslwi opreg,opcode,29,2
+ lhzx r0,ssb,r4
+ addi r4,r4,2 # order is important in case of pop sp
+ sthbrx r4,state,r3
+ sthx r0,REG
+ NEXT
+
+popl_sp_reg: li r3,SP
+ lhbrx r4,state,r3
+ clrlslwi opreg,opcode,29,2
+ lwzx r0,ssb,r4
+ addi r4,r4,4
+ sthbrx r4,state,r3
+ stwx r0,REG
+ NEXT
+
+/* Push immediate */
+pushw_sp_imm: li r3,SP
+ lhbrx r4,state,r3
+ lhz r0,1(eip)
+ addi r4,r4,-2
+ sthbrx r4,state,r3
+ clrlwi r4,r4,16
+ lbzu opcode,3(eip)
+ sthx r0,ssb,r4
+ GOTNEXT
+
+pushl_sp_imm: li r3,SP
+ lhbrx r4,state,r3
+ lwz r0,1(eip)
+ addi r4,r4,-4
+ sthbrx r4,state,r3
+ clrlwi r4,r4,16
+ lbzu opcode,5(eip)
+ stwx r0,ssb,r4
+ GOTNEXT
+
+pushw_sp_imm8: li r3,SP
+ lhbrx r4,state,r3
+ lhz r0,1(eip)
+ addi r4,r4,-2
+ sthbrx r4,state,r3
+ clrlwi r4,r4,16
+ lbzu opcode,2(eip)
+ extsb r0,r0
+ sthx r0,ssb,r4
+ GOTNEXT
+
+pushl_sp_imm8: li r3,SP
+ lhbrx r4,state,r3
+ lhz r0,1(eip)
+ addi r4,r4,-4
+ sthbrx r4,state,r3
+ clrlwi r4,r4,16
+ lbzu opcode,2(eip)
+ extsb r0,r0
+ stwx r0,ssb,r4
+ GOTNEXT
+
+/* General push/pop */
+pushw_sp: lhbrx r0,MEM
+ li r3,SP
+ lhbrx r4,state,r3
+ addi r4,r4,-2
+ sthbrx r4,state,r3
+ clrlwi r4,r4,16
+ sthbrx r0,r4,ssb
+ NEXT
+
+pushl_sp: lwbrx r0,MEM
+ li r3,SP
+ lhbrx r4,state,r3
+ addi r4,r4,-4
+ sthbrx r4,state,r3
+ clrlwi r4,r4,16
+ stwbrx r0,r4,ssb
+ NEXT
+
+/* pop is an exception with 32 bit addressing modes, it is possible
+to calculate wrongly the address when esp is used as base. But 16 bit
+addressing modes are safe */
+
+popw_sp_a16: cmpw cr1,opreg,0 # first check the opcode
+ li r3,SP
+ lhbrx r4,state,r3
+ bne- cr1,ud
+ lhzx r0,ssb,r4
+ addi r4,r4,2
+ sthx r0,MEM
+ sthbrx r4,state,r3
+ NEXT
+
+popl_sp_a16: cmpw cr1,opreg,0
+ li r3,SP
+ lhbrx r4,state,r3
+ bne- cr1,ud
+ lwzx r0,ssb,r4
+ addi r4,r4,2
+ stwx r0,MEM
+ sthbrx r4,state,r3
+ NEXT
+
+/* 32 bit addressing modes for pop not implemented for now. */
+ .equ popw_sp_a32,unimpl
+ .equ popl_sp_a32,unimpl
+
+/* pusha/popa */
+pushaw_sp: li r3,SP
+ li r0,8
+ lhbrx r4,r3,state
+ mtctr r0
+ addi r5,state,-4
+1: addi r4,r4,-2
+ lhzu r6,4(r5)
+ clrlwi r4,r4,16
+ sthx r6,ssb,r4
+ bdnz 1b
+ sthbrx r4,r3,state # new sp
+ NEXT
+
+pushal_sp: li r3,SP
+ li r0,8
+ lhbrx r4,r3,state
+ mtctr r0
+ addi r5,state,-4
+1: addi r4,r4,-4
+ lwzu r6,4(r5)
+ clrlwi r4,r4,16
+ stwx r6,ssb,r4
+ bdnz 1b
+ sthbrx r4,r3,state # new sp
+ NEXT
+
+popaw_sp: li r3,SP
+ li r0,8
+ lhbrx r4,state,r3
+ mtctr r0
+ addi r5,state,32
+1: lhzx r6,ssb,r4
+ addi r4,r4,2
+ sthu r6,-4(r5)
+ clrlwi r4,r4,16
+ bdnz 1b
+ sthbrx r4,r3,state # updated sp
+ NEXT
+
+popal_sp: li r3,SP
+ lis r0,0xef00 # mask to skip esp
+ lhbrx r4,state,r3
+ addi r5,state,32
+1: add. r0,r0,r0
+ lwzx r6,ssb,r4
+ addi r4,r4,4
+ stwu r6,-4(r5)
+ clrlwi r4,r4,16
+ blt 1b
+ addi r6,r6,-4
+ beq 2f
+ addi r4,r4,4
+ clrlwi r4,r4,16
+ b 1b
+2: sthbrx r4,state,r3 # updated sp
+ NEXT
+
+/* Moves with zero or sign extension: first the special cases */
+cbw: lbz r3,AL(state)
+ extsb r3,r3
+ sthbrx r3,AX,state
+ NEXT
+
+cwde: lhbrx r3,AX,state
+ extsh r3,r3
+ stwbrx r3,EAX,state
+ NEXT
+
+cwd: lbz r3,AH(state)
+ extsb r3,r3
+ srwi r3,r3,8 # get sign bits
+ sth r3,DX(state)
+ NEXT
+
+cdq: lwbrx r3,EAX,state
+ srawi r3,r3,31
+ stw r3,EDX(state) # byte order unimportant !
+ NEXT
+
+/* The move with zero or sign extension are special since the source
+and destination are not the same size. The register describing the destination
+is modified to take this into account. */
+
+movsbw: lbzx r3,MEM
+ rlwimi opreg,opreg,4,0x10
+ extsb r3,r3
+ rlwinm opreg,opreg,0,0x1c
+ sthbrx r3,REG
+ NEXT
+
+movsbl: lbzx r3,MEM
+ rlwimi opreg,opreg,4,0x10
+ extsb r3,r3
+ rlwinm opreg,opreg,0,0x1c
+ stwbrx r3,REG
+ NEXT
+
+ .equ movsww, movw_mem_reg
+
+movswl: lhbrx r3,MEM
+ extsh r3,r3
+ stwbrx r3,REG
+ NEXT
+
+movzbw: lbzx r3,MEM
+ rlwimi opreg,opreg,4,0x10
+ rlwinm opreg,opreg,0,0x1c
+ sthbrx r3,REG
+ NEXT
+
+movzbl: lbzx r3,MEM
+ rlwimi opreg,opreg,4,0x10
+ rlwinm opreg,opreg,0,0x1c
+ stwbrx r3,REG
+ NEXT
+
+ .equ movzww, movw_mem_reg
+
+movzwl: lhbrx r3,MEM
+ stwbrx r3,REG
+ NEXT
+
+/* Byte swapping */
+bswap: clrlslwi opreg,opcode,29,2 # extract reg from opcode
+ lwbrx r0,REG
+ stwx r0,REG
+ NEXT
+
+/* Input/output */
+inb_port_al: NEXTBYTE(r4)
+ b 1f
+inb_dx_al: li r4,DX
+ lhbrx r4,r4,state
+1: li r3,code_inb
+ bl _check_port
+ lwz r3,iobase(state)
+ lbzx r5,r4,r3
+ eieio
+ stb r5,AL(state)
+ NEXT
+
+inw_port_ax: NEXTBYTE(r4)
+ b 1f
+inw_dx_ax: li r4,DX
+ lhbrx r4,r4,state
+1: li r3,code_inw
+ bl _check_port
+ lwz r3,iobase(state)
+ lhzx r5,r4,r3
+ eieio
+ sth r5,AX(state)
+ NEXT
+
+inl_port_eax: NEXTBYTE(r4)
+ b 1f
+inl_dx_eax: li r4,DX
+ lhbrx r4,r4,state
+1: li r3,code_inl
+ bl _check_port
+ lwz r3,iobase(state)
+ lwzx r5,r4,r3
+ eieio
+ stw r5,EAX(state)
+ NEXT
+
+outb_al_port: NEXTBYTE(r4)
+ b 1f
+outb_al_dx: li r4,DX
+ lhbrx r4,r4,state
+1: li r3,code_outb
+ bl _check_port
+ lwz r3,iobase(state)
+ lbz r5,AL(state)
+ stbx r5,r4,r3
+ eieio
+ NEXT
+
+outw_ax_port: NEXTBYTE(r4)
+ b 1f
+outw_ax_dx: li r4,DX
+ lhbrx r4,r4,state
+1: li r3,code_outw
+ bl _check_port
+ lwz r3,iobase(state)
+ lhz r5,AX(state)
+ sthx r5,r4,r3
+ eieio
+ NEXT
+
+outl_eax_port: NEXTBYTE(r4)
+ b 1f
+outl_eax_dx: li r4,DX
+ lhbrx r4,r4,state
+1: li r3,code_outl
+ bl _check_port
+ lwz r4,iobase(state)
+ lwz r5,EAX(state)
+ stwx r5,r4,r3
+ eieio
+ NEXT
+
+
+/* Macro used for add and sub */
+#define ARITH(op,fl) \
+op##b_reg_mem: lbzx op1,MEM; SET_FLAGS(fl(B)); lbzx op2,REG; \
+ op result,op1,op2; \
+ stbx result,MEM; NEXT; \
+op##w_reg_mem: lhbrx op1,MEM; SET_FLAGS(fl(W)); lhbrx op2,REG; \
+ op result,op1,op2; \
+ sthbrx result,MEM; NEXT; \
+op##l_reg_mem: lwbrx op1,MEM; SET_FLAGS(fl(L)); lwbrx op2,REG; \
+ op result,op1,op2; \
+ stwbrx result,MEM; NEXT; \
+op##b_mem_reg: lbzx op2,MEM; SET_FLAGS(fl(B)); lbzx op1,REG; \
+ op result,op1,op2; \
+ stbx result,REG; NEXT; \
+op##w_mem_reg: lhbrx op2,MEM; SET_FLAGS(fl(W)); lhbrx op1,REG; \
+ op result,op1,op2; \
+ sthbrx result,REG; NEXT; \
+op##l_mem_reg: lwbrx op2,MEM; SET_FLAGS(fl(L)); lwbrx op1,REG; \
+ op result,op1,op2; \
+ stwbrx result,REG; NEXT; \
+op##b_imm_al: addi base,state,0; li offset,AL; \
+op##b_imm: lbzx op1,MEM; SET_FLAGS(fl(B)); lbz op2,1(eip); \
+ op result,op1,op2; \
+ lbzu opcode,2(eip); \
+ stbx result,MEM; GOTNEXT; \
+op##w_imm_ax: addi base,state,0; li offset,AX; \
+op##w_imm: lhbrx op1,MEM; SET_FLAGS(fl(W)); lhbrx op2,eip,one; \
+ op result,op1,op2; \
+ lbzu opcode,3(eip); \
+ sthbrx result,MEM; GOTNEXT; \
+op##w_imm8: lbz op2,1(eip); SET_FLAGS(fl(W)); lhbrx op1,MEM; \
+ extsb op2,op2; clrlwi op2,op2,16; \
+ op result,op1,op2; \
+ lbzu opcode,2(eip); \
+ sthbrx result,MEM; GOTNEXT; \
+op##l_imm_eax: addi base,state,0; li offset,EAX; \
+op##l_imm: lwbrx op1,MEM; SET_FLAGS(fl(L)); lwbrx op2,eip,one; \
+ op result,op1,op2; lbzu opcode,5(eip); \
+ stwbrx result,MEM; GOTNEXT; \
+op##l_imm8: lbz op2,1(eip); SET_FLAGS(fl(L)); lwbrx op1,MEM; \
+ extsb op2,op2; lbzu opcode,2(eip); \
+ op result,op1,op2; \
+ stwbrx result,MEM; GOTNEXT
+
+ ARITH(add, FLAGS_ADD)
+ ARITH(sub, FLAGS_SUB)
+
+#define adc(result, op1, op2) adde result,op1,op2
+#define sbb(result, op1, op2) subfe result,op2,op1
+
+#define ARITH_WITH_CARRY(op, fl) \
+op##b_reg_mem: lbzx op1,MEM; bl carryfor##op; lbzx op2,REG; \
+ ADD_FLAGS(fl(B)); op(result, op1, op2); \
+ stbx result,MEM; NEXT; \
+op##w_reg_mem: lhbrx op1,MEM; bl carryfor##op; lhbrx op2,REG; \
+ ADD_FLAGS(fl(W)); op(result, op1, op2); \
+ sthbrx result,MEM; NEXT; \
+op##l_reg_mem: lwbrx op1,MEM; bl carryfor##op; lwbrx op2,REG; \
+ ADD_FLAGS(fl(L)); op(result, op1, op2); \
+ stwbrx result,MEM; NEXT; \
+op##b_mem_reg: lbzx op1,MEM; bl carryfor##op; lbzx op2,REG; \
+ ADD_FLAGS(fl(B)); op(result, op1, op2); \
+ stbx result,REG; NEXT; \
+op##w_mem_reg: lhbrx op1,MEM; bl carryfor##op; lhbrx op2,REG; \
+ ADD_FLAGS(fl(W)); op(result, op1, op2); \
+ sthbrx result,REG; NEXT; \
+op##l_mem_reg: lwbrx op1,MEM; bl carryfor##op; lwbrx op2,REG; \
+ ADD_FLAGS(fl(L)); op(result, op1, op2); \
+ stwbrx result,REG; NEXT; \
+op##b_imm_al: addi base,state,0; li offset,AL; \
+op##b_imm: lbzx op1,MEM; bl carryfor##op; lbz op2,1(eip); \
+ ADD_FLAGS(fl(B)); lbzu opcode,2(eip); op(result, op1, op2); \
+ stbx result,MEM; GOTNEXT; \
+op##w_imm_ax: addi base,state,0; li offset,AX; \
+op##w_imm: lhbrx op1,MEM; bl carryfor##op; lhbrx op2,eip,one; \
+ ADD_FLAGS(fl(W)); lbzu opcode,3(eip); op(result, op1, op2); \
