summaryrefslogtreecommitdiffstats
path: root/sebhbsd/freebsd/contrib/ntp/libntp/ntp_calendar.c
diff options
context:
space:
mode:
Diffstat (limited to 'sebhbsd/freebsd/contrib/ntp/libntp/ntp_calendar.c')
-rw-r--r--sebhbsd/freebsd/contrib/ntp/libntp/ntp_calendar.c1977
1 files changed, 1977 insertions, 0 deletions
diff --git a/sebhbsd/freebsd/contrib/ntp/libntp/ntp_calendar.c b/sebhbsd/freebsd/contrib/ntp/libntp/ntp_calendar.c
new file mode 100644
index 0000000..dacc350
--- /dev/null
+++ b/sebhbsd/freebsd/contrib/ntp/libntp/ntp_calendar.c
@@ -0,0 +1,1977 @@
+#include <machine/rtems-bsd-user-space.h>
+
+/*
+ * ntp_calendar.c - calendar and helper functions
+ *
+ * Written by Juergen Perlinger (perlinger@ntp.org) for the NTP project.
+ * The contents of 'html/copyright.html' apply.
+ *
+ * --------------------------------------------------------------------
+ * Some notes on the implementation:
+ *
+ * Calendar algorithms thrive on the division operation, which is one of
+ * the slowest numerical operations in any CPU. What saves us here from
+ * abysmal performance is the fact that all divisions are divisions by
+ * constant numbers, and most compilers can do this by a multiplication
+ * operation. But this might not work when using the div/ldiv/lldiv
+ * function family, because many compilers are not able to do inline
+ * expansion of the code with following optimisation for the
+ * constant-divider case.
+ *
+ * Also div/ldiv/lldiv are defined in terms of int/long/longlong, which
+ * are inherently target dependent. Nothing that could not be cured with
+ * autoconf, but still a mess...
+ *
+ * Furthermore, we need floor division in many places. C either leaves
+ * the division behaviour undefined (< C99) or demands truncation to
+ * zero (>= C99), so additional steps are required to make sure the
+ * algorithms work. The {l,ll}div function family is requested to
+ * truncate towards zero, which is also the wrong direction for our
+ * purpose.
+ *
+ * For all this, all divisions by constant are coded manually, even when
+ * there is a joined div/mod operation: The optimiser should sort that
+ * out, if possible. Most of the calculations are done with unsigned
+ * types, explicitely using two's complement arithmetics where
+ * necessary. This minimises the dependecies to compiler and target,
+ * while still giving reasonable to good performance.
+ *
+ * The implementation uses a few tricks that exploit properties of the
+ * two's complement: Floor division on negative dividents can be
+ * executed by using the one's complement of the divident. One's
+ * complement can be easily created using XOR and a mask.
+ *
+ * Finally, check for overflow conditions is minimal. There are only two
+ * calculation steps in the whole calendar that suffer from an internal
+ * overflow, and these conditions are checked: errno is set to EDOM and
+ * the results are clamped/saturated in this case. All other functions
+ * do not suffer from internal overflow and simply return the result
+ * truncated to 32 bits.
+ *
+ * This is a sacrifice made for execution speed. Since a 32-bit day
+ * counter covers +/- 5,879,610 years and the clamp limits the effective
+ * range to +/-2.9 million years, this should not pose a problem here.
+ *
+ */
+
+#include <config.h>
+#include <sys/types.h>
+
+#include "ntp_types.h"
+#include "ntp_calendar.h"
+#include "ntp_stdlib.h"
+#include "ntp_fp.h"
+#include "ntp_unixtime.h"
+
+/* For now, let's take the conservative approach: if the target property
+ * macros are not defined, check a few well-known compiler/architecture
+ * settings. Default is to assume that the representation of signed
+ * integers is unknown and shift-arithmetic-right is not available.
+ */
+#ifndef TARGET_HAS_2CPL
+# if defined(__GNUC__)
+# if defined(__i386__) || defined(__x86_64__) || defined(__arm__)
+# define TARGET_HAS_2CPL 1
+# else
+# define TARGET_HAS_2CPL 0
+# endif
+# elif defined(_MSC_VER)
+# if defined(_M_IX86) || defined(_M_X64) || defined(_M_ARM)
+# define TARGET_HAS_2CPL 1
+# else
+# define TARGET_HAS_2CPL 0
+# endif
+# else
+# define TARGET_HAS_2CPL 0
+# endif
+#endif
+
+#ifndef TARGET_HAS_SAR
+# define TARGET_HAS_SAR 0
+#endif
+
+/*
+ *---------------------------------------------------------------------
+ * replacing the 'time()' function
+ *---------------------------------------------------------------------
+ */
+
+static systime_func_ptr systime_func = &time;
+static inline time_t now(void);
+
+
+systime_func_ptr
+ntpcal_set_timefunc(
+ systime_func_ptr nfunc
+ )
+{
+ systime_func_ptr res;
+
+ res = systime_func;
+ if (NULL == nfunc)
+ nfunc = &time;
+ systime_func = nfunc;
+
+ return res;
+}
+
+
+static inline time_t
+now(void)
+{
+ return (*systime_func)(NULL);
+}
+
+/*
+ *---------------------------------------------------------------------
+ * Get sign extension mask and unsigned 2cpl rep for a signed integer
+ *---------------------------------------------------------------------
+ */
+
+static inline uint32_t
+int32_sflag(
+ const int32_t v)
+{
+# if TARGET_HAS_2CPL && TARGET_HAS_SAR && SIZEOF_INT >= 4
+
+ /* Let's assume that shift is the fastest way to get the sign
+ * extension of of a signed integer. This might not always be
+ * true, though -- On 8bit CPUs or machines without barrel
+ * shifter this will kill the performance. So we make sure
+ * we do this only if 'int' has at least 4 bytes.
+ */
+ return (uint32_t)(v >> 31);
+
+# else
+
+ /* This should be a rather generic approach for getting a sign
+ * extension mask...
+ */
+ return UINT32_C(0) - (uint32_t)(v < 0);
+
+# endif
+}
+
+static inline uint32_t
+int32_to_uint32_2cpl(
+ const int32_t v)
+{
+ uint32_t vu;
+
+# if TARGET_HAS_2CPL
+
+ /* Just copy through the 32 bits from the signed value if we're
+ * on a two's complement target.
+ */
+ vu = (uint32_t)v;
+
+# else
+
+ /* Convert from signed int to unsigned int two's complement. Do
+ * not make any assumptions about the representation of signed
+ * integers, but make sure signed integer overflow cannot happen
+ * here. A compiler on a two's complement target *might* find
+ * out that this is just a complicated cast (as above), but your
+ * mileage might vary.
+ */
+ if (v < 0)
+ vu = ~(uint32_t)(-(v + 1));
+ else
+ vu = (uint32_t)v;
+
+# endif
+
+ return vu;
+}
+
+static inline int32_t
+uint32_2cpl_to_int32(
+ const uint32_t vu)
+{
+ int32_t v;
+
+# if TARGET_HAS_2CPL
+
+ /* Just copy through the 32 bits from the unsigned value if
+ * we're on a two's complement target.
+ */
+ v = (int32_t)vu;
+
+# else
+
+ /* Convert to signed integer, making sure signed integer
+ * overflow cannot happen. Again, the optimiser might or might
+ * not find out that this is just a copy of 32 bits on a target
+ * with two's complement representation for signed integers.
+ */
+ if (vu > INT32_MAX)
+ v = -(int32_t)(~vu) - 1;
+ else
+ v = (int32_t)vu;
+
+# endif
+
+ return v;
+}
+
+/* Some of the calculations need to multiply the input by 4 before doing
+ * a division. This can cause overflow and strange results. Therefore we
+ * clamp / saturate the input operand. And since we do the calculations
+ * in unsigned int with an extra sign flag/mask, we only loose one bit
+ * of the input value range.
