summaryrefslogtreecommitdiffstats
path: root/freebsd/sys/dev/pci/pci.c
blob: 8557cb3376eb32aeaa0fb5589f9a252b85864f9b (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
#include <machine/rtems-bsd-kernel-space.h>

/*-
 * Copyright (c) 1997, Stefan Esser <se@freebsd.org>
 * Copyright (c) 2000, Michael Smith <msmith@freebsd.org>
 * Copyright (c) 2000, BSDi
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice unmodified, this list of conditions, and the following
 *    disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");

#include <rtems/bsd/local/opt_bus.h>

#include <rtems/bsd/sys/param.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/linker.h>
#include <sys/fcntl.h>
#include <sys/conf.h>
#include <sys/kernel.h>
#include <sys/queue.h>
#include <sys/sysctl.h>
#include <sys/endian.h>

#include <vm/vm.h>
#include <vm/pmap.h>
#ifndef __rtems__
#include <vm/vm_extern.h>
#endif /* __rtems__ */

#include <sys/bus.h>
#include <machine/bus.h>
#include <sys/rman.h>
#include <machine/resource.h>
#include <machine/stdarg.h>

#if defined(__i386__) || defined(__amd64__) || defined(__powerpc__)
#include <machine/intr_machdep.h>
#endif

#include <sys/pciio.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pci_private.h>

#include <dev/usb/controller/ehcireg.h>
#include <dev/usb/controller/ohcireg.h>
#ifndef __rtems__
#include <dev/usb/controller/uhcireg.h>
#endif /* __rtems__ */

#include <rtems/bsd/local/pcib_if.h>
#include <rtems/bsd/local/pci_if.h>

#ifdef __HAVE_ACPI
#include <contrib/dev/acpica/include/acpi.h>
#include <rtems/bsd/local/acpi_if.h>
#else
#define	ACPI_PWR_FOR_SLEEP(x, y, z)
#endif

/*
 * XXX: Due to a limitation of the bus_dma_tag_create() API, we cannot
 * specify a 4GB boundary on 32-bit targets.  Usually this does not
 * matter as it is ok to use a boundary of 0 on these systems.
 * However, in the case of PAE, DMA addresses can cross a 4GB
 * boundary, so as a workaround use a 2GB boundary.
 */
#if (BUS_SPACE_MAXADDR > 0xFFFFFFFF)
#ifdef PAE
#define	PCI_DMA_BOUNDARY	0x80000000
#else
#define	PCI_DMA_BOUNDARY	0x100000000
#endif
#endif

#define	PCIR_IS_BIOS(cfg, reg)						\
	(((cfg)->hdrtype == PCIM_HDRTYPE_NORMAL && reg == PCIR_BIOS) ||	\
	 ((cfg)->hdrtype == PCIM_HDRTYPE_BRIDGE && reg == PCIR_BIOS_1))

static pci_addr_t	pci_mapbase(uint64_t mapreg);
static const char	*pci_maptype(uint64_t mapreg);
static int		pci_mapsize(uint64_t testval);
static int		pci_maprange(uint64_t mapreg);
static pci_addr_t	pci_rombase(uint64_t mapreg);
static int		pci_romsize(uint64_t testval);
static void		pci_fixancient(pcicfgregs *cfg);
static int		pci_printf(pcicfgregs *cfg, const char *fmt, ...);

static int		pci_porten(device_t dev);
static int		pci_memen(device_t dev);
static void		pci_assign_interrupt(device_t bus, device_t dev,
			    int force_route);
static int		pci_add_map(device_t bus, device_t dev, int reg,
			    struct resource_list *rl, int force, int prefetch);
static int		pci_probe(device_t dev);
static int		pci_attach(device_t dev);
static void		pci_load_vendor_data(void);
static int		pci_describe_parse_line(char **ptr, int *vendor,
			    int *device, char **desc);
static char		*pci_describe_device(device_t dev);
static bus_dma_tag_t	pci_get_dma_tag(device_t bus, device_t dev);
static int		pci_modevent(module_t mod, int what, void *arg);
static void		pci_hdrtypedata(device_t pcib, int b, int s, int f,
			    pcicfgregs *cfg);
static void		pci_read_cap(device_t pcib, pcicfgregs *cfg);
static int		pci_read_vpd_reg(device_t pcib, pcicfgregs *cfg,
			    int reg, uint32_t *data);
#if 0
static int		pci_write_vpd_reg(device_t pcib, pcicfgregs *cfg,
			    int reg, uint32_t data);
#endif
static void		pci_read_vpd(device_t pcib, pcicfgregs *cfg);
static void		pci_disable_msi(device_t dev);
static void		pci_enable_msi(device_t dev, uint64_t address,
			    uint16_t data);
static void		pci_enable_msix(device_t dev, u_int index,
			    uint64_t address, uint32_t data);
static void		pci_mask_msix(device_t dev, u_int index);
static void		pci_unmask_msix(device_t dev, u_int index);
static int		pci_msi_blacklisted(void);
static void		pci_resume_msi(device_t dev);
static void		pci_resume_msix(device_t dev);
static int		pci_remap_intr_method(device_t bus, device_t dev,
			    u_int irq);

static device_method_t pci_methods[] = {
	/* Device interface */
	DEVMETHOD(device_probe,		pci_probe),
	DEVMETHOD(device_attach,	pci_attach),
	DEVMETHOD(device_detach,	bus_generic_detach),
	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
	DEVMETHOD(device_suspend,	pci_suspend),
	DEVMETHOD(device_resume,	pci_resume),

	/* Bus interface */
	DEVMETHOD(bus_print_child,	pci_print_child),
	DEVMETHOD(bus_probe_nomatch,	pci_probe_nomatch),
	DEVMETHOD(bus_read_ivar,	pci_read_ivar),
	DEVMETHOD(bus_write_ivar,	pci_write_ivar),
	DEVMETHOD(bus_driver_added,	pci_driver_added),
	DEVMETHOD(bus_setup_intr,	pci_setup_intr),
	DEVMETHOD(bus_teardown_intr,	pci_teardown_intr),

	DEVMETHOD(bus_get_dma_tag,	pci_get_dma_tag),
	DEVMETHOD(bus_get_resource_list,pci_get_resource_list),
	DEVMETHOD(bus_set_resource,	bus_generic_rl_set_resource),
	DEVMETHOD(bus_get_resource,	bus_generic_rl_get_resource),
	DEVMETHOD(bus_delete_resource,	pci_delete_resource),
	DEVMETHOD(bus_alloc_resource,	pci_alloc_resource),
	DEVMETHOD(bus_adjust_resource,	bus_generic_adjust_resource),
	DEVMETHOD(bus_release_resource,	bus_generic_rl_release_resource),
	DEVMETHOD(bus_activate_resource, pci_activate_resource),
	DEVMETHOD(bus_deactivate_resource, pci_deactivate_resource),
	DEVMETHOD(bus_child_pnpinfo_str, pci_child_pnpinfo_str_method),
	DEVMETHOD(bus_child_location_str, pci_child_location_str_method),
	DEVMETHOD(bus_remap_intr,	pci_remap_intr_method),

	/* PCI interface */
	DEVMETHOD(pci_read_config,	pci_read_config_method),
	DEVMETHOD(pci_write_config,	pci_write_config_method),
	DEVMETHOD(pci_enable_busmaster,	pci_enable_busmaster_method),
	DEVMETHOD(pci_disable_busmaster, pci_disable_busmaster_method),
	DEVMETHOD(pci_enable_io,	pci_enable_io_method),
	DEVMETHOD(pci_disable_io,	pci_disable_io_method),
	DEVMETHOD(pci_get_vpd_ident,	pci_get_vpd_ident_method),
	DEVMETHOD(pci_get_vpd_readonly,	pci_get_vpd_readonly_method),
	DEVMETHOD(pci_get_powerstate,	pci_get_powerstate_method),
	DEVMETHOD(pci_set_powerstate,	pci_set_powerstate_method),
	DEVMETHOD(pci_assign_interrupt,	pci_assign_interrupt_method),
	DEVMETHOD(pci_find_extcap,	pci_find_extcap_method),
	DEVMETHOD(pci_alloc_msi,	pci_alloc_msi_method),
	DEVMETHOD(pci_alloc_msix,	pci_alloc_msix_method),
	DEVMETHOD(pci_remap_msix,	pci_remap_msix_method),
	DEVMETHOD(pci_release_msi,	pci_release_msi_method),
	DEVMETHOD(pci_msi_count,	pci_msi_count_method),
	DEVMETHOD(pci_msix_count,	pci_msix_count_method),

	DEVMETHOD_END
};

DEFINE_CLASS_0(pci, pci_driver, pci_methods, sizeof(struct pci_softc));

static devclass_t pci_devclass;
DRIVER_MODULE(pci, pcib, pci_driver, pci_devclass, pci_modevent, 0);
MODULE_VERSION(pci, 1);

static char	*pci_vendordata;
static size_t	pci_vendordata_size;

struct pci_quirk {
	uint32_t devid;	/* Vendor/device of the card */
	int	type;
#define	PCI_QUIRK_MAP_REG	1 /* PCI map register in weird place */
#define	PCI_QUIRK_DISABLE_MSI	2 /* MSI/MSI-X doesn't work */
#define	PCI_QUIRK_ENABLE_MSI_VM	3 /* Older chipset in VM where MSI works */
#define	PCI_QUIRK_UNMAP_REG	4 /* Ignore PCI map register */
	int	arg1;
	int	arg2;
};

static const struct pci_quirk pci_quirks[] = {
	/* The Intel 82371AB and 82443MX has a map register at offset 0x90. */
	{ 0x71138086, PCI_QUIRK_MAP_REG,	0x90,	 0 },
	{ 0x719b8086, PCI_QUIRK_MAP_REG,	0x90,	 0 },
	/* As does the Serverworks OSB4 (the SMBus mapping register) */
	{ 0x02001166, PCI_QUIRK_MAP_REG,	0x90,	 0 },

	/*
	 * MSI doesn't work with the ServerWorks CNB20-HE Host Bridge
	 * or the CMIC-SL (AKA ServerWorks GC_LE).
	 */
	{ 0x00141166, PCI_QUIRK_DISABLE_MSI,	0,	0 },
	{ 0x00171166, PCI_QUIRK_DISABLE_MSI,	0,	0 },

	/*
	 * MSI doesn't work on earlier Intel chipsets including
	 * E7500, E7501, E7505, 845, 865, 875/E7210, and 855.
	 */
	{ 0x25408086, PCI_QUIRK_DISABLE_MSI,	0,	0 },
	{ 0x254c8086, PCI_QUIRK_DISABLE_MSI,	0,	0 },
	{ 0x25508086, PCI_QUIRK_DISABLE_MSI,	0,	0 },
	{ 0x25608086, PCI_QUIRK_DISABLE_MSI,	0,	0 },
	{ 0x25708086, PCI_QUIRK_DISABLE_MSI,	0,	0 },
	{ 0x25788086, PCI_QUIRK_DISABLE_MSI,	0,	0 },
	{ 0x35808086, PCI_QUIRK_DISABLE_MSI,	0,	0 },

	/*
	 * MSI doesn't work with devices behind the AMD 8131 HT-PCIX
	 * bridge.
	 */
	{ 0x74501022, PCI_QUIRK_DISABLE_MSI,	0,	0 },

	/*
	 * MSI-X allocation doesn't work properly for devices passed through
	 * by VMware up to at least ESXi 5.1.
	 */
	{ 0x079015ad, PCI_QUIRK_DISABLE_MSI,	0,	0 }, /* PCI/PCI-X */
	{ 0x07a015ad, PCI_QUIRK_DISABLE_MSI,	0,	0 }, /* PCIe */

	/*
	 * Some virtualization environments emulate an older chipset
	 * but support MSI just fine.  QEMU uses the Intel 82440.
	 */
	{ 0x12378086, PCI_QUIRK_ENABLE_MSI_VM,	0,	0 },

	/*
	 * HPET MMIO base address may appear in Bar1 for AMD SB600 SMBus
	 * controller depending on SoftPciRst register (PM_IO 0x55 [7]).
	 * It prevents us from attaching hpet(4) when the bit is unset.
	 * Note this quirk only affects SB600 revision A13 and earlier.
	 * For SB600 A21 and later, firmware must set the bit to hide it.
	 * For SB700 and later, it is unused and hardcoded to zero.
	 */
	{ 0x43851002, PCI_QUIRK_UNMAP_REG,	0x14,	0 },

	{ 0 }
};

/* map register information */
#define	PCI_MAPMEM	0x01	/* memory map */
#define	PCI_MAPMEMP	0x02	/* prefetchable memory map */
#define	PCI_MAPPORT	0x04	/* port map */

struct devlist pci_devq;
uint32_t pci_generation;
uint32_t pci_numdevs = 0;
static int pcie_chipset, pcix_chipset;

/* sysctl vars */
SYSCTL_NODE(_hw, OID_AUTO, pci, CTLFLAG_RD, 0, "PCI bus tuning parameters");

static int pci_enable_io_modes = 1;
TUNABLE_INT("hw.pci.enable_io_modes", &pci_enable_io_modes);
SYSCTL_INT(_hw_pci, OID_AUTO, enable_io_modes, CTLFLAG_RW,
    &pci_enable_io_modes, 1,
    "Enable I/O and memory bits in the config register.  Some BIOSes do not\n\
enable these bits correctly.  We'd like to do this all the time, but there\n\
are some peripherals that this causes problems with.");

static int pci_do_power_nodriver = 0;
TUNABLE_INT("hw.pci.do_power_nodriver", &pci_do_power_nodriver);
SYSCTL_INT(_hw_pci, OID_AUTO, do_power_nodriver, CTLFLAG_RW,
    &pci_do_power_nodriver, 0,
  "Place a function into D3 state when no driver attaches to it.  0 means\n\
disable.  1 means conservatively place devices into D3 state.  2 means\n\
agressively place devices into D3 state.  3 means put absolutely everything\n\
in D3 state.");

static int pci_do_power_resume = 1;
TUNABLE_INT("hw.pci.do_power_resume", &pci_do_power_resume);
SYSCTL_INT(_hw_pci, OID_AUTO, do_power_resume, CTLFLAG_RW,
    &pci_do_power_resume, 1,
  "Transition from D3 -> D0 on resume.");

static int pci_do_msi = 1;
TUNABLE_INT("hw.pci.enable_msi", &pci_do_msi);
SYSCTL_INT(_hw_pci, OID_AUTO, enable_msi, CTLFLAG_RW, &pci_do_msi, 1,
    "Enable support for MSI interrupts");

static int pci_do_msix = 1;
TUNABLE_INT("hw.pci.enable_msix", &pci_do_msix);
SYSCTL_INT(_hw_pci, OID_AUTO, enable_msix, CTLFLAG_RW, &pci_do_msix, 1,
    "Enable support for MSI-X interrupts");

static int pci_honor_msi_blacklist = 1;
TUNABLE_INT("hw.pci.honor_msi_blacklist", &pci_honor_msi_blacklist);
SYSCTL_INT(_hw_pci, OID_AUTO, honor_msi_blacklist, CTLFLAG_RD,
    &pci_honor_msi_blacklist, 1, "Honor chipset blacklist for MSI");

#if defined(__i386__) || defined(__amd64__)
static int pci_usb_takeover = 1;
#else
static int pci_usb_takeover = 0;
#endif
TUNABLE_INT("hw.pci.usb_early_takeover", &pci_usb_takeover);
SYSCTL_INT(_hw_pci, OID_AUTO, usb_early_takeover, CTLFLAG_RDTUN,
    &pci_usb_takeover, 1, "Enable early takeover of USB controllers.\n\
Disable this if you depend on BIOS emulation of USB devices, that is\n\
you use USB devices (like keyboard or mouse) but do not load USB drivers");

/* Find a device_t by bus/slot/function in domain 0 */

device_t
pci_find_bsf(uint8_t bus, uint8_t slot, uint8_t func)
{

	return (pci_find_dbsf(0, bus, slot, func));
}

/* Find a device_t by domain/bus/slot/function */

device_t
pci_find_dbsf(uint32_t domain, uint8_t bus, uint8_t slot, uint8_t func)
{
	struct pci_devinfo *dinfo;

	STAILQ_FOREACH(dinfo, &pci_devq, pci_links) {
		if ((dinfo->cfg.domain == domain) &&
		    (dinfo->cfg.bus == bus) &&
		    (dinfo->cfg.slot == slot) &&
		    (dinfo->cfg.func == func)) {
			return (dinfo->cfg.dev);
		}
	}

	return (NULL);
}

#ifndef __rtems__
/* Find a device_t by vendor/device ID */

device_t
pci_find_device(uint16_t vendor, uint16_t device)
{
	struct pci_devinfo *dinfo;

	STAILQ_FOREACH(dinfo, &pci_devq, pci_links) {
		if ((dinfo->cfg.vendor == vendor) &&
		    (dinfo->cfg.device == device)) {
			return (dinfo->cfg.dev);
		}
	}

	return (NULL);
}
#endif /* __rtems__ */

device_t
pci_find_class(uint8_t class, uint8_t subclass)
{
	struct pci_devinfo *dinfo;

	STAILQ_FOREACH(dinfo, &pci_devq, pci_links) {
		if (dinfo->cfg.baseclass == class &&
		    dinfo->cfg.subclass == subclass) {
			return (dinfo->cfg.dev);
		}
	}

	return (NULL);
}

static int
pci_printf(pcicfgregs *cfg, const char *fmt, ...)
{
	va_list ap;
	int retval;

	retval = printf("pci%d:%d:%d:%d: ", cfg->domain, cfg->bus, cfg->slot,
	    cfg->func);
	va_start(ap, fmt);
	retval += vprintf(fmt, ap);
	va_end(ap);
	return (retval);
}

/* return base address of memory or port map */

static pci_addr_t
pci_mapbase(uint64_t mapreg)
{

	if (PCI_BAR_MEM(mapreg))
		return (mapreg & PCIM_BAR_MEM_BASE);
	else
		return (mapreg & PCIM_BAR_IO_BASE);
}

/* return map type of memory or port map */

static const char *
pci_maptype(uint64_t mapreg)
{

	if (PCI_BAR_IO(mapreg))
		return ("I/O Port");
	if (mapreg & PCIM_BAR_MEM_PREFETCH)
		return ("Prefetchable Memory");
	return ("Memory");
}

/* return log2 of map size decoded for memory or port map */

static int
pci_mapsize(uint64_t testval)
{
	int ln2size;

	testval = pci_mapbase(testval);
	ln2size = 0;
	if (testval != 0) {
		while ((testval & 1) == 0)
		{
			ln2size++;
			testval >>= 1;
		}
	}
	return (ln2size);
}

/* return base address of device ROM */

static pci_addr_t
pci_rombase(uint64_t mapreg)
{

	return (mapreg & PCIM_BIOS_ADDR_MASK);
}

/* return log2 of map size decided for device ROM */

static int
pci_romsize(uint64_t testval)
{
	int ln2size;

	testval = pci_rombase(testval);
	ln2size = 0;
	if (testval != 0) {
		while ((testval & 1) == 0)
		{
			ln2size++;
			testval >>= 1;
		}
	}
	return (ln2size);
}
	
/* return log2 of address range supported by map register */

static int
pci_maprange(uint64_t mapreg)
{
	int ln2range = 0;

	if (PCI_BAR_IO(mapreg))
		ln2range = 32;
	else
		switch (mapreg & PCIM_BAR_MEM_TYPE) {
		case PCIM_BAR_MEM_32:
			ln2range = 32;
			break;
		case PCIM_BAR_MEM_1MB:
			ln2range = 20;
			break;
		case PCIM_BAR_MEM_64:
			ln2range = 64;
			break;
		}
	return (ln2range);
}

/* adjust some values from PCI 1.0 devices to match 2.0 standards ... */

static void
pci_fixancient(pcicfgregs *cfg)
{
	if (cfg->hdrtype != 0)
		return;

	/* PCI to PCI bridges use header type 1 */
	if (cfg->baseclass == PCIC_BRIDGE && cfg->subclass == PCIS_BRIDGE_PCI)
		cfg->hdrtype = 1;
}

