summaryrefslogtreecommitdiffstats
path: root/freebsd/vm/uma_int.h
diff options
context:
space:
mode:
Diffstat (limited to 'freebsd/vm/uma_int.h')
-rw-r--r--freebsd/vm/uma_int.h440
1 files changed, 440 insertions, 0 deletions
diff --git a/freebsd/vm/uma_int.h b/freebsd/vm/uma_int.h
new file mode 100644
index 00000000..16115201
--- /dev/null
+++ b/freebsd/vm/uma_int.h
@@ -0,0 +1,440 @@
+/*-
+ * Copyright (c) 2002-2005, 2009 Jeffrey Roberson <jeff@FreeBSD.org>
+ * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org>
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice unmodified, this list of conditions, and the following
+ * disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
+ * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
+ * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
+ * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
+ * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
+ * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
+ * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *
+ * $FreeBSD$
+ *
+ */
+
+/*
+ * This file includes definitions, structures, prototypes, and inlines that
+ * should not be used outside of the actual implementation of UMA.
+ */
+
+/*
+ * Here's a quick description of the relationship between the objects:
+ *
+ * Kegs contain lists of slabs which are stored in either the full bin, empty
+ * bin, or partially allocated bin, to reduce fragmentation. They also contain
+ * the user supplied value for size, which is adjusted for alignment purposes
+ * and rsize is the result of that. The Keg also stores information for
+ * managing a hash of page addresses that maps pages to uma_slab_t structures
+ * for pages that don't have embedded uma_slab_t's.
+ *
+ * The uma_slab_t may be embedded in a UMA_SLAB_SIZE chunk of memory or it may
+ * be allocated off the page from a special slab zone. The free list within a
+ * slab is managed with a linked list of indexes, which are 8 bit values. If
+ * UMA_SLAB_SIZE is defined to be too large I will have to switch to 16bit
+ * values. Currently on alpha you can get 250 or so 32 byte items and on x86
+ * you can get 250 or so 16byte items. For item sizes that would yield more
+ * than 10% memory waste we potentially allocate a separate uma_slab_t if this
+ * will improve the number of items per slab that will fit.
+ *
+ * Other potential space optimizations are storing the 8bit of linkage in space
+ * wasted between items due to alignment problems. This may yield a much better
+ * memory footprint for certain sizes of objects. Another alternative is to
+ * increase the UMA_SLAB_SIZE, or allow for dynamic slab sizes. I prefer
+ * dynamic slab sizes because we could stick with 8 bit indexes and only use
+ * large slab sizes for zones with a lot of waste per slab. This may create
+ * ineffeciencies in the vm subsystem due to fragmentation in the address space.
+ *
+ * The only really gross cases, with regards to memory waste, are for those
+ * items that are just over half the page size. You can get nearly 50% waste,
+ * so you fall back to the memory footprint of the power of two allocator. I
+ * have looked at memory allocation sizes on many of the machines available to
+ * me, and there does not seem to be an abundance of allocations at this range
+ * so at this time it may not make sense to optimize for it. This can, of
+ * course, be solved with dynamic slab sizes.
+ *
+ * Kegs may serve multiple Zones but by far most of the time they only serve
+ * one. When a Zone is created, a Keg is allocated and setup for it. While
+ * the backing Keg stores slabs, the Zone caches Buckets of items allocated
+ * from the slabs. Each Zone is equipped with an init/fini and ctor/dtor
+ * pair, as well as with its own set of small per-CPU caches, layered above
+ * the Zone's general Bucket cache.
+ *
+ * The PCPU caches are protected by critical sections, and may be accessed
+ * safely only from their associated CPU, while the Zones backed by the same
+ * Keg all share a common Keg lock (to coalesce contention on the backing
+ * slabs). The backing Keg typically only serves one Zone but in the case of
+ * multiple Zones, one of the Zones is considered the Master Zone and all
+ * Zone-related stats from the Keg are done in the Master Zone. For an
+ * example of a Multi-Zone setup, refer to the Mbuf allocation code.
+ */
+
+/*
+ * This is the representation for normal (Non OFFPAGE slab)
+ *
+ * i == item
+ * s == slab pointer
+ *
+ * <---------------- Page (UMA_SLAB_SIZE) ------------------>
+ * ___________________________________________________________
+ * | _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ___________ |
+ * ||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i| |slab header||
+ * ||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_| |___________||
+ * |___________________________________________________________|
+ *
+ *
+ * This is an OFFPAGE slab. These can be larger than UMA_SLAB_SIZE.