+ */
+static inline uint32_t
+uint32_saturate(
+ uint32_t vu,
+ uint32_t mu)
+{
+ static const uint32_t limit = UINT32_MAX/4u;
+ if ((mu ^ vu) > limit) {
+ vu = mu ^ limit;
+ errno = EDOM;
+ }
+ return vu;
+}
+
+/*
+ *---------------------------------------------------------------------
+ * Convert between 'time_t' and 'vint64'
+ *---------------------------------------------------------------------
+ */
+vint64
+time_to_vint64(
+ const time_t * ptt
+ )
+{
+ vint64 res;
+ time_t tt;
+
+ tt = *ptt;
+
+# if SIZEOF_TIME_T <= 4
+
+ res.D_s.hi = 0;
+ if (tt < 0) {
+ res.D_s.lo = (uint32_t)-tt;
+ M_NEG(res.D_s.hi, res.D_s.lo);
+ } else {
+ res.D_s.lo = (uint32_t)tt;
+ }
+
+# elif defined(HAVE_INT64)
+
+ res.q_s = tt;
+
+# else
+ /*
+ * shifting negative signed quantities is compiler-dependent, so
+ * we better avoid it and do it all manually. And shifting more
+ * than the width of a quantity is undefined. Also a don't do!
+ */
+ if (tt < 0) {
+ tt = -tt;
+ res.D_s.lo = (uint32_t)tt;
+ res.D_s.hi = (uint32_t)(tt >> 32);
+ M_NEG(res.D_s.hi, res.D_s.lo);
+ } else {
+ res.D_s.lo = (uint32_t)tt;
+ res.D_s.hi = (uint32_t)(tt >> 32);
+ }
+
+# endif
+
+ return res;
+}
+
+
+time_t
+vint64_to_time(
+ const vint64 *tv
+ )
+{
+ time_t res;
+
+# if SIZEOF_TIME_T <= 4
+
+ res = (time_t)tv->D_s.lo;
+
+# elif defined(HAVE_INT64)
+
+ res = (time_t)tv->q_s;
+
+# else
+
+ res = ((time_t)tv->d_s.hi << 32) | tv->D_s.lo;
+
+# endif
+
+ return res;
+}
+
+/*
+ *---------------------------------------------------------------------
+ * Get the build date & time
+ *---------------------------------------------------------------------
+ */
+int
+ntpcal_get_build_date(
+ struct calendar * jd
+ )
+{
+ /* The C standard tells us the format of '__DATE__':
+ *
+ * __DATE__ The date of translation of the preprocessing
+ * translation unit: a character string literal of the form "Mmm
+ * dd yyyy", where the names of the months are the same as those
+ * generated by the asctime function, and the first character of
+ * dd is a space character if the value is less than 10. If the
+ * date of translation is not available, an
+ * implementation-defined valid date shall be supplied.
+ *
+ * __TIME__ The time of translation of the preprocessing
+ * translation unit: a character string literal of the form
+ * "hh:mm:ss" as in the time generated by the asctime
+ * function. If the time of translation is not available, an
+ * implementation-defined valid time shall be supplied.
+ *
+ * Note that MSVC declares DATE and TIME to be in the local time
+ * zone, while neither the C standard nor the GCC docs make any
+ * statement about this. As a result, we may be +/-12hrs off
+ * UTC. But for practical purposes, this should not be a
+ * problem.
+ *
+ */
+# ifdef MKREPRO_DATE
+ static const char build[] = MKREPRO_TIME "/" MKREPRO_DATE;
+# else
+ static const char build[] = __TIME__ "/" __DATE__;
+# endif
+ static const char mlist[] = "JanFebMarAprMayJunJulAugSepOctNovDec";
+
+ char monstr[4];
+ const char * cp;
+ unsigned short hour, minute, second, day, year;
+ /* Note: The above quantities are used for sscanf 'hu' format,
+ * so using 'uint16_t' is contra-indicated!
+ */
+
+# ifdef DEBUG
+ static int ignore = 0;
+# endif
+
+ ZERO(*jd);
+ jd->year = 1970;
+ jd->month = 1;
+ jd->monthday = 1;
+
+# ifdef DEBUG
+ /* check environment if build date should be ignored */
+ if (0 == ignore) {
+ const char * envstr;
+ envstr = getenv("NTPD_IGNORE_BUILD_DATE");
+ ignore = 1 + (envstr && (!*envstr || !strcasecmp(envstr, "yes")));
+ }
+ if (ignore > 1)
+ return FALSE;
+# endif
+
+ if (6 == sscanf(build, "%hu:%hu:%hu/%3s %hu %hu",
+ &hour, &minute, &second, monstr, &day, &year)) {
+ cp = strstr(mlist, monstr);
+ if (NULL != cp) {
+ jd->year = year;
+ jd->month = (uint8_t)((cp - mlist) / 3 + 1);
+ jd->monthday = (uint8_t)day;
+ jd->hour = (uint8_t)hour;
+ jd->minute = (uint8_t)minute;
+ jd->second = (uint8_t)second;
+
+ return TRUE;
+ }
+ }
+
+ return FALSE;
+}
+
+
+/*
+ *---------------------------------------------------------------------
+ * basic calendar stuff
+ *---------------------------------------------------------------------
+ */
+
+/* month table for a year starting with March,1st */
+static const uint16_t shift_month_table[13] = {
+ 0, 31, 61, 92, 122, 153, 184, 214, 245, 275, 306, 337, 366
+};
+
+/* month tables for years starting with January,1st; regular & leap */
+static const uint16_t real_month_table[2][13] = {
+ /* -*- table for regular years -*- */
+ { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365 },
+ /* -*- table for leap years -*- */
+ { 0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335, 366 }
+};
+
+/*
+ * Some notes on the terminology:
+ *
+ * We use the proleptic Gregorian calendar, which is the Gregorian
+ * calendar extended in both directions ad infinitum. This totally
+ * disregards the fact that this calendar was invented in 1582, and
+ * was adopted at various dates over the world; sometimes even after
+ * the start of the NTP epoch.
+ *
+ * Normally date parts are given as current cycles, while time parts
+ * are given as elapsed cycles:
+ *
+ * 1970-01-01/03:04:05 means 'IN the 1970st. year, IN the first month,
+ * ON the first day, with 3hrs, 4minutes and 5 seconds elapsed.
+ *
+ * The basic calculations for this calendar implementation deal with
+ * ELAPSED date units, which is the number of full years, full months
+ * and full days before a date: 1970-01-01 would be (1969, 0, 0) in
+ * that notation.
+ *
+ * To ease the numeric computations, month and day values outside the
+ * normal range are acceptable: 2001-03-00 will be treated as the day
+ * before 2001-03-01, 2000-13-32 will give the same result as
+ * 2001-02-01 and so on.
+ *
+ * 'rd' or 'RD' is used as an abbreviation for the latin 'rata die'
+ * (day number). This is the number of days elapsed since 0000-12-31
+ * in the proleptic Gregorian calendar. The begin of the Christian Era
+ * (0001-01-01) is RD(1).
+ */
+
+/*
+ * ====================================================================
+ *
+ * General algorithmic stuff
+ *
+ * ====================================================================
+ */
+
+/*
+ *---------------------------------------------------------------------
+ * Do a periodic extension of 'value' around 'pivot' with a period of
+ * 'cycle'.
+ *
+ * The result 'res' is a number that holds to the following properties:
+ *
+ * 1) res MOD cycle == value MOD cycle
+ * 2) pivot <= res < pivot + cycle
+ * (replace </<= with >/>= for negative cycles)
+ *
+ * where 'MOD' denotes the modulo operator for FLOOR DIVISION, which
+ * is not the same as the '%' operator in C: C requires division to be
+ * a truncated division, where remainder and dividend have the same
+ * sign if the remainder is not zero, whereas floor division requires
+ * divider and modulus to have the same sign for a non-zero modulus.