+ sthbrx result,MEM; GOTNEXT; \
+op##w_imm8: lbz op2,1(eip); bl carryfor##op; lhbrx op1,MEM; \
+ extsb op2,op2; ADD_FLAGS(fl(W)); clrlwi op2,op2,16; \
+ lbzu opcode,2(eip); op(result, op1, op2); \
+ sthbrx result,MEM; GOTNEXT; \
+op##l_imm_eax: addi base,state,0; li offset,EAX; \
+op##l_imm: lwbrx op1,MEM; bl carryfor##op; lwbrx op2,eip,one; \
+ ADD_FLAGS(fl(L)); lbzu opcode,5(eip); op(result, op1, op2); \
+ stwbrx result,MEM; GOTNEXT; \
+op##l_imm8: lbz op2,1(eip); SET_FLAGS(fl(L)); lwbrx op1,MEM; \
+ extsb op2,op2; lbzu opcode,2(eip); \
+ op(result, op1, op2); \
+ stwbrx result,MEM; GOTNEXT
+
+carryforadc: addc r3,flags,flags # CF_IN to xer[ca]
+ RES2CF(r4) # get 8 or 16 bit carry
+ subfe r3,result,op1 # generate PPC carry for
+ CF_ROTCNT(r5) # preceding operation
+ addze r3,r4 # 32 bit carry in LSB
+ CF_POL(r4,23) # polarity
+ rlwnm r3,r3,r5,0x100 # shift carry there
+ xor flags,r4,r3 # CF86 ? 0x100 : 0
+ addic r4,r3,0xffffff00 # set xer[ca]
+ rlwinm flags,r3,23,CF_IN
+ blr
+
+ ARITH_WITH_CARRY(adc, FLAGS_ADD)
+
+/* for sbb the input carry must be the complement of the x86 carry */
+carryforsbb: addc r3,flags,flags # CF_IN to xer[ca]
+ RES2CF(r4) # 8/16 bit carry from result
+ subfe r3,result,op1
+ CF_ROTCNT(r5)
+ addze r3,r4
+ CF_POL(r4,23)
+ rlwnm r3,r3,r5,0x100
+ eqv flags,r4,r3 # CF86 ? 0xfffffeff:0xffffffff
+ addic r4,r3,1 # set xer[ca]
+ rlwinm flags,r3,23,CF_IN # keep only the carry
+ blr
+
+ ARITH_WITH_CARRY(sbb, FLAGS_SBB)
+
+cmpb_reg_mem: lbzx op1,MEM
+ SET_FLAGS(FLAGS_CMP(B))
+ lbzx op2,REG
+ extsb r3,op1
+ cmplw cr4,op1,op2
+ extsb r4,op2
+ sub result,op1,op2
+ cmpw cr6,r3,r4
+ NEXT
+
+cmpw_reg_mem: lhbrx op1,MEM
+ SET_FLAGS(FLAGS_CMP(W))
+ lhbrx op2,REG
+ extsh r3,op1
+ cmplw cr4,op1,op2
+ extsh r4,op2
+ sub result,op1,op2
+ cmpw cr6,r3,r4
+ NEXT
+
+cmpl_reg_mem: lwbrx op1,MEM
+ SET_FLAGS(FLAGS_CMP(L))
+ lwbrx op2,REG
+ cmplw cr4,op1,op2
+ sub result,op1,op2
+ cmpw cr6,op1,op2
+ NEXT
+
+cmpb_mem_reg: lbzx op2,MEM
+ SET_FLAGS(FLAGS_CMP(B))
+ lbzx op1,REG
+ extsb r4,op2
+ cmplw cr4,op1,op2
+ extsb r3,op1
+ sub result,op1,op2
+ cmpw cr6,r3,r4
+ NEXT
+
+cmpw_mem_reg: lhbrx op2,MEM
+ SET_FLAGS(FLAGS_CMP(W))
+ lhbrx op1,REG
+ extsh r4,op2
+ cmplw cr4,op1,op2
+ extsh r3,op1
+ sub result,op1,op2
+ cmpw cr6,r3,r4
+ NEXT
+
+cmpl_mem_reg: lwbrx op2,MEM
+ SET_FLAGS(FLAGS_CMP(L))
+ lwbrx op1,REG
+ cmpw cr6,op1,op2
+ sub result,op1,op2
+ cmplw cr4,op1,op2
+ NEXT
+
+cmpb_imm_al: addi base,state,0
+ li offset,AL
+cmpb_imm: lbzx op1,MEM
+ SET_FLAGS(FLAGS_CMP(B))
+ lbz op2,1(eip)
+ extsb r3,op1
+ cmplw cr4,op1,op2
+ lbzu opcode,2(eip)
+ extsb r4,op2
+ sub result,op1,op2
+ cmpw cr6,r3,r4
+ GOTNEXT
+
+cmpw_imm_ax: addi base,state,0
+ li offset,AX
+cmpw_imm: lhbrx op1,MEM
+ SET_FLAGS(FLAGS_CMP(W))
+ lhbrx op2,eip,one
+ extsh r3,op1
+ cmplw cr4,op1,op2
+ lbzu opcode,3(eip)
+ extsh r4,op2
+ sub result,op1,op2
+ cmpw cr6,r3,r4
+ GOTNEXT
+
+cmpw_imm8: lbz op2,1(eip)
+ SET_FLAGS(FLAGS_CMP(W))
+ lhbrx op1,MEM
+ extsb r4,op2
+ extsh r3,op1
+ lbzu opcode,2(eip)
+ clrlwi op2,r4,16
+ cmpw cr6,r3,r4
+ sub result,op1,op2
+ cmplw cr4,op1,op2
+ GOTNEXT
+
+cmpl_imm_eax: addi base,state,0
+ li offset,EAX
+cmpl_imm: lwbrx op1,MEM
+ SET_FLAGS(FLAGS_CMP(L))
+ lwbrx op2,eip,one
+ cmpw cr6,op1,op2
+ lbzu opcode,5(eip)
+ sub result,op1,op2
+ cmplw cr4,op1,op2
+ GOTNEXT
+
+cmpl_imm8: lbz op2,1(eip)
+ SET_FLAGS(FLAGS_CMP(L))
+ lwbrx op1,MEM
+ extsb op2,op2
+ lbzu opcode,2(eip)
+ cmpw cr6,op1,op2
+ sub result,op1,op2
+ cmplw cr4,op1,op2
+ GOTNEXT
+
+/* Increment and decrement */
+incb: lbzx op2,MEM
+ INC_FLAGS(B)
+ addi op2,op2,1
+ stbx op2,MEM
+ NEXT
+
+incw_reg: clrlslwi opreg,opcode,29,2 # extract reg from opcode
+ lhbrx op2,REG
+ INC_FLAGS(W)
+ addi op2,op2,1
+ sthbrx op2,REG
+ NEXT
+
+incw: lhbrx op2,MEM
+ INC_FLAGS(W)
+ addi op2,op2,1
+ sthbrx op2,MEM
+ NEXT
+
+incl_reg: clrlslwi opreg,opcode,29,2
+ lwbrx op2,REG
+ INC_FLAGS(L)
+ addi op2,op2,1
+ sthbrx op2,REG
+ NEXT
+
+incl: lwbrx op2,MEM
+ INC_FLAGS(L)
+ addi op2,op2,1
+ stwbrx op2,MEM
+ NEXT
+
+decb: lbzx op2,MEM
+ DEC_FLAGS(B)
+ addi op2,op2,-1
+ stbx op2,MEM
+ NEXT
+
+decw_reg: clrlslwi opreg,opcode,29,2 # extract reg from opcode
+ lhbrx op2,REG
+ DEC_FLAGS(W)
+ addi op2,op2,-1
+ sthbrx op2,REG
+ NEXT
+
+decw: lhbrx op2,MEM
+ DEC_FLAGS(W)
+ addi op2,op2,-1
+ sthbrx op2,MEM
+ NEXT
+
+decl_reg: clrlslwi opreg,opcode,29,2
+ lwbrx op2,REG
+ DEC_FLAGS(L)
+ addi op2,op2,-1
+ sthbrx op2,REG
+ NEXT
+
+decl: lwbrx op2,MEM
+ DEC_FLAGS(L)
+ addi op2,op2,-1
+ stwbrx op2,MEM
+ NEXT
+
+negb: lbzx op2,MEM
+ SET_FLAGS(FLAGS_SUB(B))
+ neg result,op2
+ li op1,0
+ stbx result,MEM
+ NEXT
+
+negw: lhbrx op2,MEM
+ SET_FLAGS(FLAGS_SUB(W))
+ neg result,op2
+ li op1,0
+ sthbrx r0,MEM
+ NEXT
+
+negl: lwbrx op2,MEM
+ SET_FLAGS(FLAGS_SUB(L))
+ subfic result,op2,0
+ li op1,0
+ stwbrx result,MEM
+ NEXT
+
+/* Macro used to generate code for OR/AND/XOR */
+#define LOGICAL(op) \
+op##b_reg_mem: lbzx op1,MEM; SET_FLAGS(FLAGS_LOG(B)); lbzx op2,REG; \
+ op result,op1,op2; \
+ stbx result,MEM; NEXT; \
+op##w_reg_mem: lhbrx op1,MEM; SET_FLAGS(FLAGS_LOG(W)); lhbrx op2,REG; \
+ op result,op1,op2; \
+ sthbrx result,MEM; NEXT; \
+op##l_reg_mem: lwbrx op1,MEM; SET_FLAGS(FLAGS_LOG(L)); lwbrx op2,REG; \
+ op result,op1,op2; \
+ stwbrx result,MEM; NEXT; \
+op##b_mem_reg: lbzx op1,MEM; SET_FLAGS(FLAGS_LOG(B)); lbzx op2,REG; \
+ op result,op1,op2; \
+ stbx result,REG; NEXT; \
+op##w_mem_reg: lhbrx op2,MEM; SET_FLAGS(FLAGS_LOG(W)); lhbrx op1,REG; \
+ op result,op1,op2; \
+ sthbrx result,REG; NEXT; \
+op##l_mem_reg: lwbrx op2,MEM; SET_FLAGS(FLAGS_LOG(L)); lwbrx op1,REG; \
+ op result,op1,op2; \
+ stwbrx result,REG; NEXT; \
+op##b_imm_al: addi base,state,0; li offset,AL; \
+op##b_imm: lbzx op1,MEM; SET_FLAGS(FLAGS_LOG(B)); lbz op2,1(eip); \
+ op result,op1,op2; lbzu opcode,2(eip); \
+ stbx result,MEM; GOTNEXT; \
+op##w_imm_ax: addi base,state,0; li offset,AX; \
+op##w_imm: lhbrx op1,MEM; SET_FLAGS(FLAGS_LOG(W)); lhbrx op2,eip,one; \
+ op result,op1,op2; lbzu opcode,3(eip); \
+ sthbrx result,MEM; GOTNEXT; \
+op##w_imm8: lbz op2,1(eip); SET_FLAGS(FLAGS_LOG(W)); lhbrx op1,MEM; \
+ extsb op2,op2; lbzu opcode,2(eip); \
+ op result,op1,op2; \
+ sthbrx result,MEM; GOTNEXT; \
+op##l_imm_eax: addi base,state,0; li offset,EAX; \
+op##l_imm: lwbrx op1,MEM; SET_FLAGS(FLAGS_LOG(L)); lwbrx op2,eip,one; \
+ op result,op1,op2; lbzu opcode,5(eip); \
+ stwbrx result,MEM; GOTNEXT; \
+op##l_imm8: lbz op2,1(eip); SET_FLAGS(FLAGS_LOG(L)); lwbrx op1,MEM; \
+ extsb op2,op2; lbzu opcode,2(eip); \
+ op result,op1,op2; \
+ stwbrx result,MEM; GOTNEXT
+
+ LOGICAL(or)
+
+ LOGICAL(and)
+
+ LOGICAL(xor)
+
+testb_reg_mem: lbzx op1,MEM
+ SET_FLAGS(FLAGS_TEST(B))
+ lbzx op2,REG
+ and result,op1,op2
+ extsb r3,result
+ cmpwi cr6,r3,0
+ NEXT
+
+testw_reg_mem: lhbrx op1,MEM
+ SET_FLAGS(FLAGS_TEST(W))
+ lhbrx op2,REG
+ and result,op1,op2
+ extsh r3,result
+ cmpwi cr6,r3,0
+ NEXT
+
+testl_reg_mem: lwbrx r3,MEM
+ SET_FLAGS(FLAGS_TEST(L))
+ lwbrx r4,REG
+ and result,op1,op2
+ cmpwi cr6,result,0
+ NEXT
+
+testb_imm_al: addi base,state,0
+ li offset,AL
+testb_imm: lbzx op1,MEM
+ SET_FLAGS(FLAGS_TEST(B))
+ lbz op2,1(eip)
+ and result,op1,op2
+ lbzu opcode,2(eip)
+ extsb r3,result
+ cmpwi cr6,r3,0
+ GOTNEXT
+
+testw_imm_ax: addi base,state,0
+ li offset,AX
+testw_imm: lhbrx op1,MEM
+ SET_FLAGS(FLAGS_TEST(W))
+ lhbrx op2,eip,one
+ and result,op1,op2
+ lbzu opcode,3(eip)
+ extsh r3,result
+ cmpwi cr6,r3,0
+ GOTNEXT
+
+testl_imm_eax: addi base,state,0
+ li offset,EAX
+testl_imm: lwbrx op1,MEM
+ SET_FLAGS(FLAGS_TEST(L))
+ lwbrx op2,eip,one
+ and result,r3,r4
+ lbzu opcode,5(eip)
+ cmpwi cr6,result,0
+ GOTNEXT
+
+/* Not does not affect flags */
+notb: lbzx r3,MEM
+ xori r3,r3,255
+ stbx r3,MEM
+ NEXT
+
+notw: lhzx r3,MEM
+ xori r3,r3,65535
+ sthx r3,MEM
+ NEXT
+
+notl: lwzx r3,MEM
+ not r3,r3
+ stwx r3,MEM
+ NEXT
+
+boundw: lhbrx r4,REG
+ li r3,code_bound
+ lhbrx r5,MEM
+ addi offset,offset,2
+ extsh r4,r4
+ lhbrx r6,MEM
+ extsh r5,r5
+ cmpw r4,r5
+ extsh r6,r6
+ blt- complex
+ cmpw r4,r6
+ ble+ nop
+ b complex
+
+boundl: lwbrx r4,REG
+ li r3,code_bound
+ lwbrx r5,MEM
+ addi offset,offset,4
+ lwbrx r6,MEM
+ cmpw r4,r5
+ blt- complex
+ cmpw r4,r6
+ ble+ nop
+ b complex
+
+/* Bit test and modify instructions */
+
+/* Common routine: bit index in op2, returns memory value in r3, mask in op2,
+and of mask and value in op1. CF flag is set as with 32 bit add when bit is