+ *
+ * ___________________________________________________________
+ * | _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ |
+ * ||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i| |
+ * ||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_| |
+ * |___________________________________________________________|
+ * ___________ ^
+ * |slab header| |
+ * |___________|---*
+ *
+ */
+
+#ifndef VM_UMA_INT_H
+#define VM_UMA_INT_H
+
+#define UMA_SLAB_SIZE PAGE_SIZE /* How big are our slabs? */
+#define UMA_SLAB_MASK (PAGE_SIZE - 1) /* Mask to get back to the page */
+#define UMA_SLAB_SHIFT PAGE_SHIFT /* Number of bits PAGE_MASK */
+
+#define UMA_BOOT_PAGES 48 /* Pages allocated for startup */
+
+/* Max waste before going to off page slab management */
+#define UMA_MAX_WASTE (UMA_SLAB_SIZE / 10)
+
+/*
+ * I doubt there will be many cases where this is exceeded. This is the initial
+ * size of the hash table for uma_slabs that are managed off page. This hash
+ * does expand by powers of two. Currently it doesn't get smaller.
+ */
+#define UMA_HASH_SIZE_INIT 32
+
+/*
+ * I should investigate other hashing algorithms. This should yield a low
+ * number of collisions if the pages are relatively contiguous.
+ *
+ * This is the same algorithm that most processor caches use.
+ *
+ * I'm shifting and masking instead of % because it should be faster.
+ */
+
+#define UMA_HASH(h, s) ((((unsigned long)s) >> UMA_SLAB_SHIFT) & \
+ (h)->uh_hashmask)
+
+#define UMA_HASH_INSERT(h, s, mem) \
+ SLIST_INSERT_HEAD(&(h)->uh_slab_hash[UMA_HASH((h), \
+ (mem))], (s), us_hlink)
+#define UMA_HASH_REMOVE(h, s, mem) \
+ SLIST_REMOVE(&(h)->uh_slab_hash[UMA_HASH((h), \
+ (mem))], (s), uma_slab, us_hlink)
+
+/* Hash table for freed address -> slab translation */
+
+SLIST_HEAD(slabhead, uma_slab);
+
+struct uma_hash {
+ struct slabhead *uh_slab_hash; /* Hash table for slabs */
+ int uh_hashsize; /* Current size of the hash table */
+ int uh_hashmask; /* Mask used during hashing */
+};
+
+/*
+ * Structures for per cpu queues.
+ */
+
+struct uma_bucket {
+ LIST_ENTRY(uma_bucket) ub_link; /* Link into the zone */
+ int16_t ub_cnt; /* Count of free items. */
+ int16_t ub_entries; /* Max items. */
+ void *ub_bucket[]; /* actual allocation storage */
+};
+
+typedef struct uma_bucket * uma_bucket_t;
+
+struct uma_cache {
+ uma_bucket_t uc_freebucket; /* Bucket we're freeing to */
+ uma_bucket_t uc_allocbucket; /* Bucket to allocate from */
+ u_int64_t uc_allocs; /* Count of allocations */
+ u_int64_t uc_frees; /* Count of frees */
+};
+
+typedef struct uma_cache * uma_cache_t;
+
+/*
+ * Keg management structure
+ *
+ * TODO: Optimize for cache line size
+ *
+ */
+struct uma_keg {
+ LIST_ENTRY(uma_keg) uk_link; /* List of all kegs */
+
+ struct mtx uk_lock; /* Lock for the keg */
+ struct uma_hash uk_hash;
+
+ char *uk_name; /* Name of creating zone. */
+ LIST_HEAD(,uma_zone) uk_zones; /* Keg's zones */
+ LIST_HEAD(,uma_slab) uk_part_slab; /* partially allocated slabs */
+ LIST_HEAD(,uma_slab) uk_free_slab; /* empty slab list */
+ LIST_HEAD(,uma_slab) uk_full_slab; /* full slabs */
+
+ u_int32_t uk_recurse; /* Allocation recursion count */
+ u_int32_t uk_align; /* Alignment mask */
+ u_int32_t uk_pages; /* Total page count */
+ u_int32_t uk_free; /* Count of items free in slabs */
+ u_int32_t uk_size; /* Requested size of each item */
+ u_int32_t uk_rsize; /* Real size of each item */
+ u_int32_t uk_maxpages; /* Maximum number of pages to alloc */
+
+ uma_init uk_init; /* Keg's init routine */
+ uma_fini uk_fini; /* Keg's fini routine */
+ uma_alloc uk_allocf; /* Allocation function */
+ uma_free uk_freef; /* Free routine */
+
+ struct vm_object *uk_obj; /* Zone specific object */