+ *
+ * This function has some useful applications:
+ *
+ * + let Y be a calendar year and V a truncated 2-digit year: then
+ * periodic_extend(Y-50, V, 100)
+ * is the closest expansion of the truncated year with respect to
+ * the full year, that is a 4-digit year with a difference of less
+ * than 50 years to the year Y. ("century unfolding")
+ *
+ * + let T be a UN*X time stamp and V be seconds-of-day: then
+ * perodic_extend(T-43200, V, 86400)
+ * is a time stamp that has the same seconds-of-day as the input
+ * value, with an absolute difference to T of <= 12hrs. ("day
+ * unfolding")
+ *
+ * + Wherever you have a truncated periodic value and a non-truncated
+ * base value and you want to match them somehow...
+ *
+ * Basically, the function delivers 'pivot + (value - pivot) % cycle',
+ * but the implementation takes some pains to avoid internal signed
+ * integer overflows in the '(value - pivot) % cycle' part and adheres
+ * to the floor division convention.
+ *
+ * If 64bit scalars where available on all intended platforms, writing a
+ * version that uses 64 bit ops would be easy; writing a general
+ * division routine for 64bit ops on a platform that can only do
+ * 32/16bit divisions and is still performant is a bit more
+ * difficult. Since most usecases can be coded in a way that does only
+ * require the 32-bit version a 64bit version is NOT provided here.
+ *---------------------------------------------------------------------
+ */
+int32_t
+ntpcal_periodic_extend(
+ int32_t pivot,
+ int32_t value,
+ int32_t cycle
+ )
+{
+ uint32_t diff;
+ char cpl = 0; /* modulo complement flag */
+ char neg = 0; /* sign change flag */
+
+ /* make the cycle positive and adjust the flags */
+ if (cycle < 0) {
+ cycle = - cycle;
+ neg ^= 1;
+ cpl ^= 1;
+ }
+ /* guard against div by zero or one */
+ if (cycle > 1) {
+ /*
+ * Get absolute difference as unsigned quantity and
+ * the complement flag. This is done by always
+ * subtracting the smaller value from the bigger
+ * one.
+ */
+ if (value >= pivot) {
+ diff = int32_to_uint32_2cpl(value)
+ - int32_to_uint32_2cpl(pivot);
+ } else {
+ diff = int32_to_uint32_2cpl(pivot)
+ - int32_to_uint32_2cpl(value);
+ cpl ^= 1;
+ }
+ diff %= (uint32_t)cycle;
+ if (diff) {
+ if (cpl)
+ diff = (uint32_t)cycle - diff;
+ if (neg)
+ diff = ~diff + 1;
+ pivot += uint32_2cpl_to_int32(diff);
+ }
+ }
+ return pivot;
+}
+
+/*---------------------------------------------------------------------
+ * Note to the casual reader
+ *
+ * In the next two functions you will find (or would have found...)
+ * the expression
+ *
+ * res.Q_s -= 0x80000000;
+ *
+ * There was some ruckus about a possible programming error due to
+ * integer overflow and sign propagation.
+ *
+ * This assumption is based on a lack of understanding of the C
+ * standard. (Though this is admittedly not one of the most 'natural'
+ * aspects of the 'C' language and easily to get wrong.)
+ *
+ * see
+ * http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf
+ * "ISO/IEC 9899:201x Committee Draft — April 12, 2011"
+ * 6.4.4.1 Integer constants, clause 5
+ *
+ * why there is no sign extension/overflow problem here.
+ *
+ * But to ease the minds of the doubtful, I added back the 'u' qualifiers
+ * that somehow got lost over the last years.
+ */
+
+
+/*
+ *---------------------------------------------------------------------
+ * Convert a timestamp in NTP scale to a 64bit seconds value in the UN*X
+ * scale with proper epoch unfolding around a given pivot or the current
+ * system time. This function happily accepts negative pivot values as
+ * timestamps befor 1970-01-01, so be aware of possible trouble on
+ * platforms with 32bit 'time_t'!
+ *
+ * This is also a periodic extension, but since the cycle is 2^32 and
+ * the shift is 2^31, we can do some *very* fast math without explicit
+ * divisions.
+ *---------------------------------------------------------------------
+ */
+vint64
+ntpcal_ntp_to_time(
+ uint32_t ntp,
+ const time_t * pivot
+ )
+{
+ vint64 res;
+
+# if defined(HAVE_INT64)
+
+ res.q_s = (pivot != NULL)
+ ? *pivot
+ : now();
+ res.Q_s -= 0x80000000u; /* unshift of half range */
+ ntp -= (uint32_t)JAN_1970; /* warp into UN*X domain */
+ ntp -= res.D_s.lo; /* cycle difference */
+ res.Q_s += (uint64_t)ntp; /* get expanded time */
+
+# else /* no 64bit scalars */
+
+ time_t tmp;
+
+ tmp = (pivot != NULL)
+ ? *pivot
+ : now();
+ res = time_to_vint64(&tmp);
+ M_SUB(res.D_s.hi, res.D_s.lo, 0, 0x80000000u);
+ ntp -= (uint32_t)JAN_1970; /* warp into UN*X domain */
+ ntp -= res.D_s.lo; /* cycle difference */
+ M_ADD(res.D_s.hi, res.D_s.lo, 0, ntp);
+
+# endif /* no 64bit scalars */
+
+ return res;
+}
+
+/*
+ *---------------------------------------------------------------------
+ * Convert a timestamp in NTP scale to a 64bit seconds value in the NTP
+ * scale with proper epoch unfolding around a given pivot or the current
+ * system time.
+ *
+ * Note: The pivot must be given in the UN*X time domain!
+ *
+ * This is also a periodic extension, but since the cycle is 2^32 and
+ * the shift is 2^31, we can do some *very* fast math without explicit
+ * divisions.
+ *---------------------------------------------------------------------
+ */
+vint64
+ntpcal_ntp_to_ntp(
+ uint32_t ntp,
+ const time_t *pivot
+ )
+{
+ vint64 res;
+
+# if defined(HAVE_INT64)
+
+ res.q_s = (pivot)
+ ? *pivot
+ : now();
+ res.Q_s -= 0x80000000u; /* unshift of half range */
+ res.Q_s += (uint32_t)JAN_1970; /* warp into NTP domain */
+ ntp -= res.D_s.lo; /* cycle difference */
+ res.Q_s += (uint64_t)ntp; /* get expanded time */
+
+# else /* no 64bit scalars */
+
+ time_t tmp;
+
+ tmp = (pivot)
+ ? *pivot
+ : now();
+ res = time_to_vint64(&tmp);
+ M_SUB(res.D_s.hi, res.D_s.lo, 0, 0x80000000u);
+ M_ADD(res.D_s.hi, res.D_s.lo, 0, (uint32_t)JAN_1970);/*into NTP */
+ ntp -= res.D_s.lo; /* cycle difference */
+ M_ADD(res.D_s.hi, res.D_s.lo, 0, ntp);
+
+# endif /* no 64bit scalars */
+
+ return res;
+}
+
+
+/*
+ * ====================================================================
+ *
+ * Splitting values to composite entities
+ *
+ * ====================================================================
+ */
+
+/*
+ *---------------------------------------------------------------------
+ * Split a 64bit seconds value into elapsed days in 'res.hi' and
+ * elapsed seconds since midnight in 'res.lo' using explicit floor
+ * division. This function happily accepts negative time values as
+ * timestamps before the respective epoch start.
+ *---------------------------------------------------------------------
+ */
+ntpcal_split
+ntpcal_daysplit(
+ const vint64 *ts
+ )
+{
+ ntpcal_split res;
+ uint32_t Q;
+
+# if defined(HAVE_INT64)
+
+ /* Manual floor division by SECSPERDAY. This uses the one's
+ * complement trick, too, but without an extra flag value: The
+ * flag would be 64bit, and that's a bit of overkill on a 32bit
+ * target that has to use a register pair for a 64bit number.
+ */
+ if (ts->q_s < 0)
+ Q = ~(uint32_t)(~ts->Q_s / SECSPERDAY);
+ else
+ Q = (uint32_t)(ts->Q_s / SECSPERDAY);
+
+# else
+
+ uint32_t ah, al, sflag, A;
+
+ /* get operand into ah/al (either ts or ts' one's complement,
+ * for later floor division)
+ */
+ sflag = int32_sflag(ts->d_s.hi);
+ ah = sflag ^ ts->D_s.hi;
+ al = sflag ^ ts->D_s.lo;
+
+ /* Since 86400 == 128*675 we can drop the least 7 bits and
+ * divide by 675 instead of 86400. Then the maximum remainder
+ * after each devision step is 674, and we need 10 bits for
+ * that. So in the next step we can shift in 22 bits from the
+ * numerator.