+non zero since result (which is cleared) will be less than op1, and in cr4,
+all other flags are undefined from Intel doc. Here OF and SF are cleared
+and ZF is set as a side effect of result being cleared. */
+_setup_bitw: cmpw base,state
+ SET_FLAGS(FLAGS_BTEST)
+ extsh op2,op2
+ beq- 1f
+ srawi r4,op2,4
+ add offset,offset,r4
+1: clrlwi op2,op2,28 # true bit index
+ lhbrx r3,MEM
+ slw op2,one,op2 # build mask
+ li result,0 # implicitly sets CF
+ and op1,r3,op2 # if result<op1
+ cmplw cr4,result,op1 # sets CF in cr4
+ blr
+
+_setup_bitl: cmpw base,state
+ SET_FLAGS(FLAGS_BTEST)
+ beq- 1f
+ srawi r4,op2,5
+ add offset,offset,r4
+1: lwbrx r3,MEM
+ rotlw op2,one,op2 # build mask
+ li result,0
+ and op1,r3,op2
+ cmplw cr4,result,op1
+ blr
+
+/* Immediate forms bit tests are not frequent since logical are often faster */
+btw_imm: NEXTBYTE(op2)
+ b 1f
+btw_reg_mem: lhbrx op2,REG
+1: bl _setup_bitw
+ NEXT
+
+btl_imm: NEXTBYTE(op2)
+ b 1f
+btl_reg_mem: lhbrx op2,REG
+1: bl _setup_bitl
+ NEXT
+
+btcw_imm: NEXTBYTE(op2)
+ b 1f
+btcw_reg_mem: lhbrx op2,REG
+1: bl _setup_bitw
+ xor r3,r3,op2
+ sthbrx r3,MEM
+ NEXT
+
+btcl_imm: NEXTBYTE(op2)
+ b 1f
+btcl_reg_mem: lhbrx op2,REG
+1: bl _setup_bitl
+ xor r3,r3,op2
+ stwbrx result,MEM
+ NEXT
+
+btrw_imm: NEXTBYTE(op2)
+ b 1f
+btrw_reg_mem: lhbrx op2,REG
+1: bl _setup_bitw
+ andc r3,r3,op2
+ sthbrx r3,MEM
+ NEXT
+
+btrl_imm: NEXTBYTE(op2)
+ b 1f
+btrl_reg_mem: lhbrx op2,REG
+1: bl _setup_bitl
+ andc r3,r3,op2
+ stwbrx r3,MEM
+ NEXT
+
+btsw_imm: NEXTBYTE(op2)
+ b 1f
+btsw_reg_mem: lhbrx op2,REG
+1: bl _setup_bitw
+ or r3,r3,op2
+ sthbrx r3,MEM
+ NEXT
+
+btsl_imm: NEXTBYTE(op2)
+ b 1f
+btsl_reg_mem: lhbrx op2,REG
+1: bl _setup_bitl
+ or r3,r3,op2
+ stwbrx r3,MEM
+ NEXT
+
+/* Bit string search instructions, only ZF is defined after these, and the
+result value is not defined when the bit field is zero. */
+bsfw: lhbrx result,MEM
+ SET_FLAGS(FLAGS_BSRCH(W))
+ neg r3,result
+ cmpwi cr6,result,0 # sets ZF
+ and r3,r3,result # keep only LSB
+ cntlzw r3,r3
+ subfic r3,r3,31
+ sthbrx r3,REG
+ NEXT
+
+bsfl: lwbrx result,MEM
+ SET_FLAGS(FLAGS_BSRCH(L))
+ neg r3,result
+ cmpwi cr6,result,0 # sets ZF
+ and r3,r3,result # keep only LSB
+ cntlzw r3,r3
+ subfic r3,r3,31
+ stwbrx r3,REG
+ NEXT
+
+bsrw: lhbrx result,MEM
+ SET_FLAGS(FLAGS_BSRCH(W))
+ cntlzw r3,result
+ cmpwi cr6,result,0
+ subfic r3,r3,31
+ sthbrx r3,REG
+ NEXT
+
+bsrl: lwbrx result,MEM
+ SET_FLAGS(FLAGS_BSRCH(L))
+ cntlzw r3,result
+ cmpwi cr6,result,0
+ subfic r3,r3,31
+ stwbrx r3,REG
+ NEXT
+
+/* Unconditional jumps, first the indirect than relative */
+jmpw: lhbrx eip,MEM
+ lbzux opcode,eip,csb
+ GOTNEXT
+
+jmpl: lwbrx eip,MEM
+ lbzux opcode,eip,csb
+ GOTNEXT
+
+sjmp_w: lbz r3,1(eip)
+ sub eip,eip,csb
+ addi eip,eip,2 # EIP after instruction
+ extsb r3,r3
+ add eip,eip,r3
+ clrlwi eip,eip,16 # module 64k
+ lbzux opcode,eip,csb
+ GOTNEXT
+
+jmp_w: lhbrx r3,eip,one # eip now off by 3
+ sub eip,eip,csb
+ addi r3,r3,3 # compensate
+ add eip,eip,r3
+ clrlwi eip,eip,16
+ lbzux opcode,eip,csb
+ GOTNEXT
+
+sjmp_l: lbz r3,1(eip)
+ addi eip,eip,2
+ extsb r3,r3
+ lbzux opcode,eip,r3
+ GOTNEXT
+
+jmp_l: lwbrx r3,eip,one # Simple
+ addi eip,eip,5
+ lbzux opcode,eip,r3
+ GOTNEXT
+
+/* The conditional jumps: although it should not happen,
+byte relative jumps (sjmp) may wrap around in 16 bit mode */
+
+#define NOTTAKEN_S lbzu opcode,2(eip); GOTNEXT
+#define NOTTAKEN_W lbzu opcode,3(eip); GOTNEXT
+#define NOTTAKEN_L lbzu opcode,5(eip); GOTNEXT
+
+#define CONDJMP(cond, eval, flag) \
+sj##cond##_w: EVAL_##eval; bt flag,sjmp_w; NOTTAKEN_S; \
+j##cond##_w: EVAL_##eval; bt flag,jmp_w; NOTTAKEN_W; \
+sj##cond##_l: EVAL_##eval; bt flag,sjmp_l; NOTTAKEN_S; \
+j##cond##_l: EVAL_##eval; bt flag,jmp_l; NOTTAKEN_L; \
+sjn##cond##_w: EVAL_##eval; bf flag,sjmp_w; NOTTAKEN_S; \
+jn##cond##_w: EVAL_##eval; bf flag,jmp_w; NOTTAKEN_W; \
+sjn##cond##_l: EVAL_##eval; bf flag,sjmp_l; NOTTAKEN_S; \
+jn##cond##_l: EVAL_##eval; bf flag,jmp_l; NOTTAKEN_L
+
+ CONDJMP(o, OF, OF)
+ CONDJMP(c, CF, CF)
+ CONDJMP(z, ZF, ZF)
+ CONDJMP(a, ABOVE, ABOVE)
+ CONDJMP(s, SF, SF)
+ CONDJMP(p, PF, PF)
+ CONDJMP(g, SIGNED, SGT)
+ CONDJMP(l, SIGNED, SLT)
+
+jcxz_w: lhz r3,CX(state); cmpwi r3,0; beq- sjmp_w; NOTTAKEN_S
+jcxz_l: lhz r3,CX(state); cmpwi r3,0; beq- sjmp_l; NOTTAKEN_S
+jecxz_w: lwz r3,ECX(state); cmpwi r3,0; beq- sjmp_w; NOTTAKEN_S
+jecxz_l: lwz r3,ECX(state); cmpwi r3,0; beq- sjmp_l; NOTTAKEN_S
+
+/* Note that loop is somewhat strange, the data size attribute gives
+the size of eip, and the address size whether the counter is cx or ecx.
+This is the same for jcxz/jecxz. */
+
+loopw_w: li opreg,CX
+ lhbrx r0,REG
+ sub. r0,r0,one
+ sthbrx r0,REG
+ bne+ sjmp_w
+ NOTTAKEN_S
+
+loopl_w: li opreg,ECX
+ lwbrx r0,REG
+ sub. r0,r0,one
+ stwbrx r0,REG
+ bne+ sjmp_w
+ NOTTAKEN_S
+
+loopw_l: li opreg,CX
+ lhbrx r0,REG
+ sub. r0,r0,one
+ sthbrx r0,REG
+ bne+ sjmp_l
+ NOTTAKEN_S
+
+loopl_l: li opreg,ECX
+ lwbrx r0,REG
+ sub. r0,r0,one
+ stwbrx r0,REG
+ bne+ sjmp_l
+ NOTTAKEN_S
+
+loopzw_w: li opreg,CX
+ lhbrx r0,REG
+ EVAL_ZF
+ sub. r0,r0,one
+ sthbrx r0,REG
+ bf ZF,1f
+ bne+ sjmp_w
+1: NOTTAKEN_S
+
+loopzl_w: li opreg,ECX
+ lwbrx r0,REG
+ EVAL_ZF
+ sub. r3,r3,one
+ stwbrx r3,REG
+ bf ZF,1f
+ bne+ sjmp_w
+1: NOTTAKEN_S
+
+loopzw_l: li opreg,CX
+ lhbrx r0,REG
+ EVAL_ZF
+ sub. r0,r0,one
+ sthbrx r0,REG
+ bf ZF,1f
+ bne+ sjmp_l
+1: NOTTAKEN_S
+
+loopzl_l: li opreg,ECX
+ lwbrx r0,REG
+ EVAL_ZF
+ sub. r0,r0,one
+ stwbrx r0,REG
+ bf ZF,1f
+ bne+ sjmp_l
+1: NOTTAKEN_S
+
+loopnzw_w: li opreg,CX
+ lhbrx r0,REG
+ EVAL_ZF
+ sub. r0,r0,one
+ sthbrx r0,REG
+ bt ZF,1f
+ bne+ sjmp_w
+1: NOTTAKEN_S
+
+loopnzl_w: li opreg,ECX
+ lwbrx r0,REG
+ EVAL_ZF
+ sub. r0,r0,one
+ stwbrx r0,REG
+ bt ZF,1f
+ bne+ sjmp_w
+1: NOTTAKEN_S
+
+loopnzw_l: li opreg,CX
+ lhbrx r0,REG
+ EVAL_ZF
+ sub. r0,r0,one
+ sthbrx r0,REG
+ bt ZF,1f
+ bne+ sjmp_l
+1: NOTTAKEN_S
+
+loopnzl_l: li opreg,ECX
+ lwbrx r0,REG
+ EVAL_ZF
+ sub. r0,r0,one
+ stwbrx r0,REG
+ bt ZF,1f
+ bne+ sjmp_l
+1: NOTTAKEN_S
+
+/* Memory indirect calls are rare enough to limit code duplication */
+callw_sp_mem: lhbrx r3,MEM
+ sub r4,eip,csb
+ addi r4,r4,1 # r4 is now return address
+ b 1f
+ .equ calll_sp_mem, unimpl
+
+callw_sp: lhbrx r3,eip,one
+ sub r4,eip,csb
+ addi r4,r4,3 # r4 is return address
+ add r3,r4,r3
+1: clrlwi eip,r3,16
+ li r5,SP
+ lhbrx r6,state,r5 # get sp
+ addi r6,r6,-2
+ lbzux opcode,eip,csb
+ sthbrx r6,state,r5 # update sp
+ clrlwi r6,r6,16
+ sthbrx r4,ssb,r6 # push return address
+ GOTNEXT
+ .equ calll_sp, unimpl
+
+retw_sp_imm: li opreg,SP
+ lhbrx r4,REG
+ lhbrx r6,eip,one
+ addi r5,r4,2
+ lhbrx eip,ssb,r4
+ lbzux opcode,eip,csb
+ add r5,r5,r6
+ sthbrx r5,REG
+ GOTNEXT
+
+ .equ retl_sp_imm, unimpl
+
+retw_sp: li opreg,SP
+ lhbrx r4,REG
+ addi r5,r4,2
+ lhbrx eip,ssb,r4
+ lbzux opcode,eip,csb
+ sthbrx r5,REG
+ GOTNEXT
+
+ .equ retl_sp, unimpl
+
+/* Enter is a mess, and the description in Intel documents is actually wrong
+ * in most revisions (all PPro/PII I have but the old Pentium is Ok) !
+ */
+
+enterw_sp: lhbrx r0,eip,one # Stack space to allocate
+ li opreg,SP
+ lhbrx r3,REG # SP
+ li r7,BP
+ lbzu r4,3(eip) # nesting level
+ addi r3,r3,-2
+ lhbrx r5,state,r7 # Original BP
+ clrlwi r3,r3,16
+ sthbrx r5,ssb,r3 # Push BP
+ andi. r4,r4,31 # modulo 32 and test
+ mr r6,r3 # Save frame pointer to temp
+ beq 3f
+ mtctr r4 # iterate level-1 times
+ b 2f
+1: addi r5,r5,-2 # copy list of frame pointers
+ clrlwi r5,r5,16
+ lhzx r4,ssb,r5
+ addi r3,r3,-2
+ clrlwi r3,r3,16
+ sthx r4,ssb,r3
+2: bdnz 1b
+ addi r3,r3,-2 # save current frame pointer
+ clrlwi r3,r3,16
+ sthbrx r6,ssb,r3
+3: sthbrx r6,state,r7 # New BP
+ sub r3,r3,r0
+ sthbrx r3,REG # Save new stack pointer
+ NEXT
+
+ .equ enterl_sp, unimpl
+
+leavew_sp: li opreg,BP
+ lhbrx r3,REG # Stack = BP
+ addi r4,r3,2 #
+ lhzx r3,ssb,r3
+ li opreg,SP
+ sthbrx r4,REG # New Stack
+ sth r3,BP(state) # Popped BP
+ NEXT
+
+ .equ leavel_sp, unimpl
+
+/* String instructions: first a generic setup routine, which exits early
+if there is a repeat prefix with a count of 0 */
+#define STRINGSRC base,offset
+#define STRINGDST esb,opreg
+
+_setup_stringw: li offset,SI #
+ rlwinm. r3,opcode,19,0,1 # lt=repnz, gt= repz, eq none
+ li opreg,DI
+ lhbrx offset,state,offset # load si
+ li r3,1 # no repeat
+ lhbrx opreg,state,opreg # load di
+ beq 1f # no repeat
+ li r3,CX
+ lhbrx r3,state,r3 # load CX
+ cmpwi r3,0
+ beq nop # early exit here !