/* extract header type specific config data */

static void
pci_hdrtypedata(device_t pcib, int b, int s, int f, pcicfgregs *cfg)
{
#define	REG(n, w)	PCIB_READ_CONFIG(pcib, b, s, f, n, w)
	switch (cfg->hdrtype) {
	case 0:
		cfg->subvendor      = REG(PCIR_SUBVEND_0, 2);
		cfg->subdevice      = REG(PCIR_SUBDEV_0, 2);
		cfg->nummaps	    = PCI_MAXMAPS_0;
		break;
	case 1:
		cfg->nummaps	    = PCI_MAXMAPS_1;
		break;
	case 2:
		cfg->subvendor      = REG(PCIR_SUBVEND_2, 2);
		cfg->subdevice      = REG(PCIR_SUBDEV_2, 2);
		cfg->nummaps	    = PCI_MAXMAPS_2;
		break;
	}
#undef REG
}

/* read configuration header into pcicfgregs structure */
struct pci_devinfo *
pci_read_device(device_t pcib, int d, int b, int s, int f, size_t size)
{
#define	REG(n, w)	PCIB_READ_CONFIG(pcib, b, s, f, n, w)
	pcicfgregs *cfg = NULL;
	struct pci_devinfo *devlist_entry;
	struct devlist *devlist_head;

	devlist_head = &pci_devq;

	devlist_entry = NULL;

	if (REG(PCIR_DEVVENDOR, 4) != 0xfffffffful) {
		devlist_entry = malloc(size, M_DEVBUF, M_WAITOK | M_ZERO);
		if (devlist_entry == NULL)
			return (NULL);

		cfg = &devlist_entry->cfg;

		cfg->domain		= d;
		cfg->bus		= b;
		cfg->slot		= s;
		cfg->func		= f;
		cfg->vendor		= REG(PCIR_VENDOR, 2);
		cfg->device		= REG(PCIR_DEVICE, 2);
		cfg->cmdreg		= REG(PCIR_COMMAND, 2);
		cfg->statreg		= REG(PCIR_STATUS, 2);
		cfg->baseclass		= REG(PCIR_CLASS, 1);
		cfg->subclass		= REG(PCIR_SUBCLASS, 1);
		cfg->progif		= REG(PCIR_PROGIF, 1);
		cfg->revid		= REG(PCIR_REVID, 1);
		cfg->hdrtype		= REG(PCIR_HDRTYPE, 1);
		cfg->cachelnsz		= REG(PCIR_CACHELNSZ, 1);
		cfg->lattimer		= REG(PCIR_LATTIMER, 1);
		cfg->intpin		= REG(PCIR_INTPIN, 1);
		cfg->intline		= REG(PCIR_INTLINE, 1);

		cfg->mingnt		= REG(PCIR_MINGNT, 1);
		cfg->maxlat		= REG(PCIR_MAXLAT, 1);

		cfg->mfdev		= (cfg->hdrtype & PCIM_MFDEV) != 0;
		cfg->hdrtype		&= ~PCIM_MFDEV;
		STAILQ_INIT(&cfg->maps);

		pci_fixancient(cfg);
		pci_hdrtypedata(pcib, b, s, f, cfg);

		if (REG(PCIR_STATUS, 2) & PCIM_STATUS_CAPPRESENT)
			pci_read_cap(pcib, cfg);

		STAILQ_INSERT_TAIL(devlist_head, devlist_entry, pci_links);

		devlist_entry->conf.pc_sel.pc_domain = cfg->domain;
		devlist_entry->conf.pc_sel.pc_bus = cfg->bus;
		devlist_entry->conf.pc_sel.pc_dev = cfg->slot;
		devlist_entry->conf.pc_sel.pc_func = cfg->func;
		devlist_entry->conf.pc_hdr = cfg->hdrtype;

		devlist_entry->conf.pc_subvendor = cfg->subvendor;
		devlist_entry->conf.pc_subdevice = cfg->subdevice;
		devlist_entry->conf.pc_vendor = cfg->vendor;
		devlist_entry->conf.pc_device = cfg->device;

		devlist_entry->conf.pc_class = cfg->baseclass;
		devlist_entry->conf.pc_subclass = cfg->subclass;
		devlist_entry->conf.pc_progif = cfg->progif;
		devlist_entry->conf.pc_revid = cfg->revid;

		pci_numdevs++;
		pci_generation++;
	}
	return (devlist_entry);
#undef REG
}

static void
pci_read_cap(device_t pcib, pcicfgregs *cfg)
{
#define	REG(n, w)	PCIB_READ_CONFIG(pcib, cfg->bus, cfg->slot, cfg->func, n, w)
#define	WREG(n, v, w)	PCIB_WRITE_CONFIG(pcib, cfg->bus, cfg->slot, cfg->func, n, v, w)
#if defined(__i386__) || defined(__amd64__) || defined(__powerpc__)
	uint64_t addr;
#endif
	uint32_t val;
	int	ptr, nextptr, ptrptr;

	switch (cfg->hdrtype & PCIM_HDRTYPE) {
	case 0:
	case 1:
		ptrptr = PCIR_CAP_PTR;
		break;
	case 2:
		ptrptr = PCIR_CAP_PTR_2;	/* cardbus capabilities ptr */
		break;
	default:
		return;		/* no extended capabilities support */
	}
	nextptr = REG(ptrptr, 1);	/* sanity check? */

	/*
	 * Read capability entries.
	 */
	while (nextptr != 0) {
		/* Sanity check */
		if (nextptr > 255) {
			printf("illegal PCI extended capability offset %d\n",
			    nextptr);
			return;
		}
		/* Find the next entry */
		ptr = nextptr;
		nextptr = REG(ptr + PCICAP_NEXTPTR, 1);

		/* Process this entry */
		switch (REG(ptr + PCICAP_ID, 1)) {
		case PCIY_PMG:		/* PCI power management */
			if (cfg->pp.pp_cap == 0) {
				cfg->pp.pp_cap = REG(ptr + PCIR_POWER_CAP, 2);
				cfg->pp.pp_status = ptr + PCIR_POWER_STATUS;
				cfg->pp.pp_pmcsr = ptr + PCIR_POWER_PMCSR;
				if ((nextptr - ptr) > PCIR_POWER_DATA)
					cfg->pp.pp_data = ptr + PCIR_POWER_DATA;
			}
			break;
		case PCIY_HT:		/* HyperTransport */
			/* Determine HT-specific capability type. */
			val = REG(ptr + PCIR_HT_COMMAND, 2);

			if ((val & 0xe000) == PCIM_HTCAP_SLAVE)
				cfg->ht.ht_slave = ptr;

#if defined(__i386__) || defined(__amd64__) || defined(__powerpc__)
			switch (val & PCIM_HTCMD_CAP_MASK) {
			case PCIM_HTCAP_MSI_MAPPING:
				if (!(val & PCIM_HTCMD_MSI_FIXED)) {
					/* Sanity check the mapping window. */
					addr = REG(ptr + PCIR_HTMSI_ADDRESS_HI,
					    4);
					addr <<= 32;
					addr |= REG(ptr + PCIR_HTMSI_ADDRESS_LO,
					    4);
					if (addr != MSI_INTEL_ADDR_BASE)
						device_printf(pcib,
	    "HT device at pci%d:%d:%d:%d has non-default MSI window 0x%llx\n",
						    cfg->domain, cfg->bus,
						    cfg->slot, cfg->func,
						    (long long)addr);
				} else
					addr = MSI_INTEL_ADDR_BASE;

				cfg->ht.ht_msimap = ptr;
				cfg->ht.ht_msictrl = val;
				cfg->ht.ht_msiaddr = addr;
				break;
			}
#endif
			break;
		case PCIY_MSI:		/* PCI MSI */
			cfg->msi.msi_location = ptr;
			cfg->msi.msi_ctrl = REG(ptr + PCIR_MSI_CTRL, 2);
			cfg->msi.msi_msgnum = 1 << ((cfg->msi.msi_ctrl &
						     PCIM_MSICTRL_MMC_MASK)>>1);
			break;
		case PCIY_MSIX:		/* PCI MSI-X */
			cfg->msix.msix_location = ptr;
			cfg->msix.msix_ctrl = REG(ptr + PCIR_MSIX_CTRL, 2);
			cfg->msix.msix_msgnum = (cfg->msix.msix_ctrl &
			    PCIM_MSIXCTRL_TABLE_SIZE) + 1;
			val = REG(ptr + PCIR_MSIX_TABLE, 4);
			cfg->msix.msix_table_bar = PCIR_BAR(val &
			    PCIM_MSIX_BIR_MASK);
			cfg->msix.msix_table_offset = val & ~PCIM_MSIX_BIR_MASK;
			val = REG(ptr + PCIR_MSIX_PBA, 4);
			cfg->msix.msix_pba_bar = PCIR_BAR(val &
			    PCIM_MSIX_BIR_MASK);
			cfg->msix.msix_pba_offset = val & ~PCIM_MSIX_BIR_MASK;
			break;
		case PCIY_VPD:		/* PCI Vital Product Data */
			cfg->vpd.vpd_reg = ptr;
			break;
		case PCIY_SUBVENDOR:
			/* Should always be true. */
			if ((cfg->hdrtype & PCIM_HDRTYPE) == 1) {
				val = REG(ptr + PCIR_SUBVENDCAP_ID, 4);
				cfg->subvendor = val & 0xffff;
				cfg->subdevice = val >> 16;
			}
			break;
		case PCIY_PCIX:		/* PCI-X */
			/*
			 * Assume we have a PCI-X chipset if we have
			 * at least one PCI-PCI bridge with a PCI-X
			 * capability.  Note that some systems with
			 * PCI-express or HT chipsets might match on
			 * this check as well.
			 */
			if ((cfg->hdrtype & PCIM_HDRTYPE) == 1)
				pcix_chipset = 1;
			break;
		case PCIY_EXPRESS:	/* PCI-express */
			/*
			 * Assume we have a PCI-express chipset if we have
			 * at least one PCI-express device.
			 */
			pcie_chipset = 1;
			break;
		default:
			break;
		}
	}

#if defined(__powerpc__)
	/*
	 * Enable the MSI mapping window for all HyperTransport
	 * slaves.  PCI-PCI bridges have their windows enabled via
	 * PCIB_MAP_MSI().
	 */
	if (cfg->ht.ht_slave != 0 && cfg->ht.ht_msimap != 0 &&
	    !(cfg->ht.ht_msictrl & PCIM_HTCMD_MSI_ENABLE)) {
		device_printf(pcib,
	    "Enabling MSI window for HyperTransport slave at pci%d:%d:%d:%d\n",
		    cfg->domain, cfg->bus, cfg->slot, cfg->func);
		 cfg->ht.ht_msictrl |= PCIM_HTCMD_MSI_ENABLE;
		 WREG(cfg->ht.ht_msimap + PCIR_HT_COMMAND, cfg->ht.ht_msictrl,
		     2);
	}
#endif
/* REG and WREG use carry through to next functions */
}

/*
 * PCI Vital Product Data
 */

#define	PCI_VPD_TIMEOUT		1000000

static int
pci_read_vpd_reg(device_t pcib, pcicfgregs *cfg, int reg, uint32_t *data)
{
	int count = PCI_VPD_TIMEOUT;

	KASSERT((reg & 3) == 0, ("VPD register must by 4 byte aligned"));

	WREG(cfg->vpd.vpd_reg + PCIR_VPD_ADDR, reg, 2);

	while ((REG(cfg->vpd.vpd_reg + PCIR_VPD_ADDR, 2) & 0x8000) != 0x8000) {
		if (--count < 0)
			return (ENXIO);
		DELAY(1);	/* limit looping */
	}
	*data = (REG(cfg->vpd.vpd_reg + PCIR_VPD_DATA, 4));

	return (0);
}

#if 0
static int
pci_write_vpd_reg(device_t pcib, pcicfgregs *cfg, int reg, uint32_t data)
{
	int count = PCI_VPD_TIMEOUT;

	KASSERT((reg & 3) == 0, ("VPD register must by 4 byte aligned"));

	WREG(cfg->vpd.vpd_reg + PCIR_VPD_DATA, data, 4);
	WREG(cfg->vpd.vpd_reg + PCIR_VPD_ADDR, reg | 0x8000, 2);
	while ((REG(cfg->vpd.vpd_reg + PCIR_VPD_ADDR, 2) & 0x8000) == 0x8000) {
		if (--count < 0)
			return (ENXIO);
		DELAY(1);	/* limit looping */
	}

	return (0);
}
#endif

#undef PCI_VPD_TIMEOUT

struct vpd_readstate {
	device_t	pcib;
	pcicfgregs	*cfg;
	uint32_t	val;
	int		bytesinval;
	int		off;
	uint8_t		cksum;
};

static int
vpd_nextbyte(struct vpd_readstate *vrs, uint8_t *data)
{
	uint32_t reg;
	uint8_t byte;

	if (vrs->bytesinval == 0) {
		if (pci_read_vpd_reg(vrs->pcib, vrs->cfg, vrs->off, &reg))
			return (ENXIO);
		vrs->val = le32toh(reg);
		vrs->off += 4;
		byte = vrs->val & 0xff;
		vrs->bytesinval = 3;
	} else {
		vrs->val = vrs->val >> 8;
		byte = vrs->val & 0xff;
		vrs->bytesinval--;
	}

	vrs->cksum += byte;
	*data = byte;
	return (0);
}

static void
pci_read_vpd(device_t pcib, pcicfgregs *cfg)
{
	struct vpd_readstate vrs;
	int state;
	int name;
	int remain;
	int i;
	int alloc, off;		/* alloc/off for RO/W arrays */
	int cksumvalid;
	int dflen;
	uint8_t byte;
	uint8_t byte2;

	/* init vpd reader */
	vrs.bytesinval = 0;
	vrs.off = 0;
	vrs.pcib = pcib;
	vrs.cfg = cfg;
	vrs.cksum = 0;

	state = 0;
	name = remain = i = 0;	/* shut up stupid gcc */
	alloc = off = 0;	/* shut up stupid gcc */
	dflen = 0;		/* shut up stupid gcc */
	cksumvalid = -1;
	while (state >= 0) {
		if (vpd_nextbyte(&vrs, &byte)) {
			state = -2;
			break;
		}
#if 0
		printf("vpd: val: %#x, off: %d, bytesinval: %d, byte: %#hhx, " \
		    "state: %d, remain: %d, name: %#x, i: %d\n", vrs.val,
		    vrs.off, vrs.bytesinval, byte, state, remain, name, i);
#endif
		switch (state) {
		case 0:		/* item name */
			if (byte & 0x80) {
				if (vpd_nextbyte(&vrs, &byte2)) {
					state = -2;
					break;
				}
				remain = byte2;
				if (vpd_nextbyte(&vrs, &byte2)) {
					state = -2;
					break;
				}
				remain |= byte2 << 8;
				if (remain > (0x7f*4 - vrs.off)) {
					state = -1;
					printf(
			    "pci%d:%d:%d:%d: invalid VPD data, remain %#x\n",
					    cfg->domain, cfg->bus, cfg->slot,
					    cfg->func, remain);
				}
				name = byte & 0x7f;
			} else {
				remain = byte & 0x7;
				name = (byte >> 3) & 0xf;
			}
			switch (name) {
			case 0x2:	/* String */
				cfg->vpd.vpd_ident = malloc(remain + 1,
				    M_DEVBUF, M_WAITOK);
				i = 0;
				state = 1;
				break;
			case 0xf:	/* End */
				state = -1;
				break;
			case 0x10:	/* VPD-R */
				alloc = 8;
				off = 0;
				cfg->vpd.vpd_ros = malloc(alloc *
				    sizeof(*cfg->vpd.vpd_ros), M_DEVBUF,
				    M_WAITOK | M_ZERO);
				state = 2;
				break;
			case 0x11:	/* VPD-W */
				alloc = 8;
				off = 0;
				cfg->vpd.vpd_w = malloc(alloc *
				    sizeof(*cfg->vpd.vpd_w), M_DEVBUF,
				    M_WAITOK | M_ZERO);
				state = 5;
				break;
			default:	/* Invalid data, abort */
				state = -1;
				break;
			}
			break;

		case 1:	/* Identifier String */
			cfg->vpd.vpd_ident[i++] = byte;
			remain--;
			if (remain == 0)  {
				cfg->vpd.vpd_ident[i] = '\0';
				state = 0;
			}
			break;

		case 2:	/* VPD-R Keyword Header */
			if (off == alloc) {
				cfg->vpd.vpd_ros = reallocf(cfg->vpd.vpd_ros,
				    (alloc *= 2) * sizeof(*cfg->vpd.vpd_ros),
				    M_DEVBUF, M_WAITOK | M_ZERO);
			}
			cfg->vpd.vpd_ros[off].keyword[0] = byte;
			if (vpd_nextbyte(&vrs, &byte2)) {
				state = -2;
				break;
			}
			cfg->vpd.vpd_ros[off].keyword[1] = byte2;
			if (vpd_nextbyte(&vrs, &byte2)) {
				state = -2;
				break;
			}
			dflen = byte2;
			if (dflen == 0 &&
			    strncmp(cfg->vpd.vpd_ros[off].keyword, "RV",
			    2) == 0) {
				/*
				 * if this happens, we can't trust the rest
				 * of the VPD.
				 */
				printf(
				    "pci%d:%d:%d:%d: bad keyword length: %d\n",
				    cfg->domain, cfg->bus, cfg->slot,
				    cfg->func, dflen);
				cksumvalid = 0;
				state = -1;
				break;
			} else if (dflen == 0) {
				cfg->vpd.vpd_ros[off].value = malloc(1 *
				    sizeof(*cfg->vpd.vpd_ros[off].value),
				    M_DEVBUF, M_WAITOK);
				cfg->vpd.vpd_ros[off].value[0] = '\x00';
			} else
				cfg->vpd.vpd_ros[off].value = malloc(
				    (dflen + 1) *
				    sizeof(*cfg->vpd.vpd_ros[off].value),
				    M_DEVBUF, M_WAITOK);
			remain -= 3;
			i = 0;
			/* keep in sync w/ state 3's transistions */
			if (dflen == 0 && remain == 0)
				state = 0;
			else if (dflen == 0)
				state = 2;
			else
				state = 3;
			break;

		case 3:	/* VPD-R Keyword Value */
			cfg->vpd.vpd_ros[off].value[i++] = byte;
			if (strncmp(cfg->vpd.vpd_ros[off].keyword,
			    "RV", 2) == 0 && cksumvalid == -1) {
				if (vrs.cksum == 0)
					cksumvalid = 1;
				else {
					if (bootverbose)
						printf(
				"pci%d:%d:%d:%d: bad VPD cksum, remain %hhu\n",
						    cfg->domain, cfg->bus,
						    cfg->slot, cfg->func,
						    vrs.cksum);
					cksumvalid = 0;
					state = -1;
					break;
				}
			}
			dflen--;
			remain--;
			/* keep in sync w/ state 2's transistions */
			if (dflen == 0)
				cfg->vpd.vpd_ros[off++].value[i++] = '\0';
			if (dflen == 0 && remain == 0) {
				cfg->vpd.vpd_rocnt = off;
				cfg->vpd.vpd_ros = reallocf(cfg->vpd.vpd_ros,
				    off * sizeof(*cfg->vpd.vpd_ros),
				    M_DEVBUF, M_WAITOK | M_ZERO);
				state = 0;
			} else if (dflen == 0)
				state = 2;
			break;

		case 4:
			remain--;
			if (remain == 0)
				state = 0;
			break;

		case 5:	/* VPD-W Keyword Header */
			if (off == alloc) {
				cfg->vpd.vpd_w = reallocf(cfg->vpd.vpd_w,
				    (alloc *= 2) * sizeof(*cfg->vpd.vpd_w),
				    M_DEVBUF, M_WAITOK | M_ZERO);
			}
			cfg->vpd.vpd_w[off].keyword[0] = byte;
			if (vpd_nextbyte(&vrs, &byte2)) {
				state = -2;
				break;
			}
			cfg->vpd.vpd_w[off].keyword[1] = byte2;
			if (vpd_nextbyte(&vrs, &byte2)) {
				state = -2;
				break;
			}
			cfg->vpd.vpd_w[off].len = dflen = byte2;
			cfg->vpd.vpd_w[off].start = vrs.off - vrs.bytesinval;
			cfg->vpd.vpd_w[off].value = malloc((dflen + 1) *
			    sizeof(*cfg->vpd.vpd_w[off].value),
			    M_DEVBUF, M_WAITOK);
			remain -= 3;
			i = 0;
			/* keep in sync w/ state 6's transistions */
			if (dflen == 0 && remain == 0)
				state = 0;
			else if (dflen == 0)
				state = 5;
			else
				state = 6;
			break;

		case 6:	/* VPD-W Keyword Value */
			cfg->vpd.vpd_w[off].value[i++] = byte;
			dflen--;
			remain--;
			/* keep in sync w/ state 5's transistions */
			if (dflen == 0)
				cfg->vpd.vpd_w[off++].value[i++] = '\0';
			if (dflen == 0 && remain == 0) {
				cfg->vpd.vpd_wcnt = off;
				cfg->vpd.vpd_w = reallocf(cfg->vpd.vpd_w,
				    off * sizeof(*cfg->vpd.vpd_w),
				    M_DEVBUF, M_WAITOK | M_ZERO);
				state = 0;
			} else if (dflen == 0)
				state = 5;
			break;

		default:
			printf("pci%d:%d:%d:%d: invalid state: %d\n",
			    cfg->domain, cfg->bus, cfg->slot, cfg->func,
			    state);
			state = -1;
			break;
		}
	}

	if (cksumvalid == 0 || state < -1) {
		/* read-only data bad, clean up */
		if (cfg->vpd.vpd_ros != NULL) {
			for (off = 0; cfg->vpd.vpd_ros[off].value; off++)
				free(cfg->vpd.vpd_ros[off].value, M_DEVBUF);
			free(cfg->vpd.vpd_ros, M_DEVBUF);
			cfg->vpd.vpd_ros = NULL;
		}
	}
	if (state < -1) {
		/* I/O error, clean up */
		printf("pci%d:%d:%d:%d: failed to read VPD data.\n",
		    cfg->domain, cfg->bus, cfg->slot, cfg->func);
		if (cfg->vpd.vpd_ident != NULL) {
			free(cfg->vpd.vpd_ident, M_DEVBUF);
			cfg->vpd.vpd_ident = NULL;
		}
		if (cfg->vpd.vpd_w != NULL) {
			for (off = 0; cfg->vpd.vpd_w[off].value; off++)
				free(cfg->vpd.vpd_w[off].value, M_DEVBUF);
			free(cfg->vpd.vpd_w, M_DEVBUF);
			cfg->vpd.vpd_w = NULL;
		}
	}
	cfg->vpd.vpd_cached = 1;
#undef REG
#undef WREG
}

int
pci_get_vpd_ident_method(device_t dev, device_t child, const char **identptr)
{
	struct pci_devinfo *dinfo = device_get_ivars(child);
	pcicfgregs *cfg = &dinfo->cfg;

	if (!cfg->vpd.vpd_cached && cfg->vpd.vpd_reg != 0)
		pci_read_vpd(device_get_parent(dev), cfg);