+ *
+ * Therefore we load the accu with the top 13 bits (51..63) in
+ * the first shot. We don't have to remember the quotient -- it
+ * would be shifted out anyway.
+ */
+ A = ah >> 19;
+ if (A >= 675)
+ A = (A % 675u);
+
+ /* Now assemble the remainder with bits 29..50 from the
+ * numerator and divide. This creates the upper ten bits of the
+ * quotient. (Well, the top 22 bits of a 44bit result. But that
+ * will be truncated to 32 bits anyway.)
+ */
+ A = (A << 19) | (ah & 0x0007FFFFu);
+ A = (A << 3) | (al >> 29);
+ Q = A / 675u;
+ A = A % 675u;
+
+ /* Now assemble the remainder with bits 7..28 from the numerator
+ * and do a final division step.
+ */
+ A = (A << 22) | ((al >> 7) & 0x003FFFFFu);
+ Q = (Q << 22) | (A / 675u);
+
+ /* The last 7 bits get simply dropped, as they have no affect on
+ * the quotient when dividing by 86400.
+ */
+
+ /* apply sign correction and calculate the true floor
+ * remainder.
+ */
+ Q ^= sflag;
+
+# endif
+
+ res.hi = uint32_2cpl_to_int32(Q);
+ res.lo = ts->D_s.lo - Q * SECSPERDAY;
+
+ return res;
+}
+
+/*
+ *---------------------------------------------------------------------
+ * Split a 32bit seconds value into h/m/s and excessive days. This
+ * function happily accepts negative time values as timestamps before
+ * midnight.
+ *---------------------------------------------------------------------
+ */
+static int32_t
+priv_timesplit(
+ int32_t split[3],
+ int32_t ts
+ )
+{
+ /* Do 3 chained floor divisions by positive constants, using the
+ * one's complement trick and factoring out the intermediate XOR
+ * ops to reduce the number of operations.
+ */
+ uint32_t us, um, uh, ud, sflag;
+
+ sflag = int32_sflag(ts);
+ us = int32_to_uint32_2cpl(ts);
+
+ um = (sflag ^ us) / SECSPERMIN;
+ uh = um / MINSPERHR;
+ ud = uh / HRSPERDAY;
+
+ um ^= sflag;
+ uh ^= sflag;
+ ud ^= sflag;
+
+ split[0] = (int32_t)(uh - ud * HRSPERDAY );
+ split[1] = (int32_t)(um - uh * MINSPERHR );
+ split[2] = (int32_t)(us - um * SECSPERMIN);
+
+ return uint32_2cpl_to_int32(ud);
+}
+
+/*
+ *---------------------------------------------------------------------
+ * Given the number of elapsed days in the calendar era, split this
+ * number into the number of elapsed years in 'res.hi' and the number
+ * of elapsed days of that year in 'res.lo'.
+ *
+ * if 'isleapyear' is not NULL, it will receive an integer that is 0 for
+ * regular years and a non-zero value for leap years.
+ *---------------------------------------------------------------------
+ */
+ntpcal_split
+ntpcal_split_eradays(
+ int32_t days,
+ int *isleapyear
+ )
+{
+ /* Use the fast cyclesplit algorithm here, to calculate the
+ * centuries and years in a century with one division each. This
+ * reduces the number of division operations to two, but is
+ * susceptible to internal range overflow. We make sure the
+ * input operands are in the safe range; this still gives us
+ * approx +/-2.9 million years.
+ */
+ ntpcal_split res;
+ int32_t n100, n001; /* calendar year cycles */
+ uint32_t uday, Q, sflag;
+
+ /* split off centuries first */
+ sflag = int32_sflag(days);
+ uday = uint32_saturate(int32_to_uint32_2cpl(days), sflag);
+ uday = (4u * uday) | 3u;
+ Q = sflag ^ ((sflag ^ uday) / GREGORIAN_CYCLE_DAYS);
+ uday = uday - Q * GREGORIAN_CYCLE_DAYS;
+ n100 = uint32_2cpl_to_int32(Q);
+
+ /* Split off years in century -- days >= 0 here, and we're far
+ * away from integer overflow trouble now. */
+ uday |= 3;
+ n001 = uday / GREGORIAN_NORMAL_LEAP_CYCLE_DAYS;
+ uday = uday % GREGORIAN_NORMAL_LEAP_CYCLE_DAYS;
+
+ /* Assemble the year and day in year */
+ res.hi = n100 * 100 + n001;
+ res.lo = uday / 4u;
+
+ /* Eventually set the leap year flag. Note: 0 <= n001 <= 99 and
+ * Q is still the two's complement representation of the
+ * centuries: The modulo 4 ops can be done with masking here.
+ * We also shift the year and the century by one, so the tests
+ * can be done against zero instead of 3.
+ */
+ if (isleapyear)
+ *isleapyear = !((n001+1) & 3)
+ && ((n001 != 99) || !((Q+1) & 3));
+
+ return res;
+}
+
+/*
+ *---------------------------------------------------------------------
+ * Given a number of elapsed days in a year and a leap year indicator,
+ * split the number of elapsed days into the number of elapsed months in
+ * 'res.hi' and the number of elapsed days of that month in 'res.lo'.
+ *
+ * This function will fail and return {-1,-1} if the number of elapsed
+ * days is not in the valid range!
+ *---------------------------------------------------------------------
+ */
+ntpcal_split
+ntpcal_split_yeardays(
+ int32_t eyd,
+ int isleapyear
+ )
+{
+ ntpcal_split res;
+ const uint16_t *lt; /* month length table */
+
+ /* check leap year flag and select proper table */
+ lt = real_month_table[(isleapyear != 0)];
+ if (0 <= eyd && eyd < lt[12]) {
+ /* get zero-based month by approximation & correction step */
+ res.hi = eyd >> 5; /* approx month; might be 1 too low */
+ if (lt[res.hi + 1] <= eyd) /* fixup approximative month value */
+ res.hi += 1;
+ res.lo = eyd - lt[res.hi];
+ } else {
+ res.lo = res.hi = -1;
+ }
+
+ return res;
+}
+
+/*
+ *---------------------------------------------------------------------
+ * Convert a RD into the date part of a 'struct calendar'.
+ *---------------------------------------------------------------------
+ */
+int
+ntpcal_rd_to_date(
+ struct calendar *jd,
+ int32_t rd
+ )
+{
+ ntpcal_split split;
+ int leapy;
+ u_int ymask;
+
+ /* Get day-of-week first. Since rd is signed, the remainder can
+ * be in the range [-6..+6], but the assignment to an unsigned
+ * variable maps the negative values to positive values >=7.
+ * This makes the sign correction look strange, but adding 7
+ * causes the needed wrap-around into the desired value range of
+ * zero to six, both inclusive.
+ */
+ jd->weekday = rd % DAYSPERWEEK;
+ if (jd->weekday >= DAYSPERWEEK) /* weekday is unsigned! */
+ jd->weekday += DAYSPERWEEK;
+
+ split = ntpcal_split_eradays(rd - 1, &leapy);
+ /* Get year and day-of-year, with overflow check. If any of the
+ * upper 16 bits is set after shifting to unity-based years, we
+ * will have an overflow when converting to an unsigned 16bit
+ * year. Shifting to the right is OK here, since it does not
+ * matter if the shift is logic or arithmetic.
+ */
+ split.hi += 1;
+ ymask = 0u - ((split.hi >> 16) == 0);
+ jd->year = (uint16_t)(split.hi & ymask);
+ jd->yearday = (uint16_t)split.lo + 1;
+
+ /* convert to month and mday */
+ split = ntpcal_split_yeardays(split.lo, leapy);
+ jd->month = (uint8_t)split.hi + 1;
+ jd->monthday = (uint8_t)split.lo + 1;
+
+ return ymask ? leapy : -1;
+}
+
+/*
+ *---------------------------------------------------------------------
+ * Convert a RD into the date part of a 'struct tm'.