+1: mtctr r3 # ctr=CX or 1
+ li r7,1 # stride
+ bflr+ DF
+ li r7,-1 # change stride sign
+ blr
+
+/* Ending routine to update all changed registers (goes directly to NEXT) */
+_finish_strw: li r4,SI
+ sthbrx offset,state,r4 # update si
+ li r4,DI
+ sthbrx opreg,state,r4 # update di
+ beq nop
+ mfctr r3
+ li r4,CX
+ sthbrx r3,state,r4 # update cx
+ NEXT
+
+
+lodsb_a16: bl _setup_stringw
+1: lbzx r0,STRINGSRC # [rep] lodsb
+ add offset,offset,r7
+ clrlwi offset,offset,16
+ bdnz 1b
+ stb r0,AL(state)
+ b _finish_strw
+
+lodsw_a16: bl _setup_stringw
+ slwi r7,r7,1
+1: lhzx r0,STRINGSRC # [rep] lodsw
+ add offset,offset,r7
+ clrlwi offset,offset,16
+ bdnz 1b
+ sth r0,AX(state)
+ b _finish_strw
+
+lodsl_a16: bl _setup_stringw
+ slwi r7,r7,2
+1: lwzx r0,STRINGSRC # [rep] lodsl
+ add offset,offset,r7
+ clrlwi offset,offset,16
+ bdnz 1b
+ stw r0,EAX(state)
+ b _finish_strw
+
+stosb_a16: bl _setup_stringw
+ lbz r0,AL(state)
+1: stbx r0,STRINGDST # [rep] stosb
+ add opreg,opreg,r7
+ clrlwi opreg,opreg,16
+ bdnz 1b
+ b _finish_strw
+
+stosw_a16: bl _setup_stringw
+ lhz r0,AX(state)
+ slwi r7,r7,1
+1: sthx r0,STRINGDST # [rep] stosw
+ add opreg,opreg,r7
+ clrlwi opreg,opreg,16
+ bdnz 1b
+ b _finish_strw
+
+stosl_a16: bl _setup_stringw
+ lwz r0,EAX(state)
+ slwi r7,r7,2
+1: stwx r0,STRINGDST # [rep] stosl
+ add opreg,opreg,r7
+ clrlwi opreg,opreg,16
+ bdnz 1b
+ b _finish_strw
+
+movsb_a16: bl _setup_stringw
+1: lbzx r0,STRINGSRC # [rep] movsb
+ add offset,offset,r7
+ stbx r0,STRINGDST
+ clrlwi offset,offset,16
+ add opreg,opreg,r7
+ clrlwi opreg,opreg,16
+ bdnz 1b
+ b _finish_strw
+
+movsw_a16: bl _setup_stringw
+ slwi r7,r7,1
+1: lhzx r0,STRINGSRC # [rep] movsw
+ add offset,offset,r7
+ sthx r0,STRINGDST
+ clrlwi offset,offset,16
+ add opreg,opreg,r7
+ clrlwi opreg,opreg,16
+ bdnz 1b
+ b _finish_strw
+
+movsl_a16: bl _setup_stringw
+ slwi r7,r7,2
+1: lwzx r0,STRINGSRC # [rep] movsl
+ add offset,offset,r7
+ stwx r0,STRINGDST
+ clrlwi offset,offset,16
+ add opreg,opreg,r7
+ clrlwi opreg,opreg,16
+ bdnz 1b
+ b _finish_strw
+
+/* At least on a Pentium, repeated string I/O instructions check for
+access port permission even if count is 0 ! So the order of the check is not
+important. */
+insb_a16: li r4,DX
+ li r3,code_insb_a16
+ lhbrx r4,state,r4
+ bl _check_port
+ bl _setup_stringw
+ lwz base,iobase(state)
+1: lbzx r0,base,r4 # [rep] insb
+ eieio
+ stbx r0,STRINGDST
+ add opreg,opreg,r7
+ clrlwi opreg,opreg,16
+ bdnz 1b
+ b _finish_strw
+
+insw_a16: li r4,DX
+ li r3,code_insw_a16
+ lhbrx r4,state,r4
+ bl _check_port
+ bl _setup_stringw
+ lwz base,iobase(state)
+ slwi r7,r7,1
+1: lhzx r0,base,r4 # [rep] insw
+ eieio
+ sthx r0,STRINGDST
+ add opreg,opreg,r7
+ clrlwi opreg,opreg,16
+ bdnz 1b
+ b _finish_strw
+
+insl_a16: li r4,DX
+ li r3,code_insl_a16
+ lhbrx r4,state,r4
+ bl _check_port
+ bl _setup_stringw
+ lwz base,iobase(state)
+ slwi r7,r7,2
+1: lwzx r0,base,r4 # [rep] insl
+ eieio
+ stwx r0,STRINGDST
+ add opreg,opreg,r7
+ clrlwi opreg,opreg,16
+ bdnz 1b
+ b _finish_strw
+
+outsb_a16: li r4,DX
+ li r3,code_outsb_a16
+ lhbrx r4,state,r4
+ bl _check_port
+ bl _setup_stringw
+ lwz r6,iobase(state)
+1: lbzx r0,STRINGSRC # [rep] outsb
+ add offset,offset,r7
+ stbx r0,r6,r4
+ clrlwi offset,offset,16
+ eieio
+ bdnz 1b
+ b _finish_strw
+
+outsw_a16: li r4,DX
+ li r3,code_outsw_a16
+ lhbrx r4,state,r4
+ bl _check_port
+ bl _setup_stringw
+ li r5,DX
+ lwz r6,iobase(state)
+ slwi r7,r7,1
+1: lhzx r0,STRINGSRC # [rep] outsw
+ add offset,offset,r7
+ sthx r0,r6,r4
+ clrlwi offset,offset,16
+ eieio
+ bdnz 1b
+ b _finish_strw
+
+outsl_a16: li r4,DX
+ li r3,code_outsl_a16
+ lhbrx r4,state,r4
+ bl _check_port
+ bl _setup_stringw
+ lwz r6,iobase(state)
+ slwi r7,r7,2
+1: lwzx r0,STRINGSRC # [rep] outsl
+ add offset,offset,r7
+ stwx r0,r6,r4
+ clrlwi offset,offset,16
+ eieio
+ bdnz 1b
+ b _finish_strw
+
+cmpsb_a16: bl _setup_stringw
+ SET_FLAGS(FLAGS_CMP(B))
+ blt 3f # repnz prefix
+1: lbzx op1,STRINGSRC # [repz] cmpsb
+ add offset,offset,r7
+ lbzx op2,STRINGDST
+ add opreg,opreg,r7
+ cmplw cr4,op1,op2
+ clrlwi offset,offset,16
+ clrlwi opreg,opreg,16
+ bdnzt CF+2,1b
+2: extsb r3,op1
+ extsb r4,op2
+ cmpw cr6,r3,r4
+ sub result,op1,op2
+ b _finish_strw
+
+3: lbzx op1,STRINGSRC # repnz cmpsb
+ add offset,offset,r7
+ lbzx op2,STRINGDST
+ add opreg,opreg,r7
+ cmplw cr4,op1,op2
+ clrlwi offset,offset,16
+ clrlwi opreg,opreg,16
+ bdnzf CF+2,3b
+ b 2b
+
+cmpsw_a16: bl _setup_stringw
+ SET_FLAGS(FLAGS_CMP(W))
+ slwi r7,r7,1
+ blt 3f # repnz prefix
+1: lhbrx op1,STRINGSRC # [repz] cmpsb
+ add offset,offset,r7
+ lhbrx op2,STRINGDST
+ add opreg,opreg,r7
+ cmplw cr4,op1,op2
+ clrlwi offset,offset,16
+ clrlwi opreg,opreg,16
+ bdnzt CF+2,1b
+2: extsh r3,op1
+ extsh r4,op2
+ cmpw cr6,r3,r4
+ sub result,op1,op2
+ b _finish_strw
+
+3: lhbrx op1,STRINGSRC # repnz cmpsw
+ add offset,offset,r7
+ lhbrx op2,STRINGDST
+ add opreg,opreg,r7
+ cmplw cr4,op1,op2
+ clrlwi offset,offset,16
+ clrlwi opreg,opreg,16
+ bdnzf CF+2,3b
+ b 2b
+
+cmpsl_a16: bl _setup_stringw
+ SET_FLAGS(FLAGS_CMP(L))
+ slwi r7,r7,2
+ blt 3f # repnz prefix
+1: lwbrx op1,STRINGSRC # [repz] cmpsl
+ add offset,offset,r7
+ lwbrx op2,STRINGDST
+ add opreg,opreg,r7
+ cmplw cr4,op1,op2
+ clrlwi offset,offset,16
+ clrlwi opreg,opreg,16
+ bdnzt CF+2,1b
+2: cmpw cr6,op1,op2
+ sub result,op1,op2
+ b _finish_strw
+
+3: lwbrx op1,STRINGSRC # repnz cmpsl
+ add offset,offset,r7
+ lwbrx op2,STRINGDST
+ add opreg,opreg,r7
+ cmplw cr4,op1,op2
+ clrlwi offset,offset,16
+ clrlwi opreg,opreg,16
+ bdnzf CF+2,3b
+ b 2b
+
+scasb_a16: bl _setup_stringw
+ lbzx op1,AL,state # AL
+ SET_FLAGS(FLAGS_CMP(B))
+ bgt 3f # repz prefix
+1: lbzx op2,STRINGDST # [repnz] scasb
+ add opreg,opreg,r7
+ cmplw cr4,op1,op2
+ clrlwi opreg,opreg,16
+ bdnzf CF+2,1b
+2: extsb r3,op1
+ extsb r4,op2
+ cmpw cr6,r3,r4
+ sub result,op1,op2
+ b _finish_strw
+
+3: lbzx op2,STRINGDST # repz scasb
+ add opreg,opreg,r7
+ cmplw cr4,op1,op2
+ clrlwi opreg,opreg,16
+ bdnzt CF+2,3b
+ b 2b
+
+scasw_a16: bl _setup_stringw
+ lhbrx op1,AX,state
+ SET_FLAGS(FLAGS_CMP(W))
+ slwi r7,r7,1
+ bgt 3f # repz prefix
+1: lhbrx op2,STRINGDST # [repnz] scasw
+ add opreg,opreg,r7
+ cmplw cr4,op1,op2
+ clrlwi opreg,opreg,16
+ bdnzf CF+2,1b
+2: extsh r3,op1
+ extsh r4,op2
+ cmpw cr6,r3,r4
+ sub result,op1,op2
+ b _finish_strw
+
+3: lhbrx op2,STRINGDST # repz scasw
+ add opreg,opreg,r7
+ cmplw cr4,op1,op2
+ clrlwi opreg,opreg,16
+ bdnzt CF+2,3b
+ b 2b
+
+scasl_a16: bl _setup_stringw
+ lwbrx op1,EAX,state
+ SET_FLAGS(FLAGS_CMP(L))
+ slwi r7,r7,2
+ bgt 3f # repz prefix
+1: lwbrx op2,STRINGDST # [repnz] scasl
+ add opreg,opreg,r7
+ cmplw cr4,op1,op2
+ clrlwi opreg,opreg,16
+ bdnzf CF+2,1b
+2: cmpw cr6,op1,op2
+ sub result,op1,op2
+ b _finish_strw
+
+3: lwbrx op2,STRINGDST # repz scasl
+ add opreg,opreg,r7
+ cmplw cr4,op1,op2
+ clrlwi opreg,opreg,16
+ bdnzt CF+2,3b
+ b 2b
+
+ .equ lodsb_a32, unimpl
+ .equ lodsw_a32, unimpl
+ .equ lodsl_a32, unimpl
+ .equ stosb_a32, unimpl
+ .equ stosw_a32, unimpl
+ .equ stosl_a32, unimpl
+ .equ movsb_a32, unimpl
+ .equ movsw_a32, unimpl
+ .equ movsl_a32, unimpl
+ .equ insb_a32, unimpl
+ .equ insw_a32, unimpl
+ .equ insl_a32, unimpl
+ .equ outsb_a32, unimpl
+ .equ outsw_a32, unimpl
+ .equ outsl_a32, unimpl
+ .equ cmpsb_a32, unimpl
+ .equ cmpsw_a32, unimpl
+ .equ cmpsl_a32, unimpl
+ .equ scasb_a32, unimpl
+ .equ scasw_a32, unimpl
+ .equ scasl_a32, unimpl
+
+xlatb_a16: li offset,BX
+ lbz r3,AL(state)
+ lhbrx offset,offset,state
+ add r3,r3,base
+ lbzx r3,r3,offset
+ stb r3,AL(state)
+ NEXT
+
+ .equ xlatb_a32, unimpl
+
+/*
+ * Shift and rotates: note the oddity that rotates do not affect SF/ZF/AF/PF
+ * but shifts do. Also testing has indicated that rotates with a count of zero
+ * do not affect any flag. The documentation specifies this for shifts but
+ * is more obscure for rotates. The overflow flag setting is only specified
+ * when count is 1, otherwise OF is undefined which simplifies emulation.
+ */
+
+/*
+ * The rotates through carry are among the most difficult instructions,
+ * they are implemented as a shift of 2*n+some bits depending on case.
+ * First the left rotates through carry.