	*identptr = cfg->vpd.vpd_ident;

	if (*identptr == NULL)
		return (ENXIO);

	return (0);
}

int
pci_get_vpd_readonly_method(device_t dev, device_t child, const char *kw,
	const char **vptr)
{
	struct pci_devinfo *dinfo = device_get_ivars(child);
	pcicfgregs *cfg = &dinfo->cfg;
	int i;

	if (!cfg->vpd.vpd_cached && cfg->vpd.vpd_reg != 0)
		pci_read_vpd(device_get_parent(dev), cfg);

	for (i = 0; i < cfg->vpd.vpd_rocnt; i++)
		if (memcmp(kw, cfg->vpd.vpd_ros[i].keyword,
		    sizeof(cfg->vpd.vpd_ros[i].keyword)) == 0) {
			*vptr = cfg->vpd.vpd_ros[i].value;
			return (0);
		}

	*vptr = NULL;
	return (ENXIO);
}

/*
 * Find the requested extended capability and return the offset in
 * configuration space via the pointer provided. The function returns
 * 0 on success and error code otherwise.
 */
int
pci_find_extcap_method(device_t dev, device_t child, int capability,
    int *capreg)
{
	struct pci_devinfo *dinfo = device_get_ivars(child);
	pcicfgregs *cfg = &dinfo->cfg;
	u_int32_t status;
	u_int8_t ptr;

	/*
	 * Check the CAP_LIST bit of the PCI status register first.
	 */
	status = pci_read_config(child, PCIR_STATUS, 2);
	if (!(status & PCIM_STATUS_CAPPRESENT))
		return (ENXIO);

	/*
	 * Determine the start pointer of the capabilities list.
	 */
	switch (cfg->hdrtype & PCIM_HDRTYPE) {
	case 0:
	case 1:
		ptr = PCIR_CAP_PTR;
		break;
	case 2:
		ptr = PCIR_CAP_PTR_2;
		break;
	default:
		/* XXX: panic? */
		return (ENXIO);		/* no extended capabilities support */
	}
	ptr = pci_read_config(child, ptr, 1);

	/*
	 * Traverse the capabilities list.
	 */
	while (ptr != 0) {
		if (pci_read_config(child, ptr + PCICAP_ID, 1) == capability) {
			if (capreg != NULL)
				*capreg = ptr;
			return (0);
		}
		ptr = pci_read_config(child, ptr + PCICAP_NEXTPTR, 1);
	}

	return (ENOENT);
}

/*
 * Support for MSI-X message interrupts.
 */
void
pci_enable_msix(device_t dev, u_int index, uint64_t address, uint32_t data)
{
	struct pci_devinfo *dinfo = device_get_ivars(dev);
	struct pcicfg_msix *msix = &dinfo->cfg.msix;
	uint32_t offset;

	KASSERT(msix->msix_table_len > index, ("bogus index"));
	offset = msix->msix_table_offset + index * 16;
	bus_write_4(msix->msix_table_res, offset, address & 0xffffffff);
	bus_write_4(msix->msix_table_res, offset + 4, address >> 32);
	bus_write_4(msix->msix_table_res, offset + 8, data);

	/* Enable MSI -> HT mapping. */
	pci_ht_map_msi(dev, address);
}

void
pci_mask_msix(device_t dev, u_int index)
{
	struct pci_devinfo *dinfo = device_get_ivars(dev);
	struct pcicfg_msix *msix = &dinfo->cfg.msix;
	uint32_t offset, val;

	KASSERT(msix->msix_msgnum > index, ("bogus index"));
	offset = msix->msix_table_offset + index * 16 + 12;
	val = bus_read_4(msix->msix_table_res, offset);
	if (!(val & PCIM_MSIX_VCTRL_MASK)) {
		val |= PCIM_MSIX_VCTRL_MASK;
		bus_write_4(msix->msix_table_res, offset, val);
	}
}

void
pci_unmask_msix(device_t dev, u_int index)
{
	struct pci_devinfo *dinfo = device_get_ivars(dev);
	struct pcicfg_msix *msix = &dinfo->cfg.msix;
	uint32_t offset, val;

	KASSERT(msix->msix_table_len > index, ("bogus index"));
	offset = msix->msix_table_offset + index * 16 + 12;
	val = bus_read_4(msix->msix_table_res, offset);
	if (val & PCIM_MSIX_VCTRL_MASK) {
		val &= ~PCIM_MSIX_VCTRL_MASK;
		bus_write_4(msix->msix_table_res, offset, val);
	}
}

int
pci_pending_msix(device_t dev, u_int index)
{
	struct pci_devinfo *dinfo = device_get_ivars(dev);
	struct pcicfg_msix *msix = &dinfo->cfg.msix;
	uint32_t offset, bit;

	KASSERT(msix->msix_table_len > index, ("bogus index"));
	offset = msix->msix_pba_offset + (index / 32) * 4;
	bit = 1 << index % 32;
	return (bus_read_4(msix->msix_pba_res, offset) & bit);
}

/*
 * Restore MSI-X registers and table during resume.  If MSI-X is
 * enabled then walk the virtual table to restore the actual MSI-X
 * table.
 */
static void
pci_resume_msix(device_t dev)
{
	struct pci_devinfo *dinfo = device_get_ivars(dev);
	struct pcicfg_msix *msix = &dinfo->cfg.msix;
	struct msix_table_entry *mte;
	struct msix_vector *mv;
	int i;

	if (msix->msix_alloc > 0) {
		/* First, mask all vectors. */
		for (i = 0; i < msix->msix_msgnum; i++)
			pci_mask_msix(dev, i);

		/* Second, program any messages with at least one handler. */
		for (i = 0; i < msix->msix_table_len; i++) {
			mte = &msix->msix_table[i];
			if (mte->mte_vector == 0 || mte->mte_handlers == 0)
				continue;
			mv = &msix->msix_vectors[mte->mte_vector - 1];
			pci_enable_msix(dev, i, mv->mv_address, mv->mv_data);
			pci_unmask_msix(dev, i);
		}
	}
	pci_write_config(dev, msix->msix_location + PCIR_MSIX_CTRL,
	    msix->msix_ctrl, 2);
}

/*
 * Attempt to allocate *count MSI-X messages.  The actual number allocated is
 * returned in *count.  After this function returns, each message will be
 * available to the driver as SYS_RES_IRQ resources starting at rid 1.
 */
int
pci_alloc_msix_method(device_t dev, device_t child, int *count)
{
	struct pci_devinfo *dinfo = device_get_ivars(child);
	pcicfgregs *cfg = &dinfo->cfg;
	struct resource_list_entry *rle;
	int actual, error, i, irq, max;

	/* Don't let count == 0 get us into trouble. */
	if (*count == 0)
		return (EINVAL);

	/* If rid 0 is allocated, then fail. */
	rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, 0);
	if (rle != NULL && rle->res != NULL)
		return (ENXIO);

	/* Already have allocated messages? */
	if (cfg->msi.msi_alloc != 0 || cfg->msix.msix_alloc != 0)
		return (ENXIO);

	/* If MSI is blacklisted for this system, fail. */
	if (pci_msi_blacklisted())
		return (ENXIO);

	/* MSI-X capability present? */
	if (cfg->msix.msix_location == 0 || !pci_do_msix)
		return (ENODEV);

	/* Make sure the appropriate BARs are mapped. */
	rle = resource_list_find(&dinfo->resources, SYS_RES_MEMORY,
	    cfg->msix.msix_table_bar);
	if (rle == NULL || rle->res == NULL ||
	    !(rman_get_flags(rle->res) & RF_ACTIVE))
		return (ENXIO);
	cfg->msix.msix_table_res = rle->res;
	if (cfg->msix.msix_pba_bar != cfg->msix.msix_table_bar) {
		rle = resource_list_find(&dinfo->resources, SYS_RES_MEMORY,
		    cfg->msix.msix_pba_bar);
		if (rle == NULL || rle->res == NULL ||
		    !(rman_get_flags(rle->res) & RF_ACTIVE))
			return (ENXIO);
	}
	cfg->msix.msix_pba_res = rle->res;

	if (bootverbose)
		device_printf(child,
		    "attempting to allocate %d MSI-X vectors (%d supported)\n",
		    *count, cfg->msix.msix_msgnum);
	max = min(*count, cfg->msix.msix_msgnum);
	for (i = 0; i < max; i++) {
		/* Allocate a message. */
		error = PCIB_ALLOC_MSIX(device_get_parent(dev), child, &irq);
		if (error) {
			if (i == 0)
				return (error);
			break;
		}
		resource_list_add(&dinfo->resources, SYS_RES_IRQ, i + 1, irq,
		    irq, 1);
	}
	actual = i;

	if (bootverbose) {
		rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, 1);
		if (actual == 1)
			device_printf(child, "using IRQ %lu for MSI-X\n",
			    rle->start);
		else {
			int run;

			/*
			 * Be fancy and try to print contiguous runs of
			 * IRQ values as ranges.  'irq' is the previous IRQ.
			 * 'run' is true if we are in a range.
			 */
			device_printf(child, "using IRQs %lu", rle->start);
			irq = rle->start;
			run = 0;
			for (i = 1; i < actual; i++) {
				rle = resource_list_find(&dinfo->resources,
				    SYS_RES_IRQ, i + 1);

				/* Still in a run? */
				if (rle->start == irq + 1) {
					run = 1;
					irq++;
					continue;
				}

				/* Finish previous range. */
				if (run) {
					printf("-%d", irq);
					run = 0;
				}

				/* Start new range. */
				printf(",%lu", rle->start);
				irq = rle->start;
			}

			/* Unfinished range? */
			if (run)
				printf("-%d", irq);
			printf(" for MSI-X\n");
		}
	}

	/* Mask all vectors. */
	for (i = 0; i < cfg->msix.msix_msgnum; i++)
		pci_mask_msix(child, i);

	/* Allocate and initialize vector data and virtual table. */
	cfg->msix.msix_vectors = malloc(sizeof(struct msix_vector) * actual,
	    M_DEVBUF, M_WAITOK | M_ZERO);
	cfg->msix.msix_table = malloc(sizeof(struct msix_table_entry) * actual,
	    M_DEVBUF, M_WAITOK | M_ZERO);
	for (i = 0; i < actual; i++) {
		rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, i + 1);
		cfg->msix.msix_vectors[i].mv_irq = rle->start;
		cfg->msix.msix_table[i].mte_vector = i + 1;
	}

	/* Update control register to enable MSI-X. */
	cfg->msix.msix_ctrl |= PCIM_MSIXCTRL_MSIX_ENABLE;
	pci_write_config(child, cfg->msix.msix_location + PCIR_MSIX_CTRL,
	    cfg->msix.msix_ctrl, 2);

	/* Update counts of alloc'd messages. */
	cfg->msix.msix_alloc = actual;
	cfg->msix.msix_table_len = actual;
	*count = actual;
	return (0);
}

/*
 * By default, pci_alloc_msix() will assign the allocated IRQ
 * resources consecutively to the first N messages in the MSI-X table.
 * However, device drivers may want to use different layouts if they
 * either receive fewer messages than they asked for, or they wish to
 * populate the MSI-X table sparsely.  This method allows the driver
 * to specify what layout it wants.  It must be called after a
 * successful pci_alloc_msix() but before any of the associated
 * SYS_RES_IRQ resources are allocated via bus_alloc_resource().
 *
 * The 'vectors' array contains 'count' message vectors.  The array
 * maps directly to the MSI-X table in that index 0 in the array
 * specifies the vector for the first message in the MSI-X table, etc.
 * The vector value in each array index can either be 0 to indicate
 * that no vector should be assigned to a message slot, or it can be a
 * number from 1 to N (where N is the count returned from a
 * succcessful call to pci_alloc_msix()) to indicate which message
 * vector (IRQ) to be used for the corresponding message.
 *
 * On successful return, each message with a non-zero vector will have
 * an associated SYS_RES_IRQ whose rid is equal to the array index +
 * 1.  Additionally, if any of the IRQs allocated via the previous
 * call to pci_alloc_msix() are not used in the mapping, those IRQs
 * will be freed back to the system automatically.
 *
 * For example, suppose a driver has a MSI-X table with 6 messages and
 * asks for 6 messages, but pci_alloc_msix() only returns a count of
 * 3.  Call the three vectors allocated by pci_alloc_msix() A, B, and
 * C.  After the call to pci_alloc_msix(), the device will be setup to
 * have an MSI-X table of ABC--- (where - means no vector assigned).
 * If the driver ten passes a vector array of { 1, 0, 1, 2, 0, 2 },
 * then the MSI-X table will look like A-AB-B, and the 'C' vector will
 * be freed back to the system.  This device will also have valid
 * SYS_RES_IRQ rids of 1, 3, 4, and 6.
 *
 * In any case, the SYS_RES_IRQ rid X will always map to the message
 * at MSI-X table index X - 1 and will only be valid if a vector is
 * assigned to that table entry.
 */
int
pci_remap_msix_method(device_t dev, device_t child, int count,
    const u_int *vectors)
{
	struct pci_devinfo *dinfo = device_get_ivars(child);
	struct pcicfg_msix *msix = &dinfo->cfg.msix;
	struct resource_list_entry *rle;
	int i, irq, j, *used;

	/*
	 * Have to have at least one message in the table but the
	 * table can't be bigger than the actual MSI-X table in the
	 * device.
	 */
	if (count == 0 || count > msix->msix_msgnum)
		return (EINVAL);

	/* Sanity check the vectors. */
	for (i = 0; i < count; i++)
		if (vectors[i] > msix->msix_alloc)
			return (EINVAL);

	/*
	 * Make sure there aren't any holes in the vectors to be used.
	 * It's a big pain to support it, and it doesn't really make
	 * sense anyway.  Also, at least one vector must be used.
	 */
	used = malloc(sizeof(int) * msix->msix_alloc, M_DEVBUF, M_WAITOK |
	    M_ZERO);
	for (i = 0; i < count; i++)
		if (vectors[i] != 0)
			used[vectors[i] - 1] = 1;
	for (i = 0; i < msix->msix_alloc - 1; i++)
		if (used[i] == 0 && used[i + 1] == 1) {
			free(used, M_DEVBUF);
			return (EINVAL);
		}
	if (used[0] != 1) {
		free(used, M_DEVBUF);
		return (EINVAL);
	}
	
	/* Make sure none of the resources are allocated. */
	for (i = 0; i < msix->msix_table_len; i++) {
		if (msix->msix_table[i].mte_vector == 0)
			continue;
		if (msix->msix_table[i].mte_handlers > 0)
			return (EBUSY);
		rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, i + 1);
		KASSERT(rle != NULL, ("missing resource"));
		if (rle->res != NULL)
			return (EBUSY);
	}

	/* Free the existing resource list entries. */
	for (i = 0; i < msix->msix_table_len; i++) {
		if (msix->msix_table[i].mte_vector == 0)
			continue;
		resource_list_delete(&dinfo->resources, SYS_RES_IRQ, i + 1);
	}

	/*
	 * Build the new virtual table keeping track of which vectors are
	 * used.
	 */
	free(msix->msix_table, M_DEVBUF);
	msix->msix_table = malloc(sizeof(struct msix_table_entry) * count,
	    M_DEVBUF, M_WAITOK | M_ZERO);
	for (i = 0; i < count; i++)
		msix->msix_table[i].mte_vector = vectors[i];
	msix->msix_table_len = count;

	/* Free any unused IRQs and resize the vectors array if necessary. */
	j = msix->msix_alloc - 1;
	if (used[j] == 0) {
		struct msix_vector *vec;

		while (used[j] == 0) {
			PCIB_RELEASE_MSIX(device_get_parent(dev), child,
			    msix->msix_vectors[j].mv_irq);
			j--;
		}
		vec = malloc(sizeof(struct msix_vector) * (j + 1), M_DEVBUF,
		    M_WAITOK);
		bcopy(msix->msix_vectors, vec, sizeof(struct msix_vector) *
		    (j + 1));
		free(msix->msix_vectors, M_DEVBUF);
		msix->msix_vectors = vec;
		msix->msix_alloc = j + 1;
	}
	free(used, M_DEVBUF);

	/* Map the IRQs onto the rids. */
	for (i = 0; i < count; i++) {
		if (vectors[i] == 0)
			continue;
		irq = msix->msix_vectors[vectors[i]].mv_irq;
		resource_list_add(&dinfo->resources, SYS_RES_IRQ, i + 1, irq,
		    irq, 1);
	}

	if (bootverbose) {
		device_printf(child, "Remapped MSI-X IRQs as: ");
		for (i = 0; i < count; i++) {
			if (i != 0)
				printf(", ");
			if (vectors[i] == 0)
				printf("---");
			else
				printf("%d",
				    msix->msix_vectors[vectors[i]].mv_irq);
		}
		printf("\n");
	}

	return (0);
}

static int
pci_release_msix(device_t dev, device_t child)
{
	struct pci_devinfo *dinfo = device_get_ivars(child);
	struct pcicfg_msix *msix = &dinfo->cfg.msix;
	struct resource_list_entry *rle;
	int i;

	/* Do we have any messages to release? */
	if (msix->msix_alloc == 0)
		return (ENODEV);

	/* Make sure none of the resources are allocated. */
	for (i = 0; i < msix->msix_table_len; i++) {
		if (msix->msix_table[i].mte_vector == 0)
			continue;
		if (msix->msix_table[i].mte_handlers > 0)
			return (EBUSY);
		rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, i + 1);
		KASSERT(rle != NULL, ("missing resource"));
		if (rle->res != NULL)
			return (EBUSY);
	}

	/* Update control register to disable MSI-X. */
	msix->msix_ctrl &= ~PCIM_MSIXCTRL_MSIX_ENABLE;
	pci_write_config(child, msix->msix_location + PCIR_MSIX_CTRL,
	    msix->msix_ctrl, 2);