+ vm_offset_t uk_kva; /* Base kva for zones with objs */
+ uma_zone_t uk_slabzone; /* Slab zone backing us, if OFFPAGE */
+
+ u_int16_t uk_pgoff; /* Offset to uma_slab struct */
+ u_int16_t uk_ppera; /* pages per allocation from backend */
+ u_int16_t uk_ipers; /* Items per slab */
+ u_int32_t uk_flags; /* Internal flags */
+};
+typedef struct uma_keg * uma_keg_t;
+
+/* Page management structure */
+
+/* Sorry for the union, but space efficiency is important */
+struct uma_slab_head {
+ uma_keg_t us_keg; /* Keg we live in */
+ union {
+ LIST_ENTRY(uma_slab) _us_link; /* slabs in zone */
+ unsigned long _us_size; /* Size of allocation */
+ } us_type;
+ SLIST_ENTRY(uma_slab) us_hlink; /* Link for hash table */
+ u_int8_t *us_data; /* First item */
+ u_int8_t us_flags; /* Page flags see uma.h */
+ u_int8_t us_freecount; /* How many are free? */
+ u_int8_t us_firstfree; /* First free item index */
+};
+
+/* The standard slab structure */
+struct uma_slab {
+ struct uma_slab_head us_head; /* slab header data */
+ struct {
+ u_int8_t us_item;
+ } us_freelist[1]; /* actual number bigger */
+};
+
+/*
+ * The slab structure for UMA_ZONE_REFCNT zones for whose items we
+ * maintain reference counters in the slab for.
+ */
+struct uma_slab_refcnt {
+ struct uma_slab_head us_head; /* slab header data */
+ struct {
+ u_int8_t us_item;
+ u_int32_t us_refcnt;
+ } us_freelist[1]; /* actual number bigger */
+};
+
+#define us_keg us_head.us_keg
+#define us_link us_head.us_type._us_link
+#define us_size us_head.us_type._us_size
+#define us_hlink us_head.us_hlink
+#define us_data us_head.us_data
+#define us_flags us_head.us_flags
+#define us_freecount us_head.us_freecount
+#define us_firstfree us_head.us_firstfree
+
+typedef struct uma_slab * uma_slab_t;
+typedef struct uma_slab_refcnt * uma_slabrefcnt_t;
+typedef uma_slab_t (*uma_slaballoc)(uma_zone_t, uma_keg_t, int);
+
+
+/*
+ * These give us the size of one free item reference within our corresponding
+ * uma_slab structures, so that our calculations during zone setup are correct
+ * regardless of what the compiler decides to do with padding the structure
+ * arrays within uma_slab.
+ */
+#define UMA_FRITM_SZ (sizeof(struct uma_slab) - sizeof(struct uma_slab_head))
+#define UMA_FRITMREF_SZ (sizeof(struct uma_slab_refcnt) - \
+ sizeof(struct uma_slab_head))
+
+struct uma_klink {
+ LIST_ENTRY(uma_klink) kl_link;
+ uma_keg_t kl_keg;
+};
+typedef struct uma_klink *uma_klink_t;
+
+/*
+ * Zone management structure
+ *
+ * TODO: Optimize for cache line size
+ *
+ */
+struct uma_zone {
+ char *uz_name; /* Text name of the zone */
+ struct mtx *uz_lock; /* Lock for the zone (keg's lock) */
+
+ LIST_ENTRY(uma_zone) uz_link; /* List of all zones in keg */
+ LIST_HEAD(,uma_bucket) uz_full_bucket; /* full buckets */
+ LIST_HEAD(,uma_bucket) uz_free_bucket; /* Buckets for frees */
+
+ LIST_HEAD(,uma_klink) uz_kegs; /* List of kegs. */
+ struct uma_klink uz_klink; /* klink for first keg. */
+
+ uma_slaballoc uz_slab; /* Allocate a slab from the backend. */
+ uma_ctor uz_ctor; /* Constructor for each allocation */
+ uma_dtor uz_dtor; /* Destructor */
+ uma_init uz_init; /* Initializer for each item */
+ uma_fini uz_fini; /* Discards memory */
+
+ u_int64_t uz_allocs; /* Total number of allocations */
+ u_int64_t uz_frees; /* Total number of frees */
+ u_int64_t uz_fails; /* Total number of alloc failures */
+ u_int32_t uz_flags; /* Flags inherited from kegs */
+ u_int32_t uz_size; /* Size inherited from kegs */
+ uint16_t uz_fills; /* Outstanding bucket fills */
+ uint16_t uz_count; /* Highest value ub_ptr can have */
+
+ /*
+ * This HAS to be the last item because we adjust the zone size
+ * based on NCPU and then allocate the space for the zones.