+ */
+
+/* Byte rcl is performed on 18 bits (17 actually used) in a single register */
+rclb_imm: NEXTBYTE(r3)
+ b 1f
+rclb_cl: lbz r3,CL(state)
+ b 1f
+rclb_1: li r3,1
+1: lbzx r0,MEM
+ andi. r3,r3,31 # count%32
+ addc r4,flags,flags # CF_IN->xer[ca]
+ RES2CF(r6)
+ subfe r4,result,op1
+ mulli r5,r3,29 # 29=ceil(256/9)
+ CF_ROTCNT(r7)
+ addze r6,r6
+ CF_POL_INSERT(r0,23)
+ srwi r5,r5,8 # count/9
+ rlwnm r6,r6,r7,0x100
+ xor r0,r0,r6 # (23)0:CF:data8
+ rlwimi r5,r5,3,26,28 # 9*(count/9)
+ rlwimi r0,r0,23,0,7 # CF:(data8):(14)0:CF:data8
+ sub r3,r3,r5 # count%9
+ beq- nop # no flags changed if count 0
+ ROTATE_FLAGS
+ rlwnm r0,r0,r3,0x000001ff # (23)0:NewCF:Result8
+ rlwimi flags,r0,19,CF_VALUE
+ stbx r0,MEM
+ rlwimi flags,r0,18,OF_XOR
+ NEXT
+
+/* Word rcl is performed on 33 bits (CF:data16:CF:(15 MSB of data16) */
+rclw_imm: NEXTBYTE(r3)
+ b 1f
+rclw_cl: lbz r3,CL(state)
+ b 1f
+rclw_1: li r3,1
+1: lhbrx r0,MEM
+ andi. r3,r3,31 # count=count%32
+ addc r4,flags,flags
+ RES2CF(r6)
+ subfe r4,result,op1
+ addi r5,r3,15 # modulo 17: >=32 if >=17
+ CF_ROTCNT(r7)
+ addze r6,r6
+ addi r7,r7,8
+ CF_POL_INSERT(r0,15)
+ srwi r5,r5,5 # count/17
+ rlwnm r6,r6,r7,0x10000
+ rlwimi r5,r5,4,27,27 # 17*(count/17)
+ xor r0,r0,r6 # (15)0:CF:data16
+ sub r3,r3,r5 # count%17
+ rlwinm r4,r0,15,0xffff0000 # CF:(15 MSB of data16):(16)0
+ slw r0,r0,r3 # New carry and MSBs
+ rlwnm r4,r4,r3,16,31 # New LSBs
+ beq- nop # no flags changed if count 0
+ ROTATE_FLAGS
+ add r0,r0,r4 # result
+ rlwimi flags,r0,11,CF_VALUE
+ sthbrx r0,MEM
+ rlwimi flags,r0,10,OF_XOR
+ NEXT
+
+/* Longword rcl only needs 64 bits because the maximum rotate count is 31 ! */
+rcll_imm: NEXTBYTE(r3)
+ b 1f
+rcll_cl: lbz r3,CL(state)
+ b 1f
+rcll_1: li r3,1
+1: lwbrx r0,MEM
+ andi. r3,r3,31 # count=count%32
+ addc r4,r4,flags # ~XER[CA]
+ RES2CF(r6)
+ subfe r4,result,op1
+ CF_ROTCNT(r7)
+ addze r6,r6
+ srwi r4,r0,1 # 0:(31 MSB of data32)
+ addi r7,r7,23
+ CF_POL_INSERT(r4,0)
+ rlwnm r6,r6,r7,0,0
+ beq- nop # no flags changed if count 0
+ subfic r5,r3,32
+ xor r4,r4,r6
+ ROTATE_FLAGS
+ slw r0,r0,r3 # New MSBs
+ srw r5,r4,r5 # New LSBs
+ rlwnm r4,r4,r3,0,0 # New Carry
+ add r0,r0,r5 # result
+ rlwimi flags,r4,28,CF_VALUE
+ rlwimi flags,r0,27,OF_XOR
+ stwbrx r0,MEM
+ NEXT
+
+/* right rotates through carry are even worse because PPC only has a left
+rotate instruction. Somewhat tough when combined with modulo 9, 17, or
+33 operation and the rules of OF and CF flag settings. */
+/* Byte rcr is performed on 17 bits */
+rcrb_imm: NEXTBYTE(r3)
+ b 1f
+rcrb_cl: lbz r3,CL(state)
+ b 1f
+rcrb_1: li r3,1
+1: lbzx r0,MEM
+ andi. r3,r3,31 # count%32
+ addc r4,flags,flags # cf_in->xer[ca]
+ RES2CF(r6)
+ mulli r5,r3,29 # 29=ceil(256/9)
+ subfe r4,result,op1
+ CF_ROTCNT(r7)
+ addze r6,r6
+ CF_POL_INSERT(r0,23)
+ srwi r5,r5,8 # count/9
+ rlwimi r0,r0,9,0x0001fe00 # (15)0:data8:0:data8
+ rlwnm r6,r6,r7,0x100
+ rlwimi r5,r5,3,26,28 # 9*(count/9)
+ xor r0,r0,r6 # (15)0:data8:CF:data8
+ sub r3,r3,r5 # count%9
+ beq- nop # no flags changed if count 0
+ ROTATE_FLAGS
+ srw r0,r0,r3 # (23)junk:NewCF:Result8
+ rlwimi flags,r0,19,CF_VALUE|OF_XOR
+ stbx r0,MEM
+ NEXT
+
+/* Word rcr is a 33 bit right shift with a quirk, because the 33rd bit
+is only needed when the rotate count is 16 and rotating left or right
+by 16 a 32 bit quantity is the same ! */
+rcrw_imm: NEXTBYTE(r3)
+ b 1f
+rcrw_cl: lbz r3,CL(state)
+ b 1f
+rcrw_1: li r3,1
+1: lhbrx r0,MEM
+ andi. r3,r3,31 # count%32
+ addc r4,flags,flags # cf_in->xer[ca]
+ RES2CF(r6)
+ subfe r4,result,op1
+ addi r5,r3,15 # >=32 if >=17
+ CF_ROTCNT(r7)
+ addze r6,r6
+ addi r7,r7,8
+ CF_POL_INSERT(r0,15)
+ srwi r5,r5,5 # count/17
+ rlwnm r6,r6,r7,0x10000
+ rlwinm r7,r0,16,0x01 # MSB of data16
+ rlwimi r0,r0,17,0xfffe0000 # (15 MSB of data16):0:data16
+ rlwimi r5,r5,4,27,27 # 17*(count/17)
+ xor r0,r0,r6 # (15 MSB of data16):CF:data16
+ sub r3,r3,r5 # count%17
+ beq- nop # no flags changed if count 0
+ srw r0,r0,r3 # shift right
+ rlwnm r7,r7,r3,0x10000 # just in case count=16
+ ROTATE_FLAGS
+ add r0,r0,r7 # junk15:NewCF:result16
+ rlwimi flags,r0,11,CF_VALUE|OF_XOR
+ sthbrx r0,MEM
+ NEXT
+
+/* Longword rcr need only 64 bits since the rotate count is limited to 31 */
+rcrl_imm: NEXTBYTE(r3)
+ b 1f
+rcrl_cl: lbz r3,CL(state)
+ b 1f
+rcrl_1: li r3,1
+1: lwbrx r0,MEM
+ andi. r3,r3,31 # count%32
+ addc r4,flags,flags
+ RES2CF(r6)
+ subfe r4,result,op1
+ CF_ROTCNT(r7)
+ slwi r4,r0,1 # (31MSB of data32):0
+ addze r6,r6
+ addi r7,r7,24
+ CF_POL_INSERT(r4,31)
+ rlwnm r6,r6,r7,0x01
+ beq- nop # no flags changed if count 0
+ subfic r7,r3,32
+ xor r4,r4,r6
+ srw r0,r0,r3 # Result LSB
+ slw r5,r4,r7 # Result MSB
+ srw r4,r4,r3 # NewCF in LSB
+ add r0,r0,r5 # result
+ rlwimi flags,r4,27,CF_VALUE
+ stwbrx r0,MEM
+ rlwimi flags,r0,27,OF_XOR
+ NEXT
+
+/* After the rotates through carry, normal rotates are so simple ! */
+rolb_imm: NEXTBYTE(r3)
+ b 1f
+rolb_cl: lbz r3,CL(state)
+ b 1f
+rolb_1: li r3,1
+1: lbzx r0,MEM
+ andi. r4,r3,31 # count%32 == 0 ?
+ clrlwi r3,r3,29 # count%8
+ rlwimi r0,r0,24,0xff000000 # replicate for shift in
+ beq- nop # no flags changed if count 0
+ ROTATE_FLAGS
+ rotlw r0,r0,r3
+ rlwimi flags,r0,27,CF_VALUE # New CF
+ stbx r0,MEM
+ rlwimi flags,r0,26,OF_XOR # New OF (CF xor MSB)
+ NEXT
+
+rolw_imm: NEXTBYTE(r3)
+ b 1f
+rolw_cl: lbz r3,CL(state)
+ b 1f
+rolw_1: li r3,1
+1: lhbrx r0,MEM
+ andi. r3,r3,31
+ rlwimi r0,r0,16,0,15 # duplicate
+ beq- nop # no flags changed if count 0
+ ROTATE_FLAGS
+ rotlw r0,r0,r3 # result word duplicated
+ rlwimi flags,r0,27,CF_VALUE # New CF
+ sthbrx r0,MEM
+ rlwimi flags,r0,26,OF_XOR # New OF (CF xor MSB)
+ NEXT
+
+roll_imm: NEXTBYTE(r3)
+ b 1f
+roll_cl: lbz r3,CL(state)
+ b 1f
+roll_1: li r3,1
+1: lwbrx r0,MEM
+ andi. r3,r3,31
+ beq- nop # no flags changed if count 0
+ ROTATE_FLAGS
+ rotlw r0,r0,r3 # result
+ rlwimi flags,r0,27,CF_VALUE # New CF
+ stwbrx r0,MEM
+ rlwimi flags,r0,26,OF_XOR # New OF (CF xor MSB)
+ NEXT
+
+rorb_imm: NEXTBYTE(r3)
+ b 1f
+rorb_cl: lbz r3,CL(state)
+ b 1f
+rorb_1: li r3,1
+1: lbzx r0,MEM
+ andi. r4,r3,31 # count%32 == 0 ?
+ clrlwi r3,r3,29 # count%8
+ rlwimi r0,r0,8,0x0000ff00 # replicate for shift in
+ beq- nop # no flags changed if count 0
+ ROTATE_FLAGS
+ srw r0,r0,r3
+ rlwimi flags,r0,20,CF_VALUE
+ stbx r0,MEM
+ rlwimi flags,r0,19,OF_XOR
+ NEXT
+
+rorw_imm: NEXTBYTE(r3)
+ b 1f
+rorw_cl: lbz r3,CL(state)
+ b 1f
+rorw_1: li r3,1
+1: lhbrx r0,MEM
+ andi. r4,r3,31
+ clrlwi r3,r3,28 # count %16
+ rlwimi r0,r0,16,0xffff0000 # duplicate
+ beq- nop # no flags changed if count 0
+ ROTATE_FLAGS
+ srw r0,r0,r3 # junk16:result16
+ rlwimi flags,r0,12,CF_VALUE
+ sthbrx r0,MEM
+ rlwimi flags,r0,11,OF_XOR
+ NEXT
+
+rorl_imm: NEXTBYTE(r3)
+ b 1f
+rorl_cl: lbz r3,CL(state)
+ b 1f
+rorl_1: li r3,1
+1: lwbrx r0,MEM
+ andi. r4,r3,31
+ neg r3,r3
+ beq- nop # no flags changed if count 0
+ ROTATE_FLAGS
+ rotlw r0,r0,r3 # result
+ rlwimi flags,r0,28,CF_VALUE
+ stwbrx r0,MEM
+ rlwimi flags,r0,27,OF_XOR
+ NEXT
+
+/* Right arithmetic shifts: they clear OF whenever count!=0 */
+#define SAR_FLAGS CF_ZERO|OF_ZERO|RESL
+sarb_imm: NEXTBYTE(r3)
+ b 1f
+sarb_cl: lbz r3,CL(state)
+ b 1f
+sarb_1: li r3,1
+1: lbzx r4,MEM
+ andi. r3,r3,31
+ addi r5,r3,-1
+ extsb r4,r4
+ beq- nop # no flags changed if count 0
+ SET_FLAGS(SAR_FLAGS)
+ sraw result,r4,r3
+ srw r5,r4,r5
+ stbx result,MEM
+ rlwimi flags,r5,27,CF_VALUE
+ NEXT
+
+sarw_imm: NEXTBYTE(r3)
+ b 1f
+sarw_cl: lbz r3,CL(state)
+ b 1f
+sarw_1: li r3,1
+1: lhbrx r4,MEM
+ andi. r3,r3,31
+ addi r5,r3,-1
+ extsh r4,r4
+ beq- nop # no flags changed if count 0
+ SET_FLAGS(SAR_FLAGS)
+ sraw result,r4,r3
+ srw r5,r4,r5
+ sthbrx result,MEM
+ rlwimi flags,r5,27,CF_VALUE
+ NEXT
+
+sarl_imm: NEXTBYTE(r3)
+ b 1f
+sarl_cl: lbz r3,CL(state)
+ b 1f
+sarl_1: li r3,1
+1: lwbrx r4,MEM
+ andi. r3,r3,31
+ addi r5,r3,-1
+ beq- nop # no flags changed if count 0
+ SET_FLAGS(SAR_FLAGS)
+ sraw result,r4,r3
+ srw r5,r4,r5
+ stwbrx result,MEM
+ rlwimi flags,r5,27,CF_VALUE
+ NEXT
+
+/* Left shifts are quite easy: they use the flag mechanism of add */
+shlb_imm: NEXTBYTE(r3)
+ b 1f
+shlb_cl: lbz r3,CL(state)
+ b 1f
+shlb_1: li r3,1
+1: andi. r3,r3,31
+ beq- nop # no flags changed if count 0
+ lbzx op1,MEM
+ SET_FLAGS(FLAGS_ADD(B))
+ slw result,op1,r3
+ addi op2,op1,0 # for OF computation only !
+ stbx result,MEM
+ NEXT
+
+shlw_imm: NEXTBYTE(r3)
+ b 1f
+shlw_cl: lbz r3,CL(state)
+ b 1f
+shlw_1: li r3,1
+1: andi. r3,r3,31
+ beq- nop # no flags changed if count 0
+ lhbrx op1,MEM
+ SET_FLAGS(FLAGS_ADD(W))
+ slw result,op1,r3
+ addi op2,op1,0 # for OF computation only !
+ sthbrx result,MEM
+ NEXT
+
+/* That one may be wrong */
+shll_imm: NEXTBYTE(r3)
+ b 1f
+shll_cl: lbz r3,CL(state)
+ b 1f
+shll_1: li r3,1
+1: andi. r3,r3,31
+ beq- nop # no flags changed if count 0
+ lwbrx op1,MEM
+ addi r4,r3,-1
+ SET_FLAGS(FLAGS_ADD(L))
+ slw result,op1,r3
+ addi op2,op1,0 # for OF computation only !
+ slw op1,op1,r4 # for CF computation
+ stwbrx result,MEM
+ NEXT
+
+/* Right shifts are quite complex, because of funny flag rules ! */
+shrb_imm: NEXTBYTE(r3)
+ b 1f
+shrb_cl: lbz r3,CL(state)
+ b 1f
+shrb_1: li r3,1
+1: andi. r3,r3,31
+ beq- nop # no flags changed if count 0
+ lbzx op1,MEM
+ addi r4,r3,-1
+ SET_FLAGS(FLAGS_SHR(B))
+ srw result,op1,r3
+ srw r4,op1,r4
+ li op2,-1 # for OF computation only !
+ stbx result,MEM
+ rlwimi flags,r4,27,CF_VALUE # Set CF
+ NEXT
+
+shrw_imm: NEXTBYTE(r3)
+ b 1f
+shrw_cl: lbz r3,CL(state)
+ b 1f
+shrw_1: li r3,1
+1: andi. r3,r3,31
+ beq- nop # no flags changed if count 0
+ lhbrx op1,MEM
+ addi r4,r3,-1
+ SET_FLAGS(FLAGS_SHR(W))
+ srw result,op1,r3
+ srw r4,op1,r4
+ li op2,-1 # for OF computation only !
+ sthbrx result,MEM
+ rlwimi flags,r4,27,CF_VALUE # Set CF
+ NEXT
+
+shrl_imm: NEXTBYTE(r3)
+ b 1f
+shrl_cl: lbz r3,CL(state)
+ b 1f
+shrl_1: li r3,1
+1: andi. r3,r3,31
+ beq- nop # no flags changed if count 0
+ lwbrx op1,MEM
+ addi r4,r3,-1
+ SET_FLAGS(FLAGS_SHR(L))
+ srw result,op1,r3
+ srw r4,op1,r4
+ li op2,-1 # for OF computation only !