	/* Free the resource list entries. */
	for (i = 0; i < msix->msix_table_len; i++) {
		if (msix->msix_table[i].mte_vector == 0)
			continue;
		resource_list_delete(&dinfo->resources, SYS_RES_IRQ, i + 1);
	}
	free(msix->msix_table, M_DEVBUF);
	msix->msix_table_len = 0;

	/* Release the IRQs. */
	for (i = 0; i < msix->msix_alloc; i++)
		PCIB_RELEASE_MSIX(device_get_parent(dev), child,
		    msix->msix_vectors[i].mv_irq);
	free(msix->msix_vectors, M_DEVBUF);
	msix->msix_alloc = 0;
	return (0);
}

/*
 * Return the max supported MSI-X messages this device supports.
 * Basically, assuming the MD code can alloc messages, this function
 * should return the maximum value that pci_alloc_msix() can return.
 * Thus, it is subject to the tunables, etc.
 */
int
pci_msix_count_method(device_t dev, device_t child)
{
	struct pci_devinfo *dinfo = device_get_ivars(child);
	struct pcicfg_msix *msix = &dinfo->cfg.msix;

	if (pci_do_msix && msix->msix_location != 0)
		return (msix->msix_msgnum);
	return (0);
}

/*
 * HyperTransport MSI mapping control
 */
void
pci_ht_map_msi(device_t dev, uint64_t addr)
{
	struct pci_devinfo *dinfo = device_get_ivars(dev);
	struct pcicfg_ht *ht = &dinfo->cfg.ht;

	if (!ht->ht_msimap)
		return;

	if (addr && !(ht->ht_msictrl & PCIM_HTCMD_MSI_ENABLE) &&
	    ht->ht_msiaddr >> 20 == addr >> 20) {
		/* Enable MSI -> HT mapping. */
		ht->ht_msictrl |= PCIM_HTCMD_MSI_ENABLE;
		pci_write_config(dev, ht->ht_msimap + PCIR_HT_COMMAND,
		    ht->ht_msictrl, 2);
	}

	if (!addr && ht->ht_msictrl & PCIM_HTCMD_MSI_ENABLE) {
		/* Disable MSI -> HT mapping. */
		ht->ht_msictrl &= ~PCIM_HTCMD_MSI_ENABLE;
		pci_write_config(dev, ht->ht_msimap + PCIR_HT_COMMAND,
		    ht->ht_msictrl, 2);
	}
}

int
pci_get_max_read_req(device_t dev)
{
	int cap;
	uint16_t val;

	if (pci_find_cap(dev, PCIY_EXPRESS, &cap) != 0)
		return (0);
	val = pci_read_config(dev, cap + PCIER_DEVICE_CTL, 2);
	val &= PCIEM_CTL_MAX_READ_REQUEST;
	val >>= 12;
	return (1 << (val + 7));
}

int
pci_set_max_read_req(device_t dev, int size)
{
	int cap;
	uint16_t val;

	if (pci_find_cap(dev, PCIY_EXPRESS, &cap) != 0)
		return (0);
	if (size < 128)
		size = 128;
	if (size > 4096)
		size = 4096;
	size = (1 << (fls(size) - 1));
	val = pci_read_config(dev, cap + PCIER_DEVICE_CTL, 2);
	val &= ~PCIEM_CTL_MAX_READ_REQUEST;
	val |= (fls(size) - 8) << 12;
	pci_write_config(dev, cap + PCIER_DEVICE_CTL, val, 2);
	return (size);
}

/*
 * Support for MSI message signalled interrupts.
 */
void
pci_enable_msi(device_t dev, uint64_t address, uint16_t data)
{
	struct pci_devinfo *dinfo = device_get_ivars(dev);
	struct pcicfg_msi *msi = &dinfo->cfg.msi;

	/* Write data and address values. */
	pci_write_config(dev, msi->msi_location + PCIR_MSI_ADDR,
	    address & 0xffffffff, 4);
	if (msi->msi_ctrl & PCIM_MSICTRL_64BIT) {
		pci_write_config(dev, msi->msi_location + PCIR_MSI_ADDR_HIGH,
		    address >> 32, 4);
		pci_write_config(dev, msi->msi_location + PCIR_MSI_DATA_64BIT,
		    data, 2);
	} else
		pci_write_config(dev, msi->msi_location + PCIR_MSI_DATA, data,
		    2);

	/* Enable MSI in the control register. */
	msi->msi_ctrl |= PCIM_MSICTRL_MSI_ENABLE;
	pci_write_config(dev, msi->msi_location + PCIR_MSI_CTRL, msi->msi_ctrl,
	    2);

	/* Enable MSI -> HT mapping. */
	pci_ht_map_msi(dev, address);
}

void
pci_disable_msi(device_t dev)
{
	struct pci_devinfo *dinfo = device_get_ivars(dev);
	struct pcicfg_msi *msi = &dinfo->cfg.msi;

	/* Disable MSI -> HT mapping. */
	pci_ht_map_msi(dev, 0);

	/* Disable MSI in the control register. */
	msi->msi_ctrl &= ~PCIM_MSICTRL_MSI_ENABLE;
	pci_write_config(dev, msi->msi_location + PCIR_MSI_CTRL, msi->msi_ctrl,
	    2);
}

/*
 * Restore MSI registers during resume.  If MSI is enabled then
 * restore the data and address registers in addition to the control
 * register.
 */
static void
pci_resume_msi(device_t dev)
{
	struct pci_devinfo *dinfo = device_get_ivars(dev);
	struct pcicfg_msi *msi = &dinfo->cfg.msi;
	uint64_t address;
	uint16_t data;

	if (msi->msi_ctrl & PCIM_MSICTRL_MSI_ENABLE) {
		address = msi->msi_addr;
		data = msi->msi_data;
		pci_write_config(dev, msi->msi_location + PCIR_MSI_ADDR,
		    address & 0xffffffff, 4);
		if (msi->msi_ctrl & PCIM_MSICTRL_64BIT) {
			pci_write_config(dev, msi->msi_location +
			    PCIR_MSI_ADDR_HIGH, address >> 32, 4);
			pci_write_config(dev, msi->msi_location +
			    PCIR_MSI_DATA_64BIT, data, 2);
		} else
			pci_write_config(dev, msi->msi_location + PCIR_MSI_DATA,
			    data, 2);
	}
	pci_write_config(dev, msi->msi_location + PCIR_MSI_CTRL, msi->msi_ctrl,
	    2);
}

static int
pci_remap_intr_method(device_t bus, device_t dev, u_int irq)
{
	struct pci_devinfo *dinfo = device_get_ivars(dev);
	pcicfgregs *cfg = &dinfo->cfg;
	struct resource_list_entry *rle;
	struct msix_table_entry *mte;
	struct msix_vector *mv;
	uint64_t addr;
	uint32_t data;	
	int error, i, j;

	/*
	 * Handle MSI first.  We try to find this IRQ among our list
	 * of MSI IRQs.  If we find it, we request updated address and
	 * data registers and apply the results.
	 */
	if (cfg->msi.msi_alloc > 0) {

		/* If we don't have any active handlers, nothing to do. */
		if (cfg->msi.msi_handlers == 0)
			return (0);
		for (i = 0; i < cfg->msi.msi_alloc; i++) {
			rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ,
			    i + 1);
			if (rle->start == irq) {
				error = PCIB_MAP_MSI(device_get_parent(bus),
				    dev, irq, &addr, &data);
				if (error)
					return (error);
				pci_disable_msi(dev);
				dinfo->cfg.msi.msi_addr = addr;
				dinfo->cfg.msi.msi_data = data;
				pci_enable_msi(dev, addr, data);
				return (0);
			}
		}
		return (ENOENT);
	}

	/*
	 * For MSI-X, we check to see if we have this IRQ.  If we do,
	 * we request the updated mapping info.  If that works, we go
	 * through all the slots that use this IRQ and update them.
	 */
	if (cfg->msix.msix_alloc > 0) {
		for (i = 0; i < cfg->msix.msix_alloc; i++) {
			mv = &cfg->msix.msix_vectors[i];
			if (mv->mv_irq == irq) {
				error = PCIB_MAP_MSI(device_get_parent(bus),
				    dev, irq, &addr, &data);
				if (error)
					return (error);
				mv->mv_address = addr;
				mv->mv_data = data;
				for (j = 0; j < cfg->msix.msix_table_len; j++) {
					mte = &cfg->msix.msix_table[j];
					if (mte->mte_vector != i + 1)
						continue;
					if (mte->mte_handlers == 0)
						continue;
					pci_mask_msix(dev, j);
					pci_enable_msix(dev, j, addr, data);
					pci_unmask_msix(dev, j);
				}
			}
		}
		return (ENOENT);
	}

	return (ENOENT);
}

/*
 * Returns true if the specified device is blacklisted because MSI
 * doesn't work.
 */
int
pci_msi_device_blacklisted(device_t dev)
{
	const struct pci_quirk *q;

	if (!pci_honor_msi_blacklist)
		return (0);

	for (q = &pci_quirks[0]; q->devid; q++) {
		if (q->devid == pci_get_devid(dev) &&
		    q->type == PCI_QUIRK_DISABLE_MSI)
			return (1);
	}
	return (0);
}

/*
 * Returns true if a specified chipset supports MSI when it is
 * emulated hardware in a virtual machine.
 */
static int
pci_msi_vm_chipset(device_t dev)
{
	const struct pci_quirk *q;

	for (q = &pci_quirks[0]; q->devid; q++) {
		if (q->devid == pci_get_devid(dev) &&
		    q->type == PCI_QUIRK_ENABLE_MSI_VM)
			return (1);
	}
	return (0);
}

/*
 * Determine if MSI is blacklisted globally on this sytem.  Currently,
 * we just check for blacklisted chipsets as represented by the
 * host-PCI bridge at device 0:0:0.  In the future, it may become
 * necessary to check other system attributes, such as the kenv values
 * that give the motherboard manufacturer and model number.
 */
static int
pci_msi_blacklisted(void)
{
	device_t dev;

	if (!pci_honor_msi_blacklist)
		return (0);

	/* Blacklist all non-PCI-express and non-PCI-X chipsets. */
	if (!(pcie_chipset || pcix_chipset)) {
		if (vm_guest != VM_GUEST_NO) {
			dev = pci_find_bsf(0, 0, 0);
			if (dev != NULL)
				return (pci_msi_vm_chipset(dev) == 0);
		}
		return (1);
	}

	dev = pci_find_bsf(0, 0, 0);
	if (dev != NULL)
		return (pci_msi_device_blacklisted(dev));
	return (0);
}

/*
 * Attempt to allocate *count MSI messages.  The actual number allocated is
 * returned in *count.  After this function returns, each message will be
 * available to the driver as SYS_RES_IRQ resources starting at a rid 1.
 */
int
pci_alloc_msi_method(device_t dev, device_t child, int *count)
{
	struct pci_devinfo *dinfo = device_get_ivars(child);
	pcicfgregs *cfg = &dinfo->cfg;
	struct resource_list_entry *rle;
	int actual, error, i, irqs[32];
	uint16_t ctrl;

	/* Don't let count == 0 get us into trouble. */
	if (*count == 0)
		return (EINVAL);

	/* If rid 0 is allocated, then fail. */
	rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, 0);
	if (rle != NULL && rle->res != NULL)
		return (ENXIO);

	/* Already have allocated messages? */
	if (cfg->msi.msi_alloc != 0 || cfg->msix.msix_alloc != 0)
		return (ENXIO);

	/* If MSI is blacklisted for this system, fail. */
	if (pci_msi_blacklisted())
		return (ENXIO);

	/* MSI capability present? */
	if (cfg->msi.msi_location == 0 || !pci_do_msi)
		return (ENODEV);

	if (bootverbose)
		device_printf(child,
		    "attempting to allocate %d MSI vectors (%d supported)\n",
		    *count, cfg->msi.msi_msgnum);

	/* Don't ask for more than the device supports. */
	actual = min(*count, cfg->msi.msi_msgnum);

	/* Don't ask for more than 32 messages. */
	actual = min(actual, 32);

	/* MSI requires power of 2 number of messages. */
	if (!powerof2(actual))
		return (EINVAL);

	for (;;) {
		/* Try to allocate N messages. */
		error = PCIB_ALLOC_MSI(device_get_parent(dev), child, actual,
		    actual, irqs);
		if (error == 0)
			break;
		if (actual == 1)
			return (error);

		/* Try N / 2. */
		actual >>= 1;
	}

	/*
	 * We now have N actual messages mapped onto SYS_RES_IRQ
	 * resources in the irqs[] array, so add new resources
	 * starting at rid 1.
	 */
	for (i = 0; i < actual; i++)
		resource_list_add(&dinfo->resources, SYS_RES_IRQ, i + 1,
		    irqs[i], irqs[i], 1);

	if (bootverbose) {
		if (actual == 1)
			device_printf(child, "using IRQ %d for MSI\n", irqs[0]);
		else {
			int run;

			/*
			 * Be fancy and try to print contiguous runs
			 * of IRQ values as ranges.  'run' is true if
			 * we are in a range.
			 */
			device_printf(child, "using IRQs %d", irqs[0]);
			run = 0;
			for (i = 1; i < actual; i++) {

				/* Still in a run? */
				if (irqs[i] == irqs[i - 1] + 1) {
					run = 1;
					continue;
				}

				/* Finish previous range. */
				if (run) {
					printf("-%d", irqs[i - 1]);
					run = 0;
				}

				/* Start new range. */
				printf(",%d", irqs[i]);
			}

			/* Unfinished range? */
			if (run)
				printf("-%d", irqs[actual - 1]);
			printf(" for MSI\n");
		}
	}

	/* Update control register with actual count. */
	ctrl = cfg->msi.msi_ctrl;
	ctrl &= ~PCIM_MSICTRL_MME_MASK;
	ctrl |= (ffs(actual) - 1) << 4;
	cfg->msi.msi_ctrl = ctrl;
	pci_write_config(child, cfg->msi.msi_location + PCIR_MSI_CTRL, ctrl, 2);

	/* Update counts of alloc'd messages. */
	cfg->msi.msi_alloc = actual;
	cfg->msi.msi_handlers = 0;
	*count = actual;
	return (0);
}

/* Release the MSI messages associated with this device. */
int
pci_release_msi_method(device_t dev, device_t child)
{
	struct pci_devinfo *dinfo = device_get_ivars(child);
	struct pcicfg_msi *msi = &dinfo->cfg.msi;
	struct resource_list_entry *rle;
	int error, i, irqs[32];

	/* Try MSI-X first. */
	error = pci_release_msix(dev, child);
	if (error != ENODEV)
		return (error);

	/* Do we have any messages to release? */
	if (msi->msi_alloc == 0)
		return (ENODEV);
	KASSERT(msi->msi_alloc <= 32, ("more than 32 alloc'd messages"));

	/* Make sure none of the resources are allocated. */
	if (msi->msi_handlers > 0)
		return (EBUSY);
	for (i = 0; i < msi->msi_alloc; i++) {
		rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, i + 1);
		KASSERT(rle != NULL, ("missing MSI resource"));
		if (rle->res != NULL)
			return (EBUSY);
		irqs[i] = rle->start;
	}

	/* Update control register with 0 count. */
	KASSERT(!(msi->msi_ctrl & PCIM_MSICTRL_MSI_ENABLE),
	    ("%s: MSI still enabled", __func__));
	msi->msi_ctrl &= ~PCIM_MSICTRL_MME_MASK;
	pci_write_config(child, msi->msi_location + PCIR_MSI_CTRL,
	    msi->msi_ctrl, 2);

	/* Release the messages. */
	PCIB_RELEASE_MSI(device_get_parent(dev), child, msi->msi_alloc, irqs);
	for (i = 0; i < msi->msi_alloc; i++)
		resource_list_delete(&dinfo->resources, SYS_RES_IRQ, i + 1);

	/* Update alloc count. */
	msi->msi_alloc = 0;
	msi->msi_addr = 0;
	msi->msi_data = 0;
	return (0);
}

/*
 * Return the max supported MSI messages this device supports.
 * Basically, assuming the MD code can alloc messages, this function
 * should return the maximum value that pci_alloc_msi() can return.
 * Thus, it is subject to the tunables, etc.
 */
int
pci_msi_count_method(device_t dev, device_t child)
{
	struct pci_devinfo *dinfo = device_get_ivars(child);
	struct pcicfg_msi *msi = &dinfo->cfg.msi;

	if (pci_do_msi && msi->msi_location != 0)
		return (msi->msi_msgnum);
	return (0);
}

/* free pcicfgregs structure and all depending data structures */

int
pci_freecfg(struct pci_devinfo *dinfo)
{
	struct devlist *devlist_head;
	struct pci_map *pm, *next;
	int i;

	devlist_head = &pci_devq;

	if (dinfo->cfg.vpd.vpd_reg) {
		free(dinfo->cfg.vpd.vpd_ident, M_DEVBUF);
		for (i = 0; i < dinfo->cfg.vpd.vpd_rocnt; i++)
			free(dinfo->cfg.vpd.vpd_ros[i].value, M_DEVBUF);
		free(dinfo->cfg.vpd.vpd_ros, M_DEVBUF);
		for (i = 0; i < dinfo->cfg.vpd.vpd_wcnt; i++)
			free(dinfo->cfg.vpd.vpd_w[i].value, M_DEVBUF);
		free(dinfo->cfg.vpd.vpd_w, M_DEVBUF);
	}
	STAILQ_FOREACH_SAFE(pm, &dinfo->cfg.maps, pm_link, next) {
		free(pm, M_DEVBUF);
	}
	STAILQ_REMOVE(devlist_head, dinfo, pci_devinfo, pci_links);
	free(dinfo, M_DEVBUF);

	/* increment the generation count */
	pci_generation++;

	/* we're losing one device */
	pci_numdevs--;
	return (0);
}

/*
 * PCI power manangement
 */
int
pci_set_powerstate_method(device_t dev, device_t child, int state)
{
	struct pci_devinfo *dinfo = device_get_ivars(child);
	pcicfgregs *cfg = &dinfo->cfg;
	uint16_t status;
	int result, oldstate, highest, delay;

	if (cfg->pp.pp_cap == 0)
		return (EOPNOTSUPP);

	/*
	 * Optimize a no state change request away.  While it would be OK to
	 * write to the hardware in theory, some devices have shown odd
	 * behavior when going from D3 -> D3.
	 */
	oldstate = pci_get_powerstate(child);
	if (oldstate == state)
		return (0);

	/*
	 * The PCI power management specification states that after a state
	 * transition between PCI power states, system software must
	 * guarantee a minimal delay before the function accesses the device.
	 * Compute the worst case delay that we need to guarantee before we
	 * access the device.  Many devices will be responsive much more
	 * quickly than this delay, but there are some that don't respond
	 * instantly to state changes.  Transitions to/from D3 state require
	 * 10ms, while D2 requires 200us, and D0/1 require none.  The delay
	 * is done below with DELAY rather than a sleeper function because
	 * this function can be called from contexts where we cannot sleep.
	 */
	highest = (oldstate > state) ? oldstate : state;
	if (highest == PCI_POWERSTATE_D3)
	    delay = 10000;
	else if (highest == PCI_POWERSTATE_D2)
	    delay = 200;
	else
	    delay = 0;
	status = PCI_READ_CONFIG(dev, child, cfg->pp.pp_status, 2)
	    & ~PCIM_PSTAT_DMASK;
	result = 0;
	switch (state) {
	case PCI_POWERSTATE_D0:
		status |= PCIM_PSTAT_D0;
		break;
	case PCI_POWERSTATE_D1:
		if ((cfg->pp.pp_cap & PCIM_PCAP_D1SUPP) == 0)
			return (EOPNOTSUPP);
		status |= PCIM_PSTAT_D1;
		break;
	case PCI_POWERSTATE_D2:
		if ((cfg->pp.pp_cap & PCIM_PCAP_D2SUPP) == 0)
			return (EOPNOTSUPP);
		status |= PCIM_PSTAT_D2;
		break;
	case PCI_POWERSTATE_D3:
		status |= PCIM_PSTAT_D3;
		break;
	default:
		return (EINVAL);
	}

	if (bootverbose)
		pci_printf(cfg, "Transition from D%d to D%d\n", oldstate,
		    state);