+ *---------------------------------------------------------------------
+ */
+int
+ntpcal_rd_to_tm(
+ struct tm *utm,
+ int32_t rd
+ )
+{
+ ntpcal_split split;
+ int leapy;
+
+ /* get day-of-week first */
+ utm->tm_wday = rd % DAYSPERWEEK;
+ if (utm->tm_wday < 0)
+ utm->tm_wday += DAYSPERWEEK;
+
+ /* get year and day-of-year */
+ split = ntpcal_split_eradays(rd - 1, &leapy);
+ utm->tm_year = split.hi - 1899;
+ utm->tm_yday = split.lo; /* 0-based */
+
+ /* convert to month and mday */
+ split = ntpcal_split_yeardays(split.lo, leapy);
+ utm->tm_mon = split.hi; /* 0-based */
+ utm->tm_mday = split.lo + 1; /* 1-based */
+
+ return leapy;
+}
+
+/*
+ *---------------------------------------------------------------------
+ * Take a value of seconds since midnight and split it into hhmmss in a
+ * 'struct calendar'.
+ *---------------------------------------------------------------------
+ */
+int32_t
+ntpcal_daysec_to_date(
+ struct calendar *jd,
+ int32_t sec
+ )
+{
+ int32_t days;
+ int ts[3];
+
+ days = priv_timesplit(ts, sec);
+ jd->hour = (uint8_t)ts[0];
+ jd->minute = (uint8_t)ts[1];
+ jd->second = (uint8_t)ts[2];
+
+ return days;
+}
+
+/*
+ *---------------------------------------------------------------------
+ * Take a value of seconds since midnight and split it into hhmmss in a
+ * 'struct tm'.
+ *---------------------------------------------------------------------
+ */
+int32_t
+ntpcal_daysec_to_tm(
+ struct tm *utm,
+ int32_t sec
+ )
+{
+ int32_t days;
+ int32_t ts[3];
+
+ days = priv_timesplit(ts, sec);
+ utm->tm_hour = ts[0];
+ utm->tm_min = ts[1];
+ utm->tm_sec = ts[2];
+
+ return days;
+}
+
+/*
+ *---------------------------------------------------------------------
+ * take a split representation for day/second-of-day and day offset
+ * and convert it to a 'struct calendar'. The seconds will be normalised
+ * into the range of a day, and the day will be adjusted accordingly.
+ *
+ * returns >0 if the result is in a leap year, 0 if in a regular
+ * year and <0 if the result did not fit into the calendar struct.
+ *---------------------------------------------------------------------
+ */
+int
+ntpcal_daysplit_to_date(
+ struct calendar *jd,
+ const ntpcal_split *ds,
+ int32_t dof
+ )
+{
+ dof += ntpcal_daysec_to_date(jd, ds->lo);
+ return ntpcal_rd_to_date(jd, ds->hi + dof);
+}
+
+/*
+ *---------------------------------------------------------------------
+ * take a split representation for day/second-of-day and day offset
+ * and convert it to a 'struct tm'. The seconds will be normalised
+ * into the range of a day, and the day will be adjusted accordingly.
+ *
+ * returns 1 if the result is in a leap year and zero if in a regular
+ * year.
+ *---------------------------------------------------------------------
+ */
+int
+ntpcal_daysplit_to_tm(
+ struct tm *utm,
+ const ntpcal_split *ds ,
+ int32_t dof
+ )
+{
+ dof += ntpcal_daysec_to_tm(utm, ds->lo);
+
+ return ntpcal_rd_to_tm(utm, ds->hi + dof);
+}
+
+/*
+ *---------------------------------------------------------------------
+ * Take a UN*X time and convert to a calendar structure.
+ *---------------------------------------------------------------------
+ */
+int
+ntpcal_time_to_date(
+ struct calendar *jd,
+ const vint64 *ts
+ )
+{
+ ntpcal_split ds;
+
+ ds = ntpcal_daysplit(ts);
+ ds.hi += ntpcal_daysec_to_date(jd, ds.lo);
+ ds.hi += DAY_UNIX_STARTS;
+
+ return ntpcal_rd_to_date(jd, ds.hi);
+}
+
+
+/*
+ * ====================================================================
+ *
+ * merging composite entities
+ *
+ * ====================================================================
+ */
+
+/*
+ *---------------------------------------------------------------------
+ * Merge a number of days and a number of seconds into seconds,
+ * expressed in 64 bits to avoid overflow.
+ *---------------------------------------------------------------------
+ */
+vint64
+ntpcal_dayjoin(
+ int32_t days,
+ int32_t secs
+ )
+{
+ vint64 res;
+
+# if defined(HAVE_INT64)
+
+ res.q_s = days;
+ res.q_s *= SECSPERDAY;
+ res.q_s += secs;
+
+# else
+
+ uint32_t p1, p2;
+ int isneg;
+
+ /*
+ * res = days *86400 + secs, using manual 16/32 bit
+ * multiplications and shifts.
+ */
+ isneg = (days < 0);
+ if (isneg)
+ days = -days;
+
+ /* assemble days * 675 */
+ res.D_s.lo = (days & 0xFFFF) * 675u;
+ res.D_s.hi = 0;
+ p1 = (days >> 16) * 675u;
+ p2 = p1 >> 16;
+ p1 = p1 << 16;
+ M_ADD(res.D_s.hi, res.D_s.lo, p2, p1);
+
+ /* mul by 128, using shift */
+ res.D_s.hi = (res.D_s.hi << 7) | (res.D_s.lo >> 25);
+ res.D_s.lo = (res.D_s.lo << 7);
+
+ /* fix sign */
+ if (isneg)
+ M_NEG(res.D_s.hi, res.D_s.lo);
+
+ /* properly add seconds */
+ p2 = 0;
+ if (secs < 0) {
+ p1 = (uint32_t)-secs;
+ M_NEG(p2, p1);
+ } else {
+ p1 = (uint32_t)secs;
+ }
+ M_ADD(res.D_s.hi, res.D_s.lo, p2, p1);
+
+# endif
+
+ return res;
+}
+
+/*
+ *---------------------------------------------------------------------
+ * get leap years since epoch in elapsed years
+ *---------------------------------------------------------------------
+ */
+int32_t
+ntpcal_leapyears_in_years(
+ int32_t years
+ )
+{
+ /* We use the in-out-in algorithm here, using the one's
+ * complement division trick for negative numbers. The chained
+ * division sequence by 4/25/4 gives the compiler the chance to
+ * get away with only one true division and doing shifts otherwise.
+ */
+
+ uint32_t sflag, sum, uyear;
+
+ sflag = int32_sflag(years);
+ uyear = int32_to_uint32_2cpl(years);
+ uyear ^= sflag;
+
+ sum = (uyear /= 4u); /* 4yr rule --> IN */
+ sum -= (uyear /= 25u); /* 100yr rule --> OUT */
+ sum += (uyear /= 4u); /* 400yr rule --> IN */
+
+ /* Thanks to the alternation of IN/OUT/IN we can do the sum
+ * directly and have a single one's complement operation
+ * here. (Only if the years are negative, of course.) Otherwise
+ * the one's complement would have to be done when
+ * adding/subtracting the terms.
+ */
+ return uint32_2cpl_to_int32(sflag ^ sum);
+}
+
+/*
+ *---------------------------------------------------------------------
+ * Convert elapsed years in Era into elapsed days in Era.
+ *---------------------------------------------------------------------
+ */
+int32_t
+ntpcal_days_in_years(
+ int32_t years
+ )
+{
+ return years * DAYSPERYEAR + ntpcal_leapyears_in_years(years);
+}
+
+/*
+ *---------------------------------------------------------------------
+ * Convert a number of elapsed month in a year into elapsed days in year.