+ */
+ struct uma_cache uz_cpu[1]; /* Per cpu caches */
+};
+
+/*
+ * These flags must not overlap with the UMA_ZONE flags specified in uma.h.
+ */
+#define UMA_ZFLAG_BUCKET 0x02000000 /* Bucket zone. */
+#define UMA_ZFLAG_MULTI 0x04000000 /* Multiple kegs in the zone. */
+#define UMA_ZFLAG_DRAINING 0x08000000 /* Running zone_drain. */
+#define UMA_ZFLAG_PRIVALLOC 0x10000000 /* Use uz_allocf. */
+#define UMA_ZFLAG_INTERNAL 0x20000000 /* No offpage no PCPU. */
+#define UMA_ZFLAG_FULL 0x40000000 /* Reached uz_maxpages */
+#define UMA_ZFLAG_CACHEONLY 0x80000000 /* Don't ask VM for buckets. */
+
+#define UMA_ZFLAG_INHERIT (UMA_ZFLAG_INTERNAL | UMA_ZFLAG_CACHEONLY | \
+ UMA_ZFLAG_BUCKET)
+
+#ifdef _KERNEL
+/* Internal prototypes */
+static __inline uma_slab_t hash_sfind(struct uma_hash *hash, u_int8_t *data);
+void *uma_large_malloc(int size, int wait);
+void uma_large_free(uma_slab_t slab);
+
+/* Lock Macros */
+
+#define KEG_LOCK_INIT(k, lc) \
+ do { \
+ if ((lc)) \
+ mtx_init(&(k)->uk_lock, (k)->uk_name, \
+ (k)->uk_name, MTX_DEF | MTX_DUPOK); \
+ else \
+ mtx_init(&(k)->uk_lock, (k)->uk_name, \
+ "UMA zone", MTX_DEF | MTX_DUPOK); \
+ } while (0)
+
+#define KEG_LOCK_FINI(k) mtx_destroy(&(k)->uk_lock)
+#define KEG_LOCK(k) mtx_lock(&(k)->uk_lock)
+#define KEG_UNLOCK(k) mtx_unlock(&(k)->uk_lock)
+#define ZONE_LOCK(z) mtx_lock((z)->uz_lock)
+#define ZONE_UNLOCK(z) mtx_unlock((z)->uz_lock)
+
+/*
+ * Find a slab within a hash table. This is used for OFFPAGE zones to lookup
+ * the slab structure.
+ *
+ * Arguments:
+ * hash The hash table to search.
+ * data The base page of the item.
+ *
+ * Returns:
+ * A pointer to a slab if successful, else NULL.
+ */
+static __inline uma_slab_t
+hash_sfind(struct uma_hash *hash, u_int8_t *data)
+{
+ uma_slab_t slab;
+ int hval;
+
+ hval = UMA_HASH(hash, data);
+
+ SLIST_FOREACH(slab, &hash->uh_slab_hash[hval], us_hlink) {
+ if ((u_int8_t *)slab->us_data == data)
+ return (slab);
+ }
+ return (NULL);
+}
+
+#ifndef __rtems__
+static __inline uma_slab_t
+vtoslab(vm_offset_t va)
+{
+ vm_page_t p;
+ uma_slab_t slab;
+
+ p = PHYS_TO_VM_PAGE(pmap_kextract(va));
+ slab = (uma_slab_t )p->object;
+
+ if (p->flags & PG_SLAB)
+ return (slab);
+ else
+ return (NULL);
+}
+
+static __inline void
+vsetslab(vm_offset_t va, uma_slab_t slab)
+{
+ vm_page_t p;
+
+ p = PHYS_TO_VM_PAGE(pmap_kextract(va));
+ p->object = (vm_object_t)slab;
+ p->flags |= PG_SLAB;
+}
+
+static __inline void
+vsetobj(vm_offset_t va, vm_object_t obj)
+{
+ vm_page_t p;
+
+ p = PHYS_TO_VM_PAGE(pmap_kextract(va));
+ p->object = obj;
+ p->flags &= ~PG_SLAB;
+}
+#endif
+
+/*
+ * The following two functions may be defined by architecture specific code
+ * if they can provide more effecient allocation functions. This is useful
+ * for using direct mapped addresses.
+ */
+void *uma_small_alloc(uma_zone_t zone, int bytes, u_int8_t *pflag, int wait);
+void uma_small_free(void *mem, int size, u_int8_t flags);
+#endif /* _KERNEL */
+
+#endif /* VM_UMA_INT_H */