	PCI_WRITE_CONFIG(dev, child, cfg->pp.pp_status, status, 2);
	if (delay)
		DELAY(delay);
	return (0);
}

int
pci_get_powerstate_method(device_t dev, device_t child)
{
	struct pci_devinfo *dinfo = device_get_ivars(child);
	pcicfgregs *cfg = &dinfo->cfg;
	uint16_t status;
	int result;

	if (cfg->pp.pp_cap != 0) {
		status = PCI_READ_CONFIG(dev, child, cfg->pp.pp_status, 2);
		switch (status & PCIM_PSTAT_DMASK) {
		case PCIM_PSTAT_D0:
			result = PCI_POWERSTATE_D0;
			break;
		case PCIM_PSTAT_D1:
			result = PCI_POWERSTATE_D1;
			break;
		case PCIM_PSTAT_D2:
			result = PCI_POWERSTATE_D2;
			break;
		case PCIM_PSTAT_D3:
			result = PCI_POWERSTATE_D3;
			break;
		default:
			result = PCI_POWERSTATE_UNKNOWN;
			break;
		}
	} else {
		/* No support, device is always at D0 */
		result = PCI_POWERSTATE_D0;
	}
	return (result);
}

/*
 * Some convenience functions for PCI device drivers.
 */

static __inline void
pci_set_command_bit(device_t dev, device_t child, uint16_t bit)
{
	uint16_t	command;

	command = PCI_READ_CONFIG(dev, child, PCIR_COMMAND, 2);
	command |= bit;
	PCI_WRITE_CONFIG(dev, child, PCIR_COMMAND, command, 2);
}

static __inline void
pci_clear_command_bit(device_t dev, device_t child, uint16_t bit)
{
	uint16_t	command;

	command = PCI_READ_CONFIG(dev, child, PCIR_COMMAND, 2);
	command &= ~bit;
	PCI_WRITE_CONFIG(dev, child, PCIR_COMMAND, command, 2);
}

int
pci_enable_busmaster_method(device_t dev, device_t child)
{
	pci_set_command_bit(dev, child, PCIM_CMD_BUSMASTEREN);
	return (0);
}

int
pci_disable_busmaster_method(device_t dev, device_t child)
{
	pci_clear_command_bit(dev, child, PCIM_CMD_BUSMASTEREN);
	return (0);
}

int
pci_enable_io_method(device_t dev, device_t child, int space)
{
	uint16_t bit;

	switch(space) {
	case SYS_RES_IOPORT:
		bit = PCIM_CMD_PORTEN;
		break;
	case SYS_RES_MEMORY:
		bit = PCIM_CMD_MEMEN;
		break;
	default:
		return (EINVAL);
	}
	pci_set_command_bit(dev, child, bit);
	return (0);
}

int
pci_disable_io_method(device_t dev, device_t child, int space)
{
	uint16_t bit;

	switch(space) {
	case SYS_RES_IOPORT:
		bit = PCIM_CMD_PORTEN;
		break;
	case SYS_RES_MEMORY:
		bit = PCIM_CMD_MEMEN;
		break;
	default:
		return (EINVAL);
	}
	pci_clear_command_bit(dev, child, bit);
	return (0);
}

/*
 * New style pci driver.  Parent device is either a pci-host-bridge or a
 * pci-pci-bridge.  Both kinds are represented by instances of pcib.
 */

void
pci_print_verbose(struct pci_devinfo *dinfo)
{

	if (bootverbose) {
		pcicfgregs *cfg = &dinfo->cfg;

		printf("found->\tvendor=0x%04x, dev=0x%04x, revid=0x%02x\n",
		    cfg->vendor, cfg->device, cfg->revid);
		printf("\tdomain=%d, bus=%d, slot=%d, func=%d\n",
		    cfg->domain, cfg->bus, cfg->slot, cfg->func);
		printf("\tclass=%02x-%02x-%02x, hdrtype=0x%02x, mfdev=%d\n",
		    cfg->baseclass, cfg->subclass, cfg->progif, cfg->hdrtype,
		    cfg->mfdev);
		printf("\tcmdreg=0x%04x, statreg=0x%04x, cachelnsz=%d (dwords)\n",
		    cfg->cmdreg, cfg->statreg, cfg->cachelnsz);
		printf("\tlattimer=0x%02x (%d ns), mingnt=0x%02x (%d ns), maxlat=0x%02x (%d ns)\n",
		    cfg->lattimer, cfg->lattimer * 30, cfg->mingnt,
		    cfg->mingnt * 250, cfg->maxlat, cfg->maxlat * 250);
		if (cfg->intpin > 0)
			printf("\tintpin=%c, irq=%d\n",
			    cfg->intpin +'a' -1, cfg->intline);
		if (cfg->pp.pp_cap) {
			uint16_t status;

			status = pci_read_config(cfg->dev, cfg->pp.pp_status, 2);
			printf("\tpowerspec %d  supports D0%s%s D3  current D%d\n",
			    cfg->pp.pp_cap & PCIM_PCAP_SPEC,
			    cfg->pp.pp_cap & PCIM_PCAP_D1SUPP ? " D1" : "",
			    cfg->pp.pp_cap & PCIM_PCAP_D2SUPP ? " D2" : "",
			    status & PCIM_PSTAT_DMASK);
		}
		if (cfg->msi.msi_location) {
			int ctrl;

			ctrl = cfg->msi.msi_ctrl;
			printf("\tMSI supports %d message%s%s%s\n",
			    cfg->msi.msi_msgnum,
			    (cfg->msi.msi_msgnum == 1) ? "" : "s",
			    (ctrl & PCIM_MSICTRL_64BIT) ? ", 64 bit" : "",
			    (ctrl & PCIM_MSICTRL_VECTOR) ? ", vector masks":"");
		}
		if (cfg->msix.msix_location) {
			printf("\tMSI-X supports %d message%s ",
			    cfg->msix.msix_msgnum,
			    (cfg->msix.msix_msgnum == 1) ? "" : "s");
			if (cfg->msix.msix_table_bar == cfg->msix.msix_pba_bar)
				printf("in map 0x%x\n",
				    cfg->msix.msix_table_bar);
			else
				printf("in maps 0x%x and 0x%x\n",
				    cfg->msix.msix_table_bar,
				    cfg->msix.msix_pba_bar);
		}
	}
}

static int
pci_porten(device_t dev)
{
	return (pci_read_config(dev, PCIR_COMMAND, 2) & PCIM_CMD_PORTEN) != 0;
}

static int
pci_memen(device_t dev)
{
	return (pci_read_config(dev, PCIR_COMMAND, 2) & PCIM_CMD_MEMEN) != 0;
}

static void
pci_read_bar(device_t dev, int reg, pci_addr_t *mapp, pci_addr_t *testvalp)
{
	struct pci_devinfo *dinfo;
	pci_addr_t map, testval;
	int ln2range;
	uint16_t cmd;

	/*
	 * The device ROM BAR is special.  It is always a 32-bit
	 * memory BAR.  Bit 0 is special and should not be set when
	 * sizing the BAR.
	 */
	dinfo = device_get_ivars(dev);
	if (PCIR_IS_BIOS(&dinfo->cfg, reg)) {
		map = pci_read_config(dev, reg, 4);
		pci_write_config(dev, reg, 0xfffffffe, 4);
		testval = pci_read_config(dev, reg, 4);
		pci_write_config(dev, reg, map, 4);
		*mapp = map;
		*testvalp = testval;
		return;
	}

	map = pci_read_config(dev, reg, 4);
	ln2range = pci_maprange(map);
	if (ln2range == 64)
		map |= (pci_addr_t)pci_read_config(dev, reg + 4, 4) << 32;

	/*
	 * Disable decoding via the command register before
	 * determining the BAR's length since we will be placing it in
	 * a weird state.
	 */
	cmd = pci_read_config(dev, PCIR_COMMAND, 2);
	pci_write_config(dev, PCIR_COMMAND,
	    cmd & ~(PCI_BAR_MEM(map) ? PCIM_CMD_MEMEN : PCIM_CMD_PORTEN), 2);

	/*
	 * Determine the BAR's length by writing all 1's.  The bottom
	 * log_2(size) bits of the BAR will stick as 0 when we read
	 * the value back.
	 */
	pci_write_config(dev, reg, 0xffffffff, 4);
	testval = pci_read_config(dev, reg, 4);
	if (ln2range == 64) {
		pci_write_config(dev, reg + 4, 0xffffffff, 4);
		testval |= (pci_addr_t)pci_read_config(dev, reg + 4, 4) << 32;
	}

	/*
	 * Restore the original value of the BAR.  We may have reprogrammed
	 * the BAR of the low-level console device and when booting verbose,
	 * we need the console device addressable.
	 */
	pci_write_config(dev, reg, map, 4);
	if (ln2range == 64)
		pci_write_config(dev, reg + 4, map >> 32, 4);
	pci_write_config(dev, PCIR_COMMAND, cmd, 2);

	*mapp = map;
	*testvalp = testval;
}

static void
pci_write_bar(device_t dev, struct pci_map *pm, pci_addr_t base)
{
	struct pci_devinfo *dinfo;
	int ln2range;

	/* The device ROM BAR is always a 32-bit memory BAR. */
	dinfo = device_get_ivars(dev);
	if (PCIR_IS_BIOS(&dinfo->cfg, pm->pm_reg))
		ln2range = 32;
	else
		ln2range = pci_maprange(pm->pm_value);
	pci_write_config(dev, pm->pm_reg, base, 4);
	if (ln2range == 64)
		pci_write_config(dev, pm->pm_reg + 4, base >> 32, 4);
	pm->pm_value = pci_read_config(dev, pm->pm_reg, 4);
	if (ln2range == 64)
		pm->pm_value |= (pci_addr_t)pci_read_config(dev,
		    pm->pm_reg + 4, 4) << 32;
}

struct pci_map *
pci_find_bar(device_t dev, int reg)
{
	struct pci_devinfo *dinfo;
	struct pci_map *pm;

	dinfo = device_get_ivars(dev);
	STAILQ_FOREACH(pm, &dinfo->cfg.maps, pm_link) {
		if (pm->pm_reg == reg)
			return (pm);
	}
	return (NULL);
}

int
pci_bar_enabled(device_t dev, struct pci_map *pm)
{
	struct pci_devinfo *dinfo;
	uint16_t cmd;

	dinfo = device_get_ivars(dev);
	if (PCIR_IS_BIOS(&dinfo->cfg, pm->pm_reg) &&
	    !(pm->pm_value & PCIM_BIOS_ENABLE))
		return (0);
	cmd = pci_read_config(dev, PCIR_COMMAND, 2);
	if (PCIR_IS_BIOS(&dinfo->cfg, pm->pm_reg) || PCI_BAR_MEM(pm->pm_value))
		return ((cmd & PCIM_CMD_MEMEN) != 0);
	else
		return ((cmd & PCIM_CMD_PORTEN) != 0);
}

static struct pci_map *
pci_add_bar(device_t dev, int reg, pci_addr_t value, pci_addr_t size)
{
	struct pci_devinfo *dinfo;
	struct pci_map *pm, *prev;

	dinfo = device_get_ivars(dev);
	pm = malloc(sizeof(*pm), M_DEVBUF, M_WAITOK | M_ZERO);
	pm->pm_reg = reg;
	pm->pm_value = value;
	pm->pm_size = size;
	STAILQ_FOREACH(prev, &dinfo->cfg.maps, pm_link) {
		KASSERT(prev->pm_reg != pm->pm_reg, ("duplicate map %02x",
		    reg));
		if (STAILQ_NEXT(prev, pm_link) == NULL ||
		    STAILQ_NEXT(prev, pm_link)->pm_reg > pm->pm_reg)
			break;
	}
	if (prev != NULL)
		STAILQ_INSERT_AFTER(&dinfo->cfg.maps, prev, pm, pm_link);
	else
		STAILQ_INSERT_TAIL(&dinfo->cfg.maps, pm, pm_link);
	return (pm);
}

static void
pci_restore_bars(device_t dev)
{
	struct pci_devinfo *dinfo;
	struct pci_map *pm;
	int ln2range;

	dinfo = device_get_ivars(dev);
	STAILQ_FOREACH(pm, &dinfo->cfg.maps, pm_link) {
		if (PCIR_IS_BIOS(&dinfo->cfg, pm->pm_reg))
			ln2range = 32;
		else
			ln2range = pci_maprange(pm->pm_value);
		pci_write_config(dev, pm->pm_reg, pm->pm_value, 4);
		if (ln2range == 64)
			pci_write_config(dev, pm->pm_reg + 4,
			    pm->pm_value >> 32, 4);
	}
}

/*
 * Add a resource based on a pci map register. Return 1 if the map
 * register is a 32bit map register or 2 if it is a 64bit register.
 */
static int
pci_add_map(device_t bus, device_t dev, int reg, struct resource_list *rl,
    int force, int prefetch)
{
	struct pci_map *pm;
	pci_addr_t base, map, testval;
	pci_addr_t start, end, count;
	int barlen, basezero, maprange, mapsize, type;
	uint16_t cmd;
	struct resource *res;

	/*
	 * The BAR may already exist if the device is a CardBus card
	 * whose CIS is stored in this BAR.
	 */
	pm = pci_find_bar(dev, reg);
	if (pm != NULL) {
		maprange = pci_maprange(pm->pm_value);
		barlen = maprange == 64 ? 2 : 1;
		return (barlen);
	}

	pci_read_bar(dev, reg, &map, &testval);
	if (PCI_BAR_MEM(map)) {
		type = SYS_RES_MEMORY;
		if (map & PCIM_BAR_MEM_PREFETCH)
			prefetch = 1;
	} else
		type = SYS_RES_IOPORT;
	mapsize = pci_mapsize(testval);
	base = pci_mapbase(map);
#ifdef __PCI_BAR_ZERO_VALID
	basezero = 0;
#else
	basezero = base == 0;
#endif
	maprange = pci_maprange(map);
	barlen = maprange == 64 ? 2 : 1;

	/*
	 * For I/O registers, if bottom bit is set, and the next bit up
	 * isn't clear, we know we have a BAR that doesn't conform to the
	 * spec, so ignore it.  Also, sanity check the size of the data
	 * areas to the type of memory involved.  Memory must be at least
	 * 16 bytes in size, while I/O ranges must be at least 4.
	 */
	if (PCI_BAR_IO(testval) && (testval & PCIM_BAR_IO_RESERVED) != 0)
		return (barlen);
	if ((type == SYS_RES_MEMORY && mapsize < 4) ||
	    (type == SYS_RES_IOPORT && mapsize < 2))
		return (barlen);

	/* Save a record of this BAR. */
	pm = pci_add_bar(dev, reg, map, mapsize);
	if (bootverbose) {
		printf("\tmap[%02x]: type %s, range %2d, base %#jx, size %2d",
		    reg, pci_maptype(map), maprange, (uintmax_t)base, mapsize);
		if (type == SYS_RES_IOPORT && !pci_porten(dev))
			printf(", port disabled\n");
		else if (type == SYS_RES_MEMORY && !pci_memen(dev))
			printf(", memory disabled\n");
		else
			printf(", enabled\n");
	}

	/*
	 * If base is 0, then we have problems if this architecture does
	 * not allow that.  It is best to ignore such entries for the
	 * moment.  These will be allocated later if the driver specifically
	 * requests them.  However, some removable busses look better when
	 * all resources are allocated, so allow '0' to be overriden.
	 *
	 * Similarly treat maps whose values is the same as the test value
	 * read back.  These maps have had all f's written to them by the
	 * BIOS in an attempt to disable the resources.
	 */
	if (!force && (basezero || map == testval))
		return (barlen);
	if ((u_long)base != base) {
		device_printf(bus,
		    "pci%d:%d:%d:%d bar %#x too many address bits",
		    pci_get_domain(dev), pci_get_bus(dev), pci_get_slot(dev),
		    pci_get_function(dev), reg);
		return (barlen);
	}

	/*
	 * This code theoretically does the right thing, but has
	 * undesirable side effects in some cases where peripherals
	 * respond oddly to having these bits enabled.  Let the user
	 * be able to turn them off (since pci_enable_io_modes is 1 by
	 * default).
	 */
	if (pci_enable_io_modes) {
		/* Turn on resources that have been left off by a lazy BIOS */
		if (type == SYS_RES_IOPORT && !pci_porten(dev)) {
			cmd = pci_read_config(dev, PCIR_COMMAND, 2);
			cmd |= PCIM_CMD_PORTEN;
			pci_write_config(dev, PCIR_COMMAND, cmd, 2);
		}
		if (type == SYS_RES_MEMORY && !pci_memen(dev)) {
			cmd = pci_read_config(dev, PCIR_COMMAND, 2);
			cmd |= PCIM_CMD_MEMEN;
			pci_write_config(dev, PCIR_COMMAND, cmd, 2);
		}
	} else {
		if (type == SYS_RES_IOPORT && !pci_porten(dev))
			return (barlen);
		if (type == SYS_RES_MEMORY && !pci_memen(dev))
			return (barlen);
	}

	count = (pci_addr_t)1 << mapsize;
	if (basezero || base == pci_mapbase(testval)) {
		start = 0;	/* Let the parent decide. */
		end = ~0ul;
	} else {
		start = base;
		end = base + count - 1;
	}
	resource_list_add(rl, type, reg, start, end, count);

	/*
	 * Try to allocate the resource for this BAR from our parent
	 * so that this resource range is already reserved.  The
	 * driver for this device will later inherit this resource in
	 * pci_alloc_resource().
	 */
	res = resource_list_alloc(rl, bus, dev, type, &reg, start, end, count,
	    prefetch ? RF_PREFETCHABLE : 0);
	if (res == NULL) {
		/*
		 * If the allocation fails, clear the BAR and delete
		 * the resource list entry to force
		 * pci_alloc_resource() to allocate resources from the
		 * parent.
		 */
		resource_list_delete(rl, type, reg);
		start = 0;
	} else {
		start = rman_get_start(res);
		rman_set_device(res, bus);
	}
	pci_write_bar(dev, pm, start);
	return (barlen);
}

/*
 * For ATA devices we need to decide early what addressing mode to use.
 * Legacy demands that the primary and secondary ATA ports sits on the
 * same addresses that old ISA hardware did. This dictates that we use
 * those addresses and ignore the BAR's if we cannot set PCI native
 * addressing mode.
 */
static void
pci_ata_maps(device_t bus, device_t dev, struct resource_list *rl, int force,
    uint32_t prefetchmask)
{
	struct resource *r;
	int rid, type, progif;
#if 0
	/* if this device supports PCI native addressing use it */
	progif = pci_read_config(dev, PCIR_PROGIF, 1);
	if ((progif & 0x8a) == 0x8a) {
		if (pci_mapbase(pci_read_config(dev, PCIR_BAR(0), 4)) &&
		    pci_mapbase(pci_read_config(dev, PCIR_BAR(2), 4))) {
			printf("Trying ATA native PCI addressing mode\n");
			pci_write_config(dev, PCIR_PROGIF, progif | 0x05, 1);
		}
	}
#endif
	progif = pci_read_config(dev, PCIR_PROGIF, 1);
	type = SYS_RES_IOPORT;
	if (progif & PCIP_STORAGE_IDE_MODEPRIM) {
		pci_add_map(bus, dev, PCIR_BAR(0), rl, force,
		    prefetchmask & (1 << 0));
		pci_add_map(bus, dev, PCIR_BAR(1), rl, force,
		    prefetchmask & (1 << 1));
	} else {
		rid = PCIR_BAR(0);
		resource_list_add(rl, type, rid, 0x1f0, 0x1f7, 8);
		r = resource_list_alloc(rl, bus, dev, type, &rid, 0x1f0, 0x1f7,
		    8, 0);
		rman_set_device(r, bus);
		rid = PCIR_BAR(1);
		resource_list_add(rl, type, rid, 0x3f6, 0x3f6, 1);
		r = resource_list_alloc(rl, bus, dev, type, &rid, 0x3f6, 0x3f6,
		    1, 0);
		rman_set_device(r, bus);
	}
	if (progif & PCIP_STORAGE_IDE_MODESEC) {
		pci_add_map(bus, dev, PCIR_BAR(2), rl, force,
		    prefetchmask & (1 << 2));
		pci_add_map(bus, dev, PCIR_BAR(3), rl, force,
		    prefetchmask & (1 << 3));
	} else {
		rid = PCIR_BAR(2);
		resource_list_add(rl, type, rid, 0x170, 0x177, 8);
		r = resource_list_alloc(rl, bus, dev, type, &rid, 0x170, 0x177,
		    8, 0);
		rman_set_device(r, bus);
		rid = PCIR_BAR(3);
		resource_list_add(rl, type, rid, 0x376, 0x376, 1);
		r = resource_list_alloc(rl, bus, dev, type, &rid, 0x376, 0x376,
		    1, 0);
		rman_set_device(r, bus);
	}
	pci_add_map(bus, dev, PCIR_BAR(4), rl, force,
	    prefetchmask & (1 << 4));
	pci_add_map(bus, dev, PCIR_BAR(5), rl, force,
	    prefetchmask & (1 << 5));
}

static void
pci_assign_interrupt(device_t bus, device_t dev, int force_route)
{
	struct pci_devinfo *dinfo = device_get_ivars(dev);
	pcicfgregs *cfg = &dinfo->cfg;
	char tunable_name[64];
	int irq;