+ *
+ * The month will be normalized, and 'res.hi' will contain the
+ * excessive years that must be considered when converting the years,
+ * while 'res.lo' will contain the number of elapsed days since start
+ * of the year.
+ *
+ * This code uses the shifted-month-approach to convert month to days,
+ * because then there is no need to have explicit leap year
+ * information. The slight disadvantage is that for most month values
+ * the result is a negative value, and the year excess is one; the
+ * conversion is then simply based on the start of the following year.
+ *---------------------------------------------------------------------
+ */
+ntpcal_split
+ntpcal_days_in_months(
+ int32_t m
+ )
+{
+ ntpcal_split res;
+
+ /* Add ten months and correct if needed. (It likely is...) */
+ res.lo = m + 10;
+ res.hi = (res.lo >= 12);
+ if (res.hi)
+ res.lo -= 12;
+
+ /* if still out of range, normalise by floor division ... */
+ if (res.lo < 0 || res.lo >= 12) {
+ uint32_t mu, Q, sflag;
+ sflag = int32_sflag(res.lo);
+ mu = int32_to_uint32_2cpl(res.lo);
+ Q = sflag ^ ((sflag ^ mu) / 12u);
+ res.hi += uint32_2cpl_to_int32(Q);
+ res.lo = mu - Q * 12u;
+ }
+
+ /* get cummulated days in year with unshift */
+ res.lo = shift_month_table[res.lo] - 306;
+
+ return res;
+}
+
+/*
+ *---------------------------------------------------------------------
+ * Convert ELAPSED years/months/days of gregorian calendar to elapsed
+ * days in Gregorian epoch.
+ *
+ * If you want to convert years and days-of-year, just give a month of
+ * zero.
+ *---------------------------------------------------------------------
+ */
+int32_t
+ntpcal_edate_to_eradays(
+ int32_t years,
+ int32_t mons,
+ int32_t mdays
+ )
+{
+ ntpcal_split tmp;
+ int32_t res;
+
+ if (mons) {
+ tmp = ntpcal_days_in_months(mons);
+ res = ntpcal_days_in_years(years + tmp.hi) + tmp.lo;
+ } else
+ res = ntpcal_days_in_years(years);
+ res += mdays;
+
+ return res;
+}
+
+/*
+ *---------------------------------------------------------------------
+ * Convert ELAPSED years/months/days of gregorian calendar to elapsed
+ * days in year.
+ *
+ * Note: This will give the true difference to the start of the given
+ * year, even if months & days are off-scale.
+ *---------------------------------------------------------------------
+ */
+int32_t
+ntpcal_edate_to_yeardays(
+ int32_t years,
+ int32_t mons,
+ int32_t mdays
+ )
+{
+ ntpcal_split tmp;
+
+ if (0 <= mons && mons < 12) {
+ years += 1;
+ mdays += real_month_table[is_leapyear(years)][mons];
+ } else {
+ tmp = ntpcal_days_in_months(mons);
+ mdays += tmp.lo
+ + ntpcal_days_in_years(years + tmp.hi)
+ - ntpcal_days_in_years(years);
+ }
+
+ return mdays;
+}
+
+/*
+ *---------------------------------------------------------------------
+ * Convert elapsed days and the hour/minute/second information into
+ * total seconds.
+ *
+ * If 'isvalid' is not NULL, do a range check on the time specification
+ * and tell if the time input is in the normal range, permitting for a
+ * single leapsecond.
+ *---------------------------------------------------------------------
+ */
+int32_t
+ntpcal_etime_to_seconds(
+ int32_t hours,
+ int32_t minutes,
+ int32_t seconds
+ )
+{
+ int32_t res;
+
+ res = (hours * MINSPERHR + minutes) * SECSPERMIN + seconds;
+
+ return res;
+}
+
+/*
+ *---------------------------------------------------------------------
+ * Convert the date part of a 'struct tm' (that is, year, month,
+ * day-of-month) into the RD of that day.
+ *---------------------------------------------------------------------
+ */
+int32_t
+ntpcal_tm_to_rd(
+ const struct tm *utm
+ )
+{
+ return ntpcal_edate_to_eradays(utm->tm_year + 1899,
+ utm->tm_mon,
+ utm->tm_mday - 1) + 1;
+}
+
+/*
+ *---------------------------------------------------------------------
+ * Convert the date part of a 'struct calendar' (that is, year, month,
+ * day-of-month) into the RD of that day.
+ *---------------------------------------------------------------------
+ */
+int32_t
+ntpcal_date_to_rd(
+ const struct calendar *jd
+ )
+{
+ return ntpcal_edate_to_eradays((int32_t)jd->year - 1,
+ (int32_t)jd->month - 1,
+ (int32_t)jd->monthday - 1) + 1;
+}
+
+/*
+ *---------------------------------------------------------------------
+ * convert a year number to rata die of year start
+ *---------------------------------------------------------------------
+ */
+int32_t
+ntpcal_year_to_ystart(
+ int32_t year
+ )
+{
+ return ntpcal_days_in_years(year - 1) + 1;
+}
+
+/*
+ *---------------------------------------------------------------------
+ * For a given RD, get the RD of the associated year start,
+ * that is, the RD of the last January,1st on or before that day.
+ *---------------------------------------------------------------------
+ */
+int32_t
+ntpcal_rd_to_ystart(
+ int32_t rd
+ )
+{
+ /*
+ * Rather simple exercise: split the day number into elapsed
+ * years and elapsed days, then remove the elapsed days from the
+ * input value. Nice'n sweet...
+ */
+ return rd - ntpcal_split_eradays(rd - 1, NULL).lo;
+}
+
+/*
+ *---------------------------------------------------------------------
+ * For a given RD, get the RD of the associated month start.
+ *---------------------------------------------------------------------
+ */
+int32_t
+ntpcal_rd_to_mstart(
+ int32_t rd
+ )
+{
+ ntpcal_split split;
+ int leaps;
+
+ split = ntpcal_split_eradays(rd - 1, &leaps);
+ split = ntpcal_split_yeardays(split.lo, leaps);
+
+ return rd - split.lo;
+}
+
+/*
+ *---------------------------------------------------------------------
+ * take a 'struct calendar' and get the seconds-of-day from it.
+ *---------------------------------------------------------------------
+ */
+int32_t
+ntpcal_date_to_daysec(
+ const struct calendar *jd
+ )
+{
+ return ntpcal_etime_to_seconds(jd->hour, jd->minute,
+ jd->second);
+}
+
+/*
+ *---------------------------------------------------------------------
+ * take a 'struct tm' and get the seconds-of-day from it.
+ *---------------------------------------------------------------------
+ */
+int32_t
+ntpcal_tm_to_daysec(
+ const struct tm *utm
+ )
+{
+ return ntpcal_etime_to_seconds(utm->tm_hour, utm->tm_min,
+ utm->tm_sec);
+}
+
+/*
+ *---------------------------------------------------------------------
+ * take a 'struct calendar' and convert it to a 'time_t'
+ *---------------------------------------------------------------------
+ */
+time_t
+ntpcal_date_to_time(
+ const struct calendar *jd
+ )
+{
+ vint64 join;
+ int32_t days, secs;
+
+ days = ntpcal_date_to_rd(jd) - DAY_UNIX_STARTS;
+ secs = ntpcal_date_to_daysec(jd);
+ join = ntpcal_dayjoin(days, secs);
+
+ return vint64_to_time(&join);
+}
+
+
+/*
+ * ====================================================================
+ *
+ * extended and unchecked variants of caljulian/caltontp
+ *
+ * ====================================================================
+ */
+int
+ntpcal_ntp64_to_date(
+ struct calendar *jd,
+ const vint64 *ntp
+ )
+{
+ ntpcal_split ds;
+
+ ds = ntpcal_daysplit(ntp);
+ ds.hi += ntpcal_daysec_to_date(jd, ds.lo);
+
+ return ntpcal_rd_to_date(jd, ds.hi + DAY_NTP_STARTS);
+}
+
+int
+ntpcal_ntp_to_date(
+ struct calendar *jd,
+ uint32_t ntp,
+ const time_t *piv
+ )
+{
+ vint64 ntp64;
+
+ /*
+ * Unfold ntp time around current time into NTP domain. Split
+ * into days and seconds, shift days into CE domain and
+ * process the parts.