+ stwbrx result,MEM
+ rlwimi flags,r4,27,CF_VALUE # Set CF
+ NEXT
+
+/* Double length shifts, shldw uses FLAGS_ADD for simplicity */
+shldw_imm: NEXTBYTE(r3)
+ b 1f
+shldw_cl: lbz r3,CL(state)
+1: andi. r3,r3,31
+ beq- nop
+ lhbrx op1,MEM
+ SET_FLAGS(FLAGS_ADD(W))
+ lhbrx op2,REG
+ rlwimi op1,op2,16,0,15 # op2:op1
+ addi op2,op1,0
+ rotlw result,op1,r3
+ sthbrx result,MEM
+ NEXT
+
+shldl_imm: NEXTBYTE(r3)
+ b 1f
+shldl_cl: lbz r3,CL(state)
+1: andi. r3,r3,31
+ beq- nop
+ lwbrx op1,MEM
+ SET_FLAGS(FLAGS_DBLSH(L))
+ lwbrx op2,REG
+ subfic r4,r3,32
+ slw result,op1,r3
+ srw r4,op2,r4
+ rotlw r3,op1,r3
+ or result,result,r4
+ addi op2,op1,0
+ rlwimi flags,r3,27,CF_VALUE
+ stwbrx result,MEM
+ NEXT
+
+shrdw_imm: NEXTBYTE(r3)
+ b 1f
+shrdw_cl: lbz r3,CL(state)
+1: andi. r3,r3,31
+ beq- nop
+ lhbrx op1,MEM
+ SET_FLAGS(FLAGS_DBLSH(W))
+ lhbrx op2,REG
+ addi r4,r3,-1
+ rlwimi op1,op2,16,0,15 # op2:op1
+ addi op2,op1,0
+ srw result,op1,r3
+ srw r4,op1,r4
+ sthbrx result,MEM
+ rlwimi flags,r4,27,CF_VALUE
+ NEXT
+
+shrdl_imm: NEXTBYTE(r3)
+ b 1f
+shrdl_cl: lbz r3,CL(state)
+1: andi. r3,r3,31
+ beq- nop
+ lwbrx op1,MEM
+ SET_FLAGS(FLAGS_DBLSH(L))
+ lwbrx op2,REG
+ subfic r4,r3,32
+ srw result,op1,r3
+ addi r3,r3,-1
+ slw r4,op2,r4
+ srw r3,op1,r3
+ or result,result,r4
+ addi op2,op1,0
+ rlwimi flags,r3,27,CF_VALUE
+ stwbrx result,MEM
+ NEXT
+
+/* One operand multiplies: with result double the operand size, unsigned */
+mulb: lbzx op2,MEM
+ lbz op1,AL(state)
+ mullw result,op1,op2
+ SET_FLAGS(FLAGS_MUL)
+ subfic r3,result,255
+ sthbrx result,AX,state
+ rlwimi flags,r3,0,CF_VALUE|OF_VALUE
+ NEXT
+
+mulw: lhbrx op2,MEM
+ lhbrx op1,AX,state
+ mullw result,op1,op2
+ SET_FLAGS(FLAGS_MUL)
+ li r4,DX
+ srwi r3,result,16
+ sthbrx result,AX,state
+ neg r5,r3
+ sthbrx r3,r4,state # DX
+ rlwimi flags,r5,0,CF_VALUE|OF_VALUE
+ NEXT
+
+mull: lwbrx op2,MEM
+ lwbrx op1,EAX,state
+ mullw result,op1,op2
+ mulhwu. r3,op1,op2
+ SET_FLAGS(FLAGS_MUL)
+ stwbrx result,EAX,state
+ li r4,EDX
+ stwbrx r3,r4,state
+ beq+ nop
+ oris flags,flags,(CF_SET|OF_SET)>>16
+ NEXT
+
+/* One operand multiplies: with result double the operand size, signed */
+imulb: lbzx op2,MEM
+ extsb op2,op2
+ lbz op1,AL(state)
+ extsb op1,op1
+ mullw result,op1,op2
+ SET_FLAGS(FLAGS_MUL)
+ extsb r3,result
+ sthbrx result,AX,state
+ cmpw r3,result
+ beq+ nop
+ oris flags,flags,(CF_SET|OF_SET)>>16
+ NEXT
+
+imulw: lhbrx op2,MEM
+ extsh op2,op2
+ lhbrx op1,AX,state
+ extsh op1,op1
+ mullw result,op1,op2
+ SET_FLAGS(FLAGS_MUL)
+ li r3,DX
+ extsh r4,result
+ srwi r5,result,16
+ sthbrx result,AX,state
+ cmpw r4,result
+ sthbrx r5,r3,state
+ beq+ nop
+ oris flags,flags,(CF_SET|OF_SET)>>16
+ NEXT
+
+imull: lwbrx op2,MEM
+ SET_FLAGS(FLAGS_MUL)
+ lwbrx op1,EAX,state
+ li r3,EDX
+ mulhw r4,op1,op2
+ mullw result,op1,op2
+ stwbrx r4,r3,state
+ srawi r3,result,31
+ cmpw r3,r4
+ beq+ nop
+ oris flags,flags,(CF_SET|OF_SET)>>16
+ NEXT
+
+/* Other multiplies */
+imulw_mem_reg: lhbrx op2,REG
+ extsh op2,op2
+ b 1f
+
+imulw_imm: NEXTWORD(op2)
+ extsh op2,op2
+ b 1f
+
+imulw_imm8: NEXTBYTE(op2)
+ extsb op2,op2
+1: lhbrx op1,MEM
+ extsh op1,op1
+ mullw result,op1,op2
+ SET_FLAGS(FLAGS_MUL)
+ extsh r3,result
+ sthbrx result,REG
+ cmpw r3,result
+ beq+ nop
+ oris flags,flags,(CF_SET|OF_SET)>>16
+ NEXT # SF/ZF/AF/PF undefined !
+
+imull_mem_reg: lwbrx op2,REG
+ b 1f
+
+imull_imm: NEXTDWORD(op2)
+ b 1f
+
+imull_imm8: NEXTBYTE(op2)
+ extsb op2,op2
+1: lwbrx op1,MEM
+ mullw result,op1,op2
+ SET_FLAGS(FLAGS_MUL)
+ mulhw r3,op1,op2
+ srawi r4,result,31
+ stwbrx result,REG
+ cmpw r3,r4
+ beq+ nop
+ oris flags,flags,(CF_SET|OF_SET)>>16
+ NEXT # SF/ZF/AF/PF undefined !
+
+/* aad is indeed a multiply */
+aad: NEXTBYTE(r3)
+ lbz op1,AH(state)
+ lbz op2,AL(state)
+ mullw result,op1,r3 # AH*imm
+ SET_FLAGS(FLAGS_LOG(B)) # SF/ZF/PF from result
+ add result,result,op2 # AH*imm+AL
+ slwi r3,result,8
+ sth r3,AX(state) # AH=0
+ NEXT # OF/AF/CF undefined
+
+/* Unsigned divides: we may destroy all flags */
+divb: lhbrx r4,AX,state
+ lbzx r3,MEM
+ srwi r5,r4,8
+ cmplw r5,r3
+ bnl- _divide_error
+ divwu r5,r4,r3
+ mullw r3,r5,r3
+ sub r3,r4,r3
+ stb r5,AL(state)
+ stb r3,AH(state)
+ NEXT
+
+divw: li opreg,DX
+ lhbrx r4,AX,state
+ lhbrx r5,REG
+ lhbrx r3,MEM
+ insrwi r4,r5,16,0
+ cmplw r5,r3
+ bnl- _divide_error
+ divwu r5,r4,r3
+ mullw r3,r5,r3
+ sub r3,r4,r3
+ sthbrx r5,AX,state
+ sthbrx r3,REG
+ NEXT
+
+divl: li opreg,EDX # Not yet fully implemented
+ lwbrx r3,MEM
+ lwbrx r4,REG
+ lwbrx r5,EAX,state
+ cmplw r4,r3
+ bnl- _divide_error
+ cmplwi r4,0
+ bne- 1f
+ divwu r4,r5,r3
+ mullw r3,r4,r3
+ stwbrx r4,EAX,state
+ sub r3,r5,r3
+ stwbrx r3,REG
+ NEXT
+/* full implementation of 64:32 unsigned divide, slow but rarely used */
+1: bl _div_64_32
+ stwbrx r5,EAX,state
+ stwbrx r4,REG
+ NEXT
+/*
+ * Divide r4:r5 by r3, quotient in r5, remainder in r4.
+ * The algorithm is stupid because it won't be used very often.
+ */
+_div_64_32: li r7,32
+ mtctr r7
+1: cmpwi r4,0 # always subtract in case
+ addc r5,r5,r5 # MSB is set
+ adde r4,r4,r4
+ blt 2f
+ cmplw r4,r3
+ blt 3f
+2: sub r4,r4,r3
+ addi r5,r5,1
+3: bdnz 1b
+
+/* Signed divides: we may destroy all flags */
+idivb: lbzx r3,MEM
+ lhbrx r4,AX,state
+ cmpwi r3,0
+ beq- _divide_error
+ divw r5,r4,r3
+ extsb r7,r5
+ mullw r3,r5,r3
+ cmpw r5,r7
+ sub r3,r4,r3
+ bne- _divide_error
+ stb r5,AL(state)
+ stb r3,AH(state)
+ NEXT
+
+idivw: li opreg,DX
+ lhbrx r4,AX,state
+ lhbrx r5,REG
+ lhbrx r3,MEM
+ insrwi r4,r5,16,0
+ cmpwi r3,0
+ beq- _divide_error
+ divw r5,r4,r3
+ extsh r7,r5
+ mullw r3,r5,r3
+ cmpw r5,r7
+ sub r3,r4,r3
+ bne- _divide_error
+ sthbrx r5,AX,state
+ sthbrx r3,REG
+ NEXT
+
+idivl: li opreg,EDX # Not yet fully implemented
+ lwbrx r3,MEM
+ lwbrx r5,EAX,state
+ cmpwi cr1,r3,0
+ lwbrx r4,REG
+ srwi r7,r5,31
+ beq- _divide_error
+ add. r7,r7,r4
+ bne- 1f # EDX not sign extension of EAX
+ divw r4,r5,r3
+ xoris r7,r5,0x8000 # only overflow case is
+ orc. r7,r7,r3 # 0x80000000 divided by -1
+ mullw r3,r4,r3
+ beq- _divide_error
+ stwbrx r4,EAX,state
+ sub r3,r5,r3
+ stwbrx r3,REG
+ NEXT
+
+/* full 64 by 32 signed divide, checks for overflow might be right now */
+1: srawi r6,r4,31 # absolute value of r4:r5
+ srawi r0,r3,31 # absolute value of r3
+ xor r5,r5,r6
+ xor r3,r3,r0
+ subfc r5,r6,r5
+ xor r4,r4,r6
+ sub r3,r3,r0
+ subfe r4,r6,r4
+ xor r0,r0,r6 # sign of result
+ cmplw r4,r3 # coarse overflow detection
+ bnl- _divide_error # (probably not necessary)
+ bl _div_64_32
+ xor r5,r5,r0 # apply sign to result
+ sub r5,r5,r0
+ xor. r7,r0,r5 # wrong sign: overflow
+ xor r4,r4,r6 # apply sign to remainder
+ blt- _divide_error
+ stwbrx r5,EAX,state
+ sub r4,r4,r6
+ stwbrx r4,REG
+ NEXT
+
+/* aam is indeed a divide */
+aam: NEXTBYTE(r3)
+ lbz r4,AL(state)
+ cmpwi r3,0
+ beq- _divide_error # zero divide
+ divwu op2,r4,r3 # AL/imm8
+ SET_FLAGS(FLAGS_LOG(B)) # SF/ZF/PF from AL
+ mullw r3,op2,r3 # (AL/imm8)*imm8
+ stb op2,AH(state)
+ sub result,r4,r3 # AL-imm8*(AL/imm8)
+ stb result,AL(state)
+ NEXT # OF/AF/CF undefined
+
+_divide_error: li r3,code_divide_err
+ b complex
+
+/* Instructions dealing with segment registers */
+pushw_sp_sr: li r3,SP
+ rlwinm opreg,opcode,31,27,29
+ addi r5,state,SELECTORS+2
+ lhbrx r4,state,r3
+ lhzx r0,r5,opreg
+ addi r4,r4,-2
+ sthbrx r4,state,r3
+ clrlwi r4,r4,16
+ sthbrx r0,r4,ssb
+ NEXT
+
+pushl_sp_sr: li r3,SP
+ rlwinm opreg,opcode,31,27,29
+ addi r5,state,SELECTORS+2
+ lhbrx r4,state,r3
+ lhzx r0,r5,opreg
+ addi r4,r4,-4
+ sthbrx r4,state,r3
+ clrlwi r4,r4,16
+ stwbrx r0,r4,ssb
+ NEXT
+
+movl_sr_mem: cmpwi opreg,20
+ addi opreg,opreg,SELECTORS+2
+ cmpw cr1,base,state # Only registers are sensitive
+ bgt- ud # to word/longword difference
+ lhzx r0,REG
+ bne cr1,1f
+ stwbrx r0,MEM # Actually a register
+ NEXT
+
+movw_sr_mem: cmpwi opreg,20 # SREG 0 to 5 only
+ addi opreg,opreg,SELECTORS+2
+ bgt- ud
+ lhzx r0,REG
+1: sthbrx r0,MEM
+ NEXT
+
+/* Now the instructions that modify the segment registers, note that
+move/pop to ss disable interrupts and traps for one instruction ! */
+popl_sp_sr: li r6,4
+ b 1f
+popw_sp_sr: li r6,2
+1: li r7,SP
+ rlwinm opreg,opcode,31,27,29
+ lhbrx offset,state,r7
+ addi opreg,opreg,SELBASES
+ lhbrx r4,ssb,offset # new selector
+ add offset,offset,r6
+ bl _segment_load
+ sthbrx offset,state,r7 # update sp
+ cmpwi opreg,8 # is ss ?
+ stwux r3,REG
+ stw r4,SELECTORS-SELBASES(opreg)
+ lwz esb,esbase(state)
+ bne+ nop
+ lwz ssb,ssbase(state) # pop ss
+ crmove RF,TF # prevent traps
+ NEXT
+
+movw_mem_sr: cmpwi opreg,20
+ addi r7,state,SELBASES
+ bgt- ud
+ cmpwi opreg,4 # CS illegal
+ beq- ud
+ lhbrx r4,MEM
+ bl _segment_load
+ stwux r3,r7,opreg
+ cmpwi opreg,8
+ stw r4,SELECTORS-SELBASES(r7)
+ lwz esb,esbase(state)
+ bne+ nop
+ lwz ssb,ssbase(state)
+ crmove RF,TF # prevent traps
+ NEXT
+
+ .equ movl_mem_sr, movw_mem_sr
+
+/* The encoding of les/lss/lds/lfs/lgs is strange, opcode is c4/b2/c5/b4/b5
+for es/ss/ds/fs/gs which are sreg 0/2/3/4/5. And obviously there is
+no lcs instruction, it's called a far jump. */
+
+ldlptrl: lwzux r7,MEM
+ li r4,4
+ bl 1f
+ stwx r7,REG
+ NEXT
+ldlptrw: lhzux r7,MEM
+ li r4,2
+ bl 1f
+ sthx r7,REG
+ NEXT
+
+1: cmpw base,state
+ lis r3,0xc011 # es/ss/ds/fs/gs
+ rlwinm r5,opcode,2,0x0c # 00/08/04/00/04
+ mflr r0
+ addi r3,r3,0x4800 # r4=0xc0114800
+ rlwimi r5,opcode,0,0x10 # 00/18/04/10/14
+ lhbrx r4,r4,offset
+ rlwnm opcode,r3,r5,0x1c # 00/08/0c/10/14 = sreg*4 !
+ beq- ud # Only mem operands allowed !
+ bl _segment_load
+ addi r5,opcode,SELBASES
+ stwux r3,r5,state
+ mtlr r0
+ stw r4,SELECTORS-SELBASES(r5)
+ lwz esb,esbase(state) # keep shadow state in sync
+ lwz ssb,ssbase(state)
+ blr
+
+
+/* Intructions that may modify the current code segment: the next optimization
+ * might be to avoid calling C code when the code segment does not change. But
+ * it's probably not worth the effort.