	/* Has to have an intpin to have an interrupt. */
	if (cfg->intpin == 0)
		return;

	/* Let the user override the IRQ with a tunable. */
	irq = PCI_INVALID_IRQ;
#ifndef __rtems__
	snprintf(tunable_name, sizeof(tunable_name),
	    "hw.pci%d.%d.%d.INT%c.irq",
	    cfg->domain, cfg->bus, cfg->slot, cfg->intpin + 'A' - 1);
	if (TUNABLE_INT_FETCH(tunable_name, &irq) && (irq >= 255 || irq <= 0))
		irq = PCI_INVALID_IRQ;
#endif /* __rtems__ */

	/*
	 * If we didn't get an IRQ via the tunable, then we either use the
	 * IRQ value in the intline register or we ask the bus to route an
	 * interrupt for us.  If force_route is true, then we only use the
	 * value in the intline register if the bus was unable to assign an
	 * IRQ.
	 */
	if (!PCI_INTERRUPT_VALID(irq)) {
		if (!PCI_INTERRUPT_VALID(cfg->intline) || force_route)
			irq = PCI_ASSIGN_INTERRUPT(bus, dev);
		if (!PCI_INTERRUPT_VALID(irq))
			irq = cfg->intline;
	}

	/* If after all that we don't have an IRQ, just bail. */
	if (!PCI_INTERRUPT_VALID(irq))
		return;

	/* Update the config register if it changed. */
	if (irq != cfg->intline) {
		cfg->intline = irq;
		pci_write_config(dev, PCIR_INTLINE, irq, 1);
	}

	/* Add this IRQ as rid 0 interrupt resource. */
	resource_list_add(&dinfo->resources, SYS_RES_IRQ, 0, irq, irq, 1);
}

/* Perform early OHCI takeover from SMM. */
static void
ohci_early_takeover(device_t self)
{
	struct resource *res;
	uint32_t ctl;
	int rid;
	int i;

	rid = PCIR_BAR(0);
	res = bus_alloc_resource_any(self, SYS_RES_MEMORY, &rid, RF_ACTIVE);
	if (res == NULL)
		return;

	ctl = bus_read_4(res, OHCI_CONTROL);
	if (ctl & OHCI_IR) {
		if (bootverbose)
			printf("ohci early: "
			    "SMM active, request owner change\n");
		bus_write_4(res, OHCI_COMMAND_STATUS, OHCI_OCR);
		for (i = 0; (i < 100) && (ctl & OHCI_IR); i++) {
			DELAY(1000);
			ctl = bus_read_4(res, OHCI_CONTROL);
		}
		if (ctl & OHCI_IR) {
			if (bootverbose)
				printf("ohci early: "
				    "SMM does not respond, resetting\n");
			bus_write_4(res, OHCI_CONTROL, OHCI_HCFS_RESET);
		}
		/* Disable interrupts */
		bus_write_4(res, OHCI_INTERRUPT_DISABLE, OHCI_ALL_INTRS);
	}

	bus_release_resource(self, SYS_RES_MEMORY, rid, res);
}

#ifndef __rtems__
/* Perform early UHCI takeover from SMM. */
static void
uhci_early_takeover(device_t self)
{
	struct resource *res;
	int rid;

	/*
	 * Set the PIRQD enable bit and switch off all the others. We don't
	 * want legacy support to interfere with us XXX Does this also mean
	 * that the BIOS won't touch the keyboard anymore if it is connected
	 * to the ports of the root hub?
	 */
	pci_write_config(self, PCI_LEGSUP, PCI_LEGSUP_USBPIRQDEN, 2);

	/* Disable interrupts */
	rid = PCI_UHCI_BASE_REG;
	res = bus_alloc_resource_any(self, SYS_RES_IOPORT, &rid, RF_ACTIVE);
	if (res != NULL) {
		bus_write_2(res, UHCI_INTR, 0);
		bus_release_resource(self, SYS_RES_IOPORT, rid, res);
	}
}
#endif /* __rtems__ */

/* Perform early EHCI takeover from SMM. */
static void
ehci_early_takeover(device_t self)
{
	struct resource *res;
	uint32_t cparams;
	uint32_t eec;
	uint8_t eecp;
	uint8_t bios_sem;
	uint8_t offs;
	int rid;
	int i;

	rid = PCIR_BAR(0);
	res = bus_alloc_resource_any(self, SYS_RES_MEMORY, &rid, RF_ACTIVE);
	if (res == NULL)
		return;

	cparams = bus_read_4(res, EHCI_HCCPARAMS);

	/* Synchronise with the BIOS if it owns the controller. */
	for (eecp = EHCI_HCC_EECP(cparams); eecp != 0;
	    eecp = EHCI_EECP_NEXT(eec)) {
		eec = pci_read_config(self, eecp, 4);
		if (EHCI_EECP_ID(eec) != EHCI_EC_LEGSUP) {
			continue;
		}
		bios_sem = pci_read_config(self, eecp +
		    EHCI_LEGSUP_BIOS_SEM, 1);
		if (bios_sem == 0) {
			continue;
		}
		if (bootverbose)
			printf("ehci early: "
			    "SMM active, request owner change\n");

		pci_write_config(self, eecp + EHCI_LEGSUP_OS_SEM, 1, 1);

		for (i = 0; (i < 100) && (bios_sem != 0); i++) {
			DELAY(1000);
			bios_sem = pci_read_config(self, eecp +
			    EHCI_LEGSUP_BIOS_SEM, 1);
		}

		if (bios_sem != 0) {
			if (bootverbose)
				printf("ehci early: "
				    "SMM does not respond\n");
		}
		/* Disable interrupts */
		offs = EHCI_CAPLENGTH(bus_read_4(res, EHCI_CAPLEN_HCIVERSION));
		bus_write_4(res, offs + EHCI_USBINTR, 0);
	}
	bus_release_resource(self, SYS_RES_MEMORY, rid, res);
}

void
pci_add_resources(device_t bus, device_t dev, int force, uint32_t prefetchmask)
{
	struct pci_devinfo *dinfo;
	pcicfgregs *cfg;
	struct resource_list *rl;
	const struct pci_quirk *q;
	uint32_t devid;
	int i;

	dinfo = device_get_ivars(dev);
	cfg = &dinfo->cfg;
	rl = &dinfo->resources;
	devid = (cfg->device << 16) | cfg->vendor;

	/* ATA devices needs special map treatment */
	if ((pci_get_class(dev) == PCIC_STORAGE) &&
	    (pci_get_subclass(dev) == PCIS_STORAGE_IDE) &&
	    ((pci_get_progif(dev) & PCIP_STORAGE_IDE_MASTERDEV) ||
	     (!pci_read_config(dev, PCIR_BAR(0), 4) &&
	      !pci_read_config(dev, PCIR_BAR(2), 4))) )
		pci_ata_maps(bus, dev, rl, force, prefetchmask);
	else
		for (i = 0; i < cfg->nummaps;) {
			/*
			 * Skip quirked resources.
			 */
			for (q = &pci_quirks[0]; q->devid != 0; q++)
				if (q->devid == devid &&
				    q->type == PCI_QUIRK_UNMAP_REG &&
				    q->arg1 == PCIR_BAR(i))
					break;
			if (q->devid != 0) {
				i++;
				continue;
			}
			i += pci_add_map(bus, dev, PCIR_BAR(i), rl, force,
			    prefetchmask & (1 << i));
		}

	/*
	 * Add additional, quirked resources.
	 */
	for (q = &pci_quirks[0]; q->devid != 0; q++)
		if (q->devid == devid && q->type == PCI_QUIRK_MAP_REG)
			pci_add_map(bus, dev, q->arg1, rl, force, 0);

	if (cfg->intpin > 0 && PCI_INTERRUPT_VALID(cfg->intline)) {
#ifdef __PCI_REROUTE_INTERRUPT
		/*
		 * Try to re-route interrupts. Sometimes the BIOS or
		 * firmware may leave bogus values in these registers.
		 * If the re-route fails, then just stick with what we
		 * have.
		 */
		pci_assign_interrupt(bus, dev, 1);
#else
		pci_assign_interrupt(bus, dev, 0);
#endif
	}

	if (pci_usb_takeover && pci_get_class(dev) == PCIC_SERIALBUS &&
	    pci_get_subclass(dev) == PCIS_SERIALBUS_USB) {
		if (pci_get_progif(dev) == PCIP_SERIALBUS_USB_EHCI)
			ehci_early_takeover(dev);
		else if (pci_get_progif(dev) == PCIP_SERIALBUS_USB_OHCI)
			ohci_early_takeover(dev);
#ifndef __rtems__
		else if (pci_get_progif(dev) == PCIP_SERIALBUS_USB_UHCI)
			uhci_early_takeover(dev);
#endif /* __rtems__ */
	}
}

void
pci_add_children(device_t dev, int domain, int busno, size_t dinfo_size)
{
#define	REG(n, w)	PCIB_READ_CONFIG(pcib, busno, s, f, n, w)
	device_t pcib = device_get_parent(dev);
	struct pci_devinfo *dinfo;
	int maxslots;
	int s, f, pcifunchigh;
	uint8_t hdrtype;

	KASSERT(dinfo_size >= sizeof(struct pci_devinfo),
	    ("dinfo_size too small"));
	maxslots = PCIB_MAXSLOTS(pcib);
	for (s = 0; s <= maxslots; s++) {
		pcifunchigh = 0;
		f = 0;
		DELAY(1);
		hdrtype = REG(PCIR_HDRTYPE, 1);
		if ((hdrtype & PCIM_HDRTYPE) > PCI_MAXHDRTYPE)
			continue;
		if (hdrtype & PCIM_MFDEV)
			pcifunchigh = PCI_FUNCMAX;
		for (f = 0; f <= pcifunchigh; f++) {
			dinfo = pci_read_device(pcib, domain, busno, s, f,
			    dinfo_size);
			if (dinfo != NULL) {
				pci_add_child(dev, dinfo);
			}
		}
	}
#undef REG
}

void
pci_add_child(device_t bus, struct pci_devinfo *dinfo)
{
	dinfo->cfg.dev = device_add_child(bus, NULL, -1);
	device_set_ivars(dinfo->cfg.dev, dinfo);
	resource_list_init(&dinfo->resources);
	pci_cfg_save(dinfo->cfg.dev, dinfo, 0);
	pci_cfg_restore(dinfo->cfg.dev, dinfo);
	pci_print_verbose(dinfo);
	pci_add_resources(bus, dinfo->cfg.dev, 0, 0);
}

static int
pci_probe(device_t dev)
{

	device_set_desc(dev, "PCI bus");

	/* Allow other subclasses to override this driver. */
	return (BUS_PROBE_GENERIC);
}

int
pci_attach_common(device_t dev)
{
	struct pci_softc *sc;
	int busno, domain;
#ifdef PCI_DMA_BOUNDARY
	int error, tag_valid;
#endif

	sc = device_get_softc(dev);
	domain = pcib_get_domain(dev);
	busno = pcib_get_bus(dev);
	if (bootverbose)
		device_printf(dev, "domain=%d, physical bus=%d\n",
		    domain, busno);
#ifdef PCI_DMA_BOUNDARY
	tag_valid = 0;
	if (device_get_devclass(device_get_parent(device_get_parent(dev))) !=
	    devclass_find("pci")) {
		error = bus_dma_tag_create(bus_get_dma_tag(dev), 1,
		    PCI_DMA_BOUNDARY, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
		    NULL, NULL, BUS_SPACE_MAXSIZE, BUS_SPACE_UNRESTRICTED,
		    BUS_SPACE_MAXSIZE, 0, NULL, NULL, &sc->sc_dma_tag);
		if (error)
			device_printf(dev, "Failed to create DMA tag: %d\n",
			    error);
		else
			tag_valid = 1;
	}
	if (!tag_valid)
#endif
		sc->sc_dma_tag = bus_get_dma_tag(dev);
	return (0);
}

static int
pci_attach(device_t dev)
{
	int busno, domain, error;

	error = pci_attach_common(dev);
	if (error)
		return (error);

	/*
	 * Since there can be multiple independantly numbered PCI
	 * busses on systems with multiple PCI domains, we can't use
	 * the unit number to decide which bus we are probing. We ask
	 * the parent pcib what our domain and bus numbers are.
	 */
	domain = pcib_get_domain(dev);
	busno = pcib_get_bus(dev);
	pci_add_children(dev, domain, busno, sizeof(struct pci_devinfo));
	return (bus_generic_attach(dev));
}

int
pci_suspend(device_t dev)
{
	int dstate, error, i, numdevs;
	device_t acpi_dev, child, *devlist;
	struct pci_devinfo *dinfo;

	/*
	 * Save the PCI configuration space for each child and set the
	 * device in the appropriate power state for this sleep state.
	 */
	acpi_dev = NULL;
	if (pci_do_power_resume)
		acpi_dev = devclass_get_device(devclass_find("acpi"), 0);
	if ((error = device_get_children(dev, &devlist, &numdevs)) != 0)
		return (error);
	for (i = 0; i < numdevs; i++) {
		child = devlist[i];
		dinfo = device_get_ivars(child);
		pci_cfg_save(child, dinfo, 0);
	}

	/* Suspend devices before potentially powering them down. */
	error = bus_generic_suspend(dev);
	if (error) {
		free(devlist, M_TEMP);
		return (error);
	}

	/*
	 * Always set the device to D3.  If ACPI suggests a different
	 * power state, use it instead.  If ACPI is not present, the
	 * firmware is responsible for managing device power.  Skip
	 * children who aren't attached since they are powered down
	 * separately.  Only manage type 0 devices for now.
	 */
	for (i = 0; acpi_dev && i < numdevs; i++) {
		child = devlist[i];
		dinfo = (struct pci_devinfo *) device_get_ivars(child);
		if (device_is_attached(child) && dinfo->cfg.hdrtype == 0) {
			dstate = PCI_POWERSTATE_D3;
			ACPI_PWR_FOR_SLEEP(acpi_dev, child, &dstate);
			pci_set_powerstate(child, dstate);
		}
	}
	free(devlist, M_TEMP);
	return (0);
}

int
pci_resume(device_t dev)
{
	int i, numdevs, error;
	device_t acpi_dev, child, *devlist;
	struct pci_devinfo *dinfo;

	/*
	 * Set each child to D0 and restore its PCI configuration space.
	 */
	acpi_dev = NULL;
	if (pci_do_power_resume)
		acpi_dev = devclass_get_device(devclass_find("acpi"), 0);
	if ((error = device_get_children(dev, &devlist, &numdevs)) != 0)
		return (error);
	for (i = 0; i < numdevs; i++) {
		/*
		 * Notify ACPI we're going to D0 but ignore the result.  If
		 * ACPI is not present, the firmware is responsible for
		 * managing device power.  Only manage type 0 devices for now.
		 */
		child = devlist[i];
		dinfo = (struct pci_devinfo *) device_get_ivars(child);
		if (acpi_dev && device_is_attached(child) &&
		    dinfo->cfg.hdrtype == 0) {
			ACPI_PWR_FOR_SLEEP(acpi_dev, child, NULL);
			pci_set_powerstate(child, PCI_POWERSTATE_D0);
		}

		/* Now the device is powered up, restore its config space. */
		pci_cfg_restore(child, dinfo);
	}
	free(devlist, M_TEMP);
	return (bus_generic_resume(dev));
}

static void
pci_load_vendor_data(void)
{
	caddr_t vendordata, info;

	if ((vendordata = preload_search_by_type("pci_vendor_data")) != NULL) {
		info = preload_search_info(vendordata, MODINFO_ADDR);
		pci_vendordata = *(char **)info;
		info = preload_search_info(vendordata, MODINFO_SIZE);
		pci_vendordata_size = *(size_t *)info;
		/* terminate the database */
		pci_vendordata[pci_vendordata_size] = '\n';
	}
}

void
pci_driver_added(device_t dev, driver_t *driver)
{
	int numdevs;
	device_t *devlist;
	device_t child;
	struct pci_devinfo *dinfo;
	int i;

	if (bootverbose)
		device_printf(dev, "driver added\n");
	DEVICE_IDENTIFY(driver, dev);
	if (device_get_children(dev, &devlist, &numdevs) != 0)
		return;
	for (i = 0; i < numdevs; i++) {
		child = devlist[i];
		if (device_get_state(child) != DS_NOTPRESENT)
			continue;
		dinfo = device_get_ivars(child);
		pci_print_verbose(dinfo);
		if (bootverbose)
			pci_printf(&dinfo->cfg, "reprobing on driver added\n");
		pci_cfg_restore(child, dinfo);
		if (device_probe_and_attach(child) != 0)
			pci_cfg_save(child, dinfo, 1);
	}
	free(devlist, M_TEMP);
}

int
pci_setup_intr(device_t dev, device_t child, struct resource *irq, int flags,
    driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep)
{
	struct pci_devinfo *dinfo;
	struct msix_table_entry *mte;
	struct msix_vector *mv;
	uint64_t addr;
	uint32_t data;
	void *cookie;
	int error, rid;

	error = bus_generic_setup_intr(dev, child, irq, flags, filter, intr,
	    arg, &cookie);
	if (error)
		return (error);

	/* If this is not a direct child, just bail out. */
	if (device_get_parent(child) != dev) {
		*cookiep = cookie;
		return(0);
	}

	rid = rman_get_rid(irq);
	if (rid == 0) {
		/* Make sure that INTx is enabled */
		pci_clear_command_bit(dev, child, PCIM_CMD_INTxDIS);
	} else {
		/*
		 * Check to see if the interrupt is MSI or MSI-X.
		 * Ask our parent to map the MSI and give
		 * us the address and data register values.
		 * If we fail for some reason, teardown the
		 * interrupt handler.
		 */
		dinfo = device_get_ivars(child);
		if (dinfo->cfg.msi.msi_alloc > 0) {
			if (dinfo->cfg.msi.msi_addr == 0) {
				KASSERT(dinfo->cfg.msi.msi_handlers == 0,
			    ("MSI has handlers, but vectors not mapped"));
				error = PCIB_MAP_MSI(device_get_parent(dev),
				    child, rman_get_start(irq), &addr, &data);
				if (error)
					goto bad;
				dinfo->cfg.msi.msi_addr = addr;
				dinfo->cfg.msi.msi_data = data;
			}
			if (dinfo->cfg.msi.msi_handlers == 0)
				pci_enable_msi(child, dinfo->cfg.msi.msi_addr,
				    dinfo->cfg.msi.msi_data);
			dinfo->cfg.msi.msi_handlers++;
		} else {
			KASSERT(dinfo->cfg.msix.msix_alloc > 0,
			    ("No MSI or MSI-X interrupts allocated"));
			KASSERT(rid <= dinfo->cfg.msix.msix_table_len,
			    ("MSI-X index too high"));
			mte = &dinfo->cfg.msix.msix_table[rid - 1];
			KASSERT(mte->mte_vector != 0, ("no message vector"));
			mv = &dinfo->cfg.msix.msix_vectors[mte->mte_vector - 1];
			KASSERT(mv->mv_irq == rman_get_start(irq),
			    ("IRQ mismatch"));
			if (mv->mv_address == 0) {
				KASSERT(mte->mte_handlers == 0,
		    ("MSI-X table entry has handlers, but vector not mapped"));
				error = PCIB_MAP_MSI(device_get_parent(dev),
				    child, rman_get_start(irq), &addr, &data);
				if (error)
					goto bad;
				mv->mv_address = addr;
				mv->mv_data = data;
			}
			if (mte->mte_handlers == 0) {
				pci_enable_msix(child, rid - 1, mv->mv_address,
				    mv->mv_data);
				pci_unmask_msix(child, rid - 1);
			}
			mte->mte_handlers++;
		}