+ */
+ ntp64 = ntpcal_ntp_to_ntp(ntp, piv);
+ return ntpcal_ntp64_to_date(jd, &ntp64);
+}
+
+
+vint64
+ntpcal_date_to_ntp64(
+ const struct calendar *jd
+ )
+{
+ /*
+ * Convert date to NTP. Ignore yearday, use d/m/y only.
+ */
+ return ntpcal_dayjoin(ntpcal_date_to_rd(jd) - DAY_NTP_STARTS,
+ ntpcal_date_to_daysec(jd));
+}
+
+
+uint32_t
+ntpcal_date_to_ntp(
+ const struct calendar *jd
+ )
+{
+ /*
+ * Get lower half of 64-bit NTP timestamp from date/time.
+ */
+ return ntpcal_date_to_ntp64(jd).d_s.lo;
+}
+
+
+
+/*
+ * ====================================================================
+ *
+ * day-of-week calculations
+ *
+ * ====================================================================
+ */
+/*
+ * Given a RataDie and a day-of-week, calculate a RDN that is reater-than,
+ * greater-or equal, closest, less-or-equal or less-than the given RDN
+ * and denotes the given day-of-week
+ */
+int32_t
+ntpcal_weekday_gt(
+ int32_t rdn,
+ int32_t dow
+ )
+{
+ return ntpcal_periodic_extend(rdn+1, dow, 7);
+}
+
+int32_t
+ntpcal_weekday_ge(
+ int32_t rdn,
+ int32_t dow
+ )
+{
+ return ntpcal_periodic_extend(rdn, dow, 7);
+}
+
+int32_t
+ntpcal_weekday_close(
+ int32_t rdn,
+ int32_t dow
+ )
+{
+ return ntpcal_periodic_extend(rdn-3, dow, 7);
+}
+
+int32_t
+ntpcal_weekday_le(
+ int32_t rdn,
+ int32_t dow
+ )
+{
+ return ntpcal_periodic_extend(rdn, dow, -7);
+}
+
+int32_t
+ntpcal_weekday_lt(
+ int32_t rdn,
+ int32_t dow
+ )
+{
+ return ntpcal_periodic_extend(rdn-1, dow, -7);
+}
+
+/*
+ * ====================================================================
+ *
+ * ISO week-calendar conversions
+ *
+ * The ISO8601 calendar defines a calendar of years, weeks and weekdays.
+ * It is related to the Gregorian calendar, and a ISO year starts at the
+ * Monday closest to Jan,1st of the corresponding Gregorian year. A ISO
+ * calendar year has always 52 or 53 weeks, and like the Grogrian
+ * calendar the ISO8601 calendar repeats itself every 400 years, or
+ * 146097 days, or 20871 weeks.
+ *
+ * While it is possible to write ISO calendar functions based on the
+ * Gregorian calendar functions, the following implementation takes a
+ * different approach, based directly on years and weeks.
+ *
+ * Analysis of the tabulated data shows that it is not possible to
+ * interpolate from years to weeks over a full 400 year range; cyclic
+ * shifts over 400 years do not provide a solution here. But it *is*
+ * possible to interpolate over every single century of the 400-year
+ * cycle. (The centennial leap year rule seems to be the culprit here.)
+ *
+ * It can be shown that a conversion from years to weeks can be done
+ * using a linear transformation of the form
+ *
+ * w = floor( y * a + b )
+ *
+ * where the slope a must hold to
+ *
+ * 52.1780821918 <= a < 52.1791044776
+ *
+ * and b must be chosen according to the selected slope and the number
+ * of the century in a 400-year period.
+ *
+ * The inverse calculation can also be done in this way. Careful scaling
+ * provides an unlimited set of integer coefficients a,k,b that enable
+ * us to write the calulation in the form
+ *
+ * w = (y * a + b ) / k
+ * y = (w * a' + b') / k'
+ *
+ * In this implementation the values of k and k' are chosen to be
+ * smallest possible powers of two, so the division can be implemented
+ * as shifts if the optimiser chooses to do so.
+ *
+ * ====================================================================
+ */
+
+/*
+ * Given a number of elapsed (ISO-)years since the begin of the
+ * christian era, return the number of elapsed weeks corresponding to
+ * the number of years.
+ */
+int32_t
+isocal_weeks_in_years(
+ int32_t years
+ )
+{
+ /*
+ * use: w = (y * 53431 + b[c]) / 1024 as interpolation
+ */
+ static const uint16_t bctab[4] = { 157, 449, 597, 889 };
+
+ int32_t cs, cw;
+ uint32_t cc, ci, yu, sflag;
+
+ sflag = int32_sflag(years);
+ yu = int32_to_uint32_2cpl(years);
+
+ /* split off centuries, using floor division */
+ cc = sflag ^ ((sflag ^ yu) / 100u);
+ yu -= cc * 100u;
+
+ /* calculate century cycles shift and cycle index:
+ * Assuming a century is 5217 weeks, we have to add a cycle
+ * shift that is 3 for every 4 centuries, because 3 of the four
+ * centuries have 5218 weeks. So '(cc*3 + 1) / 4' is the actual
+ * correction, and the second century is the defective one.
+ *
+ * Needs floor division by 4, which is done with masking and
+ * shifting.
+ */
+ ci = cc * 3u + 1;
+ cs = uint32_2cpl_to_int32(sflag ^ ((sflag ^ ci) / 4u));
+ ci = ci % 4u;
+
+ /* Get weeks in century. Can use plain division here as all ops
+ * are >= 0, and let the compiler sort out the possible
+ * optimisations.
+ */
+ cw = (yu * 53431u + bctab[ci]) / 1024u;
+
+ return uint32_2cpl_to_int32(cc) * 5217 + cs + cw;
+}
+
+/*
+ * Given a number of elapsed weeks since the begin of the christian
+ * era, split this number into the number of elapsed years in res.hi
+ * and the excessive number of weeks in res.lo. (That is, res.lo is
+ * the number of elapsed weeks in the remaining partial year.)
+ */
+ntpcal_split
+isocal_split_eraweeks(
+ int32_t weeks
+ )
+{
+ /*
+ * use: y = (w * 157 + b[c]) / 8192 as interpolation
+ */
+
+ static const uint16_t bctab[4] = { 85, 130, 17, 62 };
+
+ ntpcal_split res;
+ int32_t cc, ci;
+ uint32_t sw, cy, Q, sflag;
+
+ /* Use two fast cycle-split divisions here. This is again
+ * susceptible to internal overflow, so we check the range. This
+ * still permits more than +/-20 million years, so this is
+ * likely a pure academical problem.
+ *
+ * We want to execute '(weeks * 4 + 2) /% 20871' under floor
+ * division rules in the first step.
+ */
+ sflag = int32_sflag(weeks);
+ sw = uint32_saturate(int32_to_uint32_2cpl(weeks), sflag);
+ sw = 4u * sw + 2;
+ Q = sflag ^ ((sflag ^ sw) / GREGORIAN_CYCLE_WEEKS);
+ sw -= Q * GREGORIAN_CYCLE_WEEKS;
+ ci = Q % 4u;
+ cc = uint32_2cpl_to_int32(Q);
+
+ /* Split off years; sw >= 0 here! The scaled weeks in the years
+ * are scaled up by 157 afterwards.
+ */
+ sw = (sw / 4u) * 157u + bctab[ci];
+ cy = sw / 8192u; /* ws >> 13 , let the compiler sort it out */
+ sw = sw % 8192u; /* ws & 8191, let the compiler sort it out */
+
+ /* assemble elapsed years and downscale the elapsed weeks in
+ * the year.
+ */
+ res.hi = 100*cc + cy;
+ res.lo = sw / 157u;
+
+ return res;
+}
+
+/*
+ * Given a second in the NTP time scale and a pivot, expand the NTP
+ * time stamp around the pivot and convert into an ISO calendar time
+ * stamp.