+ */
+/* Far calls, jumps and returns */
+lcall_w: NEXTWORD(r4)
+ NEXTWORD(r5)
+ li r3,code_lcallw
+ b complex
+
+lcall_l: NEXTDWORD(r4)
+ NEXTWORD(r5)
+ li r3,code_lcalll
+ b complex
+
+lcallw: lhbrx r4,MEM
+ addi offset,offset,2
+ lhbrx r5,MEM
+ li r3,code_lcallw
+ b complex
+
+lcalll: lwbrx r4,MEM
+ addi offset,offset,4
+ lhbrx r5,MEM
+ li r3,code_lcalll
+ b complex
+
+ljmp_w: NEXTWORD(r4)
+ NEXTWORD(r5)
+ li r3,code_ljmpw
+ b complex
+
+ljmp_l: NEXTDWORD(r4)
+ NEXTWORD(r5)
+ li r3,code_ljmpl
+ b complex
+
+ljmpw: lhbrx r4,MEM
+ addi offset,offset,2
+ lhbrx r5,MEM
+ li r3,code_ljmpw
+ b complex
+
+ljmpl: lwbrx r4,MEM
+ addi offset,offset,4
+ lhbrx r5,MEM
+ li r3,code_ljmpl
+ b complex
+
+lretw_imm: NEXTWORD(r4)
+ b 1f
+lretw: li r4,0
+1: li r3,code_lretw
+ b complex
+
+lretl_imm: NEXTWORD(r4)
+ b 1f
+lretl: li r4,0
+1: li r3,code_lretl
+ b complex
+
+/* Interrupts */
+int: li r3,code_softint # handled by C code
+ NEXTBYTE(r4)
+ b complex
+
+int3: li r3,code_int3 # handled by C code
+ b complex
+
+into: EVAL_OF
+ bf+ OF,nop
+ li r3,code_into
+ b complex # handled by C code
+
+iretw: li r3,code_iretw # handled by C code
+ b complex
+
+iretl: li r3,code_iretl
+ b complex
+
+/* Miscellaneous flag control instructions */
+clc: oris flags,flags,(CF_IN_CR|CF_STATE_MASK|ABOVE_IN_CR)>>16
+ xoris flags,flags,(CF_IN_CR|CF_STATE_MASK|ABOVE_IN_CR)>>16
+ NEXT
+
+cmc: oris flags,flags,(CF_IN_CR|ABOVE_IN_CR)>>16
+ xoris flags,flags,(CF_IN_CR|CF_COMPLEMENT|ABOVE_IN_CR)>>16
+ NEXT
+
+stc: oris flags,flags,\
+ (CF_IN_CR|CF_LOCATION|CF_COMPLEMENT|ABOVE_IN_CR)>>16
+ xoris flags,flags,(CF_IN_CR|CF_LOCATION|ABOVE_IN_CR)>>16
+ NEXT
+
+cld: crclr DF
+ NEXT
+
+std: crset DF
+ NEXT
+
+cli: crclr IF
+ NEXT
+
+sti: crset IF
+ NEXT
+
+lahf: bl _eval_flags
+ stb r3,AH(state)
+ NEXT
+
+sahf: andis. r3,flags,OF_EXPLICIT>>16
+ lbz r0,AH(state)
+ beql+ _eval_of # save OF just in case
+ rlwinm op1,r0,31,0x08 # AF
+ rlwinm flags,flags,0,OF_STATE_MASK
+ extsb result,r0 # SF/PF
+ ZF862ZF(r0)
+ oris flags,flags,(ZF_PROTECT|ZF_IN_CR|SF_IN_CR)>>16
+ addi op2,op1,0 # AF
+ ori result,result,0x00fb # set all except PF
+ mtcrf 0x02,r0 # SF/ZF
+ rlwimi flags,r0,27,CF_VALUE # CF
+ xori result,result,0x00ff # 00 if PF set, 04 if clear
+ NEXT
+
+pushfw_sp: bl _eval_flags
+ li r4,SP
+ lhbrx r5,r4,state
+ addi r5,r5,-2
+ sthbrx r5,r4,state
+ clrlwi r5,r5,16
+ sthbrx r3,ssb,r5
+ NEXT
+
+pushfl_sp: bl _eval_flags
+ li r4,SP
+ lhbrx r5,r4,state
+ addi r5,r5,-4
+ sthbrx r5,r4,state
+ clrlwi r5,r5,16
+ stwbrx r3,ssb,r5
+ NEXT
+
+popfl_sp: li r4,SP
+ lhbrx r5,r4,state
+ lwbrx r3,ssb,r5
+ addi r5,r5,4
+ stw r3,eflags(state)
+ sthbrx r5,r4,state
+ b 1f
+
+popfw_sp: li r4,SP
+ lhbrx r5,r4,state
+ lhbrx r3,ssb,r5
+ addi r5,r5,2
+ sth r3,eflags+2(state)
+ sthbrx r5,r4,state
+1: rlwinm op1,r3,31,0x08 # AF
+ xori result,r3,4 # PF
+ ZF862ZF(r3) # cr6
+ lis flags,(OF_EXPLICIT|ZF_PROTECT|ZF_IN_CR|SF_IN_CR)>>16
+ addi op2,op1,0 # AF
+ rlwinm result,result,0,0x04 # PF
+ rlwimi flags,r3,27,CF_VALUE # CF
+ mtcrf 0x6,r3 # IF,DF,TF,SF,ZF
+ rlwimi result,r3,24,0,0 # SF
+ rlwimi flags,r3,15,OF_VALUE # OF
+ NEXT
+
+/* SETcc is slightly faster for setz/setnz */
+setz: EVAL_ZF
+ bt ZF,1f
+0: cmpwi opreg,0
+ bne- ud
+ stbx opreg,MEM
+ NEXT
+
+setnz: EVAL_ZF
+ bt ZF,0b
+1: cmpwi opreg,0
+ bne- ud
+ stbx one,MEM
+ NEXT
+
+#define SETCC(cond, eval, flag) \
+set##cond: EVAL_##eval; bt flag,1b; b 0b; \
+setn##cond: EVAL_##eval; bt flag,0b; b 1b
+
+ SETCC(c, CF, CF)
+ SETCC(a, ABOVE, ABOVE)
+ SETCC(s, SF, SF)
+ SETCC(g, SIGNED, SGT)
+ SETCC(l, SIGNED, SLT)
+ SETCC(o, OF, OF)
+ SETCC(p, PF, PF)
+
+/* No wait for a 486SX */
+ .equ wait, nop
+
+/* ARPL is not recognized in real mode */
+ .equ arpl, ud
+
+/* clts and in general control and debug registers are not implemented */
+ .equ clts, unimpl
+
+aaa: lhbrx r0,AX,state
+ bl _eval_af
+ rlwinm r3,r3,0,0x10
+ SET_FLAGS(FLAGS_ADD(W))
+ rlwimi r3,r0,0,0x0f
+ li r4,0x106
+ addi r3,r3,-10
+ srwi r3,r3,16 # carry ? 0 : 0xffff
+ andc op1,r4,r3 # carry ? 0x106 : 0
+ add result,r0,op1
+ rlwinm result,result,0,28,23 # clear high half of AL
+ li op2,10 # sets AF indirectly
+ sthbrx r3,AX,state # OF/SF/ZF/PF undefined !
+ rlwimi result,op1,8,0x10000 # insert CF
+ NEXT
+
+aas: lhbrx r0,AX,state
+ bl _eval_af
+ rlwinm r3,r3,0,0x10
+ SET_FLAGS(FLAGS_ADD(W))
+ rlwimi r3,r0,0,0x0f # AF:AL&0x0f
+ li r4,0x106
+ addi r3,r3,-10
+ srwi r3,r3,16 # carry ? 0 : 0xffff
+ andc op1,r4,r3 # carry ? 0x106 : 0
+ sub result,r0,op1
+ rlwinm result,result,0,28,23 # clear high half of AL
+ li op2,10 # sets AF indirectly
+ sthbrx r3,AX,state # OF/SF/ZF/PF undefined !
+ rlwimi result,op1,8,0x10000 # insert CF
+ NEXT
+
+daa: lbz r0,AL(state)
+ bl _eval_af
+ rlwinm r7,r3,0,0x10
+ bl _eval_cf # r3=CF<<8
+ rlwimi r7,r0,0,0x0f
+ SET_FLAGS(FLAGS_ADD(B))
+ addi r4,r7,-10
+ rlwinm r4,r4,3,0x06 # 6 if AF or >9, 0 otherwise
+ srwi op1,r7,1 # 0..4, no AF, 5..f AF set
+ add r0,r0,r4 # conditional add
+ li op2,11 # sets AF depnding on op1
+ or r0,r0,r3
+ subfic r3,r0,159
+ rlwinm r3,r3,7,0x60 # mask value to add
+ add result,r0,r3 # final result for SF/ZF/PF
+ stb result,AL(state)
+ rlwimi result,r3,2,0x100 # set CF if added
+ NEXT
+
+das: lbz r0,AL(state)
+ bl _eval_af
+ rlwinm r7,r3,0,0x10
+ bl _eval_cf
+ rlwimi r7,r0,0,0x0f
+ SET_FLAGS(FLAGS_ADD(B))
+ addi r4,r7,-10
+ rlwinm r4,r4,3,0x06
+ srwi op1,r7,1 # 0..4, no AF, 5..f AF set
+ sub r0,r0,r4 # conditional add
+ li op2,11 # sets AF depending on op1
+ or r4,r0,r3 # insert CF
+ addi r3,r4,-160
+ rlwinm r3,r3,7,0x60 # mask value to add
+ sub result,r4,r3 # final result for SF/ZF/PF
+ stb result,AL(state)
+ rlwimi result,r3,2,0x100 # set CF
+ NEXT
+
+/* 486 specific instructions */
+
+/* For cmpxchg, only the zero flag is important */
+
+cmpxchgb: lbz op1,AL(state)
+ SET_FLAGS(FLAGS_SUB(B)|ZF_IN_CR)
+ lbzx op2,MEM
+ cmpw cr6,op1,op2
+ sub result,op1,op2
+ bne cr6,1f
+ lbzx r3,REG # success: swap
+ stbx r3,MEM
+ NEXT
+1: stb op2,AL(state)
+ NEXT
+
+cmpxchgw: lhbrx op1,AX,state
+ SET_FLAGS(FLAGS_SUB(W)|ZF_IN_CR)
+ lhbrx op2,MEM
+ cmpw cr6,op1,op2
+ sub result,op1,op2
+ bne cr6,1f
+ lhzx r3,REG # success: swap
+ sthx r3,MEM
+ NEXT
+1: sthbrx op2,AX,state
+ NEXT
+
+cmpxchgl: lwbrx op1,EAX,state
+ SET_FLAGS(FLAGS_SUB(L)|ZF_IN_CR|SIGNED_IN_CR)
+ lwbrx op2,MEM
+ cmpw cr6,op1,op2
+ sub result,op1,op2
+ bne cr6,1f
+ lwzx r3,REG # success: swap
+ stwx r3,MEM
+ NEXT
+1: stwbrx op2,EAX,state
+ NEXT
+
+xaddb: lbzx op2,MEM
+ SET_FLAGS(FLAGS_ADD(B))
+ lbzx op1,REG
+ add result,op1,op2
+ stbx result,MEM
+ stbx op2,REG
+ NEXT
+
+xaddw: lhbrx op2,MEM
+ SET_FLAGS(FLAGS_ADD(W))
+ lhbrx op1,REG
+ add result,op1,op2
+ sthbrx result,MEM
+ sthbrx op2,REG
+ NEXT
+
+xaddl: lwbrx op2,MEM
+ SET_FLAGS(FLAGS_ADD(L))
+ lwbrx op1,REG
+ add result,op1,op2
+ stwbrx result,MEM
+ stwbrx op2,REG
+ NEXT
+
+/* All FPU instructions skipped. This is a 486 SX ! */
+esc: li r3,code_dna # DNA interrupt
+ b complex
+
+ .equ hlt, unimpl # Cannot stop
+
+ .equ invd, unimpl
+
+/* Undefined in real address mode */
+ .equ lar, ud
+
+ .equ lgdt, unimpl
+ .equ lidt, unimpl
+ .equ lldt, ud
+ .equ lmsw, unimpl
+
+/* protected mode only */
+ .equ lsl, ud
+ .equ ltr, ud
+
+ .equ movl_cr_reg, unimpl
+ .equ movl_reg_cr, unimpl
+ .equ movl_dr_reg, unimpl
+ .equ movl_reg_dr, unimpl
+
+ .equ sgdt, unimpl
+
+ .equ sidt, unimpl
+ .equ sldt, ud
+ .equ smsw, unimpl
+
+ .equ str, ud
+
+ud: li r3,code_ud
+ li r4,0
+ b complex
+
+unimpl: li r3,code_ud
+ li r4,1
+ b complex
+
+ .equ verr, ud
+ .equ verw, ud
+ .equ wbinvd, unimpl
+
+em86_end:
+ .size em86_enter,em86_end-em86_enter
+#ifdef __BOOT__
+ .data
+#define ENTRY(x,t) .long x+t-_jtables
+#else
+ .section .rodata
+#define ENTRY(x,t) .long x+t
+#endif
+
+#define BOP(x) ENTRY(x,2) /* Byte operation with mod/rm byte */
+#define WLOP(x) ENTRY(x,3) /* 16 or 32 bit operation with mod/rm byte */
+#define EXTOP(x) ENTRY(x,0) /* Opcode with extension in mod/rm byte */
+#define OP(x) ENTRY(x,1) /* Direct one byte opcode/prefix */
+
+/* A few macros for the main table */
+#define gen6(op, wl, axeax) \
+ BOP(op##b##_reg_mem); WLOP(op##wl##_reg_mem); \
+ BOP(op##b##_mem_reg); WLOP(op##wl##_mem_reg); \
+ OP(op##b##_imm_al); OP(op##wl##_imm_##axeax)
+
+#define rep7(l,t) \
+ ENTRY(l,t); ENTRY(l,t); ENTRY(l,t); ENTRY(l,t); \
+ ENTRY(l,t); ENTRY(l,t); ENTRY(l,t)
+
+#define rep8(l) l ; l; l; l; l; l; l; l;
+
+#define allcond(pfx, sfx, t) \
+ ENTRY(pfx##o##sfx, t); ENTRY(pfx##no##sfx, t); \
+ ENTRY(pfx##c##sfx, t); ENTRY(pfx##nc##sfx, t); \
+ ENTRY(pfx##z##sfx, t); ENTRY(pfx##nz##sfx, t); \
+ ENTRY(pfx##na##sfx, t); ENTRY(pfx##a##sfx, t); \
+ ENTRY(pfx##s##sfx, t); ENTRY(pfx##ns##sfx, t); \
+ ENTRY(pfx##p##sfx, t); ENTRY(pfx##np##sfx, t); \
+ ENTRY(pfx##l##sfx, t); ENTRY(pfx##nl##sfx, t); \
+ ENTRY(pfx##ng##sfx, t); ENTRY(pfx##g##sfx, t)
+
+/* single/double register sign extensions and other oddities */
+#define h2sextw cbw /* Half to Single sign extension */
+#define s2dextw cwd /* Single to Double sign extension */