		/* Make sure that INTx is disabled if we are using MSI/MSIX */
		pci_set_command_bit(dev, child, PCIM_CMD_INTxDIS);
	bad:
		if (error) {
			(void)bus_generic_teardown_intr(dev, child, irq,
			    cookie);
			return (error);
		}
	}
	*cookiep = cookie;
	return (0);
}

int
pci_teardown_intr(device_t dev, device_t child, struct resource *irq,
    void *cookie)
{
	struct msix_table_entry *mte;
	struct resource_list_entry *rle;
	struct pci_devinfo *dinfo;
	int error, rid;

	if (irq == NULL || !(rman_get_flags(irq) & RF_ACTIVE))
		return (EINVAL);

	/* If this isn't a direct child, just bail out */
	if (device_get_parent(child) != dev)
		return(bus_generic_teardown_intr(dev, child, irq, cookie));

	rid = rman_get_rid(irq);
	if (rid == 0) {
		/* Mask INTx */
		pci_set_command_bit(dev, child, PCIM_CMD_INTxDIS);
	} else {
		/*
		 * Check to see if the interrupt is MSI or MSI-X.  If so,
		 * decrement the appropriate handlers count and mask the
		 * MSI-X message, or disable MSI messages if the count
		 * drops to 0.
		 */
		dinfo = device_get_ivars(child);
		rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, rid);
		if (rle->res != irq)
			return (EINVAL);
		if (dinfo->cfg.msi.msi_alloc > 0) {
			KASSERT(rid <= dinfo->cfg.msi.msi_alloc,
			    ("MSI-X index too high"));
			if (dinfo->cfg.msi.msi_handlers == 0)
				return (EINVAL);
			dinfo->cfg.msi.msi_handlers--;
			if (dinfo->cfg.msi.msi_handlers == 0)
				pci_disable_msi(child);
		} else {
			KASSERT(dinfo->cfg.msix.msix_alloc > 0,
			    ("No MSI or MSI-X interrupts allocated"));
			KASSERT(rid <= dinfo->cfg.msix.msix_table_len,
			    ("MSI-X index too high"));
			mte = &dinfo->cfg.msix.msix_table[rid - 1];
			if (mte->mte_handlers == 0)
				return (EINVAL);
			mte->mte_handlers--;
			if (mte->mte_handlers == 0)
				pci_mask_msix(child, rid - 1);
		}
	}
	error = bus_generic_teardown_intr(dev, child, irq, cookie);
	if (rid > 0)
		KASSERT(error == 0,
		    ("%s: generic teardown failed for MSI/MSI-X", __func__));
	return (error);
}

int
pci_print_child(device_t dev, device_t child)
{
	struct pci_devinfo *dinfo;
	struct resource_list *rl;
	int retval = 0;

	dinfo = device_get_ivars(child);
	rl = &dinfo->resources;

	retval += bus_print_child_header(dev, child);

	retval += resource_list_print_type(rl, "port", SYS_RES_IOPORT, "%#lx");
	retval += resource_list_print_type(rl, "mem", SYS_RES_MEMORY, "%#lx");
	retval += resource_list_print_type(rl, "irq", SYS_RES_IRQ, "%ld");
	if (device_get_flags(dev))
		retval += printf(" flags %#x", device_get_flags(dev));

	retval += printf(" at device %d.%d", pci_get_slot(child),
	    pci_get_function(child));

	retval += bus_print_child_footer(dev, child);

	return (retval);
}

static const struct
{
	int		class;
	int		subclass;
	const char	*desc;
} pci_nomatch_tab[] = {
	{PCIC_OLD,		-1,			"old"},
	{PCIC_OLD,		PCIS_OLD_NONVGA,	"non-VGA display device"},
	{PCIC_OLD,		PCIS_OLD_VGA,		"VGA-compatible display device"},
	{PCIC_STORAGE,		-1,			"mass storage"},
	{PCIC_STORAGE,		PCIS_STORAGE_SCSI,	"SCSI"},
	{PCIC_STORAGE,		PCIS_STORAGE_IDE,	"ATA"},
	{PCIC_STORAGE,		PCIS_STORAGE_FLOPPY,	"floppy disk"},
	{PCIC_STORAGE,		PCIS_STORAGE_IPI,	"IPI"},
	{PCIC_STORAGE,		PCIS_STORAGE_RAID,	"RAID"},
	{PCIC_STORAGE,		PCIS_STORAGE_ATA_ADMA,	"ATA (ADMA)"},
	{PCIC_STORAGE,		PCIS_STORAGE_SATA,	"SATA"},
	{PCIC_STORAGE,		PCIS_STORAGE_SAS,	"SAS"},
	{PCIC_STORAGE,		PCIS_STORAGE_NVM,	"NVM"},
	{PCIC_NETWORK,		-1,			"network"},
	{PCIC_NETWORK,		PCIS_NETWORK_ETHERNET,	"ethernet"},
	{PCIC_NETWORK,		PCIS_NETWORK_TOKENRING,	"token ring"},
	{PCIC_NETWORK,		PCIS_NETWORK_FDDI,	"fddi"},
	{PCIC_NETWORK,		PCIS_NETWORK_ATM,	"ATM"},
	{PCIC_NETWORK,		PCIS_NETWORK_ISDN,	"ISDN"},
	{PCIC_DISPLAY,		-1,			"display"},
	{PCIC_DISPLAY,		PCIS_DISPLAY_VGA,	"VGA"},
	{PCIC_DISPLAY,		PCIS_DISPLAY_XGA,	"XGA"},
	{PCIC_DISPLAY,		PCIS_DISPLAY_3D,	"3D"},
	{PCIC_MULTIMEDIA,	-1,			"multimedia"},
	{PCIC_MULTIMEDIA,	PCIS_MULTIMEDIA_VIDEO,	"video"},
	{PCIC_MULTIMEDIA,	PCIS_MULTIMEDIA_AUDIO,	"audio"},
	{PCIC_MULTIMEDIA,	PCIS_MULTIMEDIA_TELE,	"telephony"},
	{PCIC_MULTIMEDIA,	PCIS_MULTIMEDIA_HDA,	"HDA"},
	{PCIC_MEMORY,		-1,			"memory"},
	{PCIC_MEMORY,		PCIS_MEMORY_RAM,	"RAM"},
	{PCIC_MEMORY,		PCIS_MEMORY_FLASH,	"flash"},
	{PCIC_BRIDGE,		-1,			"bridge"},
	{PCIC_BRIDGE,		PCIS_BRIDGE_HOST,	"HOST-PCI"},
	{PCIC_BRIDGE,		PCIS_BRIDGE_ISA,	"PCI-ISA"},
	{PCIC_BRIDGE,		PCIS_BRIDGE_EISA,	"PCI-EISA"},
	{PCIC_BRIDGE,		PCIS_BRIDGE_MCA,	"PCI-MCA"},
	{PCIC_BRIDGE,		PCIS_BRIDGE_PCI,	"PCI-PCI"},
	{PCIC_BRIDGE,		PCIS_BRIDGE_PCMCIA,	"PCI-PCMCIA"},
	{PCIC_BRIDGE,		PCIS_BRIDGE_NUBUS,	"PCI-NuBus"},
	{PCIC_BRIDGE,		PCIS_BRIDGE_CARDBUS,	"PCI-CardBus"},
	{PCIC_BRIDGE,		PCIS_BRIDGE_RACEWAY,	"PCI-RACEway"},
	{PCIC_SIMPLECOMM,	-1,			"simple comms"},
	{PCIC_SIMPLECOMM,	PCIS_SIMPLECOMM_UART,	"UART"},	/* could detect 16550 */
	{PCIC_SIMPLECOMM,	PCIS_SIMPLECOMM_PAR,	"parallel port"},
	{PCIC_SIMPLECOMM,	PCIS_SIMPLECOMM_MULSER,	"multiport serial"},
	{PCIC_SIMPLECOMM,	PCIS_SIMPLECOMM_MODEM,	"generic modem"},
	{PCIC_BASEPERIPH,	-1,			"base peripheral"},
	{PCIC_BASEPERIPH,	PCIS_BASEPERIPH_PIC,	"interrupt controller"},
	{PCIC_BASEPERIPH,	PCIS_BASEPERIPH_DMA,	"DMA controller"},
	{PCIC_BASEPERIPH,	PCIS_BASEPERIPH_TIMER,	"timer"},
	{PCIC_BASEPERIPH,	PCIS_BASEPERIPH_RTC,	"realtime clock"},
	{PCIC_BASEPERIPH,	PCIS_BASEPERIPH_PCIHOT,	"PCI hot-plug controller"},
	{PCIC_BASEPERIPH,	PCIS_BASEPERIPH_SDHC,	"SD host controller"},
	{PCIC_INPUTDEV,		-1,			"input device"},
	{PCIC_INPUTDEV,		PCIS_INPUTDEV_KEYBOARD,	"keyboard"},
	{PCIC_INPUTDEV,		PCIS_INPUTDEV_DIGITIZER,"digitizer"},
	{PCIC_INPUTDEV,		PCIS_INPUTDEV_MOUSE,	"mouse"},
	{PCIC_INPUTDEV,		PCIS_INPUTDEV_SCANNER,	"scanner"},
	{PCIC_INPUTDEV,		PCIS_INPUTDEV_GAMEPORT,	"gameport"},
	{PCIC_DOCKING,		-1,			"docking station"},
	{PCIC_PROCESSOR,	-1,			"processor"},
	{PCIC_SERIALBUS,	-1,			"serial bus"},
	{PCIC_SERIALBUS,	PCIS_SERIALBUS_FW,	"FireWire"},
	{PCIC_SERIALBUS,	PCIS_SERIALBUS_ACCESS,	"AccessBus"},
	{PCIC_SERIALBUS,	PCIS_SERIALBUS_SSA,	"SSA"},
	{PCIC_SERIALBUS,	PCIS_SERIALBUS_USB,	"USB"},
	{PCIC_SERIALBUS,	PCIS_SERIALBUS_FC,	"Fibre Channel"},
	{PCIC_SERIALBUS,	PCIS_SERIALBUS_SMBUS,	"SMBus"},
	{PCIC_WIRELESS,		-1,			"wireless controller"},
	{PCIC_WIRELESS,		PCIS_WIRELESS_IRDA,	"iRDA"},
	{PCIC_WIRELESS,		PCIS_WIRELESS_IR,	"IR"},
	{PCIC_WIRELESS,		PCIS_WIRELESS_RF,	"RF"},
	{PCIC_INTELLIIO,	-1,			"intelligent I/O controller"},
	{PCIC_INTELLIIO,	PCIS_INTELLIIO_I2O,	"I2O"},
	{PCIC_SATCOM,		-1,			"satellite communication"},
	{PCIC_SATCOM,		PCIS_SATCOM_TV,		"sat TV"},
	{PCIC_SATCOM,		PCIS_SATCOM_AUDIO,	"sat audio"},
	{PCIC_SATCOM,		PCIS_SATCOM_VOICE,	"sat voice"},
	{PCIC_SATCOM,		PCIS_SATCOM_DATA,	"sat data"},
	{PCIC_CRYPTO,		-1,			"encrypt/decrypt"},
	{PCIC_CRYPTO,		PCIS_CRYPTO_NETCOMP,	"network/computer crypto"},
	{PCIC_CRYPTO,		PCIS_CRYPTO_ENTERTAIN,	"entertainment crypto"},
	{PCIC_DASP,		-1,			"dasp"},
	{PCIC_DASP,		PCIS_DASP_DPIO,		"DPIO module"},
	{0, 0,		NULL}
};

void
pci_probe_nomatch(device_t dev, device_t child)
{
	int i;
	const char *cp, *scp;
	char *device;

	/*
	 * Look for a listing for this device in a loaded device database.
	 */
	if ((device = pci_describe_device(child)) != NULL) {
		device_printf(dev, "<%s>", device);
		free(device, M_DEVBUF);
	} else {
		/*
		 * Scan the class/subclass descriptions for a general
		 * description.
		 */
		cp = "unknown";
		scp = NULL;
		for (i = 0; pci_nomatch_tab[i].desc != NULL; i++) {
			if (pci_nomatch_tab[i].class == pci_get_class(child)) {
				if (pci_nomatch_tab[i].subclass == -1) {
					cp = pci_nomatch_tab[i].desc;
				} else if (pci_nomatch_tab[i].subclass ==
				    pci_get_subclass(child)) {
					scp = pci_nomatch_tab[i].desc;
				}
			}
		}
		device_printf(dev, "<%s%s%s>",
		    cp ? cp : "",
		    ((cp != NULL) && (scp != NULL)) ? ", " : "",
		    scp ? scp : "");
	}
	printf(" at device %d.%d (no driver attached)\n",
	    pci_get_slot(child), pci_get_function(child));
	pci_cfg_save(child, device_get_ivars(child), 1);
}

/*
 * Parse the PCI device database, if loaded, and return a pointer to a
 * description of the device.
 *
 * The database is flat text formatted as follows:
 *
 * Any line not in a valid format is ignored.
 * Lines are terminated with newline '\n' characters.
 *
 * A VENDOR line consists of the 4 digit (hex) vendor code, a TAB, then
 * the vendor name.
 *
 * A DEVICE line is entered immediately below the corresponding VENDOR ID.
 * - devices cannot be listed without a corresponding VENDOR line.
 * A DEVICE line consists of a TAB, the 4 digit (hex) device code,
 * another TAB, then the device name.
 */

/*
 * Assuming (ptr) points to the beginning of a line in the database,
 * return the vendor or device and description of the next entry.
 * The value of (vendor) or (device) inappropriate for the entry type
 * is set to -1.  Returns nonzero at the end of the database.
 *
 * Note that this is slightly unrobust in the face of corrupt data;
 * we attempt to safeguard against this by spamming the end of the
 * database with a newline when we initialise.
 */
static int
pci_describe_parse_line(char **ptr, int *vendor, int *device, char **desc)
{
	char	*cp = *ptr;
	int	left;

	*device = -1;
	*vendor = -1;
	**desc = '\0';
	for (;;) {
		left = pci_vendordata_size - (cp - pci_vendordata);
		if (left <= 0) {
			*ptr = cp;
			return(1);
		}

		/* vendor entry? */
		if (*cp != '\t' &&
		    sscanf(cp, "%x\t%80[^\n]", vendor, *desc) == 2)
			break;
		/* device entry? */
		if (*cp == '\t' &&
		    sscanf(cp, "%x\t%80[^\n]", device, *desc) == 2)
			break;

		/* skip to next line */
		while (*cp != '\n' && left > 0) {
			cp++;
			left--;
		}
		if (*cp == '\n') {
			cp++;
			left--;
		}
	}
	/* skip to next line */
	while (*cp != '\n' && left > 0) {
		cp++;
		left--;
	}
	if (*cp == '\n' && left > 0)
		cp++;
	*ptr = cp;
	return(0);
}

static char *
pci_describe_device(device_t dev)
{
	int	vendor, device;
	char	*desc, *vp, *dp, *line;

	desc = vp = dp = NULL;

	/*
	 * If we have no vendor data, we can't do anything.
	 */
	if (pci_vendordata == NULL)
		goto out;

	/*
	 * Scan the vendor data looking for this device
	 */
	line = pci_vendordata;
	if ((vp = malloc(80, M_DEVBUF, M_NOWAIT)) == NULL)
		goto out;
	for (;;) {
		if (pci_describe_parse_line(&line, &vendor, &device, &vp))
			goto out;
		if (vendor == pci_get_vendor(dev))
			break;
	}
	if ((dp = malloc(80, M_DEVBUF, M_NOWAIT)) == NULL)
		goto out;
	for (;;) {
		if (pci_describe_parse_line(&line, &vendor, &device, &dp)) {
			*dp = 0;
			break;
		}
		if (vendor != -1) {
			*dp = 0;
			break;
		}
		if (device == pci_get_device(dev))
			break;
	}
	if (dp[0] == '\0')
		snprintf(dp, 80, "0x%x", pci_get_device(dev));
	if ((desc = malloc(strlen(vp) + strlen(dp) + 3, M_DEVBUF, M_NOWAIT)) !=
	    NULL)
		sprintf(desc, "%s, %s", vp, dp);
 out:
	if (vp != NULL)
		free(vp, M_DEVBUF);
	if (dp != NULL)
		free(dp, M_DEVBUF);
	return(desc);
}

int
pci_read_ivar(device_t dev, device_t child, int which, uintptr_t *result)
{
	struct pci_devinfo *dinfo;
	pcicfgregs *cfg;

	dinfo = device_get_ivars(child);
	cfg = &dinfo->cfg;

	switch (which) {
	case PCI_IVAR_ETHADDR:
		/*
		 * The generic accessor doesn't deal with failure, so
		 * we set the return value, then return an error.
		 */
		*((uint8_t **) result) = NULL;
		return (EINVAL);
	case PCI_IVAR_SUBVENDOR:
		*result = cfg->subvendor;
		break;
	case PCI_IVAR_SUBDEVICE:
		*result = cfg->subdevice;
		break;
	case PCI_IVAR_VENDOR:
		*result = cfg->vendor;
		break;
	case PCI_IVAR_DEVICE:
		*result = cfg->device;
		break;
	case PCI_IVAR_DEVID:
		*result = (cfg->device << 16) | cfg->vendor;
		break;
	case PCI_IVAR_CLASS:
		*result = cfg->baseclass;
		break;
	case PCI_IVAR_SUBCLASS:
		*result = cfg->subclass;
		break;
	case PCI_IVAR_PROGIF:
		*result = cfg->progif;
		break;
	case PCI_IVAR_REVID:
		*result = cfg->revid;
		break;
	case PCI_IVAR_INTPIN:
		*result = cfg->intpin;
		break;
	case PCI_IVAR_IRQ:
		*result = cfg->intline;
		break;
	case PCI_IVAR_DOMAIN:
		*result = cfg->domain;
		break;
	case PCI_IVAR_BUS:
		*result = cfg->bus;
		break;
	case PCI_IVAR_SLOT:
		*result = cfg->slot;
		break;
	case PCI_IVAR_FUNCTION:
		*result = cfg->func;
		break;
	case PCI_IVAR_CMDREG:
		*result = cfg->cmdreg;
		break;
	case PCI_IVAR_CACHELNSZ:
		*result = cfg->cachelnsz;
		break;
	case PCI_IVAR_MINGNT:
		*result = cfg->mingnt;
		break;
	case PCI_IVAR_MAXLAT:
		*result = cfg->maxlat;
		break;
	case PCI_IVAR_LATTIMER:
		*result = cfg->lattimer;
		break;
	default:
		return (ENOENT);
	}
	return (0);
}

int
pci_write_ivar(device_t dev, device_t child, int which, uintptr_t value)
{
	struct pci_devinfo *dinfo;

	dinfo = device_get_ivars(child);

	switch (which) {
	case PCI_IVAR_INTPIN:
		dinfo->cfg.intpin = value;
		return (0);
	case PCI_IVAR_ETHADDR:
	case PCI_IVAR_SUBVENDOR:
	case PCI_IVAR_SUBDEVICE:
	case PCI_IVAR_VENDOR:
	case PCI_IVAR_DEVICE:
	case PCI_IVAR_DEVID:
	case PCI_IVAR_CLASS:
	case PCI_IVAR_SUBCLASS:
	case PCI_IVAR_PROGIF:
	case PCI_IVAR_REVID:
	case PCI_IVAR_IRQ:
	case PCI_IVAR_DOMAIN:
	case PCI_IVAR_BUS:
	case PCI_IVAR_SLOT:
	case PCI_IVAR_FUNCTION:
		return (EINVAL);	/* disallow for now */

	default:
		return (ENOENT);
	}
}

#include <rtems/bsd/local/opt_ddb.h>
#ifdef DDB
#include <ddb/ddb.h>
#include <sys/cons.h>

/*
 * List resources based on pci map registers, used for within ddb
 */

DB_SHOW_COMMAND(pciregs, db_pci_dump)
{
	struct pci_devinfo *dinfo;
	struct devlist *devlist_head;
	struct pci_conf *p;
	const char *name;
	int i, error, none_count;

	none_count = 0;
	/* get the head of the device queue */
	devlist_head = &pci_devq;