+ */
+int
+isocal_ntp64_to_date(
+ struct isodate *id,
+ const vint64 *ntp
+ )
+{
+ ntpcal_split ds;
+ int32_t ts[3];
+ uint32_t uw, ud, sflag;
+
+ /*
+ * Split NTP time into days and seconds, shift days into CE
+ * domain and process the parts.
+ */
+ ds = ntpcal_daysplit(ntp);
+
+ /* split time part */
+ ds.hi += priv_timesplit(ts, ds.lo);
+ id->hour = (uint8_t)ts[0];
+ id->minute = (uint8_t)ts[1];
+ id->second = (uint8_t)ts[2];
+
+ /* split days into days and weeks, using floor division in unsigned */
+ ds.hi += DAY_NTP_STARTS - 1; /* shift from NTP to RDN */
+ sflag = int32_sflag(ds.hi);
+ ud = int32_to_uint32_2cpl(ds.hi);
+ uw = sflag ^ ((sflag ^ ud) / DAYSPERWEEK);
+ ud -= uw * DAYSPERWEEK;
+ ds.hi = uint32_2cpl_to_int32(uw);
+ ds.lo = ud;
+
+ id->weekday = (uint8_t)ds.lo + 1; /* weekday result */
+
+ /* get year and week in year */
+ ds = isocal_split_eraweeks(ds.hi); /* elapsed years&week*/
+ id->year = (uint16_t)ds.hi + 1; /* shift to current */
+ id->week = (uint8_t )ds.lo + 1;
+
+ return (ds.hi >= 0 && ds.hi < 0x0000FFFF);
+}
+
+int
+isocal_ntp_to_date(
+ struct isodate *id,
+ uint32_t ntp,
+ const time_t *piv
+ )
+{
+ vint64 ntp64;
+
+ /*
+ * Unfold ntp time around current time into NTP domain, then
+ * convert the full time stamp.
+ */
+ ntp64 = ntpcal_ntp_to_ntp(ntp, piv);
+ return isocal_ntp64_to_date(id, &ntp64);
+}
+
+/*
+ * Convert a ISO date spec into a second in the NTP time scale,
+ * properly truncated to 32 bit.
+ */
+vint64
+isocal_date_to_ntp64(
+ const struct isodate *id
+ )
+{
+ int32_t weeks, days, secs;
+
+ weeks = isocal_weeks_in_years((int32_t)id->year - 1)
+ + (int32_t)id->week - 1;
+ days = weeks * 7 + (int32_t)id->weekday;
+ /* days is RDN of ISO date now */
+ secs = ntpcal_etime_to_seconds(id->hour, id->minute, id->second);
+
+ return ntpcal_dayjoin(days - DAY_NTP_STARTS, secs);
+}
+
+uint32_t
+isocal_date_to_ntp(
+ const struct isodate *id
+ )
+{
+ /*
+ * Get lower half of 64-bit NTP timestamp from date/time.
+ */
+ return isocal_date_to_ntp64(id).d_s.lo;
+}
+
+/*
+ * ====================================================================
+ * 'basedate' support functions
+ * ====================================================================
+ */
+
+static int32_t s_baseday = NTP_TO_UNIX_DAYS;
+static int32_t s_gpsweek = 0;
+
+int32_t
+basedate_eval_buildstamp(void)
+{
+ struct calendar jd;
+ int32_t ed;
+
+ if (!ntpcal_get_build_date(&jd))
+ return NTP_TO_UNIX_DAYS;
+
+ /* The time zone of the build stamp is unspecified; we remove
+ * one day to provide a certain slack. And in case somebody
+ * fiddled with the system clock, we make sure we do not go
+ * before the UNIX epoch (1970-01-01). It's probably not possible
+ * to do this to the clock on most systems, but there are other
+ * ways to tweak the build stamp.
+ */
+ jd.monthday -= 1;
+ ed = ntpcal_date_to_rd(&jd) - DAY_NTP_STARTS;
+ return (ed < NTP_TO_UNIX_DAYS) ? NTP_TO_UNIX_DAYS : ed;
+}
+
+int32_t
+basedate_eval_string(
+ const char * str
+ )
+{
+ u_short y,m,d;
+ u_long ned;
+ int rc, nc;
+ size_t sl;
+
+ sl = strlen(str);
+ rc = sscanf(str, "%4hu-%2hu-%2hu%n", &y, &m, &d, &nc);
+ if (rc == 3 && (size_t)nc == sl) {
+ if (m >= 1 && m <= 12 && d >= 1 && d <= 31)
+ return ntpcal_edate_to_eradays(y-1, m-1, d)
+ - DAY_NTP_STARTS;
+ goto buildstamp;
+ }
+
+ rc = sscanf(str, "%lu%n", &ned, &nc);
+ if (rc == 1 && (size_t)nc == sl) {
+ if (ned <= INT32_MAX)
+ return (int32_t)ned;
+ goto buildstamp;
+ }
+
+ buildstamp:
+ msyslog(LOG_WARNING,
+ "basedate string \"%s\" invalid, build date substituted!",
+ str);
+ return basedate_eval_buildstamp();
+}
+
+uint32_t
+basedate_get_day(void)
+{
+ return s_baseday;
+}
+
+int32_t
+basedate_set_day(
+ int32_t day
+ )
+{
+ struct calendar jd;
+ int32_t retv;
+
+ /* set NTP base date for NTP era unfolding */
+ if (day < NTP_TO_UNIX_DAYS) {
+ msyslog(LOG_WARNING,
+ "baseday_set_day: invalid day (%lu), UNIX epoch substituted",
+ (unsigned long)day);
+ day = NTP_TO_UNIX_DAYS;
+ }
+ retv = s_baseday;
+ s_baseday = day;
+ ntpcal_rd_to_date(&jd, day + DAY_NTP_STARTS);
+ msyslog(LOG_INFO, "basedate set to %04hu-%02hu-%02hu",
+ jd.year, (u_short)jd.month, (u_short)jd.monthday);
+
+ /* set GPS base week for GPS week unfolding */
+ day = ntpcal_weekday_ge(day + DAY_NTP_STARTS, CAL_SUNDAY)
+ - DAY_NTP_STARTS;
+ if (day < NTP_TO_GPS_DAYS)
+ day = NTP_TO_GPS_DAYS;
+ s_gpsweek = (day - NTP_TO_GPS_DAYS) / DAYSPERWEEK;
+ ntpcal_rd_to_date(&jd, day + DAY_NTP_STARTS);
+ msyslog(LOG_INFO, "gps base set to %04hu-%02hu-%02hu (week %d)",
+ jd.year, (u_short)jd.month, (u_short)jd.monthday, s_gpsweek);
+
+ return retv;
+}
+
+time_t
+basedate_get_eracenter(void)
+{
+ time_t retv;
+ retv = (time_t)(s_baseday - NTP_TO_UNIX_DAYS);
+ retv *= SECSPERDAY;
+ retv += (UINT32_C(1) << 31);
+ return retv;
+}
+
+time_t
+basedate_get_erabase(void)
+{
+ time_t retv;
+ retv = (time_t)(s_baseday - NTP_TO_UNIX_DAYS);
+ retv *= SECSPERDAY;
+ return retv;
+}
+
+uint32_t
+basedate_get_gpsweek(void)
+{
+ return s_gpsweek;
+}
+
+uint32_t
+basedate_expand_gpsweek(
+ unsigned short weekno
+ )
+{
+ /* We do a fast modulus expansion here. Since all quantities are
+ * unsigned and we cannot go before the start of the GPS epoch
+ * anyway, and since the truncated GPS week number is 10 bit, the
+ * expansion becomes a simple sub/and/add sequence.
+ */
+ #if GPSWEEKS != 1024
+ # error GPSWEEKS defined wrong -- should be 1024!
+ #endif
+
+ uint32_t diff;
+ diff = ((uint32_t)weekno - s_gpsweek) & (GPSWEEKS - 1);
+ return s_gpsweek + diff;
+}
+
+/* -*-EOF-*- */