+#define h2sextl cwde
+#define s2dextl cdq
+#define j_a16_cxz_w jcxz_w
+#define j_a32_cxz_w jecxz_w
+#define j_a16_cxz_l jcxz_l
+#define j_a32_cxz_l jecxz_l
+#define loopa16_w loopw_w
+#define loopa16_l loopw_l
+#define loopa32_w loopl_w
+#define loopa32_l loopl_l
+#define loopnza16_w loopnzw_w
+#define loopnza16_l loopnzw_l
+#define loopnza32_w loopnzl_w
+#define loopnza32_l loopnzl_l
+#define loopza16_w loopzw_w
+#define loopza16_l loopzw_l
+#define loopza32_w loopzl_w
+#define loopza32_l loopzl_l
+/* No FP support */
+
+/* Addressing mode table */
+ .align 5
+# (%bx,%si), (%bx,%di), (%bp,%si), (%bp,%di)
+adtable: .long 0x00004360, 0x00004370, 0x80004560, 0x80004570
+# (%si), (%di), o16, (%bx)
+ .long 0x00004600, 0x00004700, 0x00002000, 0x00004300
+# o8(%bx,%si), o8(%bx,%di), o8(%bp,%si), o8(%bp,%di)
+ .long 0x00004360, 0x00004370, 0x80004560, 0x80004570
+# o8(%si), o8(%di), o8(%bp), o8(%bx)
+ .long 0x00004600, 0x00004700, 0x80004500, 0x00004300
+# o16(%bx,%si), o16(%bx,%di), o16(%bp,%si), o16(%bp,%di)
+ .long 0x00004360, 0x00004370, 0x80004560, 0x80004570
+# o16(%si), o16(%di), o16(%bp), o16(%bx)
+ .long 0x00004600, 0x00004700, 0x80004500, 0x00004300
+# register addressing modes do not use the table
+ .long 0, 0, 0, 0, 0, 0, 0, 0
+#now 32 bit modes
+# (%eax), (%ecx), (%edx), (%ebx)
+ .long 0x00004090, 0x00004190, 0x00004290, 0x00004390
+# sib, o32, (%esi), (%edi)
+ .long 0x00003090, 0x00002090, 0x00004690, 0x00004790
+# o8(%eax), o8(%ecx), o8(%edx), o8(%ebx)
+ .long 0x00004090, 0x00004190, 0x00004290, 0x00004390
+# sib, o8(%ebp), o8(%esi), o8(%edi)
+ .long 0x00003090, 0x80004590, 0x00004690, 0x00004790
+# o32(%eax), o32(%ecx), o32(%edx), o32(%ebx)
+ .long 0x00004090, 0x00004190, 0x00004290, 0x00004390
+# sib, o32(%ebp), o32(%esi), o32(%edi)
+ .long 0x00003090, 0x80004590, 0x00004690, 0x00004790
+# register addressing modes do not use the table
+ .long 0, 0, 0, 0, 0, 0, 0, 0
+
+#define jtable(wl, awl, spesp, axeax, name ) \
+ .align 5; \
+jtab_##name: gen6(add, wl, axeax); \
+ OP(push##wl##_##spesp##_sr); \
+ OP(pop##wl##_##spesp##_sr); \
+ gen6(or, wl, axeax); \
+ OP(push##wl##_##spesp##_sr); \
+ OP(_twobytes); \
+ gen6(adc, wl, axeax); \
+ OP(push##wl##_##spesp##_sr); \
+ OP(pop##wl##_##spesp##_sr); \
+ gen6(sbb, wl, axeax); \
+ OP(push##wl##_##spesp##_sr); \
+ OP(pop##wl##_##spesp##_sr); \
+ gen6(and, wl, axeax); OP(_es); OP(daa); \
+ gen6(sub, wl, axeax); OP(_cs); OP(das); \
+ gen6(xor, wl, axeax); OP(_ss); OP(aaa); \
+ gen6(cmp, wl, axeax); OP(_ds); OP(aas); \
+ rep8(OP(inc##wl##_reg)); \
+ rep8(OP(dec##wl##_reg)); \
+ rep8(OP(push##wl##_##spesp##_reg)); \
+ rep8(OP(pop##wl##_##spesp##_reg)); \
+ OP(pusha##wl##_##spesp); OP(popa##wl##_##spesp); \
+ WLOP(bound##wl); WLOP(arpl); \
+ OP(_fs); OP(_gs); OP(_opsize); OP(_adsize); \
+ OP(push##wl##_##spesp##_imm); WLOP(imul##wl##_imm); \
+ OP(push##wl##_##spesp##_imm8); WLOP(imul##wl##_imm8); \
+ OP(insb_##awl); OP(ins##wl##_##awl); \
+ OP(outsb_##awl); OP(outs##wl##_##awl); \
+ allcond(sj,_##wl,1); \
+ EXTOP(grp1b_imm); EXTOP(grp1##wl##_imm); \
+ EXTOP(grp1b_imm); EXTOP(grp1##wl##_imm8); \
+ BOP(testb_reg_mem); WLOP(test##wl##_reg_mem); \
+ BOP(xchgb_reg_mem); WLOP(xchg##wl##_reg_mem); \
+ BOP(movb_reg_mem); WLOP(mov##wl##_reg_mem); \
+ BOP(movb_mem_reg); WLOP(mov##wl##_mem_reg); \
+ WLOP(mov##wl##_sr_mem); WLOP(lea##wl); \
+ WLOP(mov##wl##_mem_sr); WLOP(pop##wl##_##spesp##_##awl); \
+ OP(nop); rep7(xchg##wl##_##axeax##_reg,1); \
+ OP(h2sext##wl); OP(s2dext##wl); \
+ OP(lcall_##wl); OP(wait); \
+ OP(pushf##wl##_##spesp); OP(popf##wl##_##spesp); \
+ OP(sahf); OP(lahf); \
+ OP(movb_##awl##_al); OP(mov##wl##_##awl##_##axeax); \
+ OP(movb_al_##awl); OP(mov##wl##_##axeax##_##awl); \
+ OP(movsb_##awl); OP(movs##wl##_##awl); \
+ OP(cmpsb_##awl); OP(cmps##wl##_##awl); \
+ OP(testb_imm_al); OP(test##wl##_imm_##axeax); \
+ OP(stosb_##awl); OP(stos##wl##_##awl); \
+ OP(lodsb_##awl); OP(lods##wl##_##awl); \
+ OP(scasb_##awl); OP(scas##wl##_##awl); \
+ rep8(OP(movb_imm_reg)); \
+ rep8(OP(mov##wl##_imm_reg)); \
+ EXTOP(shiftb_imm); EXTOP(shift##wl##_imm); \
+ OP(ret##wl##_##spesp##_imm); OP(ret##wl##_##spesp); \
+ WLOP(ldlptr##wl); WLOP(ldlptr##wl); \
+ BOP(movb_imm_mem); WLOP(mov##wl##_imm_mem); \
+ OP(enter##wl##_##spesp); OP(leave##wl##_##spesp); \
+ OP(lret##wl##_imm); OP(lret##wl); \
+ OP(int3); OP(int); OP(into); OP(iret##wl); \
+ EXTOP(shiftb_1); EXTOP(shift##wl##_1); \
+ EXTOP(shiftb_cl); EXTOP(shift##wl##_cl); \
+ OP(aam); OP(aad); OP(ud); OP(xlatb_##awl); \
+ rep8(OP(esc)); \
+ OP(loopnz##awl##_##wl); OP(loopz##awl##_##wl); \
+ OP(loop##awl##_##wl); OP(j_##awl##_cxz_##wl); \
+ OP(inb_port_al); OP(in##wl##_port_##axeax); \
+ OP(outb_al_port); OP(out##wl##_##axeax##_port); \
+ OP(call##wl##_##spesp); OP(jmp_##wl); \
+ OP(ljmp_##wl); OP(sjmp_##wl); \
+ OP(inb_dx_al); OP(in##wl##_dx_##axeax); \
+ OP(outb_al_dx); OP(out##wl##_##axeax##_dx); \
+ OP(_lock); OP(ud); OP(_repnz); OP(_repz); \
+ OP(hlt); OP(cmc); \
+ EXTOP(grp3b); EXTOP(grp3##wl); \
+ OP(clc); OP(stc); OP(cli); OP(sti); \
+ OP(cld); OP(std); \
+ EXTOP(grp4b); EXTOP(grp5##wl##_##spesp); \
+ /* Here we start the table for twobyte instructions */ \
+ OP(ud); OP(ud); WLOP(lar); WLOP(lsl); \
+ OP(ud); OP(ud); OP(clts); OP(ud); \
+ OP(invd); OP(wbinvd); OP(ud); OP(ud); \
+ OP(ud); OP(ud); OP(ud); OP(ud); \
+ rep8(OP(ud)); \
+ rep8(OP(ud)); \
+ OP(movl_cr_reg); OP(movl_reg_cr); \
+ OP(movl_dr_reg); OP(movl_reg_dr); \
+ OP(ud); OP(ud); OP(ud); OP(ud); \
+ rep8(OP(ud)); \
+ /* .long wrmsr, rdtsc, rdmsr, rdpmc; */\
+ rep8(OP(ud)); \
+ rep8(OP(ud)); \
+ /* allcond(cmov, wl); */ \
+ rep8(OP(ud)); rep8(OP(ud)); \
+ rep8(OP(ud)); rep8(OP(ud)); \
+ /* MMX Start */ \
+ rep8(OP(ud)); rep8(OP(ud)); \
+ rep8(OP(ud)); rep8(OP(ud)); \
+ /* MMX End */ \
+ allcond(j,_##wl, 1); \
+ allcond(set,,2); \
+ OP(push##wl##_##spesp##_sr); OP(pop##wl##_##spesp##_sr); \
+ OP(ud) /* cpuid */; WLOP(bt##wl##_reg_mem); \
+ WLOP(shld##wl##_imm); WLOP(shld##wl##_cl); \
+ OP(ud); OP(ud); \
+ OP(push##wl##_##spesp##_sr); OP(pop##wl##_##spesp##_sr); \
+ OP(ud) /* rsm */; WLOP(bts##wl##_reg_mem); \
+ WLOP(shrd##wl##_imm); WLOP(shrd##wl##_cl); \
+ OP(ud); WLOP(imul##wl##_mem_reg); \
+ BOP(cmpxchgb); WLOP(cmpxchg##wl); \
+ WLOP(ldlptr##wl); WLOP(btr##wl##_reg_mem); \
+ WLOP(ldlptr##wl); WLOP(ldlptr##wl); \
+ WLOP(movzb##wl); WLOP(movzw##wl); \
+ OP(ud); OP(ud); \
+ EXTOP(grp8##wl); WLOP(btc##wl##_reg_mem); \
+ WLOP(bsf##wl); WLOP(bsr##wl); \
+ WLOP(movsb##wl); WLOP(movsw##wl); \
+ BOP(xaddb); WLOP(xadd##wl); \
+ OP(ud); OP(ud); \
+ OP(ud); OP(ud); OP(ud); OP(ud); \
+ rep8(OP(bswap)); \
+ /* MMX Start */ \
+ rep8(OP(ud)); rep8(OP(ud)); \
+ rep8(OP(ud)); rep8(OP(ud)); \
+ rep8(OP(ud)); rep8(OP(ud)); \
+ /* MMX End */
+ .align 5 /* 8kb of tables, 32 byte aligned */
+_jtables: jtable(w, a16, sp, ax, www) /* data16, addr16 */
+ jtable(l, a16, sp, eax, lww) /* data32, addr16 */
+ jtable(w, a32, sp, ax, wlw) /* data16, addr32 */
+ jtable(l, a32, sp, eax, llw) /* data32, addr32 */
+/* The other possible combinations are only required by protected mode
+code using a big stack segment */
+/* Here are the auxiliary tables for opcode extensions, note that
+all entries get 2 or 3 added. */
+#define grp1table(bwl,t,s8) \
+grp1##bwl##_imm##s8:; \
+ ENTRY(add##bwl##_imm##s8,t); ENTRY(or##bwl##_imm##s8,t); \
+ ENTRY(adc##bwl##_imm##s8,t); ENTRY(sbb##bwl##_imm##s8,t); \
+ ENTRY(and##bwl##_imm##s8,t); ENTRY(sub##bwl##_imm##s8,t); \
+ ENTRY(xor##bwl##_imm##s8,t); ENTRY(cmp##bwl##_imm##s8,t)
+
+ grp1table(b,2,)
+ grp1table(w,3,)
+ grp1table(w,3,8)
+ grp1table(l,3,)
+ grp1table(l,3,8)
+
+#define shifttable(bwl,t,c) \
+shift##bwl##_##c:; \
+ ENTRY(rol##bwl##_##c,t); ENTRY(ror##bwl##_##c,t); \
+ ENTRY(rcl##bwl##_##c,t); ENTRY(rcr##bwl##_##c,t); \
+ ENTRY(shl##bwl##_##c,t); ENTRY(shr##bwl##_##c,t); \
+ OP(ud); ENTRY(sar##bwl##_##c,t)
+
+ shifttable(b,2,1)
+ shifttable(w,3,1)
+ shifttable(l,3,1)
+
+ shifttable(b,2,cl)
+ shifttable(w,3,cl)
+ shifttable(l,3,cl)
+
+ shifttable(b,2,imm)
+ shifttable(w,3,imm)
+ shifttable(l,3,imm)
+
+#define grp3table(bwl,t) \
+grp3##bwl: ENTRY(test##bwl##_imm,t); OP(ud); \
+ ENTRY(not##bwl,t); ENTRY(neg##bwl,t); \
+ ENTRY(mul##bwl,t); ENTRY(imul##bwl,t); \
+ ENTRY(div##bwl,t); ENTRY(idiv##bwl,t)
+
+ grp3table(b,2)
+ grp3table(w,3)
+ grp3table(l,3)
+
+
+grp4b: BOP(incb); BOP(decb); \
+ OP(ud); OP(ud); \
+ OP(ud); OP(ud); \
+ OP(ud); OP(ud)
+
+#define grp5table(wl,spesp) \
+grp5##wl##_##spesp: \
+ WLOP(inc##wl); WLOP(dec##wl); \
+ WLOP(call##wl##_##spesp##_mem); WLOP(lcall##wl##); \
+ WLOP(jmp##wl); WLOP(ljmp##wl); \
+ WLOP(push##wl##_##spesp); OP(ud)
+
+ grp5table(w,sp)
+ grp5table(l,sp)
+
+#define grp8table(wl) \
+grp8##wl: OP(ud); OP(ud); OP(ud); OP(ud); \
+ WLOP(bt##wl##_imm); WLOP(bts##wl##_imm); \
+ WLOP(btr##wl##_imm); WLOP(btc##wl##_imm)
+
+ grp8table(w)
+ grp8table(l)
+#ifdef __BOOT__
+_endjtables: .long 0 /* Points to _jtables after relocation */
+#endif
+