	/*
	 * Go through the list of devices and print out devices
	 */
	for (error = 0, i = 0,
	     dinfo = STAILQ_FIRST(devlist_head);
	     (dinfo != NULL) && (error == 0) && (i < pci_numdevs) && !db_pager_quit;
	     dinfo = STAILQ_NEXT(dinfo, pci_links), i++) {

		/* Populate pd_name and pd_unit */
		name = NULL;
		if (dinfo->cfg.dev)
			name = device_get_name(dinfo->cfg.dev);

		p = &dinfo->conf;
		db_printf("%s%d@pci%d:%d:%d:%d:\tclass=0x%06x card=0x%08x "
			"chip=0x%08x rev=0x%02x hdr=0x%02x\n",
			(name && *name) ? name : "none",
			(name && *name) ? (int)device_get_unit(dinfo->cfg.dev) :
			none_count++,
			p->pc_sel.pc_domain, p->pc_sel.pc_bus, p->pc_sel.pc_dev,
			p->pc_sel.pc_func, (p->pc_class << 16) |
			(p->pc_subclass << 8) | p->pc_progif,
			(p->pc_subdevice << 16) | p->pc_subvendor,
			(p->pc_device << 16) | p->pc_vendor,
			p->pc_revid, p->pc_hdr);
	}
}
#endif /* DDB */

static struct resource *
pci_alloc_map(device_t dev, device_t child, int type, int *rid,
    u_long start, u_long end, u_long count, u_int flags)
{
	struct pci_devinfo *dinfo = device_get_ivars(child);
	struct resource_list *rl = &dinfo->resources;
	struct resource_list_entry *rle;
	struct resource *res;
	struct pci_map *pm;
	pci_addr_t map, testval;
	int mapsize;

	res = NULL;
	pm = pci_find_bar(child, *rid);
	if (pm != NULL) {
		/* This is a BAR that we failed to allocate earlier. */
		mapsize = pm->pm_size;
		map = pm->pm_value;
	} else {
		/*
		 * Weed out the bogons, and figure out how large the
		 * BAR/map is.  BARs that read back 0 here are bogus
		 * and unimplemented.  Note: atapci in legacy mode are
		 * special and handled elsewhere in the code.  If you
		 * have a atapci device in legacy mode and it fails
		 * here, that other code is broken.
		 */
		pci_read_bar(child, *rid, &map, &testval);

		/*
		 * Determine the size of the BAR and ignore BARs with a size
		 * of 0.  Device ROM BARs use a different mask value.
		 */
		if (PCIR_IS_BIOS(&dinfo->cfg, *rid))
			mapsize = pci_romsize(testval);
		else
			mapsize = pci_mapsize(testval);
		if (mapsize == 0)
			goto out;
		pm = pci_add_bar(child, *rid, map, mapsize);
	}

	if (PCI_BAR_MEM(map) || PCIR_IS_BIOS(&dinfo->cfg, *rid)) {
		if (type != SYS_RES_MEMORY) {
			if (bootverbose)
				device_printf(dev,
				    "child %s requested type %d for rid %#x,"
				    " but the BAR says it is an memio\n",
				    device_get_nameunit(child), type, *rid);
			goto out;
		}
	} else {
		if (type != SYS_RES_IOPORT) {
			if (bootverbose)
				device_printf(dev,
				    "child %s requested type %d for rid %#x,"
				    " but the BAR says it is an ioport\n",
				    device_get_nameunit(child), type, *rid);
			goto out;
		}
	}

	/*
	 * For real BARs, we need to override the size that
	 * the driver requests, because that's what the BAR
	 * actually uses and we would otherwise have a
	 * situation where we might allocate the excess to
	 * another driver, which won't work.
	 */
	count = (pci_addr_t)1 << mapsize;
	if (RF_ALIGNMENT(flags) < mapsize)
		flags = (flags & ~RF_ALIGNMENT_MASK) | RF_ALIGNMENT_LOG2(mapsize);
	if (PCI_BAR_MEM(map) && (map & PCIM_BAR_MEM_PREFETCH))
		flags |= RF_PREFETCHABLE;

	/*
	 * Allocate enough resource, and then write back the
	 * appropriate BAR for that resource.
	 */
	res = BUS_ALLOC_RESOURCE(device_get_parent(dev), child, type, rid,
	    start, end, count, flags & ~RF_ACTIVE);
	if (res == NULL) {
		device_printf(child,
		    "%#lx bytes of rid %#x res %d failed (%#lx, %#lx).\n",
		    count, *rid, type, start, end);
		goto out;
	}
	rman_set_device(res, dev);
	resource_list_add(rl, type, *rid, start, end, count);
	rle = resource_list_find(rl, type, *rid);
	if (rle == NULL)
		panic("pci_alloc_map: unexpectedly can't find resource.");
	rle->res = res;
	rle->start = rman_get_start(res);
	rle->end = rman_get_end(res);
	rle->count = count;
	if (bootverbose)
		device_printf(child,
		    "Lazy allocation of %#lx bytes rid %#x type %d at %#lx\n",
		    count, *rid, type, rman_get_start(res));
	map = rman_get_start(res);
	pci_write_bar(child, pm, map);
out:;
	return (res);
}

struct resource *
pci_alloc_resource(device_t dev, device_t child, int type, int *rid,
		   u_long start, u_long end, u_long count, u_int flags)
{
	struct pci_devinfo *dinfo = device_get_ivars(child);
	struct resource_list *rl = &dinfo->resources;
	struct resource_list_entry *rle;
	struct resource *res;
	pcicfgregs *cfg = &dinfo->cfg;

	if (device_get_parent(child) != dev)
		return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child,
		    type, rid, start, end, count, flags));

	/*
	 * Perform lazy resource allocation
	 */
	switch (type) {
	case SYS_RES_IRQ:
		/*
		 * Can't alloc legacy interrupt once MSI messages have
		 * been allocated.
		 */
		if (*rid == 0 && (cfg->msi.msi_alloc > 0 ||
		    cfg->msix.msix_alloc > 0))
			return (NULL);

		/*
		 * If the child device doesn't have an interrupt
		 * routed and is deserving of an interrupt, try to
		 * assign it one.
		 */
		if (*rid == 0 && !PCI_INTERRUPT_VALID(cfg->intline) &&
		    (cfg->intpin != 0))
			pci_assign_interrupt(dev, child, 0);
		break;
	case SYS_RES_IOPORT:
	case SYS_RES_MEMORY:
#ifdef NEW_PCIB
		/*
		 * PCI-PCI bridge I/O window resources are not BARs.
		 * For those allocations just pass the request up the
		 * tree.
		 */
		if (cfg->hdrtype == PCIM_HDRTYPE_BRIDGE) {
			switch (*rid) {
			case PCIR_IOBASEL_1:
			case PCIR_MEMBASE_1:
			case PCIR_PMBASEL_1:
				/*
				 * XXX: Should we bother creating a resource
				 * list entry?
				 */
				return (bus_generic_alloc_resource(dev, child,
				    type, rid, start, end, count, flags));
			}
		}
#endif
		/* Allocate resources for this BAR if needed. */
		rle = resource_list_find(rl, type, *rid);
		if (rle == NULL) {
			res = pci_alloc_map(dev, child, type, rid, start, end,
			    count, flags);
			if (res == NULL)
				return (NULL);
			rle = resource_list_find(rl, type, *rid);
		}

		/*
		 * If the resource belongs to the bus, then give it to
		 * the child.  We need to activate it if requested
		 * since the bus always allocates inactive resources.
		 */
		if (rle != NULL && rle->res != NULL &&
		    rman_get_device(rle->res) == dev) {
			if (bootverbose)
				device_printf(child,
			    "Reserved %#lx bytes for rid %#x type %d at %#lx\n",
				    rman_get_size(rle->res), *rid, type,
				    rman_get_start(rle->res));
			rman_set_device(rle->res, child);
			if ((flags & RF_ACTIVE) &&
			    bus_activate_resource(child, type, *rid,
			    rle->res) != 0)
				return (NULL);
			return (rle->res);
		}
	}
	return (resource_list_alloc(rl, dev, child, type, rid,
	    start, end, count, flags));
}

int
pci_release_resource(device_t dev, device_t child, int type, int rid,
    struct resource *r)
{
	int error;

	if (device_get_parent(child) != dev)
		return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child,
		    type, rid, r));

	/*
	 * For BARs we don't actually want to release the resource.
	 * Instead, we deactivate the resource if needed and then give
	 * ownership of the BAR back to the bus.
	 */
	switch (type) {
	case SYS_RES_IOPORT:
	case SYS_RES_MEMORY:
		if (rman_get_device(r) != child)
			return (EINVAL);
		if (rman_get_flags(r) & RF_ACTIVE) {
			error = bus_deactivate_resource(child, type, rid, r);
			if (error)
				return (error);
		}
		rman_set_device(r, dev);
		return (0);
	}
	return (bus_generic_rl_release_resource(dev, child, type, rid, r));
}

int
pci_activate_resource(device_t dev, device_t child, int type, int rid,
    struct resource *r)
{
	struct pci_devinfo *dinfo;
	int error;

	error = bus_generic_activate_resource(dev, child, type, rid, r);
	if (error)
		return (error);

	/* Enable decoding in the command register when activating BARs. */
	if (device_get_parent(child) == dev) {
		/* Device ROMs need their decoding explicitly enabled. */
		dinfo = device_get_ivars(child);
		if (type == SYS_RES_MEMORY && PCIR_IS_BIOS(&dinfo->cfg, rid))
			pci_write_bar(child, pci_find_bar(child, rid),
			    rman_get_start(r) | PCIM_BIOS_ENABLE);
		switch (type) {
		case SYS_RES_IOPORT:
		case SYS_RES_MEMORY:
			error = PCI_ENABLE_IO(dev, child, type);
			break;
		}
	}
	return (error);
}

int
pci_deactivate_resource(device_t dev, device_t child, int type,
    int rid, struct resource *r)
{
	struct pci_devinfo *dinfo;
	int error;

	error = bus_generic_deactivate_resource(dev, child, type, rid, r);
	if (error)
		return (error);

	/* Disable decoding for device ROMs. */	
	if (device_get_parent(child) == dev) {
		dinfo = device_get_ivars(child);
		if (type == SYS_RES_MEMORY && PCIR_IS_BIOS(&dinfo->cfg, rid))
			pci_write_bar(child, pci_find_bar(child, rid),
			    rman_get_start(r));
	}
	return (0);
}

void
pci_delete_resource(device_t dev, device_t child, int type, int rid)
{
	struct pci_devinfo *dinfo;
	struct resource_list *rl;
	struct resource_list_entry *rle;

	if (device_get_parent(child) != dev)
		return;

	dinfo = device_get_ivars(child);
	rl = &dinfo->resources;
	rle = resource_list_find(rl, type, rid);
	if (rle == NULL)
		return;

	if (rle->res) {
		if (rman_get_device(rle->res) != dev ||
		    rman_get_flags(rle->res) & RF_ACTIVE) {
			device_printf(dev, "delete_resource: "
			    "Resource still owned by child, oops. "
			    "(type=%d, rid=%d, addr=%lx)\n",
			    rle->type, rle->rid,
			    rman_get_start(rle->res));
			return;
		}

#ifndef __PCI_BAR_ZERO_VALID
		/*
		 * If this is a BAR, clear the BAR so it stops
		 * decoding before releasing the resource.
		 */
		switch (type) {
		case SYS_RES_IOPORT:
		case SYS_RES_MEMORY:
			pci_write_bar(child, pci_find_bar(child, rid), 0);
			break;
		}
#endif
		bus_release_resource(dev, type, rid, rle->res);
	}
	resource_list_delete(rl, type, rid);
}

struct resource_list *
pci_get_resource_list (device_t dev, device_t child)
{
	struct pci_devinfo *dinfo = device_get_ivars(child);

	return (&dinfo->resources);
}

bus_dma_tag_t
pci_get_dma_tag(device_t bus, device_t dev)
{
	struct pci_softc *sc = device_get_softc(bus);

	return (sc->sc_dma_tag);
}

uint32_t
pci_read_config_method(device_t dev, device_t child, int reg, int width)
{
	struct pci_devinfo *dinfo = device_get_ivars(child);
	pcicfgregs *cfg = &dinfo->cfg;

	return (PCIB_READ_CONFIG(device_get_parent(dev),
	    cfg->bus, cfg->slot, cfg->func, reg, width));
}

void
pci_write_config_method(device_t dev, device_t child, int reg,
    uint32_t val, int width)
{
	struct pci_devinfo *dinfo = device_get_ivars(child);
	pcicfgregs *cfg = &dinfo->cfg;

	PCIB_WRITE_CONFIG(device_get_parent(dev),
	    cfg->bus, cfg->slot, cfg->func, reg, val, width);
}

int
pci_child_location_str_method(device_t dev, device_t child, char *buf,
    size_t buflen)
{

	snprintf(buf, buflen, "slot=%d function=%d", pci_get_slot(child),
	    pci_get_function(child));
	return (0);
}

int
pci_child_pnpinfo_str_method(device_t dev, device_t child, char *buf,
    size_t buflen)
{
	struct pci_devinfo *dinfo;
	pcicfgregs *cfg;

	dinfo = device_get_ivars(child);
	cfg = &dinfo->cfg;
	snprintf(buf, buflen, "vendor=0x%04x device=0x%04x subvendor=0x%04x "
	    "subdevice=0x%04x class=0x%02x%02x%02x", cfg->vendor, cfg->device,
	    cfg->subvendor, cfg->subdevice, cfg->baseclass, cfg->subclass,
	    cfg->progif);
	return (0);
}

int
pci_assign_interrupt_method(device_t dev, device_t child)
{
	struct pci_devinfo *dinfo = device_get_ivars(child);
	pcicfgregs *cfg = &dinfo->cfg;

	return (PCIB_ROUTE_INTERRUPT(device_get_parent(dev), child,
	    cfg->intpin));
}

static int
pci_modevent(module_t mod, int what, void *arg)
{
	static struct cdev *pci_cdev;

	switch (what) {
	case MOD_LOAD:
		STAILQ_INIT(&pci_devq);
		pci_generation = 0;
		pci_cdev = make_dev(&pcicdev, 0, UID_ROOT, GID_WHEEL, 0644,
		    "pci");
		pci_load_vendor_data();
		break;

	case MOD_UNLOAD:
		destroy_dev(pci_cdev);
		break;
	}

	return (0);
}

void
pci_cfg_restore(device_t dev, struct pci_devinfo *dinfo)
{

	/*
	 * Only do header type 0 devices.  Type 1 devices are bridges,
	 * which we know need special treatment.  Type 2 devices are
	 * cardbus bridges which also require special treatment.
	 * Other types are unknown, and we err on the side of safety
	 * by ignoring them.
	 */
	if (dinfo->cfg.hdrtype != 0)
		return;

	/*
	 * Restore the device to full power mode.  We must do this
	 * before we restore the registers because moving from D3 to
	 * D0 will cause the chip's BARs and some other registers to
	 * be reset to some unknown power on reset values.  Cut down
	 * the noise on boot by doing nothing if we are already in
	 * state D0.
	 */
	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0)
		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
	pci_restore_bars(dev);
	pci_write_config(dev, PCIR_COMMAND, dinfo->cfg.cmdreg, 2);
	pci_write_config(dev, PCIR_INTLINE, dinfo->cfg.intline, 1);
	pci_write_config(dev, PCIR_INTPIN, dinfo->cfg.intpin, 1);
	pci_write_config(dev, PCIR_MINGNT, dinfo->cfg.mingnt, 1);
	pci_write_config(dev, PCIR_MAXLAT, dinfo->cfg.maxlat, 1);
	pci_write_config(dev, PCIR_CACHELNSZ, dinfo->cfg.cachelnsz, 1);
	pci_write_config(dev, PCIR_LATTIMER, dinfo->cfg.lattimer, 1);
	pci_write_config(dev, PCIR_PROGIF, dinfo->cfg.progif, 1);
	pci_write_config(dev, PCIR_REVID, dinfo->cfg.revid, 1);

	/* Restore MSI and MSI-X configurations if they are present. */
	if (dinfo->cfg.msi.msi_location != 0)
		pci_resume_msi(dev);
	if (dinfo->cfg.msix.msix_location != 0)
		pci_resume_msix(dev);
}

void
pci_cfg_save(device_t dev, struct pci_devinfo *dinfo, int setstate)
{
	uint32_t cls;
	int ps;

	/*
	 * Only do header type 0 devices.  Type 1 devices are bridges, which
	 * we know need special treatment.  Type 2 devices are cardbus bridges
	 * which also require special treatment.  Other types are unknown, and
	 * we err on the side of safety by ignoring them.  Powering down
	 * bridges should not be undertaken lightly.
	 */
	if (dinfo->cfg.hdrtype != 0)
		return;

	/*
	 * Some drivers apparently write to these registers w/o updating our
	 * cached copy.  No harm happens if we update the copy, so do so here
	 * so we can restore them.  The COMMAND register is modified by the
	 * bus w/o updating the cache.  This should represent the normally
	 * writable portion of the 'defined' part of type 0 headers.  In
	 * theory we also need to save/restore the PCI capability structures
	 * we know about, but apart from power we don't know any that are
	 * writable.
	 */
	dinfo->cfg.subvendor = pci_read_config(dev, PCIR_SUBVEND_0, 2);
	dinfo->cfg.subdevice = pci_read_config(dev, PCIR_SUBDEV_0, 2);
	dinfo->cfg.vendor = pci_read_config(dev, PCIR_VENDOR, 2);
	dinfo->cfg.device = pci_read_config(dev, PCIR_DEVICE, 2);
	dinfo->cfg.cmdreg = pci_read_config(dev, PCIR_COMMAND, 2);
	dinfo->cfg.intline = pci_read_config(dev, PCIR_INTLINE, 1);
	dinfo->cfg.intpin = pci_read_config(dev, PCIR_INTPIN, 1);
	dinfo->cfg.mingnt = pci_read_config(dev, PCIR_MINGNT, 1);
	dinfo->cfg.maxlat = pci_read_config(dev, PCIR_MAXLAT, 1);
	dinfo->cfg.cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
	dinfo->cfg.lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
	dinfo->cfg.baseclass = pci_read_config(dev, PCIR_CLASS, 1);
	dinfo->cfg.subclass = pci_read_config(dev, PCIR_SUBCLASS, 1);
	dinfo->cfg.progif = pci_read_config(dev, PCIR_PROGIF, 1);
	dinfo->cfg.revid = pci_read_config(dev, PCIR_REVID, 1);

	/*
	 * don't set the state for display devices, base peripherals and
	 * memory devices since bad things happen when they are powered down.
	 * We should (a) have drivers that can easily detach and (b) use
	 * generic drivers for these devices so that some device actually
	 * attaches.  We need to make sure that when we implement (a) we don't
	 * power the device down on a reattach.
	 */
	cls = pci_get_class(dev);
	if (!setstate)
		return;
	switch (pci_do_power_nodriver)
	{
		case 0:		/* NO powerdown at all */
			return;
		case 1:		/* Conservative about what to power down */
			if (cls == PCIC_STORAGE)
				return;
			/*FALLTHROUGH*/
		case 2:		/* Agressive about what to power down */
			if (cls == PCIC_DISPLAY || cls == PCIC_MEMORY ||
			    cls == PCIC_BASEPERIPH)
				return;
			/*FALLTHROUGH*/
		case 3:		/* Power down everything */
			break;
	}
	/*
	 * PCI spec says we can only go into D3 state from D0 state.
	 * Transition from D[12] into D0 before going to D3 state.
	 */
	ps = pci_get_powerstate(dev);
	if (ps != PCI_POWERSTATE_D0 && ps != PCI_POWERSTATE_D3)
		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D3)
		pci_set_powerstate(dev, PCI_POWERSTATE_D3);
}

/* Wrapper APIs suitable for device driver use. */
void
pci_save_state(device_t dev)
{
	struct pci_devinfo *dinfo;

	dinfo = device_get_ivars(dev);
	pci_cfg_save(dev, dinfo, 0);
}

void
pci_restore_state(device_t dev)
{
	struct pci_devinfo *dinfo;

	dinfo = device_get_ivars(dev);
	pci_cfg_restore(dev, dinfo);
}